Sample records for alluvial basins in-depth

  1. Alluvial basin statistics of the Southwest Principal Aquifers (SWPA) study. (United States)

    U.S. Geological Survey, Department of the Interior — SWPA_alvbsn is a vector dataset of alluvial-fill basin statistics for the Southwest United States. Statistics for each basin include physical details such as area,...

  2. IBIEM modelling of the amplification of seismic waves by a three-dimensional layered alluvial basin (United States)

    Liu, Zhongxian; Liang, Jianwen; Huang, Yihe; Liu, Lei


    We develop an indirect boundary integral equation method (IBIEM) to solve the scattering of seismic waves by a 3-D layered alluvial basin. We adopt the dynamic Green's functions for concentrated loads for a layered half-space derived from the modified stiffness method. This new algorithm of Green's function can solve the near-source response efficiently and accurately, and also facilitates the meshless implementation of the IBIEM. The numerical accuracy and stability of the IBIEM are tested for a homogeneous, hemispherical alluvial basin, and a two-layered model. Based on the IBIEM, the effects of several important parameters, such as the incident frequency, the angle of incidence and the properties of the alluvial layers are investigated for incident plane P and SV waves, respectively. The results show that the local amplification effects of a 3-D layered alluvial basin on the ground motion are strikingly significant, and that the spatial variation of the displacement response is drastic. We also find that the thickness of the near-surface low-velocity alluvial layer has a pronounced influence on the frequency spectrum of ground motion within the basin. As for the thick low-velocity layer, the amplification effect on the displacement amplitude spectrum appears in a wide range of frequencies, with more resonant models in the same frequency range. As for the thin low-velocity layer, in contrast, the amplification effect is close to the homogeneous case but becomes more significant for high-frequency waves. The displacement amplification for a basin with a soft intermediate layer is larger than that of the homogeneous basin for the lower frequencies, but seems to be weakened for high-frequency waves. Additionally, the damping ratio of the alluvial layer can substantially reduce the displacement amplitude in the basin, especially in the range of resonant frequencies. Our results provide a better understanding of the 3-D wave focusing and basin-edge effect within 3-D

  3. Managed aquifer recharge by using spreading basin methods on alluvial fans: a general overview of the situation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hida, N.


    In this paper, the author reviews the present situation of managed aquifer recharge (MAR) by using basin method as of 2009 in Japan. Most of the MAR basin is carried in the area of alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustain ability for the groundwater environment, especially in the distal fan. As a recent tendency, the MAR basin contributes to sustainable aquifer management in alluvium and is spreading in Japan. (Author)

  4. Conceptual model of the Great Basin carbonate and alluvial aquifer system (United States)

    Heilweil, Victor M.; Brooks, Lynette E.


    A conceptual model of the Great Basin carbonate and alluvial aquifer system (GBCAAS) was developed by the U.S. Geological Survey (USGS) for a regional assessment of groundwater availability as part of a national water census. The study area is an expansion of a previous USGS Regional Aquifer Systems Analysis (RASA) study conducted during the 1980s and 1990s of the carbonate-rock province of the Great Basin. The geographic extent of the study area is 110,000 mi2, predominantly in eastern Nevada and western Utah, and includes 165 hydrographic areas (HAs) and 17 regional groundwater flow systems.

  5. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada (United States)

    Sweetkind, Donald S.; Drake II, Ronald M.


    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  6. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada (United States)

    Sweetkind, Donald S.; Drake II, Ronald M.


    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  7. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Donald S. Sweetkind; Ronald M. Drake II


    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  8. Selected Basin Characterization Model Parameters for the Great Basin Carbonate and Alluvial Aquifer System of Nevada, Utah, and Parts of Adjacent States (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on ground-water resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  9. Comparative Study Of Alluvial Cnidion-Type Meadows In The Lower Danube River Basin

    Directory of Open Access Journals (Sweden)

    Schneider-Binder Erika


    Full Text Available Alluvial Cnidion-type meadows (Habitat type 6440 of the Habitats Directive, mostly characteristic for the lower courses of large rivers in continental climate conditions of Europe are presented from the Lower Danube upstream the municipality of Giurgiu (river-km 510-524. The ecological requirements of the characteristic species, as well as their sensitivity to human-induced changes that derive from regular flooding, drainage, intensification of use and/or abandonment, are highlighted; these changes frequently lead to a decrease of biodiversity of the Cnidion-type meadows or to their total loss The studied meadows are compared with similar alluvial meadows from other sites of the lower Danube River basin. Finally, the strong interlocking of Cnidion type meadows with those of the Agropyro-Rumicion, Molinion and Deschampsion caespitosae alliances are discussed.

  10. Evaluation of groundwater recharge in Choushui River alluvial fan and Mingchu Basin for specific rainfall events (United States)

    Lin, Zong Sheng; Chen, Jui-Sheng; Jang, Cheng-Shin


    Sound groundwater resources planning and management are lack in the Choushui River alluvial fan, resulting in the occurrence of serious land subsidence and seawater intrusion. Even the disasters induced by overpumping of groundwater pose a potential threat on the Taiwan High Speed Rail. In addition to improving the water resources management in the alluvial fan, the development of groundwater resources in the neighboring hills. Mingchu Basin, which is located on the midstream segment of the Choushui River and comprised of the gravel formation of Pleistocene, is an effective solution to resolve the problem in limited water resources. Moreover, the Dongpurui River and Qingshui River both converge into Choushui River in this basin. Because of wide drainage areas and good hydrogeological conditions, the Mingchu Basin is considered a high potential recharging region of groundwater. This work is to evaluate the groundwater recharge in the Choushui River alluvial fan and Mingchu Basin, using the WASH123D model equipped with the Groundwater Modeling System (GMS) to simulate the interaction of surface water and groundwater for specific five rainfall events. This study particularly focuses on the simulation of the groundwater flow, and evaluates the effect of different rainfall events on the groundwater recharge. First, to meet in-situ hydrogeological structure and hydraulic parameters, the GMS is used to construct hydrogeological database, mesh, hydrogeological parameters, initial condition and boundary conditions. Then, simulated parameters, such as hydraulic conductivity and pumping rates, need to be calibrated and verified in the model. After the calibration and verification, the simulated groundwater flow can reflect actual groundwater situation. Finally, when specific five rainfall events impose on the ground, groundwater recharge can be determined using the groundwater model.

  11. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system (United States)

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.


    This report describes the construction, calibration, evaluation, and results of a steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system that was developed as part of the U.S. Geological Survey National Water Census Initiative to evaluate the nation’s groundwater availability. The study area spans 110,000 square miles across five states. The numerical model uses MODFLOW-2005, and incorporates and tests complex hydrogeologic and hydrologic elements of a conceptual understanding of an interconnected groundwater system throughout the region, including mountains, basins, consolidated rocks, and basin fill. The level of discretization in this model has not been previously available throughout the study area.

  12. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia (United States)

    Bonsor, H. C.; MacDonald, A. M.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.; Zahid, A.


    The Indo-Gangetic aquifer is one of the world's most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas.

  13. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China (United States)

    Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin


    Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in

  14. Water availability and use pilot; methods development for a regional assessment of groundwater availability, southwest alluvial basins, Arizona (United States)

    Tillman, Fred D; Cordova, Jeffrey T.; Leake, Stanley A.; Thomas, Blakemore E.; Callegary, James B.


    Executive Summary: Arizona is located in an arid to semiarid region in the southwestern United States and is one of the fastest growing States in the country. Population in Arizona surpassed 6.5 million people in 2008, an increase of 140 percent since 1980, when the last regional U.S. Geological Survey (USGS) groundwater study was done as part of the Regional Aquifer System Analysis (RASA) program. The alluvial basins of Arizona are part of the Basin and Range Physiographic Province and cover more than 73,000 mi2, 65 percent of the State's total land area. More than 85 percent of the State's population resides within this area, accounting for more than 95 percent of the State's groundwater use. Groundwater supplies in the area are expected to undergo further stress as an increasing population vies with the State's important agricultural sector for access to these limited resources. To provide updated information to stakeholders addressing issues surrounding limited groundwater supplies and projected increases in groundwater use, the USGS Groundwater Resources Program instituted the Southwest Alluvial Basins Groundwater Availability and Use Pilot Program to evaluate the availability of groundwater resources in the alluvial basins of Arizona. The principal products of this evaluation of groundwater resources are updated groundwater budget information for the study area and a proof-of-concept groundwater-flow model incorporating several interconnected groundwater basins. This effort builds on previous research on the assessment and mapping of groundwater conditions in the alluvial basins of Arizona, also supported by the USGS Groundwater Resources Program. Regional Groundwater Budget: The Southwest Alluvial Basins-Regional Aquifer System Analysis (SWAB-RASA) study produced semiquantitative groundwater budgets for each of the alluvial basins in the SWAB-RASA study area. The pilot program documented in this report developed new quantitative estimates of groundwater

  15. 1:1,000,000-scale hydrographic areas and flow systems for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  16. Three-dimensional hydrogeologic framework for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  17. 1:1,000,000-scale potentiometric contours and control points for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  18. Orbital forcing in the early Miocene alluvial sediments of the western Ebro Basin, Northeast Spain (United States)

    Garces, M.; Larrasoaña, J. C.; Muñoz, A.; Margalef, O.; Murelaga, X.


    Paleoclimatic reconstructions from terrestrial records are crucial to assess the regional variability of past climates. Despite the apparent direct connection between continental sedimentary environments and climate, interpreting the climatic signature in ancient non-marine sedimentary sequences is often overprinted by source-area related signals. In this regard, foreland basins appear as non-ideal targets as tectonically-driven subsidence and uplift play a major control on the distribution and evolution of sedimentary environments and facies. Foreland basins, however, often yield among the thickest and most continuous stratigraphic records available on continents. The Ebro Basin (north-eastern Spain) is of particular interest among the circum-mediterranean alpine foreland basins because it evolved into a land-locked closed basin since the late Eocene, leading to the accumulation of an exceptionally thick (>5500 m) and continuous sequence of alluvial-lacustrine sediments over a period of about 25 Myr. In this paper we present a detailed cyclostratigraphic study of a 115 m thick section in the Bardenas Reales de Navarra region (western Ebro Basin) in order to test orbital forcing in the Milankovitch frequency band. The study section corresponds to the distal alluvial-playa mud flats which developed in the central sector of the western Ebro Basin, with sediments sourced from both the Pyrenean and Iberian Ranges. Sediments consist of brown-red alluvial clay packages containing minor fine-grained laminated sandstones sheet-beds and channels, grey marls and thin bedded lacustrine limestones arranged in 10 to 20 m thick fining-upwards sequences. Red clayed intervals contain abundant nodular gypsum interpreted as representing a phase of arid and low lake level conditions, while grey marls and limestones indicate wetter intervals recording the expansion of the inner shallow lakes. A magnetostratigraphy-based chronology indicates that the Peñarroya section represents a

  19. Autogenic dynamics of alluvial fans in endorheic basins: Outcrop examples and stratigraphic significance

    NARCIS (Netherlands)

    Ventra, D.; Nichols, G.J.


    Alluvial fans are relatively simple depositional systems, due to the direct coupling of sediment sources and adjacent accumulation areas. Nonetheless, general models of alluvial-fan evolution and stratigraphy remain elusive, due to the great sensitivity of such systems to allogenic controls and thei

  20. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca


    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  1. S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin (United States)

    Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.


    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project ( aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems" , the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  2. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj


    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.

  3. Tracing recent environmental changes and pedogenesis using geochemistry and micromorphology of alluvial soils, Sabie-Sand River Basin, South Africa (United States)

    Eze, Peter N.; Knight, Jasper; Evans, Mary


    Three pedons on the alluvial terraces of the Sabie-Sand River Basin within Kruger National Park, South Africa, were studied to improve our understanding of recent environmental changes, and assess degree of chemical weathering and pedogenesis in the area using geochemical and micromorphology proxies. Particle-size distributions were obtained using Malvern Mastersizer; soil geochemistry was determined by XRF and thin sections by routine laboratory procedures. The soils are predominantly sandy (> 94% sand in all samples). The mean phi-values of the soils had little variation suggesting that reworking of sediments upwards in individual profiles produced a more uniform pedogenesis rather than coming from different physical sources. Calcification is the dominant pedogenic process in these alluvial soils. The Chemical Index of Alteration (CIA) proved a more suitable index than Chemical Index of Weathering (CIW) for evaluating weathering in the terraces. The micromass and b-fabrics are mostly granostriated and partly brown mosaic speckled. MISECA values for the degree of soil development range from 4 to 9, which mean weakly to moderately-developed soils. Coarse secondary calcite nodules and coatings are responsible for cementation as observed in pedon 2, which suggests calcium carbonate precipitation from periodical flooding and evaporating groundwater events. The features and diagnostic properties of the soils on the alluvial terraces along the Sabie-Sand River provide evidence for land surface impacts of recent environmental changes in this internationally important conservation area. Precise dating of calcium carbonate precipitates is, however, needed to put the observed evidence into a wider geochronological perspective.

  4. GIS Analysis of Size Relationships between Drainage Basins and Alluvial Fans (United States)

    Wright, S. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.


    Imagery from the global database of modern sedimentary basins compiled by Weissman et al. (2010) allows us to test whether a size relationship between drainage basin area and distributive fluvial system (DFS) area exists. We are testing this hypothesis using a combination of SRTM-based digital elevation models and Landsat satellite imagery in ArcGIS. Sedimentary basins are delineated by preforming a Gaussian smoothing on the DEM, followed by optimal edge detection through application of a modified Canny edge detector. The pour points defining the link between contributing hydrologic basins and these sedimentary basins are then located by generating a stream network in ArcGIS and intersecting the stream network arcs with the sedimentary basin polygons. From these pour points we delineate the adjacent contributing drainage basin using the watershed tool in ArcGIS. We manually digitize the boundary and geometry of the DFS identified for each drainage basin, using the higher resolution imagery found on Google Earth for visual confirmation if the scale or resolution of the Landsat imagery requires it. We then extract drainage basins and DFS polygon parameters and calculate areal extents in order to evaluate whether such a size relationship exists within basins, regionally across several basins, or across different basin types (e.g., endorheic vs exhoreic). A limitation of this approach is that we cannot evaluate sediment volumes, only aerial coverage. Results from this study may provide a better understanding of extrabasinal processes that control DFS shape and size.

  5. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran (United States)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland


    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and

  6. Miocene alluvial fan-alkaline playa lignite-trona bearing deposits from an inverted basin in Anatolia: sedimentology and tectonic controls on deposition (United States)

    İnci, Uǧur


    During the Middle through Late Miocene, over 1200 m of clastics, carbonates and evaporites accumulated in the depositional basin situated in northwestern Ankara province of Central Anatolia. Detailed stratigraphic and sedimentological analyses of the exposed sequence exhibits three major facies: (1) lower alluvial, (2) upper alluvial, and (3) lacustrine. The lower alluvial facies consists primarily of volcaniclastic debris-flow, boulder and channel conglomerate, sandstone, siltstone, mudstone and two lignite horizons. These rock assemblages were deposited in alluvial fans and a braided-river system. The lower and upper lignite seams were laid down in swamps and lake-margin mud-flat environments associated with this river system. The upper alluvial facies is characterized by red conglomerate, fine-grained and cross-bedded sandstone, mudstone and calcareous mudstone units. The dominant depositional environments are interpreted to be alluvial fan, braided-river, and mud-flat. The base of the lacustrine deposits interfingers with the lower alluvial facies and consists of dolomitic claystone, bituminous shale, trona and intraformational conglomerate lithofacies. The sedimentary features of the dolomitic claystone and trona lithofacies suggest deposition in a playa-lake type environment. The bituminous shale is a transgressive deposit laid down in a shallow, but expanded lake environment. Sedimentological and structural characteristics of the intraformational conglomerate lithofacies indicate synsedimentary tectonism, intrabasinal erosion, redeposition and sediment selection toward the deposition centre of the lake environment. The green claystone lithofacies has three units: (a) the claystone-bedded chert-analcitized tuff alternation and siliceous carbonate lithofacies of the lacustrine system, deposited in a perennial lake environment; (b) montmorillonitic olive-green claystone containing mud-cracks, ripple mark and desiccation cracks filled by gypsum, deposited in a

  7. Response of alluvial systems to Late Pleistocene climate changes recorded by environmental magnetism in the Añavieja Basin (Iberian Range, NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Urcia, B.; Muñoz, A.; Larrasoaña, J.C.; Luzon, A.; Perez, A.; Gonzalez, A.; Jiang, Z.; Liu, Q.; Roman-Berdi, T.


    Environmental magnetic proxies were analyzed in a relatively monotonous, ~25.3m thick alluvial sedimentary sequence drilled in the Añavieja Basin (NE Spain). Results from the core AÑ2 suggest that the concentrationdependent magnetic parameters mainly reflect variations in the content of detrital magnetite, sourced in the catchment rocks and soils of the basin, via changes in the dynamics of alluvial fans due to temperature changes in the northern hemisphere during the Late Pleistocene. The correspondence between the magnetic proxies and the temperature variations in the North Atlantic region (NGRIP curve) indicates that higher (lower) concentrations and finer (coarser) magnetite grains coincide with warm (cold) periods. We propose that during cold periods, a sparser vegetation cover favored the incoming of higher energy runoff bearing coarser sediments to the basin that are relatively impoverished in magnetite. In contrast, during warm periods, the wider distribution of the vegetation cover associated with the lower runoff energy lead to finer, magnetite-richer sediment input to the basin. Maghemite, presumably of pedogenic origin, appears to be present also in the studied alluvial sediments. Further studies are necessary to unravel its palaeoclimatic significance. (Author)

  8. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  9. Alluvial Aquifer (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  10. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.


    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project ( aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  11. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, David S., E-mail: [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States); McIntosh, Jennifer C. [University of Arizona, Department of Hydrology and Water Resources, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Dwyer, Gary S.; Vengosh, Avner [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States)


    Highlights: > Elevated natural As and F occur in the Willcox Basin aquifer of Arizona. > Oxyanion-forming elements are derived from volcanic-source aquifer sediments. > Sr isotopes trace sediment sources linked to oxyanion-forming trace elements. > {sup 87}Sr/{sup 86}Sr > 0.720 indicates Proterozoic crystalline-source sediment contributing low As. > Both sediment source and hydrogeochemical evolution (Ca/Na) affect As levels. - Abstract: The Willcox Basin is a hydrologically closed basin in semi-arid southeastern Arizona (USA) and, like many other alluvial basins in the southwestern USA, is characterized by oxic, near-neutral to slightly basic groundwater containing naturally elevated levels of oxyanion-forming trace elements such as As. This study evaluates the sources and mobilization of these oxyanionic trace elements of health significance by using several isotopic tracers of water-rock interaction and groundwater sources ({sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S{sub SO4}, {delta}{sup 11}B, {delta}{sup 2}H, {delta}{sup 18}O, {sup 3}H). Values of {delta}{sup 2}H (-85 per mille to -64 per mille) and {delta}{sup 18}O (-11.8 per mille to -8.6 per mille) are consistent with precipitation and groundwater in adjacent alluvial basins, and low to non-detectable {sup 3}H activities further imply that modern recharge is slow in this semi-arid environment. Large variations in {sup 87}Sr/{sup 86}Sr ratios imply that groundwater has interacted with multiple sediment sources that constitute the basin-fill aquifer, including Tertiary felsic volcanic rocks, Paleozoic sedimentary rocks, and Proterozoic crystalline rocks. In general, low concentrations of oxyanion-forming trace elements and F{sup -} are associated with a group of waters exhibiting highly radiogenic values of {sup 87}Sr/{sup 86}Sr (0.72064-0.73336) consistent with waters in Proterozoic crystalline rocks in the mountain blocks (0.73247-0.75010). Generally higher As concentrations (2-29 {mu}g L{sup -1}), other

  12. The potential for groundwater contamination along basin margins in the arid west: Alluvial fans and lake features


    Clyde, Calvin G.; Oaks, Robert Q.; Peter T. Kolesar; Fisk, Edward P.


    Many towns of the arid west were built upon alluvial fans and upon sites underlain by Pleistocene lake deposits. The objective of this study was to assess the potential impact of these activities of man upon groundwater quality within these geological features. Emphasis was placed on shallow groundwater quality after it was determined that deep groundwater is rarely contaminated at such sites. A reconnaissance of...

  13. Architecture and development of the alluvial sediments of the Upper Jurassic Tordillo Formation in the Cañada Ancha Valley, northern Neuquén Basin, Argentina (United States)

    López-Gómez, José; Martín-Chivelet, Javier; Palma, Ricardo M.


    The Upper Jurassic Tordillo Formation at Cañada Ancha area, northern Neuquén Basin, Argentina, comprises a multi-stage suit of predominantly alluvial sediments that is heterolithic in nature. In that suit, several lithofacies, architectural elements, and bounding surfaces of different order have been identified and their lateral and vertical distribution characterized. This analysis allowed the differentiation of 3 main units (lower, middle and upper), 20 subunits (C-1 to C-20), and the characterization of their alluvial styles. The lower unit (which comprises subunits C-1 to C-4) is mainly formed by fine- to medium-grained sandstones, which become medium- to coarse-grained towards the top. These sandstones characterize settings ranging from floodplains with isolated, unconfined flows, to more complex, vertically stacked, multi-storey sheet sandstones of braided fluvial systems. The middle unit (C-5 to C-10) is dominated by pale brown-grey fine-to coarse-grained sands and medium size subangular to angular conglomerates, which reflect amalgamated complexes of sandstone sheets and downstream accretion macroforms. Remarkably, this alluvial sedimentation was episodically punctuated by volcaniclastic flows. The upper unit (C-11 to C-20) consists of finer sediments, mainly pink to white fine-to medium grained sandstones and red to green siltstones. Towards the top, bioturbation becomes important, and also the presence of volcanosedimentary flows is noticeable. Fluvial settings include braided sheet sandstones with waning flood deposits evolving to isolated high-sinuosity fluvial systems, with flash flood deposits. At the top of this unit, facies may suggest marine influence. Vertical changes in the fluvial style result from both climatic and tectonic controls. A semiarid to arid climate and the active tectonism linked to the eastward migration of the Andean volcanic arc determined major bounding surfaces, fluvial style evolution and the presence of the volcano

  14. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the Kłodnica and Osobłoga river valleys, southern Poland (United States)

    Wójcicki, K. J.; Marynowski, L.


    The work examines the timing and environmental conditions of floodplain sedimentation in the valleys of the upland Kłodnica and piedmont Osobłoga rivers in the Upper Odra River basin. A distribution of 52 14C-ages shows relatively high floodplain sedimentation at the Late Glacial-Holocene transition, more stable floodplain environments since the Early (in the Kłodnica Valley) and Middle Holocene (in the Osobłoga Valley) and a gradual increase in floodplain deposition in the Late Holocene (since hydrological events) as well as factors affecting the local record of sedimentation (i.e. valley morphology, hydrologic conditions and episodes of local erosion). A clear relationship is shown between an increase in alluviation and climate- or human-induced extension of unforested areas. The deposition of mineral-rich sediments increases rapidly during periods characterized by non-arboreal pollen values exceeding approximately 8% in pollen diagrams. On the other hand, the results obtained do not confirm significant interactions between Holocene changes in forest composition and alluviation. Despite the settlement of agrarian groups, the sedimentary record of human activity in the Osobłoga catchment is very poor during the Neolithic and early Bronze Age. A large-scale alluviation of the Osobłoga and Kłodnica valleys was initiated during the settlement of people of the Lusatian culture from the middle Bronze Age and escalated in the early Middle Ages and Modern Times. The deposition of products of soil erosion was limited to between ca. 1.9-1.2 kyr BP, probably due to demographic regression during the Migration Period. Comparison of OM/MM fluctuations with phases of increased fluvial activity does not show a relationship between Holocene wetter phases and catchment sediment yield. Sedimentary episodes in the Upper Odra basin also show a low degree of correlation with the probability density curve of the 14C-ages. The results obtained in the Kłodnica and Osob

  15. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil). (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S


    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.





    Since 1960 the Bistriţa River basin came under the profound influence of anthropic incidence. This river basin represents a pattern of use for hydropower potential: reservoirs (9); channels (61 km); water dams; transfers of flows; protection structures works for banks and slopes; relocation of human settlements (13 villages); gravel pits; galleries; viaducts; communication paths, etc. Bistriţa River development has led to significant changes in the structure of the hydrological regime, throug...

  17. Facies control on seismites in an alluvial-aeolian system: The Pliocene dunefield of the Teruel half-graben basin (eastern Spain) (United States)

    Liesa, Carlos L.; Rodríguez-López, Juan Pedro; Ezquerro, Lope; Alfaro, Pedro; Rodríguez-Pascua, Miguel Ángel; Lafuente, Paloma; Arlegui, Luis; Simón, José L.


    The recognition of seismically induced soft-sediment deformation structures (SSDS) in sedimentary successions characterized by different facies, and hence by different rheology, is challenging. This is the case for high porosity and high permeability aeolian facies interbedded with muddy wet interdune deposits and alluvial conglomerates and sandstones. Several types of SSDS have been studied in two exposures of the Upper Pliocene (2.9-2.6 Ma) sediments of a fault-bounded intracontinental aeolian dune field in the Teruel Basin (Iberian Chain, eastern Spain). Among SSDS, load and fluid-escape structures, apart from several animal tracks, have been recognized. Those structures show an irregular distribution through the studied stratigraphic sections, being scarce in homogenous aeolian sands and frequent in water-related facies. A detailed study of the distribution and geometry of SSDS and their relationships with respect to the stratigraphic architecture and facies has allowed a critical discrimination of trigger mechanisms, i.e. biological or physical overloading vs. earthquakes. The seismically induced structures are concentrated into seven deformed beds, showing an uneven lateral distribution and geometry closely controlled by the hosting sedimentary facies and their rheology. These seismites resulted from liquefaction during moderate earthquakes (estimated magnitude from 5.0 to 6.8). The most probable seismogenic source was the Sierra del Pobo normal fault zone, located 2 km to the East. Results show how an appropriate recognition of sedimentary facies is crucial to understand the lateral variability of seismites in sedimentary environments characterized by sharp facies changes.

  18. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production (United States)

    Lockhart, K. M.; King, A. M.; Harter, T.


    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  19. Late Pleistocene to Holocene alluvial tableland formation in an intra-mountainous basin in a tectonically active mountain belt - A case study in the Puli Basin, central Taiwan

    NARCIS (Netherlands)

    Tseng, Chia Han; Lüthgens, Christopher; Tsukamoto, Sumiko; Reimann, Tony; Frechen, Manfred; Böse, Margot


    The morphology in Taiwan is a product of high tectonic activity at the convergent margin and East Asian monsoon climate. Tablelands are prominent geomorphic features in the Puli Basin in central Taiwan. These tablelands provide an archive to understand links between past climatic evolution and te

  20. Geomorphology of the Alluvial Sediments and Bedrock in an Intermontane Basin: Application of Variogram Modeling to Electrical Resistivity Soundings (United States)

    Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar


    The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.

  1. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA (United States)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco


    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper

  2. Alluvial Deposits in Iowa (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  3. New morpho-stratigraphic constraints for the evolution of the alluvial fan system along the northern slopes of the Taburno-Camposauro Mountains (Calore River basin, Southern Italy) (United States)

    Leone, Natalia; Amato, Vincenzo; Aucelli, Pietro P. C.; Cesarano, Massimo; Filocamo, Francesca; Petrosino, Paola; Rosskopf, Carmen M.; Valente, Ettore; Giralt, Santiago; Casciello, Emilio


    The Lower Calore River Valley is a morphostructural depression located in the inner sector of the Campanian Apennine, between the Taburno-Camposauro and the Matese carbonate massifs. The river is the main left tributary of the Volturno River, it has a meandering channel partially structural-controlled. Numerous morphotectonic clues and historical seismicity data suggest that this part of the Apennine chain was particularly active during the late-Quaternary. In detail, the valley is E-W oriented and presents an asymmetry of the opposed valley slopes. The left side, corresponding to the northern flank of the Camposauro massif, is characterized by a steep slope (70°-35°), partially controlled by a ~E-W oriented fault system, and by a wide less-inclined piedmont aggradation zone. The latter started growing since middle Pleistocene, with the deposition of alluvial fans and slope deposits over the well cemented early Pleistocene breccias of Laiano Synthem. The alluvial fan deposition has been active until present giving rise to three main generations of alluvial fans. The right side of the valley, instead, is characterized by seven orders of fluvial terraces, both of erosional and depositional origin. The quaternary morpho-stratigraphic evolution of alluvial fans and fluvial terraces has been strongly conditioned by the interaction of tectonic phases and climatic variations. A detailed geomorphological study (1:5.000 in scale) was carried out with the aim to map the main depositional and erosional fluvial landforms and to identify the main tectonic lineaments of the area. A detailed field survey allowed to better define the stratigraphic and paleoenvironmental context in which the alluvial deposits developed and also to find chrono-stratigraphic markers. Tephra-stratigraphic analyses were performed on pyroclastic deposits interbedded into the alluvial fan and fluvial successions. At the moment the age of the first generation of alluvial fans is still under

  4. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control (United States)

    Twilley, R.


    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only


    Kingston meadow, located in the Toiyabe Range, is one of many wet meadow complexes threatened by rapid channel incision in the mountain ranges of the central Great Basin. Channel incision can lower the baselevel for groundwater discharge and de-water meadow complexes resulting in...

  6. Depositional conditions on an alluvial fan at the turn of the Weichselian to the Holocene – a case study in the Żmigród Basin, southwest Poland

    Directory of Open Access Journals (Sweden)

    Zieliński Paweł


    Full Text Available Presented are the results of research into the fluvio-aeolian sedimentary succession at the site of Postolin in the Żmigród Basin, southwest Poland. Based on lithofacies analysis, textural analysis, Thermoluminescence and Infrared-Optical Stimulated Luminescence dating and GIS analysis, three lithofacies units were recognised and their stratigraphic succession identified: 1 the lower unit was deposited during the Pleni-Weichselian within a sand-bed braided river functioning under permafrost conditions within the central part of the alluvial fan; 2 the middle unit is the result of aeolian deposition and fluvial redeposition on the surface of the fan during long-term permafrost and progressive decrease of humidity of the climate at the turn of the Pleni- to the Late Weichselian; 3 the upper unit accumulated following the development of longitudinal dunes at the turn of the Late Weichselian to the Holocene; the development of dunes was interrupted twice by the form being stabilised by vegetation and soil development.

  7. Alluvial fan flooding in the Department of Pocito, Province of San Juan, Argentina

    Institute of Scientific and Technical Information of China (English)

    LauraPatriciaPerucca; JuanParedes


    The study consists of the identification of landforms subject to alluvial fan flooding in active sectors of the Zonda range piedmont. In the Department of Pocito, located about 5 km southwest of San Juan City, a series of alluvial fans have been identified. These alluvial fans are located downstream of the natural drainage basins covering an area of approximately 130 km2 towards the eastern slopes of the Zonda range at a median elevation of 2,000 m a.s.l.

  8. Isotopes in the Hueco Bolson aquifer, Texas (USA) and Chihuahua (Mexico): local and general implications for recharge sources in alluvial basins (United States)

    Eastoe, Christopher J.; Hibbs, Barry J.; Olivas, Alfredo Granados; Hogan, James F.; Hawley, John; Hutchison, William R.


    Stable isotope data for the Hueco Bolson aquifer (Texas, USA and Chihuahua, Mexico) distinguish four water types. Two types relate to recharge from the Rio Grande: pre-dam (pre-1916) river water with oxygen-18 and deuterium (δ18O, δD, ‰) from (-11.9, -90) to (-10.1, -82), contrasts with present-day river water (-8.5, -74) to (-5.3, -56). Pre-dam water is found beneath the Rio Grande floodplain and Ciudad Juárez, and is mixed with post-dam river water beneath the floodplain. Two other types relate to recharge of local precipitation; evidence of temporal change of precipitation isotopes is present in both types. Recharge from the Franklin and Organ Mountains plots between (-10.9, -76) and (-8.5, -60) on the global meteoric water line (GMWL), and is found along the western side of the Hueco Bolson, north of the Rio Grande. Recharge from the Diablo Plateau plots on an evaporation trend originating on the GMWL near (-8.5, -58). This water is found in the southeastern Hueco Bolson, north of the river; evaporation may be related to slow recharge through fine-grained sediment. Pre-dam water, recognizable by isotope composition, provides information on groundwater residence times in this and other dammed river basins.

  9. Evaluation of the importance of clay confining units on groundwaterflow in alluvial basins using solute and isotope tracers: the case of Middle San Pedro Basin in southeastern Arizona (USA) (United States)

    Hopkins, Candice B.; McIntosh, Jennifer C.; Eastoe, Chris; Dickinson, Jesse E.; Meixner, Thomas


    As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.

  10. Mississippi River Valley alluvial aquifer (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Mississippi River Valley alluvial aquifer in the states of Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and...

  11. Taphonomy and paleoecology of nonmarine mollusca: indicators of alluvial plain lacustrine sedimentation, upper part of the Tongue River Member, Fort Union Formation ( Paleocene), Northern Powder River Basin, Wyoming and Montana ( USA). (United States)

    Hanley, J.H.; Flores, R.M.


    The composition, species abundances, and spatial and temporal distributions of mollusc assemblages were controlled by the environments in which they lived and the depositional processes that affected the molluscs after death and before final burial. Post-mortem transport, reworking and concentration of shells, and mixing of faunal elements from discrete habitats produced a taphonomic 'overprint' on assemblage characteristics that directly reflects the processes of alluvial plain and floodbasin lacustrine sedimentation. The 'overprint' can be interpreted from outcrop analysis of molluscan biofabric, which consists of: 1) orientation, fragmentation, size-sorting, abrasion, density, and dispersion of shells, 2) the nature and extent of shell-infilling, and 3) ratio of articulated to disarticulated bivalves. Taphonomic characteristics were used with sedimentological properties to differentiate in-place, reworked, transported, and ecologically mixed mollusc assemblages. This study also defines the paleoecology of habitat preferences of mollusc species as a basis for recognition of the environments in which these assemblages were deposited: 1) large floodbasin lakes, 2) small floodbasin lakes, and 3) crevasse deltas and splays. Integration of sedimentology and paleoecology provides an interdisciplinary approach to the interpretation of alluvial environments through time in the Tongue River Member. -Authors

  12. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin. (United States)

    Franz, C; Makeschin, F; Weiß, H; Lorz, C


    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses

  13. Data to Accompany the Regional Potentiometric-Surface Map of the Great Basin Carbonate and Alluvial Aquifer System in Snake Valley and Surrounding Areas, Juab, Millard, and Beaver Counties, Utah and White Pine and Lincoln Counties, Nevada (United States)

    U.S. Geological Survey, Department of the Interior — Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and...

  14. The provenance of Borneo's enigmatic alluvial diamonds (United States)

    White, Lloyd; Graham, Ian; Tanner, Dominique; Hall, Robert; Armstrong, Richard; Yaxley, Greg; Barron, Larry; Spencer, Lee; van Leeuwen, Theo


    Gem-quality diamonds occur in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Numerous geological models have been proposed to explain the distribution of Borneo's diamonds. To assess these models, we used a variety of techniques to examine heavy minerals from Kalimantan's Cempaka paleoalluvial diamond deposit. This involved collecting U-Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. Our results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal recording several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The 'local' diamonds could be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains, or could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin. If this were the case, these intrusions would indicate that the lithosphere beneath SW Borneo is thick (~150 km or greater).


    Institute of Scientific and Technical Information of China (English)


    One of the most important problems in river engineering is to determine a stable cross section geomenry and slope for an alluvial channel. This has been the subject of considerable research for about a century and continues to be of great practical interest. Lgnoring plan geometry, an alluvi-al channel can adjust its slope, depth and width, to develop a dynamic stable condition in which it can transport a certain a-mount of water and sediment. The brief history of regime the-ory and its new development are reviewed in this paper.

  16. Morphometry and Geomorphic Characteristics of Large Alluvial fans and Megafans in South America (United States)

    Latrubesse, E. M.; Sounny-Slitine, M. A.


    Alluvial megafans are 'large' fan-shaped bodies of sediment that form from lateral migrations of a river as it exits a topographic front. They differ from large alluvial fans (radial length between 30-100km) with sizes greater than 100-km in radial length. This study characterizes and describes megafans and large alluvial fan through morphometrics. We cataloged the fans into a geodatabase delineating size and extent of basins both upstream and downstream from the apex. Through remote sensing, elevation modeling and geomorphic mapping, we populated the database with fan morphometric measurements, qualitative descriptions and basin parameters. Metrics include planform area, catchment area, gradient, relief index, drainage density, and others. These were compared to longitudinal/transverse profiles, satellite imagery, and geomorphic maps. The database is global, however since the largest megafans of the world are located in South America, this preliminary analysis will focus on the continent. We found morphometric and characteristic differences between large alluvial fans and megafans in the region. These include difference in relationship between morphometrics, for example the ratio between catchment and fan size area. These properties of fans could be a better approach in differentiating megafans from large alluvial fans. The current criteria is an artificial scale divide, which varies in the literature, with the most common being a 100-km apex-to-toe length. Alternative values as little of 30-km apex-to-toe length have been proposed, as well as alternative metrics like coverage areas of greater than 10,000 square-km. We propose that geomorphic characteristics and morphometrics provide an intrinsic approach to differentiating megafans from larger alluvial fans.

  17. Investigations on alluvial deposits through borehole stratigraphy, radiocarbon dating and passive seismic technique (Carnic Alps, NE Italy) (United States)

    Viero, Alessia; Marchi, Lorenzo; Cavalli, Marco; Crema, Stefano; Fontana, Alessandro; Mozzi, Paolo; Venturini, Corrado


    Alluvial sediment investigations provide fundamental tools to infer the processes that control geomorphological evolution of mountain environments. By analyzing sediment stratigraphy in depth, it is possible to retrieve the source, the geology, the time of deposition, the relative distance travelled by material as well as to distinguish among different type of transport (i.e., gravitational, fluvial or glacial). In this work, we present a combination of log stratigraphy, radiocarbon dating and geophysical surveys carried out on the valley floor of the But River (Carnic Alps, North East Italy). The But River basin drains an area of 326 km2 with a range in elevation from 2769 to 323 m a.s.l.; the bedrock mainly consists of carbonates and quartz arenites with minor inclusions of effusive rocks. After Pleistocene the gravitational deposits from mountain slopes have impounded the But River several times. In particular, we analyzed a sector of the upper portion of the But valley close to the confluence of the Moscardo Torrent, frequently affected by debris flows. A borehole was drilled in the But River floodplain, at the intersection with the Moscardo Torrent alluvial fan, down to a depth of 80 m. The analysis of the core samples allowed discerning three sedimentary levels rich in clay and organic materials, which testify the presence of small dam lakes, originated from the Moscardo debris-flow deposits. Three samples of wood and plant debris were collected from 13, 14 and 23 m of depth, respectively. They were analyzed through radiocarbon dating in order to determine the age of the lakes and, thus, to infer the activity of the debris flows building the Moscardo cone. The calibrated ages of the 3 samples are close to the younger limit of the radiocarbon method indicating a fast aggradation of the valley floor, starting from a period ranging between 1450 - 1632 AD. Historical maps and documents confirm the presence of the lakes until 19th century and they permit to assess

  18. Plucking in Mixed Alluvial-Bedrock Rivers: The Incipient Motion Problem (United States)

    Hurst, A. A.; Furbish, D. J.


    Bedrock river channel erosion is an important factor in the evolution of landscapes, driving the relief of mountainous drainage basins and setting the lowest erosional positions of terrestrial landscapes. The mechanics behind erosional processes (predominantly plucking and abrasion) in these rivers are only recently being explored in depth. Plucking, the fracture and extraction of jointed blocks, is observationally an order of magnitude more efficient than abrasion, but if a river cannot provide the force necessary to move the plucked block, erosion by plucking cannot proceed. Therefore, incipient motion of blocks starting at rest on a solid surface is an important factor in erosion by plucking. Calculations of forces necessary for incipient motion require values of drag coefficients, which do not exist for bedrock contact geometry. We discovered from experiments on a flume that drag coefficients (CD) are inversely proportional to aspect ratios (RA), defined as the frontal block height to width. We used the relationship with field data from plucked blocks at a stream at Montgomery Bell State Park in Burns, TN, a mixed-alluvial bedrock channel with an actively incising knick zone, to support our theory and experimental data. Sizes of plucked blocks were compared to the velocities needed to move them, and then calculations done for bankfull velocities at the stream at Montgomery Bell to determine if it could attain these velocities. It was discovered that this stream has a bankfull depth-averaged velocity of 1.26 m s-1 and is capable of moving a large range of plucked block sizes. Therefore, erosion of this particular stream is plucking-limited, not transport-limited.

  19. Alluvial Boundary of California's Central Valley (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the extent of the alluvial deposits in the Central Valley of California and encompasses the contiguous Sacramento, San Joaquin, and...

  20. Dispersion in alluvial convergent estuaries (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.


    The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.

  1. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)



    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  2. Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps

    Directory of Open Access Journals (Sweden)

    L. Marchi


    Full Text Available Alluvial fans are often present at the outlet of small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and debris flows. Alluvial fans are preferred sites for human settlements and are frequently crossed by transport routes. In order to reduce the risk for economic activities located on or near the fan and prevent loss of lives due to floods and debris flows, torrent control works have been extensively carried out on many alpine alluvial fans. Hazard management on alluvial fans in alpine regions is dependent upon reliable procedures to evaluate variations in the frequency and severity of hydrogeomorphic processes and the long-term performance of the torrent training works. An integrated approach to the analysis of hydrogeomorphic processes and their interactions with torrent control works has been applied to a large alluvial fan in the southern Carnic Alps (northeastern Italy. Study methods encompass field observations, interpretation of aerial photographs, analysis of historical documents, and numerical modelling of debris flows. The overall performance of control works implemented in the early decades of 20th century was satisfactory, and a reduction of hazardous events was recognised from features observed in the field and in aerial photographs, as well as from the analysis of historical records. The 2-D simulation of debris flows confirms these findings, indicating that debris flow deposition would not affect urban areas or main roads, even in the case of a high-magnitude event. Present issues in the management of the studied alluvial fan are representative of situations frequently found in the European Alps and deal with the need for maintenance of the control structures and the pressures for land use changes aimed at the economic exploitation of the fan surface.

  3. Alluvial Fan Study Submission for UMATILLA COUNTY, OREGON (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Alluvial fan study data as defined in FEMA Guidelines and Specifications, Appendix G: Guidance for Alluvial Fan Flooding Analyses and Mapping

  4. Quaternary alluvial stratigraphy and palaeoclimatic reconstruction at the Thar margin

    DEFF Research Database (Denmark)

    Jain, M.; Tandon, S.K.


    Quaternary alluvial record at the Thar desert margin has been examined using the exposed succession along Mahudi, Sabarmati river, Western India. Different alluvial facies, their associations and granulometry have been studied for palaeoenvironmental reconstruction. Clay mineral indices smectite...

  5. Geophysical and Hydrological Characterization of Alluvial Fans in the Valle El Sauz Encinillas, Chihuahua, México. (United States)

    Villalobos-Aragón, A.; Chávez-Aguirre, R.; Osuna-Vizcarra, A.; Espejel-García, V. V.


    The Valle El Sauz Encinillas (VESE) is located 92 km north of Chihuahua City, México. Despite being the principal aquifer feeding Chihuahua City, and being flanked by two well studied geological features (Bloque Calera-Del Nido to the West, and the Sierra Peña Blanca to the East), a lack of available hydrogeological data prevails in the valley. The goals of this study are two: 1) geomorphometrical analysis of the sub-basins and alluvial fans, and 2) determination of the alluvial fan geoelectrical units via electrical-resistivity soundings. The Basin and Range system forms a closed sub-basin with a lacustrine basin system in extinction process. The aquifer is located in alluvial Quaternary sediments, with varying granulometry, reaching a thickness of 600 meters at the center of the valley. The biggest alluvial fan in the VESE is located at the Cañón de Santa Clara, and intersects the playa-lake deposits of the Laguna de Encinillas. This fan has a surface of 73.2 km2 and an average slope of 0.437°. The geomorphometrical analysis included the sub-basins, currents, and the fans in the area. These analyses allow a comparison between alluvial fans in the VESE and those in Death Valley, California, USA. The alluvial fans in both areas show a similar behavior in all plots. Twenty electrical resistivity soundings (Schlumberger array, AB/2 distance of 400 m) were performed in the alluvial fan. The basement and four other geoelectrical units were identified in the fan. The geophysical data, granulometric determinations, plus geochemical information of twelve wells in the area were analyzed. These data show how the decrease in granulometry, both frontally and laterally in the fan, results in a rise of the hydraulic conductivity and transmisivity values (water wells in Los Sauces and El Faro). However, both the permeability and the water quality in its distal portion, are affected by the playa lake deposits, the raising ratio of clay-size sediments (and evaporites) in the

  6. Late Pleistocene-Holocene alluvial stratigraphy of southern Baja California, Mexico (United States)

    Antinao, José Luis; McDonald, Eric; Rhodes, Edward J.; Brown, Nathan; Barrera, Wendy; Gosse, John C.; Zimmermann, Susan


    A late Pleistocene to Holocene alluvial stratigraphy has been established for the basins of La Paz and San José del Cabo, in the southern tip of the Baja California peninsula, Mexico. Six discrete alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development. These criteria were supported using radiocarbon, optically stimulated luminescence and cosmogenic depth-profile geochronology. Major aggradation started shortly after ∼70 ka (Qt2), and buildup of the main depositional units ended at ∼10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units consist of multiple 1-3 m thick alluvial packages deposited as upper-flow stage beds that represent individual storms. Main aggradational units (Qt2-Qt4) occurred across broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are confined to channels of ∼0.5-2 km width. Continuous deposition inside the thicker (>10 m) pre-Qt5 units is demonstrated by closely spaced dates in vertical profiles. In a few places, disconformities between these major units are nevertheless evident and indicated by partly eroded buried soils. The described units feature sedimentological traits similar to historical deposits formed by large tropical cyclone events, but also include characteristics of upper-regime flow sedimentation not shown by historical sediments, like long (>10 m) wavelength antidunes and transverse ribs. We interpret the whole sequence as indicating discrete periods during the late Pleistocene and Holocene when climatic conditions allowed larger and more frequent tropical cyclone events than those observed historically. These discrete periods are associated with times when insolation at the tropics was

  7. Generalized sorting profile of alluvial fans (United States)

    Miller, Kimberly Litwin; Reitz, Meredith D.; Jerolmack, Douglas J.


    Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer-scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well-defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel-fining profile is not self-similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel-sand transition appears to exhibit a self-similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels.


    Institute of Scientific and Technical Information of China (English)

    Guangqian WANG; Junqiang XIA


    This paper first describes the phenomenon of channel widening during degradation of alluvial rivers,explains the mechanisms of channel widening, and analyzes the stability of cohesive riverbank. Then a one-dimensional mathematical model is developed to simulate the transport of non-uniform suspended sediments, with a sub-model for the simulation of channel widening, and is used to study the process of channel widening during degradation. The effects of different incident flow and sediment conditions and different riverbank material characteristics on channel widening and bed degradation are compared.Finally, main factors that control the deformation processes are identified.

  9. Patterns and Processes of Width Adjustment to Increased Streamflows in Semi-Alluvial Rivers (United States)

    Kelly, S. A.; Belmont, P.


    While it is understood that river channel width is determined by fluxes of water and sediment, predictive models of channel width, and especially changes in width under non-stationary conditions, have proven elusive. Classic hydraulic geometry relations commonly used in numerical models and channel design typically scale width as a power law function of discharge, without consideration of bank properties. This study investigates the role of bank material in determining spatial and temporal variability in channel width and widening rates for semi-alluvial rivers that have experienced increases in flow. The 45,000 km2 Minnesota River Basin contains many semi-alluvial rivers that have been rapidly incising into fine-grained glacial deposits over the last 13,400 years in response to a catastrophic base level drop. Large, recent increases in streamflows have caused significant channel widening and migration, exacerbated erosion of channel (alluvial) banks and (consolidated till) bluffs, and dramatically increased sediment supply. Here we leverage multiple decades of aerial photos, repeat lidar surveys, Structure from Motion photogrammetry and sediment gaging to examine past, and predict future, changes in channel width. We use empirical observations and a simple model to examine whether semi-alluvial channels tend toward a single, or multiple, equilibrium channel width(s). Preliminary results suggest that under stationary hydrologic conditions (1930s - 1970s) channel width was relatively consistent among reaches underlain by alluvium versus consolidated till. Since the late 1970s the study area has undergone profound hydrologic changes, with geomorphically-active flows nearly doubling in magnitude. Alluvial reaches widened relatively quickly in response to the increase in flows, whereas reaches underlain by till have not seen the same amount of widening. Aerial lidar-based geomorphic change detection between 2005 - 2012 records channel width changes in response to an

  10. Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico (United States)

    Sánchez-Núñez, J. M.; Macías, J. L.; Saucedo, Ricardo; Zamorano, J. J.; Novelo, David; Mendoza, M. E.; Torres-Hernández, J. R.


    Alluvial fans and terraces develop in diverse regions responding to different tectonic and climatic conditions. The Motozintla basin is located in the State of Chiapas, southern Mexico and has an E-W orientation following the trace of the left-lateral Polochic Fault. The evolution of the Motozintla basin and the alluvial plain is related to several factors, such as fault movement, intense erosion by hydrometeorological events, and anthropogenic activity. This study presents the geomorphology of the alluvial plain that between the villages of Motozintla and Mazapa de Juárez exposes 31 alluvial fans, 5 hanging terraces and 13 ramps. Fourteen of these alluvial fans have been truncated by the Polochic fault, exposing maximum uplifts of ~ 12 m. The internal structure of truncated fans consists of single massive beds (monolithologic fans) or stacked beds (polygenetic fans). The fans' stratigraphy is made of debris flow deposits separated by paleosols and minor hyperconcentrated flows, fluviatile beds, and pyroclastic fall deposits. The reconstruction of the stratigraphy assisted by radiocarbon geochronology suggests that these fans have been active since late Pleistocene (25 ka) to the present. This record suggests that at least 10 events have been recorded at the fan interior during the past ~ 1840 years. One of these events at 355 ± 65 14C yrs. BP (cal yrs. AD 1438 to 1652) can be correlated across the fans and is likely associated with an extreme hydrometeorologic event. The presence of a 165 ± 60 14C yrs. BP (cal yrs. AD 1652-1949) debris flow deposit within the fans suggests that movement along the Polochic fault formed the fans' scarp afterwards. In fact, a historic earthquake along the fault occurred east of Motozintla on July 22, 1816 with a Mw of 7.5-7.75. Recent catastrophic floods have affected Motozintla in 1998 and 2005 induced by extreme hydrometeorological events and anthropogenic factors. Therefore, scenarios for Motozintla involved several types of

  11. Climatic and Tectonic Controls on Alluvial Fan Evolution: The Lost River Range, Idaho (United States)

    Phillips, R. J.; Pierce, J. L.; Sharp, W. D.; Pierce, K. L.


    In the northern Basin &Range, alluvial fans developed along the Lost River range-front consist of several distinct inset fan segments with concave-up radial profiles. Multiple large radius (>5 km), shallow (2- 3°), alluvial fans extend across and beyond the active, ~140-km-long, normal Lost River fault. These large fans are relict features, formed by major sheetfloods that occurred intermittently between ~15-180 ka. More recent deposition has been dominated by debris-flows that form small-radius (cuts through gravelly fan deposits, indicates that the fan soils are geochemically suitable for uranium-series dating (median U=7ppm, 232Th=0.09ppm, 232Th/230Th=154). 230Th/U analysis of these calcic soils can thus provide precise temporal constraints on intervals of surface stability and subsequent soil formation. The oldest fan surface (Qfo1, 178+/-8 ka), exposed within the footwall of the trench, suggests an interval of surface stability, indicating that the fan was likely abandoned due to incision early in MIS 6. Incision may have resulted from surface faulting along the Arco segment of the Lost River fault, but could relate to changes in stream power or sediment supply associated with climatic change or with auto-cyclic variations within the drainage basin. A younger incised and faulted fan surface (Qfo2, 69+/-6 ka), likely represents active alluviation at the beginning of MIS 4 and, since it formed as hanging-wall alluvial gravel, provides age limits on an episode of fault displacement between Qfo1 and Qfo2. In situ pedogenic carbonate coats on sub-angular gravels within the colluvial fault wedge date at 68+/-2 ka, suggesting that either faulting occurred soon after Qfo2 stabilized or that soil carbonate coats were recycled into the colluvial wedge from the faulted surface. Further studies in the Lost River Range will assess the timing of fan deposition, surface stabilization and fault activity since the late Pleistocene using coupled application of Optically

  12. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River (United States)

    Gran, K. B.


    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  13. Alluvial fan response to climatic change: Insights from numerical modeling (Invited) (United States)

    Pelletier, J. D.


    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  14. Movement of water infiltrated from a recharge basin to wells. (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J


    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.

  15. Effect of coal ash disposal upon an unconfined alluvial system

    Energy Technology Data Exchange (ETDEWEB)

    Shergill, B.S.; Sendlein, L.V.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Dinger, J.S. (Univ. of Kentucky, Lexington, KY (United States). Kentucky Geological Survey)


    Fly and bottom ash from coal combustion has been disposed in four ash ponds in an alluvial valley. Three of the ash ponds are receiving ash and one was filled and closed. Twenty eight monitoring wells ranging in depth from 10 feet to 65 feet have been installed at the site to study groundwater flow and chemistry. Hydraulic heads are influenced by the stage of the Kentucky River, and the flow direction is vertical below the ash ponds and predominantly horizontal a short distance from the pond all the way to the river. Three different groundwater flow zones were observed and have unique water chemistry. The deep zone (near bedrock) has a low Eh (< [minus]80), and high concentration of Fe, ammonia nitrogen, below detection sulfate values (< 5 mg/l) and trace metals. The age of the deep groundwater as determined by tritium analyses is between 20 to 30 years old (5.68 TU). The intermediate groundwater zone (from ash pond) has relatively higher Eh (> 100) and lower concentrations of Fe and ammonia nitrogen, median sulfate concentration (114 mg/l), and arsenic is below detection limits. The shallow groundwater zone is through the closed out ash point and has higher concentrations of nearly all cations and anions, including sulfate (888 mg/l) and arsenic (exists as arsenite) at concentration of 0.9 mg/l, low Eh (< [minus]100), and high pH. When shallow flow enters the alluvium, the sulfate are attenuated by sulfate reduction and this results in high bicarbonate values. Saturation indices (SI) as calculated by the geochemical model, MINTEQA2, indicate that deep and intermediate groundwater are unsaturated and shallow groundwater is at or near equilibrium with respect to calcite, dolomite, and gypsum.

  16. Educator Market Research: In-depth Interviews (United States)


    Military Advertising ,” Report to Congress, 2000. 20 Defense Manpower Data Center Educator Market ...2000. d. Preliminary Presentation of Results. The contractor formally briefed results to the Joint Marketing and Advertising Committee (JMAC) on...Educator Market Research: DMDC Report No. 2002-024 November 2001 In-depth Interviews For additional copies of this report, contact: Defense Technical

  17. Coding In-depth Semistructured Interviews

    DEFF Research Database (Denmark)

    Campbell, John L.; Quincy, Charles; Osserman, Jordan;


    Many social science studies are based on coded in-depth semistructured interview transcripts. But researchers rarely report or discuss coding reliability in this work. Nor is there much literature on the subject for this type of data. This article presents a procedure for developing coding schemes...

  18. "Learning in Depth" in Teaching Education (United States)

    Egan, Kieran


    The "Learning in Depth" program is a simple but radical innovation, which was first implemented in Canada in 2008/2009 and is now being used in a dozen countries with many thousand students. The aim of the program is to ensure that every student becomes an expert on something during schooling. The unusualness of the program and the fact…

  19. Deglacial Flood Origin of the Charleston Alluvial Fan, Lower Mississippi Alluvial Valley (United States)

    Porter, Donna A.; Guccione, Margaret J.


    Large-magnitude flooding of the Mississippi River from proglacial lakes Agassiz and Superior most likely occurred between 11,300 and 10,900 and 9900 and 9500 yr B.P. The Charleston alluvial fan, a depositional remnant of one of these floods, is located at the head of a wide alluvial plain near Charleston, Missouri. The fan is an elongate, convex-up sand body (16 × 24 km) composed of medium- and fine-grained sand at least 8 m thick. This sand contrasts with the older coarse-grained sand of the braided stream surface to the west and south and younger silty clay of the meandering stream level to the north and east. A weakly developed soil separates the underlying braided steam deposits from the alluvial fan. A bulk-soil radiocarbon date of 10,590 ± 200 yr B.P. from the contact between the fan and clays of the meandering stream system indicates that the Charleston fan was deposited near the end of the early interval of flooding from Lake Agassiz about 10,900 yr B.P. If the Charleston fan is the last remnant of deglacial flooding in the lower Mississippi Valley, then deposition of significant quantities of sediment from largemagnitude floods between 10,000 and 9500 yr B.P. did not extend into the lower Mississippi Valley through Thebes Gap.

  20. An overview of experiences of basin artificial recharge of ground water in Japan (United States)

    Hida, Noboru

    In this paper, the author reviews the present situation of basin artificial recharge of ground water (MAR: managed aquifer recharge) as of 2007 in Japan. Most of the artificial recharge of basin method is carried out using alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustainability for the groundwater environment, especially in the distal fan. As a general judgment, the basin artificial recharge contributes to sustainable aquifer management in alluvium. As a result of this review, the basin artificial recharge will be utilized more in the future, not only in Japan, but in monsoon Asian countries as well.

  1. 冲积扇砾岩储层构型特征及其对储层开发的控制作用以准噶尔盆地西北缘某区克下组冲积扇储层为例%Characteristics of Conglomerate Reservoir Architecture of Alluvial Fan and Its Controlling Effects to Reservoir Development:Taking Alluvial Fan Reservoir in Some Area of Northwest Margin of Junggar Basin as an Example

    Institute of Scientific and Technical Information of China (English)

    陈欢庆; 梁淑贤; 舒治睿; 邓晓娟; 彭寿昌


    冲积扇砾岩储层作为陆相沉积储层十分重要的类型之一,一直是我国油气勘探开发的重点领域。以准噶尔盆地西北缘某区下克拉玛依组为例,根据砾岩储层相变快、储层非均质性强等特点,在沉积相分析的基础上,对储层构型特征进行了精细分析,将储层划分为槽流砾石体、槽滩砂砾体、漫洪内砂体、漫洪内细粒、片流砾石体、漫洪外砂体、漫洪外细粒、辫流水道、辫流砂砾坝、漫流砂体、漫流细粒、径流水道和水道间细粒共13种构型单元,其中以槽流砾石体、片流砾石体、辫流水道和辫流砂砾坝占主导。构型解剖结果显示:研究区砾岩储层槽流砾石体平面呈条带状,剖面厚度大,为2~8 m;片流砾石体沉积厚度大,一般为2~7 m;辫流水道构型单元宽度为80~400 m,剖面呈透镜状,厚度为2~7 m;辫流砂砾坝沉积厚度较大,为2~7 m。上述构型单元受北部和西北部方向物源控制明显。储层构型特征能有效反映储层非均质性、连通性等属性,对油田开发具有较强的控制作用。%Being one of the important kind of reservoir,conglomerate reservoir always was hotpot area to explorationists and developers of oilfield.Taking Lower Karamay Formation of some area in northwest margin of Junggar basin as an example,it characteristics of sedimentary facies quick changes and heterogeneity intensity.reservoir architecture characteristics were finely analyzed on the base of sedimentary facies studied.The reservoirs were carved into thirteen kind of architecture,such as, channel flow conglomerate,channel beach conglomerate,sandstone of inner belt of sheet flood,fine grained of inner belt of sheet flood,laminar flow conglomerate,sandstone of exterior belt of sheet flood, fine grained of exterior belt of sheet flood,braided channel,braided sandstone-conglomerate dam, sandstone of unconcentrated flow,fine grained of unconcentrated flow

  2. Level IV Ecoregions of the Mississippi Alluvial Plain (United States)

    U.S. Environmental Protection Agency — Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in...

  3. Level III Ecoregions of the Mississippi Alluvial Plain (United States)

    U.S. Environmental Protection Agency — Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in...

  4. Aquifers of Alluvial and Glacial Origin - Direct Download (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the alluvial and glacial aquifers north of the southern-most line of glaciation. Aquifers are shown in the States of Maine,...

  5. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology (United States)

    Larsen, Annegret; May, Jan-Hendrick


    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  6. Multilevel approach to the geomorphological setting of an alluvial plain in the Alpine environment (United States)

    Minciotti, Nancy A.; Brivio, Pietro A.; Zilioli, Eugenio


    This paper presents an integrated use of cartography and remote sensing imagery supplied by satellite and aircraft to study the geomorphological aspects of an alluvial plain for archaeological purposes. The study area is located at the confluence of the Valtellina (Adda River) and Lower Mera River valleys in northern Italy. Landsat data and aerial photographs were used to study the partial filling of the Lake Como lacustrine basin resulting from the progradation of the Adda River delta. Different soil humidity content, related to variable grain size of the alluvial deposits is an indicator of ancient river beds which were formed in this area before the nineteenth century artificial rectification of the River Adda's final stretch. Profiles coincident with geological sections gained by geophysical sounding were performed on the remote sensing imagery to verify eventual correspondence of depositional features with different analysis techniques. The integration of remote sensing multilevel data with cartography and archaeological evidences has been useful for the assessment of the paleoenvironment which conditioned human settlements.

  7. Discharge estimation from planform characters of the Shedhi River, Gujarat alluvial plain: Present and past

    Indian Academy of Sciences (India)

    Alpa Sridhar


    In the absence of long-term hydrologic and streamflow records an understanding of river morphology (present and past) can help delineate changes in magnitudes of water and sediment discharges. The relict drainage system of Gujarat alluvial plain provides an opportunity to reconstruct the palaeochannel morphology-related discharge estimations. In this paper, based on the geomorphological evidence and channel geometry, an attempt has been made to reconstruct the palaeohydrological condition in the Shedhi River during the Holocene. A comparison of the present day channel of the Shedhi River with that of its palaeo counterpart reveals that the former was carrying much higher bankfull discharge (∼5500m3s−1) as compared to the present (∼200m3s−1). This is attributed to a larger drainage area and enhanced precipitation in the Shedhi River basin.

  8. Tectonic controls on the geomorphic evolution of alluvial fans in the Piedmont Zone of Ganga Plain, Uttarakhand, India

    Indian Academy of Sciences (India)

    Pradeep K Goswami; Charu C Pant; Shefali Pandey


    The Piedmont Zone is the least studied part of the Ganga Plain.The northern limit of the Piedmont Zone is defined by the Himalayan Frontal Thrust (HFT)along which the Himalaya is being thrust over the alluvium of the Ganga Plain.Interpretation of satellite imagery,Digital Terrain Models (DTMs)and field data has helped in the identification and mapping of various morpho-tectonic features in the densely forested and cultivated Piedmont Zone in the Kumaun region of the Uttarakhand state of India.The Piedmont Zone has formed as a result of coalescing alluvial fans,alluvial aprons and talus deposits.The fans have differential morphologies and aggradation processes within a common climatic zone and similar litho-tectonic setting of the catchment area. Morphotectonic analysis reveals that the fan morphologies and aggradation processes in the area are mainly controlled by the ongoing tectonic activities.Such activities along the HFT and transverse faults have controlled the accommodation space by causing differential subsidence of the basin,and aggradation processes by causing channel migration,channel incision and shifting of depocentres.The active tectonic movements have further modified the landscape of the area in the form of tilted alluvial fan,gravel ridges,terraces and uplifted gravels.

  9. Event scale variability of mixed alluvial-bedrock channel dynamics (United States)

    Cook, Kristen; Turowski, Jens; Hovius, Niels


    The relationship between flood events and fluvial behavior is critical for understanding how rivers may respond to the changing hydrologic forcing that may accompany climate change. In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a large number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes, bedrock-controlled changes in channel width and planform, and the shape of the hydrograph. We use the Daan River Gorge in western Taiwan as a case study to directly observe the effect of individual flood events on channel evolution. The 1200 m long and up to 20 m deep bedrock gorge formed in response to uplift of the riverbed during the 1999 Chi-Chi earthquake. The extremely rapid pace of change ensures that flood events have measurable and often dramatic effects on the channel. Taiwan is subject to both summer typhoons and a spring monsoon, resulting in numerous channel-altering floods with a range of magnitudes. Discharge is therefore highly variable, ranging from 5 to over 2000 m3/s, and changes in the channel are almost entirely driven by discrete flood events. Since early 2009 we have monitored changes in the gorge with repeated RTK GPS surveys, laser rangefinder measurements, and terrestrial LIDAR surveys. Six rainfall stations and five water level gauges provide hydrological data for the basin. We find a distinct relationship between flood magnitude and the magnitude of geomorphic change; however, we do not find a clear relationship between flood characteristics and the direction of change - whether the channel experienced aggradation or erosion in a particular flood. Upstream coarse sediment supply and the influence of abrupt changes in channel width on bedload flux through the gorge appear to have important influences on the channel response. The better understand these controls, we use the model sedFlow (Heimann et al., 2014) to explore the effects of interactions

  10. Characterizing subsurface hydraulic heterogeneity of alluvial fan using riverstage fluctuations (United States)

    Wang, Yu-Li; Yeh, Tian-Chyi Jim; Wen, Jet-Chau; Huang, Shao-Yang; Zha, Yuanyuan; Tsai, Jui-Pin; Hao, Yonghong; Liang, Yue


    The objective of this study is to demonstrate the ability of riverstage tomography to estimate 2-D spatial distribution of hydraulic diffusivity (D) of Zhuoshui River alluvial fan, Taiwan, using groundwater level data from 65 wells and stream stage data from 5 gauging stations. In order to accomplish this objective, wavelet analysis is first conducted to investigate the temporal characteristics of groundwater level, precipitation, and stream stage. The results of the analysis show that variations of groundwater level and stream stage are highly correlated over seasonal and annual periods while that between precipitation is less significant. Subsequently, spatial cross-correlation between seasonal variations of groundwater level and riverstage data is analyzed. It is found that the correlation contour map reflects the pattern of sediment distribution of the fan. This finding is further substantiated by the cross-correlation analysis using both noisy and noise-free groundwater and riverstage data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of riverstage tomography is then tested with these synthetic data sets to estimate D distribution. Finally, the riverstage tomography is applied to the alluvial fan. The results of the application reveal that the apex and southeast of the alluvial fan are regions with relatively high D and the D values gradually decrease toward the shoreline of the fan. In addition, D at northern alluvial fan is slightly larger than that at southern. These findings are consistent with the geologic evolution of this alluvial fan.

  11. Turnover Rates of Fall Migrating Pectoral Sandpipers Through the Lower Mississippi Alluvial Valley (United States)

    US Fish and Wildlife Service, Department of the Interior — The Mississippi Alluvial Valley (MA V) is the historic alluvial floodplain of the Lower Mississippi River. Most of the MAV is located in Arkansas, Louisiana, and...

  12. Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (southern Italy

    Directory of Open Access Journals (Sweden)

    N. Santangelo


    Full Text Available This paper deals with the risk assessment to alluvial fan flooding at the piedmont zone of carbonate massifs of the southern Apennines chain (southern Italy. These areas are prime spots for urban development and are generally considered to be safer than the valley floors. As a result, villages and towns have been built on alluvial fans which, during intense storms, may be affected by flooding and/or debris flow processes.

    The study area is located at the foothills of the Maddalena mountains, an elongated NW-SE trending ridge which bounds to the east the wide intermontane basin of Vallo di Diano. The area comprises a wide detrital talus (bajada made up by coalescent alluvial fans, ranging in age from the Middle Pleistocene to the Holocene. Historical analysis was carried out to ascertain the state of activity of the fans and to identify and map the zones most hit by past flooding. According to the information gathered, the Sala Consilina fans would appear prone to debris flows; in the past these processes have produced extensive damage and loss of life in the urban area. The watershed basins feeding the fans have very low response times and may produce debris flow events with high magnitudes. Taking into account the historical damage, the fan surface morphology, and the present urban development (street orientation and hydraulic network, the piedmont area was zoned and various susceptibility classes were detected. These results may represent a useful tool for studies aiming at territorial hazard mapping and civil protection interventions.


    Institute of Scientific and Technical Information of China (English)



    The theoretical conditions for the bend development or attenuation have been reviewed and tested for a study reach of the Meghna river.The field observations in the natural alluvial meander do not support the theories developed for bend development.The limitations of the theory to apply in the natural meandering river are discussed.

  14. Alluvial-eolian interaction in a Cambrian rift margin: the Pedra das Torrinhas and Pedra Pintada formations (Guaritas Group, RS

    Directory of Open Access Journals (Sweden)

    André Marconato


    Full Text Available This work presents a study of selected outcrops from the Pedra das Torrinhas Formation of the Guaritas Group (Cambrian, Camaquã Basin, near the basin bordering Encantadas Fault Zone. The studied succession includes alluvial fan deposits that pass laterally into eolian deposits. Sedimentary facies and architectural element analysis were performed, followed by sedimentary petrography and microscopic porosity analysis, aiming to characterize the porosity of the deposits and its spatial distribution. The main objective was to contribute to a better understanding of the porosity spatial distribution in depositional systems characterized by the interaction between alluvial and eolian processes, with special reference to deposits formed prior to the development of terrestrial plants. Porosity values are related to depositional processes, with higher porosities associated to eolian dune deposits (mean of 8.4%, and lower porosity related to interdunes (mean of 3.4% and alluvial fans (mean of 4.3%. Architectural elements analysis revealed the spatial relationships of these deposits, a response to the interplay of the eolian and alluvial processes. The integration of porosity data reveals that the interaction of alluvial and eolian processes results in heterogeneous distribution of porosity at the facies association scale. Eolian reworking of alluvial facies increases porosity whereas sheet-flood and other alluvial processes in the interdune areas reduce porosity.O presente trabalho consiste no estudo de afloramentos da Formação Pedra das Torrinhas do Grupo Guaritas (Cambriano, Bacia Camaquã, próximo à Zona de Falha das Encantadas. As sucessões estudadas incluem depósitos de leques aluviais que passam lateralmente para depósitos eólicos. Foram realizadas análises de fácies e de elementos arquiteturais, seguidos de petrografia sedimentar e análise microscópica de porosidade, com o objetivo de caracterizar a porosidade da unidade e sua

  15. Probable flood predictions in ungauged coastal basins of El Salvador (United States)

    Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.


    A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.

  16. Modeling analysis of ground water recharge potential on alluvial fans using limited data. (United States)

    Munévar, A; Mariño, M A


    A modeling approach is developed to evaluate the potential for artificial recharge on alluvial fans in the Salinas Valley, California, using limited data of soil texture, soil hydraulic properties, and interwell stratigraphy. Promising areas for surface recharge are identified and mapped on a broad-scale using soil surveys, geologic investigations, permeability tests, and seasonal ground water response to rainfall and runoff. Two-dimensional representations of the vadose zone at selected sites are then constructed from drillers'logs and soil material types are estimated. Next, hydraulic properties are assigned to each soil material type by comparing them to laboratory-tested cores of similar soils taken from one site. Finally, water flow through the vadose zone is modeled in two dimensions at seven sites using a transient, finite-difference, variably saturated flow model. Average infiltration rates range from 0.84 to 1.54 cm/hr and recharge efficiency, the percentage of infiltrated water that reaches the water table, varies from 51% to 79%. Infiltration rates and recharge efficiency are found to be relatively insensitive to recharge basin ponding depth due to the thickness of the vadose zones modeled (31 to 84 m). The impact of artificial recharge on the Salinas Valley ground water basin is investigated by simulating the regional ground water response to surface spreading and streamflow augmentation with a recently calibrated, finite-element, ground water-surface water model for the basin. It was determined that a combined approach of surface recharge and streamflow augmentation significantly reduces the state of ground water overdraft and, to a lesser extent, reduces the rate of sea water intrusion.

  17. `In-depth'-onderzoek van verkeersongevallen : een literatuurstudie.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Harris, S.


    This study examined the possible added value of conducting accident investigation by means of the in-depth method, compared to other research methods. The in-depth method is an approach in which sufficient data concerning road traffic accidents is collected so as to enable complete reconstructions.

  18. Geomorphic characterization of the Fortymile Wash alluvial fan, Nye County, Nevada, in support of the Yucca Mountain Project (United States)

    Cline, M.; Delong, S.; Pelletier, J.


    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash may be deposited in portions of the Fortymile Wash drainage basin and subsequently redistributed to the Fortymile Wash alluvial fan by fluvial processes. Characterization of the Fortymile Wash alluvial fan has been undertaken as part of an effort to quantify the transport of contaminated ash throughout the fluvial system, especially to define the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration for the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from 137Cs fallout to determine radionuclide infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the 137Cs profiles collected on the different surfaces of the fan.

  19. Near-decadal changes in nitrate and pesticide concentrations in the South Platte River alluvial aquifer, 1993-2004 (United States)

    Paschke, S.S.; Schaffrath, K.R.; Mashbum, S.L.


    The lower South Platte River basin of Colorado and Nebraska is an area of intense agriculture supported by surface-water diversions from the river and ground-water pumping from a valley-fill alluvial aquifer. Two well networks consisting of 45 wells installed in the South Platte alluvial aquifer were sampled in the early 1990s and again in the early 2000s to examine near-decadal ground-water quality changes in irrigated agricultural areas. Ground-water age generally increases and dissolved-oxygen content decreases with distance along flow paths and with depdi below the water table, and denitrification is an important natural mitigation mechanism for nitrate in downgradient areas. Ground-water travel time from upland areas to the river ranges from 12 to 31 yr on the basis of apparent ground-water ages. Ground-water nitrate concentrations for agricultural land-use wells increased significantly for oxidized samples over the decade, and nitrogen isotope ratios for oxidized samples indicate synthetic fertilizer as the predominant nitrate source. Ground-water concentrations of atrazine, DEA, and prometon decreased significandy. The decrease in pesticide concentrations and a significant increase in the ratio of DEA to atrazine suggest decreases in pesticide concentrations are likely caused by local decreases in application rates and/or degradation processes and that atrazine degradation is promoted by oxidizing conditions. The difference between results for oxidizing and nitrate-reducing conditions indicates redox state is an important variable to consider when evaluating ground-water quality trends for redox-sensitive constituents such as nitrate and pesticides in the South Platte alluvial aquifer. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Lateral groundwater inflows into alluvial aquifers of main alpine valleys (United States)

    Burger, Ulrich


    In alpine regions the topography is mainly characterised by deep incised valleys, mountain slopes and ridges. Usually the main valleys contain aquifers in alluvial soft rock. Lateral these aquifers are confined by mountainous hard rock slopes covered by heterogeneous sediments with different thickness. The slopes can be incised by lateral valleys. Numerical models for the main alluvial aquifers ask for lateral hydrogeological boundaries. Usually no flow boundaries or Constant head Boundaries are used, even if the lateral inflows to the main aquifers are rarely known. In this example a data set for a detailed investigated and monitored area is studied to give an answer on the location and the quantification of these lateral subsurface inflows. The study area is a typical main alpine valley with a thick alluvial aquifer (appr. 120m thick), lateral confined by granite, covered at the base of the steep slopes by quaternary sediments (Burger at al. 2012). The study consists of several steps 1.) Analytical calculation of the inflows on the base of investigated and monitored 2d profiles along fault zones (Perello et al 2013) which pinch out in the main valley 2.) Analytical models along typical W-dipping slopes with monitored slope springs 3.) Evaluating temperature and electrical conductivity profiles measured in approx. 30 groundwater wells in the alluvial aquifers and along the slopes to locate main lateral subsurface inflows 4.) Output of a regional model used for the hydrogeological back analyses of the excavation of a tunnel (Baietto et al. 2014) 5.) Output of a local numerical model calibrated with a monitoring dataset and results of a pumping test of big scale (450l/s for 10days) Results of these analyses are shown to locate and quantify the lateral groundwater inflows in the main alluvial aquifer. References Baietto A., Burger U., Perello P. (2014): Hydrogeological modelling applications in tunnel excavations: examples from tunnel excavations in granitic rocks

  1. Sequence stratigraphy and U/b shrimp geochronology of the active margin deposits of the Cacheuta sub-basin, Cuyo Basin, Northwestern Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Janaina Nunes [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail:; Chemale Junior, Farid [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias; Borba, Andre Weissheimer de [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Geociencias; Cingolani, Carlos [La Plata Univ. Nacional (Argentina)


    This study focuses on the stratigraphic and geochronologic analysis of the deposits related to the faulted active margin of the Cacheuta sub-basin, Cuyo Basin (Triassic), in NW-Argentina. This basin was mainly controlled by extensional tectonics along NW-trending structures inherited from Paleozoic sutures. The whole stratigraphic package of this basin is interpreted as a second order depositional sequence. Low stand deposits comprise coarse-grained alluvial fans (sheet flood and debris-flow deposits). Fluvial and minor lacustrine deposits with expressive volcaniclastic contribution make up the transgressive systems tract. The maximum flooding surface was traced on lacustrine black shales of the Cacheuta Formation (source rock for petroleum accumulations). The high stand system tract comprises fluvial meandering facies and more sparse volcanic contribution. U/Pb SHRIMP dating of a pyroclastic rock inter layered with basal alluvial fans yielded a magmatic age of 243 {+-} 4.7 Ma positioned in the Early to Middle Triassic. (author)

  2. Next Generation Nuclear Plant Defense-in-Depth Approach

    Energy Technology Data Exchange (ETDEWEB)

    Edward G. Wallace; Karl N. Fleming; Edward M. Burns


    The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

  3. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.


    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  4. River path selection in response to uplift and interaction with alluvial fans (United States)

    Grimaud, J. L.; Paola, C.; Voller, V. R.


    River systems construct stratigraphic successions and build land by depositing and redistributing sediments as they migrate across the entire basin. This mobility arises from the intrinsic variability of a river system but can also be forced by external changes. It is particularly observable in tectonically active basins where the basement can be partly uplifted and where sediments can come from multiple sources. Theoretically, the ability of these perturbations to steer channels depends on their capacity to create lateral topographic gradients at a faster rate than the aggradation. Following these lines, we present an experimental study on the impacts of lateral tilting by tectonics and lateral alluvial fans on rivers path. The experiment was conducted in the eXperimental Earth Scape facility, also known as the Jurassic tank, where the basement tilting rate can be monitored by controlling individually gravel subsidence through 108 hexagonal cells. The basin was relatively uplifted on one side of the tank according to an anticline-shape and sediments were input through two sources: a main, axial one and a lateral, secondary one. We analyzed the differences in the topographic signature and flow occupation of rivers in response to the uplift or the lateral sediment source as well as the competition of these forcing in the late stages of the experiments. We found that both tectonic tilting and fan activity tend to decrease the basin-wide channel mobility. Indeed, the area at the convergence of the two interacting fans is a long-lasting topographic low that tends to channelize the flow while areas away from it are less visited. The position of this boundary is correlated with the relative flow contribution from both fans. This highlights the self-healing capacity of fans that are able to rapidly restore a graded shape. As opposed to fans, an uplifted area will not heal but force rivers to carve long-lasting valleys and increase the relief. When eroded, these uplifted

  5. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone–Ganga alluvial tract in Middle Ganga Plain, India

    Indian Academy of Sciences (India)

    Sudarsan Sahu; Dipankar Saha


    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone–Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur–Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width–depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE–SW direction.

  6. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang


    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  7. Co-contamination of As and F in alluvial aquifer (United States)

    Kim, S.; Kim, K.; Kim, B.; Zhu, W.; Lee, E.; Ko, K.


    Co-contamination of As and F is frequently observed in alluvial aquifers of many countries including Argentina, Mexico, China, and Pakistan. However, processes causing this phenomenon are still poorly understood. In arid or semi-arid areas, the aquifers are generally under oxidizing condition and As and F show a good correlation. In contrast, groundwaters under reducing condition generally show a poorer correlation. In this study, we explored the geochemical mechanisms causing the co-contamination of As and F and their poorer correlation in the reducing environment by investigating alluvial groundwaters of the Mankyeong River floodplain, Korea. For this study, we collected 72 groundwater samples from 42 shallow wells placed into the alluvial aquifer. Desorption experiments using soils collected from the study area were also performed. Groundwater chemistry data showed that waters are under strong reducing condition and the reductive dissolution of Fe oxides was the main process increasing As concentration in groundwaters. The co-contamination was also observed in the study area and F did not show a good correlation with As. F showed concentrations increasing with pH. Desorption experiments also showed the dependences of As and F on pH. The experiments using soils treated with Na citrate-NaHCO3-dithonite solution indicated that iron oxides were the main phases hosting both As and F in soils. In our study area, pH of groundwaters increases due to a series of reduction reactions, and which increased F concentration by desorption from iron oxides. This result suggests that sharing the same adsorption hosts and the pH increased by reduction reactions are the main reason for the co-occurrence of As and F in alluvial groundwater under reducing environments. The lack of correlation between As and F was derived by the precipitation of As as sulfides in sulfate reducing condition. However, the correlation could be much better in the oxidizing condition because As released

  8. The role of tropical cyclones on landscape dynamics in southern Baja California, Mexico based on Late Pleistocene-Holocene alluvial stratigraphy (United States)

    McDonald, Eric; Antinao, Jose Luis; Rhodes, Edward J.; Brown, Nathan; Gosse, John


    Region-wide alluvial records provide evidence that time-transgressive changes in climate can be a major driver of landscape evolution. Historically, landfall of eastern Pacific tropical cyclones in southwestern North America during the late summer and early fall provide the strongest storms that have demonstrated geomorphic impact on the landscape. The alluvial fan record of the southern portion of Baja California (Mexico) was investigated to determine if linkages exist between region-wide fluvial deposits and tropical cyclones. The regional distribution and Pleistocene to Holocene morphostratigraphy of alluvial fans has been established for the southern portion of Baja California with primary focus on the La Paz and San José del Cabo basins. Six discrete morphopedosedimentary alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development further reinforced with geochronology using radiocarbon, optically stimulated luminescence and cosmogenic depth-profiles. A first phase of regional aggradation began before ~ 100 ka (Qt1) and culminated ~10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units are conformed of multiple 1-3 m thick alluvial packages deposited in upper-flow regime and representing individual storms. Aggradational units (Qt1-Qt4) covered broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are mostly confined to channels of ~0.5-2 km width. Continuous deposition of the thicker sequences is demonstrated by closely spaced luminescence dates in vertical profiles. In a few places disconformities between major units are evident and indicated by partly eroded buried soils. Analysis of historical terraces as part of the younger units

  9. Timing and nature of alluvial fan development along the Chajnantor Plateau, northern Chile (United States)

    Cesta, Jason M.; Ward, Dylan J.


    Alluvial systems in the Atacama Desert provide a unique opportunity to elucidate the sedimentary response to climate variability, particularly changes in precipitation, in hyperarid environments. Alluvial fans along the eastern margin of the Salar de Atacama, adjacent to the Chajnantor Plateau in the Atacama Desert of northern Chile, provide an archive of climate-modulated sediment transfer and erosion at an extreme of Earth's climate. Three regional alluvial fan surfaces (Qf1 [oldest] to Qf3 [youngest]) were mapped along the western flank of the Chajnantor Plateau. The alluvial fans were examined with geomorphic and terrestrial cosmogenic 36Cl surface exposure dating methods to define the timing of alluvial fan formation and to determine the role of climatic processes on fan development in a hyperarid environment. Alluvial fans in the study area are comprised of hyperconcentrated flow and boulder-rich debris flow deposits that reflect deposition transitioning between cohesive and noncohesive regimes. Alluvial fan surfaces yield exposure ages that range from 49.6 ± 4.4 to 194 ± 12 ka, while debris flow boulders yield exposure ages ranging from 12.4 ± 2.1 to 229 ± 53 ka. Cosmogenic 36Cl exposure ages indicate that abandonment of alluvial fan surfaces Qf1, Qf2, and Qf3 date to 175 ± 22.6 ka (MIS 6), 134.5 ± 9.18 ka (MIS 6), and 20.07 ± 6.26 ka (MIS 2), respectively. A 36Cl concentration-depth profile through alluvial fan Qf1 suggests a simple depositional history with minimal nuclide inheritance implying relatively rapid aggradation (6 m in ca. 25 kyr) followed by surface abandonment ca. 180-200 ka. Our data support a strong climatic control on alluvial fan evolution in the region, and we propose that the alluvial fans along the margins of the Salar de Atacama form according to the humid model of fan formation.

  10. Chronology and tectono-sedimentary evolution of the Upper Pliocene to Quaternary deposits of the lower Guadalquivir foreland basin, SW Spain (United States)

    Salvany, Josep Maria; Larrasoaña, Juan Cruz; Mediavilla, Carlos; Rebollo, Ana


    This paper presents new litho, chrono and magnetostratigraphic data from cores of 23 exploratory boreholes drilled in the Abalario and marshlands areas of the lower Guadalquivir basin (the western sector of the Guadalquivir foreland basin, SW of Spain). The lithologic logs of these boreholes identify four main sedimentary formations, namely: Almonte Sand and Gravel, Lebrija Clay and Gravel, Marismas Clay and Abalario Sand, respectively interpreted as proximal-alluvial, distal-alluvial, alluvial-estuarine and aeolian. From radiocarbon and magnetostratigraphic data, these formations were dated as Upper Pliocene to Holocene. In the marshlands area, three main sedimentary sequences are present: an Upper Pliocene to Lower Pleistocene sequence of the Almonte and Lebrija (lower unit) formations, a Pleistocene sequence of the Lebrija (upper unit) and the lower Marismas formations, and a latest Pleistocene to present-day sequence of the upper Marismas Formation. The three sequences began as a rapid alluvial progradation on a previously eroded surface, and a subsequent alluvial retrogradation. In the third sequence, estuarine and marsh sediments accumulated on top of the alluvial sediments. The aeolian sands of the Abalario topographic high developed coeval to alluvial and estuarine sedimentation after the first alluvial progradation, and continuously until the present. Correlation with the surrounding areas show that the sequences are the result of the forebulge uplift of the northern margin of the basin (Sierra Morena) and the adjacent Neogene oldest sediments of their northern fringe, both form the main source area of the study formations. This uplift occurred simultaneous to the flexural subsidence (SSE tilting) of the southern part of the basin, where sedimentary aggradation dominated.

  11. Prospects for in-depth story understanding by computer


    Mueller, Erik T.


    While much research on the hard problem of in-depth story understanding by computer was performed starting in the 1970s, interest shifted in the 1990s to information extraction and word sense disambiguation. Now that a degree of success has been achieved on these easier problems, I propose it is time to return to in-depth story understanding. In this paper I examine the shift away from story understanding, discuss some of the major problems in building a story understanding system, present so...

  12. Basin-scale recharge in the Southwestern United States (United States)

    Hogan, J. F.; Duffy, C.; Eastoe, C.; Ferre, T. P. A.; Goodrich, D.; Hendrickx, J.; Hibbs, B.; Phillips, F.; Small, E.; Wilson, J.


    The major domestic water source in the arid southwestern United States is groundwater from alluvial basin aquifers. Accurate estimates of basin-scale groundwater recharge rates are a critical need for developing sustainable or "safe yield" groundwater pumping. Basin-scale recharge rates are typically estimated using inverse hydrologic modeling or geochemical tracers (e.g. chloride mass balance). These methods, while useful, have a high level of uncertainty and provide no information about the mechanisms of groundwater recharge. SAHRA - an NSF Science and Technology Center focused on the Sustainability of semi-Arid Hydrology and Riparian Areas - has developed an integrated research plan to address this problem. Our approach is two-fold. First we are investigating the "input" components that comprise basin-scale recharge: basin floor recharge, alluvial channel recharge, mountain front recharge, and mountain block recharge. Each component has unique spatial and temporal scales and thus requires distinct methods. Our research is aimed at understanding the factors (e.g. vegetation type, bedrock lithology, soil structure) that control recharge rates in each of these locations. With such an understanding one could then scale from point measurements to the basin-scale using remote sensing data. Our second approach is to employ isotopic tracers to determine water sources, groundwater ages and residence times of the groundwater and surface water "outputs"; these values can then be used to better calibrate recharge rates in groundwater models. By focusing our studies on two basins, the San Pedro River Basin in Arizona and the Rio Grande in New Mexico, we hope to develop a better understanding of the importance of different recharge pathways for basin-scale recharge and which methods are best suited for estimating basin-scale recharge.

  13. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    CERN Document Server

    Zhu, Lin; Gong, Huili; Gable, Carl; Teatini, Pietro


    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This paper develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss-Newton-Levenberg-Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided...


    Energy Technology Data Exchange (ETDEWEB)

    P. Goodell; J. Walton; P.J. Rodriguez


    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  15. Using Lead Concentrations and Stable Lead Isotope Ratios to Identify Contamination Events in Alluvial Soils

    Directory of Open Access Journals (Sweden)

    Diane Saint-Laurent


    Full Text Available Soils contaminated with hydrocarbons (C10–C50, polycyclic aromatic hydrocarbons (PAHs, and other contaminants (e.g., As, Cd, Cu, Pb were recently discovered on the banks of the Saint-François and Massawippi rivers. Alluvial soils are contaminated over a distance of 100 kilometers, and the level of the contaminated-hydrocarbon layer in the soil profiles is among the highest at the Windsor and Richmond sites. Concentrations of lead and stable lead isotope ratios (204Pb/206Pb, 207Pb/206Pb, 208Pb/206Pb are also used to identify contamination events. The maximum and minimum values detected in soil profiles for arsenic, cadmium, and lead vary from 3.01 to 37.88 mg kg-1 (As, 0.11 to 0.81 mg kg-1 (Cd 12.32 to 149.13 mg kg-1 (Pb, respectively, while the 207Pb/206Pb isotopic ratio values are between 0.8545 and 0.8724 for all the profiles. The highest values of trace elements (As, Pb and Zn were detected in the hydrocarbon layer (C10–C50, most often located at the bottom of the profiles (160, 200, and 220 cm in depth. The various peaks recorded in the soils and the position of the profiles suggest that various contaminants were transported by the river on several occasions and infiltrated the soil matrix or deposited on floodplains during successive floods. Atmospheric particles which entered the river or deposited on riverbanks must also be considered as another source of pollution recorded in soils.

  16. Potential Natural Vegetation of the Mississippi Alluvial Valley: St. Francis Basin, Arkansas, Field Atlas (United States)


    Plantation Rd N M ain St §̈¦55 F170 1 2 3 40.5 Miles Ü Coordinate System: NAD...F13 F7 F7 F7 F13 F7 F7 F7 F7 RB7 D1 F6 F7 F7 F4 RB7 F6 F13 F7 D3 RB6 RB7 RB7 F7 Luxora Dell Burdette £¤61 UV158 UV148 UV18 UV120 UV148 W Plantation Rd...understory species. Vines and ground cover species are less abundant and diverse than on less flooded sites. Dominance may shift to baldcypress and

  17. Potential Natural Vegetation of the Mississippi Alluvial Valley: Boeuf-Tensas Basin, Arkansas, Field Atlas (United States)


    Mitchell Expy E Harding Ave Ohi o S t E 6th AveW 6th Ave S M ain St Paper Mill RdMartha Mitchell Expy §̈¦530 §̈¦530 S30 1 2 3 40.5 Miles Ü...Mitchell Expy Ohi o S t E 6th AveW 6th Ave S M ain St Paper Mill RdMartha Mitchell Expy §̈¦530 §̈¦530 S30 1 2 3 40.5 Miles Ü Coordinate System: NAD 1983...and a limited group of associated canopy and understory species. Vines and ground cover species are less abundant and diverse than on less

  18. Comparison of planform multi-channel network characteristics of alluvial and bedrock constrained large rivers (United States)

    Carling, P. A.; Meshkova, L.; Robinson, R. A.


    The Mekong River in northern Cambodia is an multi-channel mixed bedrock-alluvial river but it was poorly researched until present. Preliminary study of the Mekong geomorphology was conducted by gathering existing knowledge of its geological and tectonic settings, specific riparian vegetation and ancient alluvial terraces in which the river has incised since the Holocene. Altogether this process has allowed a geomorphological portrait of the river to be composed within the Quaternary context. Following this outline, the planform characteristics of the Mekong River network are compared, using analysis of channel network and islands configurations, with the fluvial patterns of the Orange River (South Africa), Upper Columbia River (Canada) and the Ganga River (India, Bangladesh). These rivers are selected as examples of multi-channel mixed bedrock alluvial, anastomosed alluvial and braided alluvial rivers respectively. Network parameters such as channel bifurcation angles asymmetry, sinuosity, braid intensity and island morphometric shape metrics are compared and contrasted between bedrock and alluvial systems. In addition, regional and local topographic trend surfaces produced for each river planform help explain the local changes in river direction and the degree of anastomosis, and distinguish the bedrock-alluvial rivers from the alluvial rivers. Variations between planform characteristics are to be explained by channel forming processes and in the case of mixed bedrock-alluvial rivers mediated by structural control. Channel metrics (derived at the reach-scale) provide some discrimination between different multi-channel patterns but are not always robust when considered singly. In contrast, island shape metrics (obtained at subreach-scale) allow robust discrimination between alluvial and bedrock systems.

  19. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial... (United States)


    ..., and evapotranspiration, relief, slope and density of drainage channels; (B) Factors contributing to... coal mining operation may affect this alluvial valley floor or waters that supply the alluvial valley... alluvial valley floor that would be affected by the surface coal mining operation is of such small...

  20. Alluvial architecture of the Holocene Rhine-Meuse delta (The Netherlands) and the Lower Mississippi Valley (U.S.A.)

    NARCIS (Netherlands)

    Gouw, M.J.P.


    Alluvial architecture describes the geometry, proportion, and spatial distribution of different types of fluvial deposits in an alluvial succession. Alluvial architecture is frequently subject of study, because natural resources commonly occur in ancient fluvial sequences. The ability of models to s

  1. Cenozoic basin development and its indication of plateau growth in the Xunhua-Guide district

    Institute of Scientific and Technical Information of China (English)


    The Xunhua, Guide and Tongren Basins are linked with the Laji Mountain and the northern West Qinling thrust belts in the Xunhua-Guide district. Basin depositional stratigraphy consists of the Oligocene Xining Group, the uppermost Oligocene-Pliocene Guide Group and the Lower Pleistocene. They are divided into three basin phases by unconformities. Basin phase 1 is composed of the Xining Group, and Basin phase 2 of the Zharang, Xiadongshan, Herjia and Ganjia Conglomerate Formations in the Guide Group, and Basin phase 3 of the Gonghe Formation and the Lower Pleistocene. Three basin phases all develop lacustrine deposits at their lower parts, and alluvial-braided channel plain depositional systems at upper parts, which constitute a coarsening-upward and progradational sequence. Basin deposition, paleocurrent and provenance analyses represent that large lacustrine basin across the Laji Mountain was developed and sourced from the West Qinling thrust belt during the stage of the Xining Group (Basin phase 1), and point-dispersed alluvial fan-braided channel plain deposition systems were developed beside the thrust and uplifted Laji Mountain and sourced from it, as thrusting migrated northwards during the stage of the Guide Group (Basin phase 2). Evolution of basin-mountain system in the study area significantly indicates the growth process of the distal Tibetan Plateau. The result shows that the Tibetan Plateau expanded to the northern West-Qinling at Oligocene (29―21.4 Ma) by means of northward folded-and-thrust thickening and uplifting and frontal foreland basin filling, and across the study area to North Qilian and Liupan Mountain at the Miocene-Pliocene (20.8―2.6 Ma) by means of two-sided basement-involved-thrust thickening and uplifting and broken foreland basin filling, and the distant end of Tibetan Plateau behaved as regional erosion and intermontane basin aggradational filling during the Pliocene and early Pleistocene (2.6―1.7 Ma).

  2. Experimental determination of thermal properties of alluvial soil (United States)

    Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.


    In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.

  3. Alluvial Fan Morphology, distribution and formation on Titan (United States)

    Birch, S. P. D.; Hayes, A. G.; Howard, A. D.; Moore, J. M.; Radebaugh, J.


    Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km2 to 27,000 km2. A significant fraction (∼60%) of the fans are restricted to latitudes of ±50-80°, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today.

  4. Alluvial terrace preservation in the Wet Tropics, northeast Queensland, Australia (United States)

    Hughes, Kate; Croke, Jacky; Bartley, Rebecca; Thompson, Chris; Sharma, Ashneel


    Alluvial terraces provide a record of aggradation and incision and are studied to understand river response to changes in climate, tectonic activity, sea level, and factors internal to the river system. Terraces form in all climatic regions and in a range of geomorphic settings; however, relatively few studies have been undertaken in tectonically stable settings in the tropics. The preservation of alluvial terraces in a valley is driven by lateral channel adjustments, vertical incision, aggradation, and channel stability, processes that can be further understood through examining catchment force-resistance frameworks. This study maps and classifies terraces using soil type, surface elevation, sedimentology, and optically stimulated luminescence dating across five tropical catchments in northeast Queensland, Australia. This allowed for the identification of two terraces across the study catchments (T1, T2). The T1 terrace was abandoned ~ 13.9 ka with its subsequent removal occurring until ~ 7.4 ka. Abandonment of the T2 terrace occurred ~ 4.9 ka with removal occurring until ~ 1.2 ka. Differences in the spatial preservation of these terraces were described using an index of terrace preservation (TPI). Assessments of terrace remnant configuration highlighted three main types of terraces: paired, unpaired, and disconnected, indicating the importance of different processes driving preservation. Regional-scale variability in TPI was not strongly correlated with catchment-scale surrogate variables for drivers of terrace erosion and resistance. However, catchment-specific relationships between TPI and erosion-resistance variables were evident and are used here to explain the dominant processes driving preservation in these tropical settings. This study provides an important insight into terrace preservation in the tectonically stable, humid tropics and provides a framework for future research linking the timing of fluvial response to palaeoclimate change.

  5. Alluvial fan dynamics in the El'gygytgyn Crater: implications for the 3.6 Ma old sediment archive

    Directory of Open Access Journals (Sweden)

    G. Schwamborn


    Full Text Available A sedimentological program has been conducted using frozen core samples from the 141.5 m long El'gygytgyn 5011-3 permafrost well. The drill site is located in sedimentary permafrost west of the lake that partly fills the El'gygytgyn Crater. The total core sequence is interpreted as strata building up a progradational alluvial fan delta. Four structurally and texturally distinct sedimentary units are identified. Unit 1 (141.5–117.0 m is comprised of ice-cemented, matrix-supported sandy gravel and intercalated sandy layers. Sandy layers represent sediments which rained out as particles in the deeper part of the water column under highly energetic conditions. Unit 2 (117.0–24.25 m is dominated by ice-cemented, matrix-supported sandy gravel with individual gravel layers. Most of the unit 2 diamicton is understood to result from alluvial wash and subsequent gravitational sliding of coarse-grained material on the basin slope. Unit 3 (24.25–8.5 m has ice-cemented, matrix-supported sandy gravel that is interrupted by sand beds. These sandy beds are associated with flooding events and represent near-shore sandy shoals. Unit 4 (8.5–0.0 m is ice-cemented, matrix-supported sandy gravel with varying ice content, mostly higher than below. It consists of slope material and creek fill deposits. The uppermost meter is the active layer into which modern soil organic matter has been incorporated. The nature of the progradational sediment transport taking place from the western and northern crater margins may be related to the complementary occurrence of frequent turbiditic layers in the central lake basin as is known from the lake sediment record. Slope processes such as gravitational sliding and sheet flooding that takes place especially during spring melt are thought to promote mass wasting into the basin. Tectonics are inferred to have initiated the fan accumulation in the first place and possibly the off-centre displacement of the crater lake.

  6. An overview of historical channel adjustment and selected hydraulic values in the Lower Sabine and Lower Brazos River Basins, Texas and Louisiana (United States)

    Heitmuller, Franklin T.; Greene, Lauren E.; John D. Gordon, John D.


    lower Brazos River Basins were evaluated. An in-depth discussion of results from streamflow-gaging station 08028500 Sabine River near Bon Weir, Tex., is featured here as an example of the analyses that were done at each station.

  7. Mid-Eocene alluvial-lacustrine succession at Gebel El-Goza El-Hamra (Shabrawet area, NE Eastern Desert, Egypt): Facies analysis, sequence stratigraphy and paleoclimatic implications (United States)

    Wanas, H. A.; Sallam, E.; Zobaa, M. K.; Li, X.


    This study aims to provide the depositional facies, sequence stratigraphic and paleoclimatic characteristics of the Mid-Eocene (Bartonian) continental succession exposed at Gebel El-Goza El-Hamra (Shabrawet Area, NE Eastern Desert, Egypt). The studied succession consists of siliciclastic rocks followed upward by carbonate rocks. Detailed field observation and petrographic investigation indicate accumulation in floodplain-dominated alluvial and shallow lacustrine systems. The floodplain-dominated alluvial facies (45 m thick) is composed mainly of carbonate nodules-bearing, mottled mudrock with subordinate sandstone and conglomerate beds. The conglomerate and pebbly sandstone bodies interpreted as ephemeral braided channel deposits. The massive, laminated, planner cross-bedded, fine- to medium-grained sandstone bodies interlayered within mudstone reflect sheet flood deposits. The mudrocks associated with paleosols represent distal floodplain deposits. The shallow lacustrine facies (15 m thick) is made up of an alternation of marlstone, micritic limestone, dolostone and mudrock beds with charophytes and small gastropods. Both the alluvial and lacustrine facies show evidence of macro-and micro-pedogenic features. Pollen assemblages, stable δ18O and δ13C isotopes, and paleopedogenic features reflect prevalence of arid to semi-arid climatic conditions during the Bartonian. The sequence stratigraphic framework shows an overall fining-upward depositional sequence, consisting of Low- and High-accommodation Systems Tracts (LAST, HAST), and is bounded by two sequence boundaries (SB-1, SB-2). Conglomerate and pebbly sandstone deposits (braided channel and sheet flood deposits) of the lower part of the alluvial facies reflect a LAST. Mudrock and silty claystone facies (distal floodplain deposits) of the upper part of alluvial facies and its overlying lacustrine facies correspond to a HAST. The LAST, HAST and SB were formed during different accommodation-to-sediment supply (A

  8. Potential geo-ecological impacts of the proposed Danube–Oder–Elbe Canal on alluvial landscapes in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Machar Ivo


    Full Text Available The project of a canal connecting the three major Central European Rivers: the Danube, Oder and Elbe, is incorporated into a planned trans-European transport network system. Geographically, the course of the planned canal stretches into the territory of four Central European countries, predominantly that of the Czech Republic. The environmental impacts of the potential construction and operation of the Danube–Oder–Elbe (DOE Canal is currently widely discussed by experts from various fields. This paper aims to assess some potential impacts of the canal on the alluvial landscapes in the Czech Republic. The method of geo-ecological assessment presented here applies GIS analyses at the larger landscape scale. The results of the geo-ecological assessment of potential impacts of the DOE Canal on the land-use of river floodplains, the fluvial dynamics of streams and the extent of their alluvial plains, and the quantified DOE Canal impact on protected areas and groundwater sources, are presented. The hydrological impact of the DOE Canal will affect a total of 1,975.4 km2 of river basins in the Czech Republic. The DOE Canal will affect 157 sites significant from the perspective of landscape and nature conservation, 7 nature parks and 113 existing water points which are used as groundwater sources. The results show that the most significant disruption of fluvial dynamics of the stream sediment regime would occur in the Protected Landscape Area of Litovelské Pomoraví. In general, the geo-ecological impact of the DOE Canal on the landscape will be very important.

  9. Questionnaires, in-depth interviews and focus groups


    Adams, Anne; Cox, Anna L.


    With fast changing technologies and related human interaction issues, there is an increased need for timely evaluation of systems with distributed users in varying contexts (Pace, 2004). This has led to the increased use of questionnaires, in-depth interviews and focus groups in commercial usability and academic research contexts. Questionnaires are usually paper based or delivered online and consist of a set of questions which all participants are asked to complete. Once the questionnaire ha...

  10. Isolation of Binocular Cues for Motion in Depth

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri


    Full Text Available There are two binocular cues of motion in depth: the interocular velocity difference (IOVD and changing disparity over time (CDOT. Psychophysical evidence for the contribution to perceiving motion in depth has been accumulated for both of the two cues, using techniques to isolate each cue. However, no study estimated seriously how reliably each cue is isolated in the techniques. In this study, we apply a model of motion in depth to estimate how each type of stimuli isolates each of IOVD and CDOT cues. The model consists of the motion energy and the disparity energy detectors as subunits and adds their outputs to built the IOVD and CDOT detectors. Simulations show that some, but not all of stimuli used in the literature are appropriate for isolating cues. The temporally uncorrelated randomdot stereogram isolates CDOT cue and the binocularly uncorrelated randomdot kinematogram isolates IOVD cues. However, temporally anticorreated version of randomdot stereogram has influence of reverse motion components of IOVD and binocularly anticorreated version of randomdot kinematogram has influence of reverse motion components of CDOT. Gratings with opposite orientation between the eyes are also good for isolation of IOVD. We performed psychophysical experiments to examine the plausibility of the model prediction.

  11. Deducing Weathering Processes Using Silicon Isotopes in the Ganges Alluvial Plain, India (United States)

    Frings, P.; De La Rocha, C. L.; Fontorbe, G.; Chakrapani, G.; Clymans, W.; Conley, D. J.


    The Ganges Alluvial Plain ('GAP') is the sedimentary infill of the foreland basin created during Himalayan orogeny. Freshly eroded material from the Himalaya and southern cratonic tributaries is deposited into a system with long water-sediment interaction times, creating potential for further generation of river weathering fluxes. To quantify weathering processes in the GAP, 51 sites including all major tributaries were sampled in a September 2013 campaign and analysed for major and minor ions, Ge/Si ratios and δ30Si, δ13C and δ18O. Net dissolved Si (DSi) and major cation yields are 2 to 5 times lower in the GAP than the Himalaya, and at a whole basin scale approximate the global average, indicating that the plain apparently moderates the efficiency of Himalayan weathering rates. Mainstem δ30Si spans 0.81 to 1.93‰ (see figure) and gives the impression of a system buffered to moderate DSi and δ30Si. Ge/Si ratios (µmol/mol) are higher than expected in the Himalaya (>3), reflecting input of Ge-enriched water from hot springs, and decline to ~1.4 in the GAP. For the Himalayan sourced rivers, δ30Si increases with distance from the Himalayan front, and can not be explained entirely by conservative mixing with higher δ30Si peninsular and GAP streams. To a first degree, the δ30Si data suggest incorporation of Si into secondary minerals as the key fractionating process, and that this occurs both in situ during initial weathering and progressively in the GAP. Partitioning of solutes between sources is complicated in the GAP. Consistent with previous work, carbonate weathering dominates the ion fluxes, but with substantial contributions from saline/alkaline soil salts, the chlorination of wastewater and highly variable rainfall chemistry. Due to these contributions, precisely inferring the input from silicate weathering is difficult. We introduce a novel method to infer silicate-weathering rates that exploits the fractionation of Si during clay formation to account

  12. Magnetic properties of alluvial soils polluted with heavy metals (United States)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.


    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  13. Mississippi River Valley Alluvial Aquifer, Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Tennessee; 2006-2008 (United States)

    U.S. Geological Survey, Department of the Interior — Outcrop and subcrop extent of the Mississippi River Valley Alluvial Aquifer in Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, and Tennessee.

  14. Seismic responses of a hemispherical alluvial valley to SV Waves: a three-dimensional analytical approximation

    Institute of Scientific and Technical Information of China (English)

    Chenggang Zhao; Jun Dong; Fuping Gao; D.-S.Jeng


    An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic halfspace is obtained by using Fourier-Bessel series expansion technique.The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media.The following conclusions based on numerical results can be drawn:(1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model;(2)the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles,the dimensionless frequency of the incident SV waves and the porosity of sediments;(3)with the increase of the incident angle,the displacement distributions become more complicated,and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.

  15. The Alluvial Fan Complex in Holden Crater: Implications for the Environment of Early Mars (United States)

    Irwin, R. P.; Grant, J. A.; Howard, A. D.


    The alluvial fan complex in Holden crater is the largest deposit of this type on Mars and preserves topographic and sedimentary indicators of its formative environment around the Noachian/Hesperian transition.

  16. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding (United States)

    Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim

    One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux

  17. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.


    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  18. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador (United States)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido


    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  19. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  20. Cobalt in alluvial Egyptian soils as affected by industrial activities

    Institute of Scientific and Technical Information of China (English)


    Twenty-five surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils. The aim of this study was to evaluate total Co content in alluvial soils of Delta in Egypt using the delayed Neturen activation analysis technique (DNAA). The two prominent gamma ray lines at 1173.2 and 1332.5 keV was efficiently used for 60Co determination. Co content in non-polluted soil samples ranged between 13.12 to 23.20 ppm Co with an average of 18.16*4.38 ppm. Cobalt content in moderately polluted soils ranged between 26.5 to 30.00 ppm with an average of 28.3*1.3 ppm. The highest Co levels (ranged from 36 to 64.69 ppm with an average of 51.9*9.5); were observed in soil samples collected from, either highly polluted agricultural soils due to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  1. Knowledge transfer in pair programming: An in-depth analysis

    DEFF Research Database (Denmark)

    Plonka, Laura; Sharp, Helen; van der Linden, Janet;


    constellations. We ask “what does it take to be a good “expert” and how can a “novice” best learn from a more experienced developer?”. An in-depth investigation of video and audio excerpts of professional pair programming sessions using Interaction Analysis reveals: six teaching strategies, ranging from “giving...... direct instructions” to “subtle hints”; and challenges and benefits for both partners. These strategies are instantiations of some but not all teaching methods promoted in cognitive apprenticeship; novice articulation, reflection and exploration are not seen in the data. The context of pair programming...

  2. Geotechnical mapping for alluvial fan deposits controlled by active faults: a case study in the Erzurum, NE Turkey (United States)

    Yarbasi, Necmi; Kalkan, Ekrem


    Erzurum, the biggest city of Eastern Anatolia Region in the Turkey, is located in Karasu Plain. Karasu Plain, located on the central segment of the Erzurum Fault Zone, is an intermountain sedimentary basin with a Miocene-Quaternary volcanic basement, andesitic-basaltic lava flows and fissure eruptions of basaltic lava. It was filled in the early Quaternary by lacustrine fan-delta deposits. The basin is characterized by NNE-SSW trending sinistral wrench faults on its eastern margin and ENE-WSW trending reverse faults on its southern margin. Both systems of active faults intersect very near to Erzurum, which is considered to be the most likely site for the epicenter of a probable future large earthquake. Historical records of destructive earthquakes, morphotectonic features formed by paleo-seismic events and instrument seismic data of region indicate to a very high regional seismicity. The residential areas of Erzurum are located on thick alluvial fan deposits forming under the control of faults on the central segment of the Erzurum Fault Zone, which is one of the most active fault belts of the East Anatolian Region. Over time, the housing estates of city such as Yenisehir and Yildizkent have been expanded toward to the west and southwest part of Erzurum as a consequence of rapid and massive construction during the last 30 years. Geotechnical investigation has therefore been undertaken the residential areas of city in order to characterize geotechnical properties over the varied lithologies examine the potential for geotechnical mapping and assess the foundation conditions of the present and future settlement areas. The geological field observations and operations have been performed to make the soil sampling and characterize the lateral and vertical changes in thickness of the alluvial deposits in trenches, excavations and deep holes with 6-12 m sections. The soil samples have been subjected to a series of tests under laboratory conditions to obtain physical and

  3. Applied Sequence Stratigraphy in Nonmarine Basin of China

    Institute of Scientific and Technical Information of China (English)


    This paper presents a preliminary summary of the applied sequence stratigraphy in nonmarine basins in China. The geological and geophysical data show that the nonmarine sequences mainly resulted from both allocyclic and autocyclic processes where the most important factors were isolated tectonics and climate. However, the environmental factor should have been crucial. The depositionai base level served as the sea level in the marine environment, while the water table, lake level and fluvial equilibrium were profiled in a terrigenous environment. This accommodation varied periodically with the base level, resulting in the formation of a series of depositional sequences in terms of genesis and space. Basically, the base level of the inner continent was not affected by the changes in the relative sea level. But there would have been some relations between the changes in the relative sea level and that in the continental base level during eustacy flooding. However, a small time lag existed between the changes in the marine basin and the inner continent basin, The lake basin is smaller than the marine basin,but its velocity of sediment supply is greater than that of the marine basin. Therefore, the number of nonmarine sequences is greater than that of marine ones in the same period. It is important to recognize the system tracts for the study of high-precision or high-resolution sequence stratigraphy, especially to analyze the Iow-stand systems tract with its depositional system. The sequence boundary is genetically characterized by subaerial exposure, stratigraphic truncation and subaqueous erosion. The deposition analysis of Zhanhua depression reveals 5 sequence architectures: alluvial-fluvial/lacustrine architecture,transitional architecture formed between haline (mesohaline) lake and fresh lake, marine duration-deep lacustrine architecture, half deep lacustrine-ramp architecture and fluvial-alluvial plain architecture.During the major development of the nonmarine

  4. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California. (United States)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas


    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  5. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil) (United States)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria


    The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian-Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish

  6. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain (United States)

    Pogge von Strandmann, Philip A. E.; Frings, Patrick J.; Murphy, Melissa J.


    The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.

  7. Sedimentary Characteristics and Evolution of Asri Basin, Indonesia, in Early Tertiary

    Institute of Scientific and Technical Information of China (English)

    Zhong Dakang; Zhu Xiaomin; Zhang Qin


    The Asri basin is a typical half-graben basin. The east side of the basin is a steep slope controlled by syn-rifting and the west side is a widespread gentle slope. In the early Tertiary, it was filled with terrigenous clastic sediments composed of the Banuwati and Talang Akar formations from bottom to top. The latter is further divided into the Zelda member (lower part) and the Gita member (upper part). The previous studies suggested that the early tertiary sediments are alluvial, fluvial and swamp deposits. In this paper, based on the core lithology, well logs and seismic data, the sediments should be alluvial, fluvial and lacustrine systems. The lacustrine system includes subaqeous fan, fan delta and delta, shore-shallow lake, deep lake and turbidite fan deposition. Alluvial fan, subaqeous fan and fan delta sediments were deposited in the early stage and located on the steep slope adjacent. The deltaic sedimentary system was usually distributed on the gentle slope of the basin. In the early Tertiary, the basin evolution could be divided into four stages: initial subsidence (matching Banuwati formation), rapid subsidence (matching low Zelda member), steady subsidence or fluctuation (matching middle Zelda) and uplifting (matching upper Zelda). At the first stage, the alluvial fan, flood plain, braided stream sediments were deposited first with thick brown conglomerate and pebble sandstones, and then subaqeous fan sediments were interbedded with the thick lacustrine mudstones. At the second stage, shore-shallow lake and deep lake and turbidite fan sediments were deposited, with thin fine sandstones and siltstones interbedded with thick mudstones. At the third stage, thick fan delta and delta sandstones were deposited. At last came fluvial meandering, anastomosed and swamp sediments. Sediment supply was mainly from the west and the east, partly from the north.

  8. Research on the bio-stratigraphy. Stratigraphy and paleontology of the Cretaceous sedimentary strata in the Youngdong basin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Ja; Kim, Yoo Bong; Kim, Bok Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    The Youngdong Basin developed at the eastern margin of the Okcheon Orogenic Belt is in contact with the Yongnam Massif by the Youngdong Fault. This study deals with tectonic setting, sedimentological, pale-ontological study of the Youngdong Basin. Concerned with the formation of the basin, left lateral movement of the Ogdong and Youngdong faults gave a major role for the development of the Youngdong Basin. The Youngdong Basin is tectonically subdivided into three parts (north, center, and south) on the basis of bedding form line and fracture patterns. Sedimentological study is concentrated in the southern part of the basin in order to establish stratigraphy in this area. The Mangyeri Formation is characterized by the deposit of debris flow and hyper-concentrated flow deposits developed at the steep gradient fan-delta slope and on alluvial fan along the southern basin margin. On the other hand, the formation in northern part of the basin is deposited in alluvial fan and braided rivers. The Gadongri Formation is mostly deposited by the process of turbidity current and density under current in lacustrine environment, and the Dongjongri Formation comprises alluvial fan and braided river sediments which mostly deposited by debris flow, hyper-concentrated flood flow, sheet flood and stream flow. For paleontology, ostracodes and charophytes are yielded from the Gadongri, Dongjongri and Sonyoudong formations. On the basis of fossils, the Dongjongri formation is correlated with the Iljig Formation of the Euisung basin, the Sonyoudong formation is correlated with the Songnaedong and Geonchunri formations of the Milyang basin. Consequently, the Mangyeri and Gadongri formations are correlated with the Sindong Group, the Dongjongri and Sonyoudong formations are correlated with the Hayang Group. (author). 47 refs., 5 tabs.

  9. In-depth Cultural Studies in Multicultural Group

    Directory of Open Access Journals (Sweden)

    Siliņa-Jasjukeviča Gunta


    Full Text Available There is much research and educational practices at all levels of education on how to deal with promoting acceptance and understanding between different cultures. A cultural study forms an important part of shaping intercultural understanding. The aim of the research is to analyze an innovative way of incorporating cultural studies in teacher education program from the perspective of encouraging multinational students to reveal common values within diverse manifestations of different cultures. The present article describes a qualitative study of multinational students’ experiences in international project related to the learning about Nordic and Baltic cultural traditions. In the conclusion of the article, the efficiency of the structure of content and the process of in-depth cultural studies are analyzed. The discussion contains problems for further research of this topic.

  10. [Significance of basic concepts in depth psychology for psychosomatics]. (United States)

    Barz, H


    The concept of "the unconscious" is considered the central concept of depth psychology. While the unconscious in Freud's conception consists essentially of repressed material and through conversion can result in psychosomatic illnesses, C. G. Jung saw in the "collective unconscious", which he discovered, the source of all psychic and spiritual development. Mediation between the collective unconscious and the conscious is effected by means of the "archetypes", whose function can be compared with the instincts. Archetypes are manifested through symbols, whose assimilation by consciousness is a prerequisite for psychic and physical health. Consideration of the archetype of the physician suggests that the grounding of medical science in depth psychology would modify not only our understanding of illnesses, but also the physician's understanding of himself.

  11. Use of U-series nuclides to constrain sediments transfer-times in the alluvial plains: example of the Ganges and Bramaputra river system. (United States)

    Chabaux, François; Granet, Mathieu; Blaes, Estelle; Stille, Peter; France-Lanord, Christian; Dosseto, Antony


    U-series nuclides have the potential to bring important information on the transfer time of sediments in the alluvial plains. This is a consequence of the dual property of these nuclides 1) to be fractionated during physical denudation and chemical weathering processes and 2) to have radioactive decay periods of the same order of magnitude as the time-scales of these processes (e.g. Chabaux et al., 2003b, 2008). We have illustrated such a potential with the analysis of U-series disequilibria in sediments collected in the Ganges and Bramaputra river basin. The approach relies on the analysis of U-series in river sediments collected along the streams. Indeed, as illustrated in Granet et al. (2007), in large alluvial plains where sediments are only transferred and not affected by additional inputs of new weathering products from fresh rocks, the intensity of 238U-234U-230Th disequilibria in river sediments will only depend on two parameters: (a) the duration of the transfer including the time spent in soils and in the river, and (b) the nature and the intensity of U-Th fractionations occurring in sediments during their transfer into alluvial plains. Recovering time information from the variation of U-Th disequilibria in such sediments requires therefore the use of realistic models accounting for the U-Th fractionation of sediments during their transfers into the plain. From the data, it is proposed for the Ganges and Bramaputra river sediments, that the main U-Th fractionation process is connected with the sediment weathering during their transit and storage in the plain. In this case the U-Th variation in sediments along the two main rivers lead to quite long sediment transfer time in the alluvial plains, of 100-150 ky for Bramaputra plain and of 400 or 500 ky for the Ganges river. Chabaux F., Riotte J., Dequincey O. (2003) U-Th-Ra fractionation during weathering and river transport, Rev Mineral. Geochem. 52, 533-576. Chabaux, F., Bourdon, B., Riotte, J., 2008. U

  12. Supercritical sheetflood deposits on the volcaniclastic alluvial fan: the Cretaceous upper Daeri Member, Wido Island, Korea (United States)

    Gul Hwang, In; Gihm, Yong Sik; Kim, Min Cheol


    The upper Daeri Member is composed of subaerial primary and resedimented pyroclastic deposits. The upper Daeri Member accumulated under influence of tectonic subsidence, and the basin was divided into four blocks (Block 1 to 4) by intrabasinal normal faults (Fault A to C). Vertical separation of Fault B is estimated about 250 m and provided sufficient accommodation space on Block 3 with intrabasinal physiographic relief, resulting in conformable stacking of the upper Daeri Member on a volcaniclastic alluvial fan. The welded pumiceous lapilli tuff (primary one) was deposited by a pyroclastic density current during an explosive volcanic eruption. After the eruption, the resedimented pyroclastic deposits were deposited by episodic sediment gravity flows and are intercalated with the reddish, homogeneous mudstones. In Block 3 the resedimented pyroclastic deposits show an abrupt decrease in ten largest lithic clasts from within 3 km away from Fault B, reflecting rapid waning of parental sediment gravity flows. A wavy bedded lapilli tuff is one of the lithofacies of the resedimented pyroclastic deposits. The wavy bedded lapilli tuff is composed of symmetrical or nearly-symmetrical, wavy stratifications, forming undulatory bed geometry. The wavy stratifications are recognized by distinctive alternations of few cm to 10 cm thick, lapilli-rich and ash-rich layers. Beds of the wavy bedded lapilli tuff are 0.1 to 2 m thick (estimated in crests) and range in wavelength 1.3 m to 12 m (ave. 8 m). Both amplitude and wavelength gradually decrease away from Fault B. The wavy bedded lapilli tuff can laterally be traced over 90 m. Based on undulatory bed geometry and wavy stratifications, the wavy bedded lapilli tuff is interpreted as antidune bedforms, formed by supercritical sheetfloods. The symmetrical or nearly symmetrical wavy stratifications are due to maintenance of stationary state of standing waves of the sheetfloods. A down current decrease in both wavelength and thickness

  13. Longitudinal Variation of River Hydrodynamics in a Semi-Alluvial River (United States)

    Rennie, C. D.; Venditti, J. G.; Adderly, C.; Church, M. A.


    Knowledge of the longitudinal variation of river hydrodynamics is essential for understanding flood potential as well as transport of sediment, nutrients, and contaminants. The long profile has generally been studied by means of surveying a few representative cross-sections, along with cartographic analyses of the longitudinal variation of channel width and slope. Understanding the complete longitudinal distribution of river hydrodynamics generally requires numerical modelling. As an alternative, in this paper we present a 524 km continuous centreline acoustic Doppler current profiler (aDcp) survey of the dominantly rock-bound, gravel-bed Fraser River, British Columbia, Canada. Air photo analysis provided river widths along the surveyed reach, and the aDcp data yielded continuous centreline depth, depth-averaged velocity, and shear velocity. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. Within each sub-reach the data were grouped based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were narrower and deeper and had lower depth-averaged velocity and shear velocity. These results demonstrate the influence of bedrock on semi-alluvial channel morphology and hydrodyanamics.

  14. The migration, dissolution, and fate of chlorinated solvents in the urbanized alluvial valleys of the southwestern USA (United States)

    Jackson, R. E.

    The migration, dissolution, and subsequent fate of spilled chlorinated solvents in the urban alluvial valleys of the southwestern U.S. appear to be governed by a unique set of hydrogeologic and geochemical processes occurring within terrigeneous clastic depositional systems. The alluvial and lacustrine fill of the basins, the trapping of solvents in fine-grained sediments beneath the urbanized valley centers, the oxic conditions typical of the deeper alluvium, and the contaminant-transport patterns produced by large-scale basin pumping combine to produce long aqueous-phase plumes derived from the dissolution of trapped chlorinated solvents. Although of limited aqueous solubility, these dense solvents are sufficiently mobile and soluble in the southwestern alluvial valleys to have produced aqueous plumes that have migrated several kilometers through the deeper alluvium and have contaminated valuable water-supply well fields in California, Arizona, and New Mexico. The typical length of these plumes and the presence of oxic groundwater indicate that it is unlikely that natural attenuation will be a practical remedial option in the southwestern alluvial valleys or in other alluvial systems in which similar hydrogeologic and geochemical conditions exist. Résumé La migration, la dissolution et l'évolution consécutive des rejets de solvants chlorés dans les vallées alluviales du sud-ouest des États-Unis paraissent déterminées par un même ensemble de processus hydrogéologiques et géochimiques intervenant dans des formations de dépôts clastiques terrigènes. Les remplissages alluviaux et lacustres des bassins, le piégeage des solvants par des sédiments fins sous les centres des vallées urbanisées, les conditions oxiques typiques des alluvions plus profondes et les types de transport de contaminants provoqués par le pompage à l'échelle du bassin se combinent pour produire des panaches, étendus dans la phase aqueuse, provenant de la dissolution de

  15. Role of tectonics, volcanism and climate during sedimentation of the Autunian series in the Inner Sudeten basin. Role tektoniky, vulkanizmu a klimatu pri sedimentaci olivetinskych vrstev (Autun) ve Vnitrosudetske panvi

    Energy Technology Data Exchange (ETDEWEB)

    Blecha, M. (Univerzita Karlova, Prague (Czech Republic). Prirodovedecka Fakulta)


    Discusses paleoenvironment of the Autunian series in the Inner Sudeten basin with coal-bearing strata. The following aspects are evaluated: position of the Autunian series (to 200 m thick) in the basin, types of sedimentary rocks, sequences of sedimentation and their interpretation, alluvial sediments, river depositions, saline lakes and their deposits, manifestations of tectonic activity, deposit tectonics, effects of tectonics on strata inclination, secondary lake deposits, volcanic activity and types of volcanic rocks. The following stages of deposit accumulation are analyzed: alluvial sedimentation, volcanism, erosion, deposition of volcanic breccia in low zones, repeated deposition, effects of climate changes. 11 refs.

  16. Hydrology of the Upper Malad River basin, southeastern Idaho (United States)

    Pluhowski, Edward J.


    greatest in July when about 7 inches is lost from lakes, reservoirs, and waterlogged areas; losses from free-water surfaces may be as much .as 38 inches annually. An extensive ground-water reservoir consisting of sand and gravel interbedded with relatively impermeable beds of silt .and clay underlies much of the Malad Valley. Wells near the center of the valley exceeding 700 feet in depth do not reach bedrock. The Woodruff fault, which transects the constricted lower Malad Valley, is one of the main factors creating artesian conditions south of the latitude of Malad City. Recharge is obtained principally from mountain runoff which flows onto highly permeable alluvial fans surrounding the valley and from streams that flow across the valley floor. On the basis of a water balance analysis, under flow from the project area was estimated to be 28,000 acre-feet annually, surface-water outflow was 51,000 acre-feet, and transbasin imports were about 4,000 acre-feet. The principal tributaries of the Malad River are perennial along their upper and middle reaches and have well-sustained low flows. During the growing season, all surface water entering the Malad Valley is used for irrigation. Spine irrigation is practiced in the principal tributary valleys; however, a shortage of suitable reservoir sites has hampered surface-water development in these areas. The highly porous deposits underlying the Malad Valley tend to attenuate flood peaks. An unusual combination of meteorologic events early in 1962 effectively counteracted the high absorptive capacity of the valley and predisposed the basin to high flood risk. Subsequent rapid snowmelt combined with frozen ground produced the extraordinary flood of February 12, 1962. Calcium and bicarbonate commonly are the most abundant ions in the surface waters of the upper Malad River basin. In August 1967, the dissolved-solids content of streamflow ranged from 200 to 350 milligrams per liter in the middle and upper parts of the basin; however

  17. River systems: basin-scale responses to human and climate forcing (United States)

    Chiverrell, Richard


    Geomorphological processes at a drainage basin scale operate on a continuum over environments from hillslope, piedmont, lowland alluvial to estuarine zones. During the Anthropocene the depositional or landform record typical reflects the cumulative effects of climate or extreme event forcing and conditioning by human-mediated landscape change, though tectonic and basin morphometry are other actors impacting on long-term landscape evolution. The sediment conveyer or cascade behaviour of the fluvial system, with spatially and temporally variable patterns of sediment delivery and storage punctuated by cycles of (dis)connectivity between depocenters, moderates the sediment and morphological regime. The well resolved and dated archives of change preserved in hillslope, alluvial and lacustrine sediment-landform assemblages offer some prospect for disentangling this integrated array of conditioning factors to better understand cause and effect. This paper explores these issues using several landform and sediment archives from the northwest British Isles.

  18. Evolution of System Safety at NASA as Related to Defense-in-Depth (United States)

    Dezfuli, Homayoon


    Presentation given at the Defense-in-Depth Inter-Agency Workshop on August 26, 2015 in Rockville, MD by Homayoon Dezfuli. The presentation addresses the evolution of system safety at NASA as related to Defense-in-Depth.

  19. Positron sensing of distribution of defects in depth materials (United States)

    Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.


    It was developed a non-destructive method of positron sensing, which allows to determine the distribution of defects in the depth of the material. From the analysis we can conclude that the angular distribution curves of annihilation photons (well as and on the characteristics in experiments on the lifetime, 3γ - angular correlation, Doppler effect) is influenced by three main factors: a) The distribution of defects in the depth of the material, their dimensions as well as parameters of the interaction of positrons with defects. With increasing the concentration of defects the intensity Jγ(a, ξ) varies more; b) Modification of the energy spectrum of slow positrons due to the influence of defects, wherein the spectrum of positrons becomes softer, and the average energy of the positron annihilation is reduced; c) Deformation of the momentum distribution of the electrons in the region of defect. The energy spectrum of electrons is also becomes softer, and the average energy of the electrons (on which positrons annihilate) is less. The experimentally were measured spectra of photons in the zone of annihilation and were calculated the distribution of defects in depth for a number of metals.

  20. Shared Communications: Volume 2. In-Depth Systems Research

    Energy Technology Data Exchange (ETDEWEB)

    Truett, LF


    This report is the second of two documents that examine the literature for actual examples of organizations and agencies that share communications resources. While the primary emphasis is on rural, intelligent transportation system (ITS) communications involving transit, examples will not be limited to rural activities, nor to ITS implementation, nor even to transit. In addition, the term ''communication'' will be broadly applied to include all information resources. The first document of this series, ''Shared Communications: Volume I. A Summary and Literature Review'', defines the meaning of the term ''shared communication resources'' and provides many examples of agencies that share resources. This document, ''Shared Communications: Volume II. In-Depth Systems Research'', reviews attributes that contributed to successful applications of the sharing communication resources concept. A few examples of each type of communication sharing are provided. Based on the issues and best practice realworld examples, recommendations for potential usage and recommended approaches for field operational tests are provided.

  1. 3D hand tracking using Kalman filter in depth space (United States)

    Park, Sangheon; Yu, Sunjin; Kim, Joongrock; Kim, Sungjin; Lee, Sangyoun


    Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.

  2. Identifying Objective EEG Based Markers of Linear Vection in Depth (United States)

    Palmisano, Stephen; Barry, Robert J.; De Blasio, Frances M.; Fogarty, Jack S.


    This proof-of-concept study investigated whether a time-frequency EEG approach could be used to examine vection (i.e., illusions of self-motion). In the main experiment, we compared the event-related spectral perturbation (ERSP) data of 10 observers during and directly after repeated exposures to two different types of optic flow display (each was 35° wide by 29° high and provided 20 s of motion stimulation). Displays consisted of either a vection display (which simulated constant velocity forward self-motion in depth) or a control display (a spatially scrambled version of the vection display). ERSP data were decomposed using time-frequency Principal Components Analysis (t–f PCA). We found an increase in 10 Hz alpha activity, peaking some 14 s after display motion commenced, which was positively associated with stronger vection ratings. This followed decreases in beta activity, and was also followed by a decrease in delta activity; these decreases in EEG amplitudes were negatively related to the intensity of the vection experience. After display motion ceased, a series of increases in the alpha band also correlated with vection intensity, and appear to reflect vection- and/or motion-aftereffects, as well as later cognitive preparation for reporting the strength of the vection experience. Overall, these findings provide support for the notion that EEG can be used to provide objective markers of changes in both vection status (i.e., “vection/no vection”) and vection strength. PMID:27559328

  3. Experimental alluvial fans: Advances in understanding of fan dynamics and processes (United States)

    Clarke, Lucy E.


    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  4. A Quantitative Study on Paleo—River Environment During Late Jurassic on yaojie Region,Minhe Basin

    Institute of Scientific and Technical Information of China (English)

    邵树勋; 燕永峰; 等


    Fluvial Sedimentation of alluvial facies prevailed during the Late Jrassic in the Minhe Basin.On the basis of the study of sedimentary facies of the Upper Jurassic series.this paper focuses on the river types suing the "Architecture Element" analysis method proposed by Miall,and calculated all the quantitative parameters to reflect the characteristics of the stream channel geometry and hydrodynamic conditions of paleo-rivers with the equations of ethrideg,schumm et al.Finally,we discussed the characteristics of environmental evolution of palsorivers on the quantitative basis.Our conclusion indicates that the evolution of paleo-rivers during the Late Jurassic,from early to late,shows such a tendency as alluvial fan river→ braid river→alluvial fan river→mid-sinuoisty river→ high-sinuosity river.

  5. Nest survival of forest birds in the Mississippi Alluvial Valley (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Hamilton, R.B.


    In the Mississippi Alluvial Valley, flood control has led to a drastic reduction in the area of forest habitat and altered the patchwork of forest cover types. Silvicultural management of the remaining fragmented forests has changed to reflect the altered hydrology of the forests, current economic conditions of the area, and demand for forest products. Because forest type and silvicultural management impact forest birds, differences in avian productivity within these forests directly impact bird conservation. To assist in conservation planning, we evaluated daily nest survival, nest predation rates, and brood parasitism rates of forest birds in relation to different forest cover types and silvicultural management strategies within this floodplain. Within bottomland hardwood forests, nest success of blue-gray gnatcatcher (Polioptila caerulea, 13%), eastern towhee (Pipilo erythrophthalmus, 28%), indigo bunting (Passerina cyanea, 18%), northern cardinal (Cardinalis cardinalis, 22%), and yellow-billed cuckoo (Coccyzus americanus, 18%) did not differ from that within intensively managed cottonwood plantations. However, average daily survival of 542 open-cup nests of 19 bird species in bottomland hardwoods (0.9516 + 0.0028, -27% nest success) was greater than that of 543 nests of 18 species in cotlonwood plantations (0.9298 + 0.0035, -15% nest success). Differences in daily nest survival rates likely resulted from a combination of differences in the predator community--particularly fire ants (Solenopsis invicta)--and a marked difference in species composition of birds breeding within these 2 forest types. At least 39% of nests in bottomland hardwood forests and 65% of nests in cottonwood plantations were depredated. Rates of parasitism by brown-headed cowbirds (Molothrus ater) were greater in managed cottonwoods (24%) than in bottomland hardwoods (9%). Nest success in planted cottonwood plantations for 18 species combined (-14%), and for yellow-breasted chat (Icteria

  6. Alluvial deposits and plant distribution in an Amazonian lowland megafan (United States)

    Zani, H.; Rossetti, D.; Cremon; Cohen, M.; Pessenda, L. C.


    A large volume of sandy alluvial deposits (> 1000 km2) characterizes a flat wetland in northern Amazonia. These have been recently described as the sedimentary record of a megafan system, which have a distinct triangular shape produced by highly migratory distributary rivers. The vegetation map suggests that this megafan is dominated by open vegetation in sharp contact with the surround rainforest. Understanding the relationship between geomorphological processes and vegetation distribution is crucial to decipher and conserve the biodiversity in this Amazonian ecosystem. In this study we interpret plant dynamics over time, and investigate its potential control by sedimentary processes during landscape evolution. The study area is located in the Viruá National Park. Two field campaigns were undertaken in the dry seasons of 2010 and 2011 and the sampling sites were selected by combining accessibility and representativeness. Vegetation contrasts were recorded along a transect in the medial section of the Viruá megafan. Due to the absence of outcrops, samples were extracted using a core device, which allowed sampling up to a depth of 7.5 m. All cores were opened and described in the field, with 5 cm3 samples collected at 20 cm intervals. The δ13C of organic matter was used as a proxy to distinguish between C3 and C4 plant communities. The chronology was established based on radiocarbon dating. The results suggest that the cores from forested areas show the most depleted values of δ13C, ranging from -32.16 to -27.28‰. The δ13C curve in these areas displays typical C3 land plant values for the entire record, which covers most of the Holocene. This finding indicates that either the vegetation remained stable over time or the sites were dominated by aquatic environments with freshwater plants before forest establishment. The cores from the open vegetation areas show a progressive upward enrichment in δ13C values, which range from -28.50 to -19.59‰. This trend is

  7. Performance characterisation of a stormwater treatment bioretention basin. (United States)

    Mangangka, Isri R; Liu, An; Egodawatta, Prasanna; Goonetilleke, Ashantha


    Treatment performance of bioretention basins closely depends on hydrologic and hydraulic factors such as rainfall characteristics and inflow and outflow discharges. An in-depth understanding of the influence of these factors on water quality treatment performance can provide important guidance for effective bioretention basin design. In this paper, hydraulic and hydrologic factors impacting pollutant removal by a bioretention basin were assessed under field conditions. Outcomes of the study confirmed that the antecedent dry period plays an important role in influencing treatment performance. A relatively long antecedent dry period reduces nitrite and ammonium concentrations while increasing the nitrate concentration, which confirms that nitrification occurs within the bioretention basin. Additionally, pollutant leaching influences bioretention basin treatment performance, reducing the nutrients removal efficiency, which was lower for high rainfall events. These outcomes will contribute to a greater understanding of the treatment performance of bioretention basins, assisting in the design, operation and maintenance of these systems.

  8. Establishing a Global Halal Hub: In-Depth Interviews

    Directory of Open Access Journals (Sweden)

    Mahdi Borzooei


    Full Text Available The purpose of this study is to explore the requirements needed for a country to establish itself as a global Halal hub. In this regard, this exploratory research paper uses a semi-structured in-depth interview to obtain the perceptions of Halal experts about the requirements for establishing a Halal hub. The results of the study indicate that human capital, media, research and development, events, country’s capability, public and governmental support, marketing strategy, and infrastructure comprise the vital requirements. Furthermore, from the perceptions of the experts, public and governmental support, marketing strategy, and human capital are the three most important requirements. Since this paper is an exploratory study, it provides some insights of the three experts on the establishing of a Halal hub. In addition, a quantitative study is an appropriate approach to implement the findings of this study empirically and to determine the effective components to establish a Halal hub in those countries that desire it. A practical implication of this study is the opening of a new window for any country that aspires to be a Halal hub. In this matter, this paper presents the key considerations in establishing a Halal hub for Halal certification bodies, companies and marketers involved in the Halal business. Moreover, this research attempts to influence the perceptions and attitudes of people of the country on the desirability of becoming a Halal hub, followed by a discussion on the development of a national brand. When the contribution of its people is high, a country stands the best chance of achieving its goal. Finally, this study is one of the first to seek the perceptions of experts about vital requirements that a country should pay more attention to if it wishes to establish a global Halal hub.

  9. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano


    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  10. The Sedimentary System and Evolution of the Early Tertiary in the Sunda Basin, Indonesia

    Institute of Scientific and Technical Information of China (English)


    The Sunda basin is located at the north of the Sunda Strait situated between Sumatra and Java islands, Indonesia. It is an early Tertiary typical half-graben basin, in which developed a series of terrigenous clastic sedimentation. Previous work suggested that the early Tertiary sediments were alluvial, fluvial, lacustrine and swamp deposits, of which the Banuwati formation was alluvial and lacustrine deposits, the Zelda member fluvial deposits, and Gita member fluvial and swamp deposits. In this paper, based on the integrated research on core lithology (including lithology succession and structure), well log shape, and seismic reflection characteristics, a more detailed sedimentation system was set up as follows: 1) In addition to the alluvial, lacustrine, fluvial and the swamp deposits presented in previous work, subaqeous fan, shore-shallow lacustrine, deep lacustrine and turbidite fan, fan delta and delta deposits also developed in this basin. 2) Alluvial fan, subaqeous fan and fan delta deposits occurred on the steep slope adjacent to the synrift boundary fault; while the deltaic depositional system usually distributed on the gentle slope of the basins. 3) The Zelda member that was interpreted as a fluvial deposit in previous work is now interpreted as a subaqueous fan, fan delta, delta and lacustrine deposit system. 4) From the point of view of sedimentology, the evolution of basin could be divided into four stages: the initial subsidence (matching the Banuwati formation), the rapid subsidence (matching the low Zelda member of Talang Akar formation), the steady subsidence or fluctuation (matching the middle Zelda member of Talang Akar formation), and the uplifting (matching the upper Zelda member and the Gita member of Talang Akar formation). At the initial subsidence stage, the alluvial fan, flood plain, braided stream deposits developed, and then subaqeous fan sedimentation; at the rapid subsidence stage, shore-shallow lacustrine and deep lacustrine deposits

  11. 75 FR 62137 - Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest Factors... (United States)


    ... written testimony and comments on the public interest factors (see determination of public interest at 43... final decision on the proposed exchange and whether it is in the public interest. The BLM will discuss... Bureau of Land Management Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange...

  12. Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial channels

    NARCIS (Netherlands)

    Crosato, A.; Mosselman, E.; Desta, F.B.; Uijttewaal, W.S.J.


    Alternate bars in straight alluvial channels are migrating or nonmigrating. The currently accepted view is that they are nonmigrating if the width-to-depth ratio is at the value of resonance or if the bars are forced by a persistent local perturbation. We carried out 2-D numerical computations and a

  13. Intrinsic steady alternate bars in alluvial channels. Part 1: experimental observations and numerical tests.

    NARCIS (Netherlands)

    Crosato, A.; Desta, F.B.


    Alternate bars in straight alluvial channels are migrating or steady. The currently accepted view is that they are steady only if the width-to-depth ratio is at the value of resonance or if the bars are forced by a steady local perturbation. Experimental observations, however, seem to indicate that

  14. The alluvial architecture of the Coevorden Field (Upper Carboniferous), the Netherlands

    NARCIS (Netherlands)

    Kombrink, H.; Bridge, J.S.; Stouthamer, E.


    A detailed reconstruction of the alluvial architecture of the Coevorden gas Field (Tubbergen Formation, Upper Carboniferous), which is located in the northeastern part of the Netherlands, is presented. This reconstruction is based on well logs, cross-sections and paleogeographic maps. Sedimentolog

  15. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering

    NARCIS (Netherlands)

    de Haas, Tjalling; Ventra, Dario; Carbonneau, Patrice E.; Kleinhans, Maarten G.


    Arid alluvial fan aggradation is highly episodic and fans often comprise active and inactive sectors. Hence the morphology and texture of fan surfaces are partly determined by secondary processes of weathering and erosion in addition to primary processes of aggradation. This introduces considerable

  16. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.


    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  17. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.


    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  18. Floodplain morphology, sedimentology, and development processes of a partially alluvial channel (United States)

    Thayer, James B.; Ashmore, Peter


    The floodplain morphology, sediment deposits, and development mechanisms of a partially alluvial, low-moderate energy channel flowing over a mixed gravel/cobble-till bed are investigated and compared to existing ideas of floodplain development. The findings partially support the idea of a floodplain developed through lateral accretion capped with vertically accreted sediments as predicted by the energy-based classification scheme of Nanson and Croke (1992), though oblique accretion and partial channel avulsion are also important. Channel migration consists of limited cross-valley migration and downstream meander translation. Because of low channel sinuosity, well-formed neck cutoffs are rare, and instead the channel cuts headward along the insides of confined or underdeveloped meander bends forming a localized anabranching pattern. The floodplain architecture can be divided into gravel bar and bed deposits (GB), lateral accretion deposits (LA), overbank deposits (FF), and abandoned channel deposits (FF(CH)), which are described with four alluvial facies. Owing to the limited supply of coarse and fine sediment, none of the architectural elements are particularly thick, with total floodplain thickness being < 3 m. Floodplain development for partially alluvial channels is compared within a new floodplain discrimination framework. Comparisons with common facies models of single-thread, coarse-grained channels show important differences that suggest that the floodplain deposits and formative processes described herein represent a subset of single-thread systems that may be common in partially alluvial channels, particularly in slightly sinuous, coarse-grained channels of low-moderate energy with partly confined floodplains.

  19. The recharge process in alluvial strip aquifers in arid Namibia and implication for artificial recharge (United States)

    Sarma, Diganta; Xu, Yongxin


    Alluvial strip aquifers associated with ephemeral rivers are important groundwater supply sources that sustain numerous settlements and ecological systems in arid Namibia. More than 70 % of the population in the nation's western and southern regions depend on alluvial aquifers associated with ephemeral rivers. Under natural conditions, recharge occurs through infiltration during flood events. Due to the characteristic spatial and temporal variability of rainfall in arid regions, recharge is irregular making the aquifers challenging to manage sustainably and they are often overexploited. This condition is likely to become more acute with increasing water demand and climate change, and artificial recharge has been projected as the apparent means of increasing reliability of supply. The article explores, through a case study and numerical simulation, the processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options. It is concluded that recharge processes in arid alluvial aquifers differ significantly from those processes in subhumid systems and viability of artificial recharge requires assessment through an understanding of the natural recharge process and losses from the aquifer. It is also established that in arid-region catchments, infiltration through the streambed occurs at rates dependent on factors such as antecedent conditions, flow rate, flow duration, channel morphology, and sediment texture and composition. The study provides an important reference for sustainable management of alluvial aquifer systems in similar regions.

  20. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel


    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  1. Clogging of water supply wells in alluvial aquifers by mineral incrustations, central Serbia

    Directory of Open Access Journals (Sweden)

    Majkić-Dursun Brankica


    Full Text Available The formation of incrustations on public water supply well screens reduces their performance considerably. The incrustations increase hydraulic losses, reduce the capacity of the well and screen, affect the quality of the pumped water and increase maintenance costs. In alluvial environments, the most common deposits are iron and manganese hydroxides. However, the rates of formation, compositions and levels of crystallization vary, depending on the geochemical characteristics of the alluvial environment, the microbiological characteristics of the groundwater and the abstraction method. Samples of 15 incrustations were collected from wells that tap shallow alluvial aquifers and were found to be dominated by iron. XRD analyses detected low-crystalline ferrihydrite and manganese hydroxide in the samples collected from the water supply source at Trnovče (Velika Morava alluvial. The incrustations from the Belgrade Groundwater Source revealed the presence of ferrihydrite and a substantial amount of goethite α-FeOOH. Apart from goethite, greigite (Fe3S4 was detected in three samples, while one sample additionally contained bernalite Fe(OH3 and monoclinic sulfur S8. Among carbonates, only siderite was detected. Iron oxidizing bacteria generally catalyze deposition processes in wells, while sulfate reducing bacteria (SRB play a role in the biogenic formation of greigite. Determining the nature of the deposited material allows better selection of rehabilitation chemicals and procedure. [Projekat Ministarstva nauke Republike Srbije, br. TR37014

  2. Late Quaternary Alluvial Fans of Southern Baja California, Mexico: Relation to Eastern Pacific Tropical Cyclones (United States)

    Antinao, J.; McDonald, E.


    In the arid, non-glaciated regions of the Southwestern USA and Northwestern Mexico, aggradation in alluvial fan systems has been traditionally linked to cold and humid periods (e.g., Last Glacial Maximum) or to the transition to warm periods (e.g., the Pleistocene-Holocene transition, PHT). However, major intervals of sediment transport and aggradation have also occurred during climatically warm periods in these regions. These periods have also been identified as portraying enhanced humidity or “monsoonal’ conditions. Investigations on the weather systems able to perform geomorphic work during predominantly warm periods, i.e. the North American Monsoon (NAM) and Eastern Pacific (EP) Tropical Cyclones (TCs), have concentrated mainly in the USA. To understand the relative contribution of these systems to sediment transport over millennial timescales, we have mapped and characterized preliminarily the alluvial fans in four different areas of the Southern Baja California peninsula, Mexico. This region is dominated by EPTC precipitation, which in turn is driving the sediment transport along alluvial channels. Detailed geomorphologic mapping shows that a distinct Late Quaternary chronostratigraphy of alluvial fan units can be developed using geochronological and pedological tools. Specifically, a soil chronosequence can be compared to sequences in the SW USA, allowing a correlation to Late Pleistocene - Holocene events in the region. At least five alluvial units can be identified. Older units have well defined gravel pediments, Av and B horizons and pervasive pedogenic carbonate morphology, with alluvial terraces that rise tens of meters above the present channel. Intermediate age units have developed B horizons and carbonate morphology at different stages. The younger units have thin soil horizons, no carbonate morphology in the soil profile, and some of them are subject to episodic flooding during TC activity. The chronosequence developed is the first step towards

  3. Surface exposure dating of moraines and alluvial fans in the Southern Central Andes (United States)

    Terrizzano, Carla; Zech, Roland; García Morabito, Ezequiel; Haghipour, Negar; Christl, Marcus; Likermann, Jeremías; Tobal, Jonathan; Yamin, Marcela


    The role of tectonics versus climate in controlling the evolution of alluvial fans in discussed controversially. The southern Central Andes and their forelands provide a perfect setting to study climate versus tectonic control of alluvial fans. On the one hand, the region is tectonically active and alluvial fan surfaces are offset by faults. The higher summits, on the other hand, are glaciated today, and glacial deposits document past periods of lower temperatures and increased precipitation. We applied 10Be surface exposure dating on 5 fan terraces 4 moraines of the Ansilta range (31.6°S - 69.8°W) using boulders and amalgamated pebbles to explore their chronological relationship. From youngest to oldest, the alluvial fan terraces yield minimum ages of 15 ± 1 ka (T1), 97 ± 9 ka (T2), 141 ± 9 ka (T3), 286 ± 14 ka (T4) and 570 ± 57 ka (T5). Minimum ages derived from moraines are 14 ± 1 ka (M1), 22 ± 2 ka (M2), 157 ± 14 ka (M3) and 351 ± 33 ka (M4), all calculations assuming no erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. The moraines document glacial advances during cold periods at the marine isotope stages (MIS) 2, 6 and 10. The terraces T1, T3 seem to be geomorphologic counterparts during MIS 2 and 6. We suggest that T2, T4 and T5 document aggradation during the cold periods MIS 5d, 8 and 14 in response to glacial advances, although the respective moraines are not preserved. Our results highlight: i) the arid climate in the Southern Central Andes favors the preservation of glacial and alluvial deposits allowing landscape and climate reconstructions back to ~570 ka), ii) alluvial deposits correlate with moraines or fall into cold glacial times, so that climate, and in particular the existence of glaciers, seems to be the main forcing of alluvial fan formation at our study site. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary

  4. Tectono-stratigraphic evolution of an inverted extensional basin: the Cameros Basin (north of Spain) (United States)

    Omodeo Salè, Silvia; Guimerà, Joan; Mas, Ramón; Arribas, José


    The Cameros Basin is a part of the Mesozoic Iberian Rift. It is an extensional basin formed during the late Jurassic and early Cretaceous, in the Mesozoic Iberian Rift context, and it was inverted in the Cenozoic as a result of the Alpine contraction. This work aims to reconstruct the tectono-stratigraphic evolution of the basin during the Mesozoic, using new and revised field, geophysical and subsurface data. The construction of a basin-wide balanced section with partial restorations herein offers new insights into the geometry of the syn-rift deposits. Field data, seismic lines and oil well data were used to identify the main structures of the basin and the basin-forming mechanisms. Mapping and cross-sectional data indicate the marked thickness variation of the depositional sequences across the basin, suggesting that the extension of the depositional area varied during the syn-rift stage and that the depocentres migrated towards the north. From field observation and seismic line interpretation, an onlap of the depositional sequences to the north, over the marine Jurassic substratum, can be deduced. In the last few decades, the structure and geometry of the basin have been strongly debated. The structure and geometry of the basin infill reconstructed herein strongly support the interpretation of the Cameros Basin as an extensional-ramp synclinal basin formed on a blind south-dipping extensional ramp. The gradual hanging-wall displacement to the south shifted the depocentres to the north over time, thus increasing the basin in size northwards, with onlap geometry on the pre-rift substratum. The basin was inverted by means of a main thrust located in a detachment located in the Upper Triassic beds (Keuper), which branched in depth with the Mesozoic extensional fault flat. The reconstruction of the tectono-stratigraphic evolution of the Cameros Basin proposed herein represents a synthesis and an integration of previous studies of the structure and geometry of the

  5. Exploring the use of weathering indexes in an alluvial fan chronology (United States)

    Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta


    Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.

  6. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions (United States)

    Zhu, Lin; Gong, Huili; Dai, Zhenxue; Guo, Gaoxuan; Teatini, Pietro


    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity (K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log10(K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain, China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. The results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.

  7. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins (United States)

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.


    Using a comprehensive data set (dissolved CH4, δ13C-CH4, δ2H-CH4, δ13C-DIC, δ37Cl, δ2H-H2O, δ18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. δ13C-CH4 data in the gas reservoir (-58‰ to -49‰) and shallow coal measures underlying the alluvium (-80‰ to -65‰) are distinct. CO2 reduction is the dominant methanogenic pathway in all aquifers, and it is controlled by SO4 concentrations and competition for reactants such as H2. At isolated, brackish sites in the shallow coal measures and alluvium, highly depleted δ2H-CH4 (gas reservoir (200-500 m) to the shallow coal measures (<200 m) or the alluvium was not observed. The study demonstrates the importance of understanding CH4 at different depth profiles within and between aquifers. Further research, including culturing studies of microbial consortia, will improve our understanding of the occurrence of CH4 within and between aquifers in these basins.

  8. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.


    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  9. The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, Maddalena [Istituto di Geoscienze e Georisorse, Area di Ricerca del CNR, Via G. Moruzzi 1, 56124 Pisa (Italy)]. E-mail:; Gonfiantini, Roberto [Istituto di Geoscienze e Georisorse, Area di Ricerca del CNR, Via G. Moruzzi 1, 56124 Pisa (Italy); Grassi, Sergio [Istituto di Geoscienze e Georisorse, Area di Ricerca del CNR, Via G. Moruzzi 1, 56124 Pisa (Italy); Squarci, Paolo [Istituto di Geoscienze e Georisorse, Area di Ricerca del CNR, Via G. Moruzzi 1, 56124 Pisa (Italy)


    The groundwater B concentration in the alluvial aquifer of the upper Cecina River basin in Tuscany, Italy, often exceeds the limit of 1 mg L{sup -1} set by the European Union for drinking water. On the basis of hydrogeological and geochemical observations, the main source of the B contamination of groundwater has been attributed to past releases into streams of exhausted, B-rich geothermal waters and/or mud derived from boric acid manufacturing in Larderello. The releases were discontinued 25-30 years ago. This study confirms that the B dissolved in groundwater is anthropogenic. In fact, the {delta} {sup 11}B values of groundwater B match the range -12.2 per mille to -13.3 per mille of the Turkish B mineral (colemanite) processed in boric acid manufacturing, in the course of which no significant isotopic effects have been observed. This isotopic tracing of the Cecina alluvial aquifer occurs just below the confluence of the Possera Creek, which carries the B releases from Larderello. Strontium isotope ratios support this conclusion. At about 18 km from the Possera Creek confluence, the groundwater {delta} {sup 11}B drops to much more negative values (-22 per mille to -27 per mille ), which are believed to be produced by adsorption-desorption interactions between dissolved B and the aquifer matrix. The {delta} {sup 11}B of B fixed in well bottom sediments shows a similar variation. At present, desorption is prevailing over adsorption because the releases of B-rich water have ceased. A theoretical model is suggested to explain the isotopic trends observed. Thus, B isotopes appear to be a powerful tool for identifying the origin of B contamination in natural waters, although isotopic effects associated with adsorption-desorption processes may complicate the picture, to some extent.

  10. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.


    evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I

  11. Alluvial Morphology In Cohesive Sediment: The Mahakam Lowland Area (United States)

    Vermeulen, B.; van Berkum, S.; Hoitink, A.; Sassi, M.; Hidayat, H.


    In the lower part of its course, the Mahakam River (Indonesia) flows through the subsiding Kutai Basin, through its own cohesive alluvium. The river is surrounded by a large number of floodplain lakes and peat domes. Its planform geometry and bed morphology reveal the presence of very sharp bends and associated deep scours. The lakes are connected to the river by small-sized tie-channels, which play a crucial role the discharge regime of the Mahakam downstream of the lake district. This study aims to establish the morphology of the sharp river bends and tie-channels, and to evaluate the contribution of sediment cohesion, riparian vegetation and the presence of peat in the area to river banks stability. Based on a detailed reconnaissance survey of the river banks, patterns of sedimentation and erosion in highly curved bends are found to be mirrored relative to those in mildly curved river stretches. Bars develop at the concave banks of sharp bends. On the convex sides, reattachment bars are often found, indicating flow separation at the inner bank. These sharp bends are thought to develop due to failure of the river to cutoff meanders due to erosion resistance of the banks. The top of the levees are located high in the landscape, forming a barrier between the surrounding swampy floodplains and the river. These levees form a buffer between the river corridor and peat domes, suggesting peat domes to be formed in areas outside the river corridor, rather than vice versa. Tie-channels are characterized by a very stable morphology and exhibit levees with decreasing height away from the river. The bed of these channels is armored with gravel and concretions of iron, organic matter and clay, suggesting that very high flow velocity can occur when the water level in the river changes abruptly. Both in the tie-channels and in the meandering part of the river, we found no apparent effect of vegetation on morphometric properties. We conclude the morphological characteristics of

  12. Fly Ash as a Time Marker for Anthropocene Alluvial Sedimentation (United States)

    Bettis, E. A., III; Grimley, D. A.; Anders, A. M.; Bates, B.; Hannan, E.


    provide us with critical ground truth data for understanding long-term sediment movement through drainage basins and for modelling landscape evolution during the Anthropocene.

  13. Structure and climate controls on the evolution of a Mid-Late Jurassic alluvial fan-delta system in the western part of Yanshan fold-and-thrust belt (United States)

    Lin, Chengfa; Liu, Shaofeng; Yao, Xiang; Ma, Pengfei


    The Yanshan fold-thrust belt experienced several significant tectonic events during Mesozoic time and developed thrust fault-bounded intramontane sedimentary basins. However, elaborate works of sedimentology is inadequate in the Yanshan belt, particularly in its western segment, leading to a failure in comprehensively understanding how bounding-faults and climate change influence the basin filling processes. Our detailed sedimentological study of the Middle Jurassic Xiahuayuan Formation and Upper Jurassic-Lower Cretaceous Jiulongshan Formation in the Xiahuayuan basin of northern Hebei province, indicates a genetic relationship between the evolution of an alluvial fan-delta system and the tectonic and climate setting. The Xiahuayuan Formation was assigned to a debris flow-dominated Gilbert-type fan-delta composed of topset conglomerates, foreset massive siltstone-fine grained sandstone interbedded with lenticular conglomerate units and bottomset/lake bottom fine-grained deposits, spatially restricted to the northern part of the basin. While the lower Jiulongshan Formation was considered as a relatively small debris flow- and turbidity currents-dominated fan-delta with a single-ramp portrait, prograding into the middle part of the basin. And the upper part of Jiulongshan Formation contributed to the lake bottom component of the delta system during the forming of the Jiulongshan Formation. Our results reveal a transformation of a fan-delta from Gilbert-type to single-ramp type and the basinward migration of this fan-delta during Mid-Late Jurassic in the Xiahuayuan basin. And it is assumed that the activity of a thrust fault along the northern basin margin and the rapid switch of climate conditions from warm and humid to hot and dry triggered the transformation and migration of this fan-delta system.

  14. Tectonic control on the Late Quaternary hydrography of the Upper Tiber Basin (Northern Apennines, Italy) (United States)

    Benvenuti, Marco; Bonini, Marco; Moroni, Adriana


    We examine the intramontane Upper Tiber Basin in the Northern Apennines (central Italy), where sub-orthogonal fault systems forced river deviation and the abandonment of alluvial fans since the late Middle Pleistocene. Archaeological material, spanning the Middle Palaeolithic-Iron Age, was collected mostly from the surface of the Late Quaternary alluvial landforms and related deposits (MUP and HOL units). This information contributed to the partial dating of seven major stages of drainage development. Normal faults parallel and transverse to the basin trend were active at different times and conditioned the valley pattern of the Middle (MUP1-2)-Late (MUP3) Pleistocene Tiber, Singerna, Sovara and Tignana rivers, which still flow today into the basin. The MUP1 and the MUP3 fans were beheaded by the displacement of their feeder valleys along the basin-transverse Carmine and Montedoglio faults. In some cases, the former feeder rivers underwent stream piracy but their courses mostly deviated in response of the topographic gradient created by faulting, as well as through the incision of new valleys that exploited the lithological contrast along the fault lines. The MUP3 Tignana fan was abandoned mostly due to the activity of the basin-parallel, dip-slip Sansepolcro fault. Subsidence driven by the basin-parallel Anghiari and Sansepolcro fault systems also provided the accommodation space for the MUP3 and HOl1-2 Afra fans between Late Pleistocene and early-mid Holocene. This study exemplifies the interplay between longitudinal and transverse fault systems, and the Late Quaternary hydrographic evolution of an extensional basin settled in the axial zone of an active fold-and-thrust belt. Although the faulting has interacted with the forcing exerted by the Late Quaternary climate fluctuations on the basin drainage systems, the tectonic rates are sufficiently high to represent the prime controller on base-level change and drainage routing patterns.

  15. Evidence for active tilting of the NW-German Basin from correlations between fluvial landscape and geological subground (United States)

    Szeder, Thore; Sirocko, Frank


    The catchment basin of the River Hunte (Lower Saxony, NW-German Basin) was studied on a mesoscale (length of ~90 km) to investigate the influence of the geological subground on modern morphology. A Geo Information System (GIS) was used to calculate linear correlation coefficients between the depth of geological strata (Base Zechstein to Base Quaternary) and the height of the modern landscape (Holocene Alluvial Plain, Lower Weichselian Terrace, catchment basin and watershed). High linear correlation coefficients between the Base of Tertiary and the height of the modern topography (catchment basin [r2=0.87], Lower Weichselian Terrace [r2=0.95] and Holocene Alluvial Plain [r2=0.95]) indicate control of the modern topography by the depth of the geological subsurface via tilting of the entire basin. Most likely northward tilting of the NW-German Basin forces the River Hunte to flow in a northerly direction by relative uplift of the hinterland (Wiehengebirge, Rhenish Massif) and subsidence of the North Sea area.

  16. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research (United States)

    Fang, Xiaomin; Wang, Jiuyi; Zhang, Weilin; Zan, Jinbo; Song, Chunhui; Yan, Maodu; Appel, Erwin; Zhang, Tao; Wu, Fuli; Yang, Yibo; Lu, Yin


    Intracontinental flexural (foreland) basin sediments are now frequently used as archives for detailed paleoclimatic and sedimentary environmental reconstruction, fossil and stratigraphic correlation, and tectonic evolution and uplift of basin and orogen. However, sedimentologic characteristics vary considerably in time-space with the evolution of flexural basin, apt to cause misinterpretation of climatic change and stratigraphic correlation. Based on high resolution fossil mammal and magnetostratigraphic constraints and sedimentary facies analysis, here we took the Linxia Basin at the front of the NE Tibetan Plateau as a case to demonstrate and figure out a model how sedimentology and stratigraphy vary temporospatially with the evolution of such flexural basin. The results show that the Linxia Basin is a type intracontinental foreland basin subjected to two phases of flexural deformation exerted by the West Qin Ling (Mts.) and NE Tibetan Plateau to the south. Phase I began latest at the beginning of the Miocene (23.3 Ma), indicated by a balanced fast flexural subsidence and mostly fine sediment infilling giving rise to the early underlying unconformity. It manifests as an obvious sediment wedge with high filling rate, thickening toward mountains and an occurrence of a mountains-parallel big river - shallow lake system along the foredeep, suggesting a less high mountain topography. In the late Phase I, from ~ 13 Ma to 8 Ma, the subsidence and thickening rates began to decrease, accompanied by faults and deformation propagating gradually into the basin, causing gradual basinward migration of the foredeep and its accompanying river-lake system. Since ~ 8 Ma in Phase II, the West Qin Ling and NE Tibetan began to uplift rapidly and thrust/load onto the Linxia Basin, causing strong mountain erosion, thrust-fold belt propagation and basin overfilling. This forced the mountains-parallel river - lake system to turn to the mountains-perpendicular alluvial - braided river

  17. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Benamrane, O.; Messaoudi, M.; Messelles, H. (Sonatrach Division Exploration, Algiers (Algeria))


    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  18. Design of alluvial Egyptian irrigation canals using artificial neural networks method

    Directory of Open Access Journals (Sweden)

    Hassan Ibrahim Mohamed


    Full Text Available In the present study, artificial neural networks method (ANNs is used to estimate the main parameters which used in design of stable alluvial channels. The capability of ANN models to predict the stable alluvial channels dimensions is investigated, where the flow rate and sediment mean grain size were considered as input variables and wetted perimeter, hydraulic radius, and water surface slope were considered as output variables. The used ANN models are based on a back propagation algorithm to train a multi-layer feed-forward network (Levenberg Marquardt algorithm. The proposed models were verified using 311 data sets of field data collected from 61 manmade canals and drains. Several statistical measures and graphical representation are used to check the accuracy of the models in comparison with previous empirical equations. The results of the developed ANN model proved that this technique is reliable in such field compared with previously developed methods.

  19. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.


    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  20. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds; Annual Report (United States)

    US Fish and Wildlife Service, Department of the Interior — Major efforts have been initiated in the Lower Mississippi River Alluvial Valley (LMA V. Fig. I) from within both the U.S. Departments of Interior and Agriculture to...

  1. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds: 2002 Annual Report (United States)

    US Fish and Wildlife Service, Department of the Interior — The annual report outlines the importance of conserving and restoring lands for migratory birds in the Lower Mississippi River Alluvial Valley.

  2. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds: 2000 Annual Report (United States)

    US Fish and Wildlife Service, Department of the Interior — The annual report outlines the importance of conserving and restoring lands for migratory birds in the Lower Mississippi River Alluvial Valley.

  3. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant hydraulic conductivity values for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The...

  4. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The Tillman terrace aquifer encompasses...

  5. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant recharge values for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The Tillman terrace and...

  6. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-level elevation contours for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The Tillman terrace and...

  7. Colorado Plateau Rapid Ecoregion Assessment Management Question B4: Where are the alluvial aquifers and their recharge areas (if known)? (United States)

    Bureau of Land Management, Department of the Interior — This map shows potential alluvial aquifers based on sand, gravel, and alluvium types in the surficial geology datasets of Arizona, Colorado, New Mexico, and Utah.

  8. Coastal marine basins as records of continental palaeoenvironments (Gulf of Guinea and Iullemmeden cretaceous and tertiary basins) (United States)

    Rat, P.; Lang, J.; Alzouma, K.; Dikouma, M.; Johnson, A.; Laurin, B.; Mathey, B.; Pascal, A.

    Deposits in nearshore marine basins provide data about the adjacent emerged lands. Examples are taken from the Togo coastal basin, on an ocean margin, and the Iullemmeden intracratonic basin (Niger). A continental landscape is fossilized by the onlapping layers of the transgressions: an eroded crystalline basement (Togo) or a broad and complex alluvial plain (Iullemmeden). Clastics, trapped in the marine deposits, provide information on the source area. Two types of information can be obtained from the sands: the nature of the parent rocks, and the environment at the time of genesis, storage and transportation (tectonic and climatic stability or change). The significance of clays is more complex; they can be formed or modified in the marine environment. However their elastic or chemical components originate from biochemical weathering and provide information on climate, morphology, vegetation cover and drainage of the emerged lands. In the Iullemmeden basin, the important change between Maastrichtian and Paleocene probably reflects a change to a drier climate in accordance with a slight shift of the equator to the south. The properties of marine waters are dependent on climate and morphology of the emergent lands which determines runoff. These properties may be inferred from the analysis of the clastic/carbonate conflict and indicators of salinity (mangrove). In conclusion, the Togo and Iullemmeden basins were located downstream of tectonically quiecent, large continental areas of gentle relief. Transgressions were migrations of a broad littoral system upon very flat continental surfaces caused by erosion or river-dominated deposition.

  9. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering.


    Haas, T.; Ventra, D.; Carbonneau, P. E.; Kleinhans, M. G.


    Arid alluvial fan aggradation is highly episodic and fans often comprise active and inactive sectors. Hence the morphology and texture of fan surfaces are partly determined by secondary processes of weathering and erosion in addition to primary processes of aggradation. This introduces considerable uncertainty in the identification of formative processes of terrestrial and Martian fans from aerial and satellite imagery. The objectives of this study are (i) to develop a model to describe the s...

  10. Spatial variability and prediction modeling of groundwater arsenic distributions in the shallowest alluvial aquifers in Bangladesh


    Shamsudduha, M.


    Elevated arsenic in groundwater is the greatest environmental problem in Bangladesh. Spatial variability of arsenic in groundwater has been examined by semivariogram analysis that revealed high degree of small-scale spatial variability in alluvial aquifers. Small-scale variability of arsenic concentrations, indicated by high "nugget" values in semivariograms, is associated with heterogeneity in local-scale geology and geochemical processes. In unsampled locations, arsenic concentrations have ...

  11. 32 CFR 701.58 - In-depth analysis of FOIA exemptions. (United States)


    ... 32 National Defense 5 2010-07-01 2010-07-01 false In-depth analysis of FOIA exemptions. 701.58 Section 701.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of...

  12. Students' Experiences and Perceptions of In-Depth Approaches in Teaching and Understanding Subject Matter (United States)

    Doumas, Kyriaki


    Students' experiences and perceptions of good teaching and understanding in literature and physics during one school year were investigated through in-depth interviews with students in eight Greek high school classes in the first, second and third grade. The pedagogical quality of in-depth teaching and understanding of subject matter, as described…

  13. Self-similar growth of an alluvial fan fed with bimodal sediment (United States)

    Delorme, Pauline; Voller, Vaughan; Paola, Chris; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie; Métivier, François


    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. We carried out a series of experiments to investigate the growth of alluvial fans fed with mixed sediments. The density difference between silica and coal sediments mimics a bimodal grain-size distribution in nature. The sediment and water discharges are constant during an experiment. During the run, we track the evolution of the surface pattern by digital imaging. At the end of each run, we acquire the fan topography using a scanning laser. Finally, we cut a radial cross section to visualize the sedimentary deposit. We observe there is a distinct slope break at the transition that dominates the overall curvature of the fan surface. Based on mass conservation and observations, we propose that this alluvial fan grows in a self-similar way, thus causing the transition between silica and coal deposits to be a straight line. The shape of the experimental transition accords with this prediction.

  14. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China. (United States)

    Wu, Ya; Wang, Yanxin


    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  15. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela (United States)

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.


    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  16. Rapid delineation of alluvial fans using IfSAR-derived DEM for selected provinces in the Philippines (United States)

    Ortiz, Iris Jill; Aquino, Dakila; Norini, Gianluca; Narod Eco, Rodrigo; Mahar Lagmay, Alfredo


    Alluvial fans are fan-shaped geomorphic features formed when sediments from a watershed are transported and deposited downstream via tributaries flowing out from the sudden break of a slope. Hazards usually associated with alluvial fans are flooding and debris flows. In this study, we used an Interferometric Synthetic Aperture Radar-derived digital elevation model of Pangasinan and Nueva Ecija Provinces in the Philippines to identify and delineate alluvial fans. Primary parameters considered include the geomorphic characteristics of the catchment area, stream network and slopes ranging from 0.11 to 8 degrees. Using this method, 12 alluvial fans were identified in Pangasinan and 16 in Nueva Ecija with areas ranging from 0.35 to 80 sq. km. The largest fan identified is the Mangatarem-Aguilar fan in Pangaisnan with a total area of 80.87 sq km while the Gabaldon fan in Nueva Ecija with total area of 48.11 sq km. We observed from the results that some alluvial fans have multiple feeder streams, and others have overlapping lateral extents with adjacent fans. These overlapping fans are called bajadas. In addition, the general location of fans and their apices in the two provinces appear to coincide with segments of the Philippines Fault System. There are about people 1.4 million living within these alluvial fans. Mapping and characterizing and identifying their associated hazards is crucial in the disaster preparedness efforts of the exposed population.

  17. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history (United States)

    Williams, Martin


    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  18. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida (United States)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.


    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in

  19. Active faulting in Raghunandan Anticline, NE Bengal Basin, implications for future earthquake hazards (United States)

    Ahsan, A.; Kali, E.; Coudurier Curveur, A.; van der Woerd, J.; Tapponnier, P.; Alam, A. K.; Ildefonso, S.; Banerjee, P.; Dorbath, C.


    The Bengal basin is situated in a complex tectonic zone where the Indian-Eurasian Plates and Indian-Burmese Plates are colliding. This region is known for some of the largest intra-continental seismic events of the last 500 years, the 1548 Bengal earthquake of magnitude M>8?, the 1762 Arakan earthquake of magnitude M>8?, the 1897 Shillong earthquakes of magnitude Ms 8.7, the 1918 Srimangal earthquake of magnitude Ms 7.6 and the 1950 Assam earthquake of magnitude Mw 8.6. The source faults of these events and whether these large earthquakes occurred on faults that reached the surface or reminded blind remain controversial. The Bengal basin still needs to be better understood in terms of active faulting and seismicity. The Eastern boundary of Bengal basin is marked by numerous NS trending folds of the Indo-Burma Ranges. We focused on the Raghunandan Anticline, NE Bengal basin, a broad, asymmetric, growing ramp anticline, steep west-facing front and bounded westwards by a steep tectonic scarp truncating gently east dipping Quaternary sandstone beds. The scarp morphology is suggestive of a still preserved co-seismic free face above a colluvial wedge. We carried out more than 20 topographic profiles to document the precise height and shape of this 12-15 m high scarp (above alluvial surface) and to survey a set of uplifted alluvial terraces located along the Shahapur River behind the scarp. The analysis of the topographic profiles around the Shajibazar area reveals the presence of 5 alluvial terraces hanging 3 m to 19 m above Shahapur River bed. T1 and T2 terraces are the best-preserved terraces on both sides of the Shahapur River. C14 and Be 10 ages allow to date the lowest abandonned terrace and to estimate the uplift rate of this area.

  20. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin

    Energy Technology Data Exchange (ETDEWEB)

    Mas-Pla, Josep, E-mail: [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Geologia i Cartografia Ambiental (Geocamb), Dept. de Ciencies Ambientals, Universitat de Girona (Spain); Font, Eva [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Geologia i Cartografia Ambiental (Geocamb), Dept. de Ciencies Ambientals, Universitat de Girona (Spain); Astui, Oihane [Agencia Catalana de l' Aigua, Barcelona (Spain); Mencio, Anna; Rodriguez-Florit, Agusti [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Geologia i Cartografia Ambiental (Geocamb), Dept. de Ciencies Ambientals, Universitat de Girona (Spain); Folch, Albert [Unitat de Geodinamica Externa i Hidrogeologia Dept. de Geologia, Universitat Autonoma of Barcelona (Spain); Brusi, David [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Geologia i Cartografia Ambiental (Geocamb), Dept. de Ciencies Ambientals, Universitat de Girona (Spain); Perez-Paricio, Alfredo [Agencia Catalana de l' Aigua, Barcelona (Spain)


    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbucies River basin (116 km{sup 2}) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbucies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  1. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.


    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  2. A defense in depth approach to radiation protection for 125I production activities. (United States)

    Culp, T; Potter, C A


    Not all operational radiation protection situations lend themselves to simple solutions. Often a Radiation Protection Program must be developed and implemented for difficult situations. A defense in depth approach to radiation protection was developed for 125I production activities. Defense in depth relies on key radiation protection elements that tend to be mutually supportive and in combination provide reasonable assurance that the overall desired level of protection has been provided. For difficult situations, defense in depth can provide both a reasonable and appropriate approach to radiation protection.

  3. Amplification of seismic ground motion in the Tunis basin: Numerical BEM simulations vs experimental evidences

    CERN Document Server

    Kham, Marc; Bouden-Romdhane, Nejla


    This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...

  4. Contrasting alluvial architecture of Late Pleistocene and Holocene deposits along a 120-km transect from the central Po Plain (northern Italy) (United States)

    Campo, Bruno; Amorosi, Alessandro; Bruno, Luigi


    High-resolution investigation of a ~ 120-km-long transect along the course of the modern Po River, northern Italy, revealed marked changes in alluvial architecture across the Pleistocene-Holocene boundary. Along the whole transect, a 20- to 30-m thick sheet-like succession of Late Pleistocene fluvial sands is invariably overlain by silt and clay deposits, with isolated fluvial bodies of Holocene age (architecture: well-drained floodplain deposits are transitional at distal locations to increasingly organic, poorly drained floodplain to swamp facies associations. Thick paludal facies extend continuously up to 60 km landward of the Holocene maximum marine ingression, about 90 km from the modern shoreline. Based on 28 radiocarbon dates, the abrupt change in lithofacies and channel stacking pattern occurred at the transition from the last glacial period to the present interglacial, under conditions of rapid sea-level rise. The architectural change from amalgamated, Late Pleistocene sand bodies to overlying, mud-dominated Holocene units represent an example of chronologically well-constrained fluvial response to combined climate and relative sea-level change. The overall aggradational stacking pattern of individual channel-belt sand bodies indicates that high subsidence rates continuously created accommodation in the Po Basin, even during phases of falling sea level and lowstand.

  5. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin. (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo


    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  6. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers. (United States)

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D


    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  7. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings (United States)

    Zhang, Yong; Green, Christopher T.; Baeumer, Boris


    Time-nonlocal transport models can describe non-Fickian diffusion observed in geological media, but the physical meaning of parameters can be ambiguous, and most applications are limited to curve-fitting. This study explores methods for predicting the parameters of a temporally tempered Lévy motion (TTLM) model for transient sub-diffusion in mobile–immobile like alluvial settings represented by high-resolution hydrofacies models. The TTLM model is a concise multi-rate mass transfer (MRMT) model that describes a linear mass transfer process where the transfer kinetics and late-time transport behavior are controlled by properties of the host medium, especially the immobile domain. The intrinsic connection between the MRMT and TTLM models helps to estimate the main time-nonlocal parameters in the TTLM model (which are the time scale index, the capacity coefficient, and the truncation parameter) either semi-analytically or empirically from the measurable aquifer properties. Further applications show that the TTLM model captures the observed solute snapshots, the breakthrough curves, and the spatial moments of plumes up to the fourth order. Most importantly, the a priori estimation of the time-nonlocal parameters outside of any breakthrough fitting procedure provides a reliable “blind” prediction of the late-time dynamics of subdiffusion observed in a spectrum of alluvial settings. Predictability of the time-nonlocal parameters may be due to the fact that the late-time subdiffusion is not affected by the exact location of each immobile zone, but rather is controlled by the time spent in immobile blocks surrounding the pathway of solute particles. Results also show that the effective dispersion coefficient has to be fitted due to the scale effect of transport, and the mean velocity can differ from local measurements or volume averages. The link between medium heterogeneity and time-nonlocal parameters will help to improve model predictability for non

  8. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. (United States)

    Owen, Daniel D R; Cox, Malcolm E


    A combination of multivariate statistical techniques, simple hydrochemical mixing models and inverse geochemical modelling was used to investigate the major hydrochemical evolutionary pathways of a large alluvial aquifer, the upper Condamine River alluvium, south-east Queensland, Australia. Hydrochemical similarities between alluvium and sedimentary bedrock groundwater imply some mixing between alluvial and sedimentary bedrock aquifers, but spatial assessment showed that this was localised around outcrops of sedimentary bedrock in upstream areas. Within the alluvium, a distinct shift towards a low salinity Na-HCO3 water type and a brackish Na-HCO3-Cl water type was obvious in two separate locations. Both of these water types are unique to the alluvium, and inverse modelling shows that they can evolve via a combination of in situ alluvial processes, including diffuse recharge of rainfall or river water or the evolution of basalt-derived groundwater via gypsum dissolution plagioclase weathering, cation exchange and some carbonate precipitation/dissolution. The evolution of these water types is potentially influenced by overlying sodic alkaline soils, and often is associated with a source of sulfate. Evapotranspiration is the dominant salinization process in the alluvium and increases in calcium cations during salinization indicate that brackish Na-HCO3-Cl groundwater in the underlying Walloon Coal Measures are unlikely to have a major influence on salinization in the alluvium. The most saline water types observed were endemic to shallow zones of the alluvium where evapotranspiration is likely. Results demonstrate that a combination of multivariate statistics and inverse geochemical modelling can be successfully used to delineate hydrochemical pathways in complex hydrogeological settings where a range of environmental and anthropogenic factors may be influencing the evolution of water types with similar hydrochemical compositions.

  9. Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah (United States)

    Reheis, M.C.; Reynolds, R.L.; Goldstein, H.; Roberts, H.M.; Yount, J.C.; Axford, Y.; Cummings, L.S.; Shearin, N.


    In upland areas of Canyonlands National Park, Utah, thin deposits and paleosols show late Quaternary episodes of eolian sedimentation, pedogenesis, and climate change. Interpretation of the stratigraphy and optically stimulated luminescence ages of eolian and nearby alluvial deposits, their pollen, and intercalated paleosols yields the following history: (1) Eolian deposition at ca. 46 ka, followed by several episodes of alluviation from some time before ca. 40 ka until after 16 ka (calibrated). (2) Eolian deposition from ca. 17 ka to 12 ka, interrupted by periods of pedogenesis, coinciding with late Pleistocene alluviation as local climate became warmer and wetter. (3) A wetter period from 12 to 8.5 ka corresponding to the peak of summer monsoon influence, during which soils formed relatively quickly by infiltration of eolian silt and clay, and trees and grasses were more abundant. (4) A drier period between ca. 8.5 and 6 ka during which sheetwash deposits accumulated and more desertlike vegetation was dominant; some dunes were reactivated at ca. 8 ka. (5) Episodic eolian and fluvial deposition during a wetter, cooler period that began at ca. 6 ka and ended by ca. 3-2 ka, followed by a shift to drier modern conditions; localized mobilization of dune sand has persisted to the present. These interpretations are similar to those of studies at the Chaco dune field, New Mexico, and the Tusayan dune field, Arizona, and are consistent with paleoclimate interpretations of pollen and packrat middens in the region. A period of rapid deposition and infiltration of eolian dust derived from distant igneous source terranes occurred between ca. 12 and 8 ka. Before ca. 17 ka, and apparently back to at least 45 ka, paleosols contain little or no such infiltrated dust. After ca. 8 ka, either the supply of dust was reduced or the more arid climate inhibited translocation of dust into the soils. ?? 2005 Geological Society of America.

  10. Heat Transfer Characterization Using Heat and Solute Tracer Tests in a Shallow Alluvial Aquifer (United States)

    Dassargues, A.


    Very low enthalpy geothermal systems are increasingly considered for heating or cooling using groundwater energy combined with heat pumps. The design and the impact of shallow geothermal systems are often assessed in a semi-empirical way. It is accepted by most of the private partners but not by environmental authorities deploring a lack of rigorous evaluation of the mid- to long-term impact on groundwater. In view of a more rigorous methodology, heat and dye tracers are used for estimating simultaneously heat transfer and solute transport parameters in an alluvial aquifer. The experimental field site, is equipped with 21 piezometers drilled in alluvial deposits composed of a loam layer overlying a sand and gravel layer constituting the alluvial aquifer. The tracing experiment consisted in injecting simultaneously heated water and a dye tracer in a piezometer and monitoring evolution of groundwater temperature and tracer concentration in 3 control panels set perpendicularly to the main groundwater flow. Results showed drastic differences between heat transfer and solute transport due to the main influence of thermal capacity of the saturated porous medium. The tracing experiment was then simulated using a numerical model and the best estimation of heat transfer and solute transport parameters is obtained by calibrating this numerical model using inversion tools. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. On the field: view from the injection well in direction of the pumping well through the three monitoring panels Temperature monitoring in the pumping well and in the piezometers of the three panels: heat transfer is faster in the lower part of the aquifer (blue curves) than in the upper part (red curves). Breakthrough curves are also more dispersed in the upper part with longer tailings.

  11. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers. (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A


    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  12. Braidplain, floodplain and playa lake, alluvial-fan, aeolian and palaeosol facies composing a diversified lithogenetical sequence in the permian and triassic of South Devon (England) (United States)

    Mader, Detlef

    and neoformation of mud during illuviation, conversion of colour to blue-violet by significant hematite growth and pedoturbation being frequently restricted to the initial stages or even being totally suppressed. Root tubes testify to the colonization of soils by vegetation. Crystallization of syngenetic carbonates in aeolian sands forming dikaka horizons is of considerable importance for enhancing their preservation potential by stabilization against both fluvial erosion and aeolian deflation. The coexistence of aeolian sands and calcrete palaeosols (in contrast to their mutually exclusive occurrence in the Upper Buntsandstein of the German Basin) is the result of the limited maturity of the pedogenic horizons with preservation of sandy matrix thus still permitting reasonable winnowing at least in parts of the depositional area, and restriction of atmospheric precipitation to shorter phases alternating with longer dry periods that allow desiccation of the surface and migration of aeolian bedforms. Bröckelbank carbonate breccias representing reworking horizons of calcrete palaeosols are indirect indicators of pedogenesis in the alluvial plain even in case of subsequently complete removal of in situ pedogenic features from the depositional record. Calcrete palaeosol formation overprints almost all the sedimentary units in the alluvial plain regardless of their composition, but is particularly frequent and well-developed in fluvial and aeolian substrates. The sequence of alluvial fans and fluvial braidplains with associated aeolian dune fields and intertonguing with fluvial floodplains to playa lakes in time and space, interrupted by various palaeotectonical and palaeoclimatological events, results in a very diversified depositional history in the Permian and Triassic part of the New Red Sandstone in South Devon.

  13. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon (United States)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.


    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of

  14. Determination of vulnerability areas to pollution: case of alluvial water table of Tebessa (East Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Djabri, L.; Hani, A.; Assassi, F.; Djprfi, S.


    This work related to the alluvial water table of Tebessa, which is characterised by a semi-dry climate and a very heterogeneous geology. To examine the pollution problem who seems exists, we have used two methods: the DRASTICS method who combines the information given by the seven parameters leading to the map of vulnerability to pollution and a second method that is based on hydrochemistry and take into account the results of the ratio Sr{sup 2}/Ca{sup 2}+. (Author)

  15. Optical dating using feldspar from Quaternary alluvial and colluvial sediments from SE Brazilian Plateau, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Tatumi, Sonia H. E-mail:; Peixoto, Maria Naise O.; Moura, Josilda R.S.; Mello, Claudio L.; Carmo, Isabela O.; Kowata, Emilia A.; Yee, Marcio; Brito, Silvio Luiz M.; Gozzi, Giuiliano; Kassab, Luciana R.P


    Opticallly stimulated luminescence (OSL) dating has been applied to a wide variety of materials such as loess, sand dunes, colluvium, alluvium, volcanic products, etc., helping geologic geomorphologic studies. OSL dating results using feldspar crystals extracted from alluvial and colluvial deposits of SE Brazilian Plateau will be presented in this work. The methodology used is based on the regeneration method, with multiple aliquot protocol. A total of 23 sample ages were obtained spanning 6.5-97.2 kyr. Results of radioactive contents and comparison with radiocarbon ages will be discussed.

  16. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón


    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  17. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions (United States)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary


    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  18. A tectonically controlled basin-fill within the Valle del Cauca, West-Central Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Rine, J.M.; Keith, J.F. Jr.; Alfonso, C.A.; Ballesteros, I.; Laverde, F.; Sacks, P.E.; Secor, D.T. Jr. (Univ. of South Carolina, Columbia (United States)); Perez, V.E.; Bernal, I.; Cordoba, F.; Numpaque, L.E. (Ecopetrol, Bogota (Colombia))


    Tertiary strata of the Valle del Cauca reflect a forearc/foreland basin tectonic history spanning a period from pre-uplift of the Cordillera Central to initiation of uplift of the Cordillera Occidental. Stratigraphy of the Valle del Cauca begins with Jurassic-Cretaceous rocks of exotic and/or volcanic provenance and of oceanic origin. Unconformably overlying these are Eocene to Oligocene basal quartz-rich sandstones, shallow marine algal limestones, and fine-grained fluvial/deltaic mudstones and sandstones with coalbeds. These Eocene to Oligocene deposits represent a period of low tectonic activity. During late Oligocene to early Miocene, increased tectonic activity produced conglomeratic sediments which were transported from east to west, apparently derived from uplift of the Cordillera Central, and deposited within a fluvial to deltaic setting. East-west shortening of the Valle del Cauca basin folded the Eocene to early Miocene units, and additional uplift of the Cordillera Central during the later Miocene resulted in syn-tectonic deposition of alluvial fans. After additional fold and thrust deformation of the total Eocene-Miocene basin-fill, tectonic activity abated and Pliocene-Quaternary alluvial and lacustrine strata were deposited. Within the framework of this depositional and tectonic history of the Valle del Cauca, hydrocarbon exploration strategies can be formulated and evaluated.

  19. Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India

    Indian Academy of Sciences (India)

    M Jain; S K Tandon; S C Bhatt


    This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections.

  20. Effect of heterogeneity on radionuclide retardation in the alluvial aquifer near Yucca Mountain, Nevada. (United States)

    Painter, S; Cvetkovic, V; Turner, D R


    The U.S. Department of Energy is currently studying Yucca Mountain, Nevada, as a potential site for a geological high-level waste repository. In the current conceptual models of radionuclide transport at Yucca Mountain, part of the transport path to pumping locations would be through an alluvial aquifer. Interactions with minerals in the alluvium are expected to retard the downstream migration of radionuclides, thereby delaying arrival times and reducing ground water concentrations. We evaluate the effectiveness of the alluvial aquifer as a transport barrier using the stochastic Lagrangian framework. A transport model is developed to account for physical and chemical heterogeneities and rate-limited mass transfer between mobile and immobile zones. The latter process is caused by small-scale heterogeneity and is thought to control the macroscopic-scale retardation in some field experiments. A geostatistical model for the spatially varying sorption parameters is developed from a site-specific database created from hydrochemical measurements and a calibrated modeling approach (Turner and Pabalan 1999). Transport of neptunium is considered as an example. The results are sensitive to the rate of transfer between mobile and immobile zones, and to spatial variability in the hydraulic conductivity. Chemical heterogeneity has only a small effect, as does correlation between hydraulic conductivity and the neptunium distribution coefficient. These results illustrate how general sensitivities can be explored with modest effort within the Lagrangian framework. Such studies complement and guide the application of more detailed numerical simulations.

  1. The preliminary study on the alluvial stratigraphy of Peinan archaeological site, Taiwan (United States)

    Yang, Hsiaochin; Chen, Wenshan; Yeh, Changkeng


    Many of the activities of prehistoric people who lived in Taiwan were concentrated around river terrace environments and seldom in alluvial environments which are resulting from the rapid tectonic uplift and high erosion rate of the late Cenozoic mountain belt. However, the Peinan archaeological site, one of the most important Neolithic sites in Taiwan because of the great amount of slate slab coffins and nephrite artifacts unearthed, is located at the bottom of Peinan Hill which is formed by the activity of Lichi and Luyeh Faults. According to the radioactive carbon dating results, the Peinan alluvial fan used as cemetery was lasted over 3,700 years (5700-2000 yr BP) but the related cultural formation was only lasted 400 years (3500-3100 yr BP). What have happened to the prehistoric people? As the stratigraphic record allows archaeologists to ascertain the effects of geological processes on the preservation of the archaeological record, determining which parts of the archaeological records are absent, which have potentially been preserved, and how fragmentary are the preserved portions of the records. The limitations that geologic processes impose on the archaeological record must be recognized and understood before meaningful interpretations of prehistory can be made. Therefore, the reconstruction of the landscape and stratigraphic records in archaeological site not only provides the paleo-environmental context but also helps to explain changes that occurred to human cultures over time.

  2. Quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (United States)

    Parsons, D. R.; Simmons, S.; Best, J.


    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric details in range of aquatic environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify the concentration and dynamics of suspended sediment within the water column and presents a novel method that also allows for quantification of 2D flow velocities. This development provides a multi-purpose tool for the holistic surveying of the process linkages between flow, sediment transport and bed morphology. The application of this new technique is illustrated with reference to flow over alluvial sand dunes, which allows, for the first time in a field study, quantitative visualization of larg-scale, whole flow field, turbulent coherent flow structures, associated with the dune leeside, that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows. CFS captured by MBES in the lee of an alluvial dune. Contours of suspended sediment concentration and superimposed 2D flow velocity vectors

  3. The impact of medium architecture of alluvial settings on non-Fickian transport (United States)

    Zhang, Yong; Green, Christopher T.; Fogg, Graham E.


    The influence of heterogeneous architecture of alluvial aquifers on non-Fickian transport is explored using the Monte Carlo approach. More than two thousand high-resolution hydrofacies models representing seven groups of alluvial settings are built to test the effects of varying facies proportions, mean length and its anisotropy ratio, juxtapositional tendencies, and sub-facies heterogeneity. Results show that the volumetric fraction (P(Z)) of floodplain layers classified by their thicknesses Z controls the non-Fickian tailing of tracer transport at late times. A simple quantitative relationship SBTC≈SP(Z)/2-1 is built based on a multi-rate mass transfer analysis, where SBTC is the slope of the power-law portion of tracer breakthrough curve, and SP(Z) denotes the slope of the power-law portion of the distribution of P(Z) which can be measured, e.g., in core logs. At early times, the mean length of hydrofacies affects the non-Fickian tailing by controlling the channeling of flow in high-permeability non-floodplain materials and the sequestration in surrounding low-permeability floodplain layers. The competition between channeling and sequestration generates complex pre-asymptotic features, including sublinear growth of plume mean displacement, superlinear growth of plume variance, and skewed mass distribution. Those observations of the influence of medium heterogeneity on tracer transport at early and late times may lead to development of nonlocal transport models that can be parameterized using measurable aquifer characteristics.

  4. Object-based forest classification to facilitate landscape-scale conservation in the Mississippi Alluvial Valley (United States)

    Mitchell, Michael; Wilson, R. Randy; Twedt, Daniel J.; Mini, Anne E.; James, J. Dale


    The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River extending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha of floodplain forests, most of which has been converted to agriculture over the past two centuries. Conservation programs in this region revolve around protection of existing forest and reforestation of converted lands. Therefore, an accurate and up to date classification of forest cover is essential for conservation planning, including efforts that prioritize areas for conservation activities. We used object-based image analysis with Random Forest classification to quickly and accurately classify forest cover. We used Landsat band, band ratio, and band index statistics to identify and define similar objects as our training sets instead of selecting individual training points. This provided a single rule-set that was used to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial Valley. We classified 3,307,910±85,344 ha (32% of this region) as forest. Our overall classification accuracy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals identified in conservation plans can be periodically evaluated.

  5. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail:; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)


    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  6. Well-balanced numerical modelling of non-uniform sediment transport in alluvial rivers

    Institute of Scientific and Technical Information of China (English)

    Honglu Qian; Zhixian Cao; Gareth Pender; Huaihan Liu; Peng Hu


    abstract The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers. However, until now there have been no such models for flows with non-uniform sediment transport. This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers. The active layer formulation is adopted to resolve the change of bed sediment composition. In the framework of the finite volume Slope LImiter Centred (SLIC) scheme, a surface gradient method is incorporated to attain well-balanced solutions to the governing equations. The proposed model is tested against typical cases with irregular topography, including the refilling of dredged trenches, aggradation due to sediment overloading and flood flow due to landslide dam failure. The agreement between the computed results and measured data is encouraging. Compared to a non-well-balanced model, the well-balanced model features improved performance in reproducing stage, velocity and bed deformation. It should find general applications for non-uniform sediment transport modelling in alluvial rivers, especially in mountain areas where the bed topography is mostly irregular.

  7. Monsoon triggered formation of Quaternary alluvial megafans in the interior of Oman (United States)

    Blechschmidt, Ingo; Matter, Albert; Preusser, Frank; Rieke-Zapp, Dirk


    A vast bajada consisting of coalescing low-gradient (veneer of weakly cemented Quaternary gravels. A combination of remote sensing, lithological analyses and luminescence dating is used to interpret the complex aggradation history of the Quaternary alluvial fans from the interior of Oman in the context of independent regional climate records. From satellite imagery and clast analysis four fans can be discerned in the study area. While two early periods of fan formation are tentatively correlated to the Miocene-Pliocene and the Early Pleistocene, luminescence dating allows the distinction of five phases of fan aggradation during the Middle-Late Pleistocene. These phases are correlated with pluvial periods from Marine Isotope Stage (MIS) 11 through 3, when southern Arabia was affected by monsoonal precipitation. It is concluded that the aggradation of the alluvial fans was triggered by the interplay of increased sediment production during arid periods and high rainfall with enhanced erosion of hillslopes and transport rates during strong monsoon phases. However, the lack of fine-grained sediments, bioturbation and organic material implies that although the Quaternary fans are sourced by monsoonal rains they formed in a semi-arid environment. Thus, it appears that, in contrast to the Oman Mountains, the interior was not directly affected by monsoonal precipitation.

  8. Heat tracer test in an alluvial aquifer: field experiment and inverse modelling (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre; Orban, Philippe; Hermans, Thomas; Nguyen, Frederic; Brouyère, Serge; Dassargues, Alain


    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells distributed throughout the field site (space-filling arrangement) were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneity of hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with the pilot point inverse approach, main preferential flow paths were delineated.

  9. Resonance analysis of a 2D alluvial valley subjected to seismic waves. (United States)

    Chai, Juin-Fu; Teng, Tsung-Jen; Yeh, Chau-Shioung; Shyu, Wen-Shinn


    The T-matrix formalism and an ultrasonic experiment are developed to study the scattering of in-plane waves for an alluvial valley embedded in a two-dimensional half-space. The solution of the in-plane scattering problem can be determined by the T-matrix method, where the basis functions are defined by the singular solutions of Lamb's problems with surface loading in both horizontal and vertical directions. In the experiment, a thin steel plate with a semicircular aluminum plate attached on the edge is used to simulate the two-dimensional alluvial valley in the state of plane stress. Based on the spectra of displacement signals measured at the free edge of the scatterer, the resonance frequencies where the peaks appear can be identified. It can be shown that the nondimensional resonance frequency is one of the characteristic properties of the scattering system. Furthermore, it is noted that the nondimensional resonance frequencies measured experimentally are in good agreement with those calculated theoretically.

  10. Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain. (United States)

    Wang, Yiyao; Li, Huaizheng; Xu, Zuxin


    Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.

  11. Koroška Bela alluvial fan – The result of the catastrophic slope events; (Karavanke Mountains, NW Slovenia

    Directory of Open Access Journals (Sweden)

    Jernej Jež


    Full Text Available The Koroška Bela alluvial fan deposits were investigated to determine the genesis of the fan and the source area of sediments. The alluvial fan is composed of a sequence of diamicton layers, and related subaeric sediments that were deposited by multiple mass flow events, in some cases certainly by debris flows. The predominant sources ofsediments are tectonically deformed clastic and partly carbonate Carbonifferous and Permian rocks. In diamictons also pebbles of other rocks from the hinterland are present. These were eroded from the channel of Bela during the mass flow events. We estimate the future debris flow hazard along Bela stream as high.

  12. Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj


    The detailed analysis of landforms,drainages and geology of the area between the rivers Amaravati and Karjan was carried out in order to understand the tectonic history of the lower Narmada basin. Movement along the various faults in the area was studied on the basis of the drainage offsetting. Horizontal offsetting of stream channels was found quite demonstrable along NNW –SSE trending transverse faults.Tectonic landforms including systematic de flection of stream channels and ridges, alignment of fault scarp and saddles and displacement in the basement rocks and alluvial deposits show that the area is undergoing active deformation driven by the NSF system.

  13. Development of objective provision trees for Sodium-Cooled Fast Reactor Defense-in-depth evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)


    KALIMER is one of sodium-cooled fast reactor and being developed by Korea Atomic Energy Research Institute (KAERI), was developed and suggested in this paper. Developed OPT is for the defense-in-depth level 3, core heat removal safety function. Using OPT method, the evaluation of defense-in-depth implementation for the design features of KALIMER reactors were tried in this study. To utilize the design information of KALIMER, challenges in OPTs which are under development in this study, were identified based on the system physical boundaries. This approach make the identification of possible and postulated challenges much clear and this will be a benefit to further identification of provisions in KALIMER design. OPTs for other levels of defense-in-depth and other safety functions are under development.

  14. Depositional tracts and stratigraphic architecture of the Itajaí Basin sedimentary sucessions (Neoproterozoic, northeastern Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Michel Silva Costa


    Full Text Available Neoproterozoic sedimentary successions of the Itajaí Basin show depositional trends and a stratigraphic framework characteristics of foreland basin system. The sedimentary environments have developed in basin conditions ranging from deep marine context, transitional shallow marine, to continental. Stratigraphic architecture comprises three depositional tracts (DT: DTI - submarine fans system that records the initial basin sedimentation and involves frontal and distal turbiditic deposits; DTII - transitional to shallow marine depositional system that represents the efective infill fase of basin, and includes deltaic succession with braided channels dominated plain; and DTIII - fluvial braided and alluvial fan depositional system that comprises the final stage of basin sedimentation. Arkoses and greywacke of the DTI present paleocurrent unimodals patterns and general trend to south-southeast, suggesting source area from Santa Catarina Granulitic Complex. The sandstones and conglomerates of DTII and DTIII have opposite paleocurrent pattern, indicating source area from both Metamorphic Brusque Complex and Florianópolis Batolith. Integration of paleoenvironmental and stratigraphic data, with previous information (U-Pb in detrital zircon, allowed a consistent interpretation on the sedimentary evolution and detrital sources of the basin and represent a progress on the discussions on the knowledge of the Itajaí Basin and its significance in the evolutionary context of the Dom Feliciano Belt.

  15. Tectono-sedimentary evolution of the Neuquén basin (Argentina) between 39°S and 41°S during the Neogene (United States)

    Huyghe, D.; Bonnel, C.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.


    are observed from the outer part of the foreland to the intra-mountainous basins. Tertiary sedimentation begins at the end of the Oligocene until the end of the middle Miocene in the Picun Leufu basin. During the paroxysm of the Quechua tectonic phase, (middle Miocene to Pliocene) the Picun Leufu basin is characterised by a sedimentary hiatus of ~10 Ma that illustrates the closure of the Collon Cura basin and a migration to the internal zone of the range of the depocentres. The filling of the Collon Cura basin is characterised by a continental fining upward sequence of a thickness of several hundred meters. This sedimentation begins with lacustrine and alluvial plain paleoenvironments with some syn-eruptive events (ignimbrites) and ends with continental conglomerates and paleosoils. A first reconnexion with the foreland basin occurs at the beginning of the Pliocene, with the deposition of an alluvial fan. Since the end of the Pliocene another anticline grew in the Picun Leufu basin and controlled the deposition of more recent alluvial fans with the arrival of coarse conglomerates (Pampa Curaco and Bayo Messa Formations). The modern drainage network is established during the Pleistocene in the Collon Cura and Picun Leufu basins, which are since only characterised by the construction of erosional surfaces (terraces) and the apparition of the Rio Limay system on the Miocene and Cretaceous deposits.

  16. Inversion method for defects in depth evaluation and thermal wave imaging

    Institute of Scientific and Technical Information of China (English)

    吕跃凯; 张淑仪; 周庆标


    A hybrid Newton-like iterative method and a regularization method are employed to perform the numerical simulations of the defects in depth evaluation and the thermal wave imaging for defects-included solid sample by analysis of the surface photo-thermal signals. A simple and effective data processing method is suggested to improve the reconstructed data. The results of the numerical calculation demonstrate that the algorithm presented in this paper is very effective, and can be used for qualitative and quantitative analyses of homogeneous materials with defects in depth included. It is also proved that the algorithm is stable even with noise disturbance.

  17. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture (United States)

    Liang, M.; Kim, W.; Passalacqua, P.


    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  18. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5 (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.


    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  19. Regional scale groundwater modelling study for Ganga River basin (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.


    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  20. Late Quaternary environments and biogeography in the Great Basin (United States)

    Thompson, R. S.; Mead, J. I.


    Plant and animal remains found in packrat ( Neotoma spp.) middens and cave fill from the eastern and southern Great Basin region reveal the presence of subalpine conifers and boreal mammals at relatively low elevations during the Late Wisconsin. Limber pine ( Pinus flexilis) and bristlecone pine ( P. longaeva) were important in the late Pleistocene plant communities throughout this region. Spruce ( Picea cf. engelmannii) and common juniper ( Juniperus communis) were present in some of the more northerly localities, and Douglas fir ( Pseudotsuga menziesii) and white fir ( Abies concolor) were present in southern and eastern localities. Single needle pinyon pine ( Pinus monophylla), common across this region today, was apparently not present north of the Sheep Range of southern Nevada during the Late Wisconsin. Pikas ( Ochotona cf. princeps), small boreal mammals present in only a few Great Basin mountain ranges today, were common throughout the region. Heather voles ( Phenacomys cf. intermedius) have been found in two cave fill deposits in Nevada, though they are unknown in the Great Basin today. Limber and bristlecone pines are generally restricted to rocky substrates in modern subalpine habitats in the Great Basin, and this may also have been the case when these plants grew at lower elevations during the Late Wisconsin. Subalpine conifers were present on the rock outcrops sampled by the packrat middens, but shrub communities, perhaps dominated by sagebrush ( Artemisia spp.), may have been present on alluvial valley-bottom substrates. Forested habitats would thus have been isolated habitat islands, as they are today. Boreal small mammals, including pikas and heather voles, were able to colonize the Great Basin mountain ranges during the late Pleistocene. We suggest that these mammals were able to survive in the intervening valley-bottoms under a cool-summer climatic regime, and that continuous forest or woodland corridors were not necessary for migration.

  1. Discrimination of rotated-in-depth curves is facilitated by stereoscopic cues, but curvature is not tuned for stereoscopic rotation-in-depth. (United States)

    Bell, Jason; Kanji, Jameel; Kingdom, Frederick A A


    Object recognition suffers when objects are rotated-in-depth, as for example with changes to viewing angle. However the loss of recognition can be mitigated by stereoscopic cues, suggesting that object coding is not strictly two-dimensional. Here we consider whether the encoding of rotation-in-depth (RID) of a simple curve is tuned for stereoscopic depth. Experiment 1 first determined that test subjects were sensitive to changes in stereoscopic RID, by showing that stereoscopic cues improved the discrimination of RID when other spatial cues to RID were ineffective. Experiment 2 tested directly whether curvature-sensitive mechanisms were selective for stereoscopic RID. Curvature after-effects were measured for unrotated test curves following adaptation to various RID adaptors. Although strong adaptation tuning for RID angle was found, tuning was identical for stereo and non-stereo adaptors. These findings show that while stereoscopic cues can facilitate three-dimensional curvature discrimination, curvature-sensitive mechanisms are not tuned for stereoscopic RID.

  2. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels

    NARCIS (Netherlands)

    Crosato, A.; Desta, F.B.; Cornelisse, J.; Schuurman, F.; Uijttewaal, W.S.J.


    Migrating alternate bars form in alluvial channels as a result of morphodynamic instability. Extensive literature can be found on their origin and short-term development, but their long-term evolution has been poorly studied so far. In particular, it is not clear whether migrating bars eventually re

  3. Electrical Resistivity Tomography and Induced Polarization for Mapping the Subsurface of Alluvial Fans: A Case Study in Punata (Bolivia

    Directory of Open Access Journals (Sweden)

    Andres Gonzales Amaya


    Full Text Available Conceptual models of aquifer systems can be refined and complemented with geophysical data, and they can assist in understanding hydrogeological properties such as groundwater storage capacity. This research attempts to use geoelectrical methods, Electrical Resistivity Tomography and Induced Polarization parameters, for mapping the subsurface in alluvial fans and to demonstrate its applicability; the Punata alluvial fan was used as a case study. The resistivity measurements proved to be a good tool for mapping the subsurface in the fan, especially when used in combination with Induced Polarization parameters (i.e., Normalized Chargeability. The Punata alluvial fan characterization indicated that the top part of the subsurface is composed of boulders in a matrix of finer particles and that the grain size decreases with depth; the electrical resistivity of these deposits ranged from 200 to 1000 Ωm, while the values of normalized chargeability were lower than 0.05 mS/m. The bottom of the aquifer system consisted of a layer with high clay content, and the resistivity ranged from 10 to 100 Ωm, while the normalized chargeability is higher than 0.07 mS/m. With the integration of these results and lithological information, a refined conceptual model is proposed; this model gives a more detailed description of the local aquifer system. It can be concluded that geoelectrical methods are useful for mapping aquifer systems in alluvial fans.

  4. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate (United States)

    Johnson, Joel P. L.; Whipple, Kelin X.


    We explored the dependence of experimental bedrock erosion rate on shear stress, bed load sediment flux, alluvial bed cover, and evolving channel morphology. We isolated these variables experimentally by systematically varying gravel sediment flux Qs and water discharge Qw in a laboratory flume, gradually abrading weak concrete "bedrock." All else held constant, we found that (1) erosion rate was insensitive to flume-averaged shear stress, (2) erosion rate increased linearly with sediment flux, (3) erosion rate decreased linearly with the extent of alluvial bed cover, and (4) the spatial distribution of bed cover was sensitive to local bed topography, but the extent of cover increased with Qs/Qt (where Qt is flume-averaged transport capacity) once critical values of bed roughness and sediment flux were exceeded. Starting from a planar geometry, erosion increased bed roughness due to feedbacks between preferential sediment transport through interconnected topographic lows, focused erosion along these zones of preferential bed load transport, and local shear stresses that depended on the evolving bed morphology. Finally, continued growth of bed roughness was inhibited by imposed variability in discharge and sediment flux, due to changes in spatial patterns of alluvial deposition and impact wear. Erosion was preferentially focused at lower bed elevations when the bed was cover-free, but was focused at higher bed elevations when static alluvial cover filled topographic lows. Natural variations in discharge and sediment flux may thus stabilize and limit the growth of roughness in bedrock channels due to the effects of partial bed cover.

  5. The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating

    Directory of Open Access Journals (Sweden)

    Lu Zhang


    Full Text Available Alluvial fans in arid and semi-arid regions can provide important evidence of geomorphic and climatic changes, which reveal the evolution of the regional tectonic activity and environment. Synthetic aperture radar (SAR remote sensing technology, which is sensitive to geomorphic features, plays an important role in quickly mapping alluvial fan units of different ages. In this paper, RADARSAT-2 (Canada’s C-band new-generation radar satellite and ALOS-PALSAR (Japan’s advanced land observing satellite, phased array type L-band SAR sensor data, acquired over the Shule River Alluvial Fan (SRAF, are used to extract backscattering coefficients, scattering mechanism-related information, and polarimetric characteristic parameters. The correlation between these SAR characteristic parameters and fan units of the SRAF of different ages was studied, and the spatial distribution of fan units, since the Late Pleistocene, was extracted based on the Maximum Likelihood classification method. The results prove that (1 some C-band SAR parameters can describe the geomorphic characteristics of alluvial fan units of different ages in the SRAF; (2 SAR data can be used to map the SRAF’s surface between the Late Pleistocene and the Holocene and to extract the spatial distribution of fan units; and (3 the time-spatial distribution of the SRAF can provide valuable information for tectonic and paleoenvironmental research of the study area.

  6. Weeds of cereal stubble-fields on various soils in the Kielce region. P. III. Black, alluvial and rendzina soils

    Directory of Open Access Journals (Sweden)

    Maria Jędruszczak


    Full Text Available The weed flora growing stubble-fields area is determined by soil features. Weeds found in cereal stubble-fields on black soils formed from sands and loams, medium and haevy alluvial soils as well as brown and chernozem rendzina soils are presented in the paper. The 273 phytosociological records were worked out. They were collected from 87 stands situated in 76 localities of Kielce region. The results showed that species number and species composition were dependent on the soils (black. alluvial, rendzina. The existance of 118 (medium alluvial soil to 140 (brown rendzina soil weed species, including 73 common for all of the soils considered, was found there. Relatively high per cent (29-35 of them belonged to perennial weeds. From 22 (brown rendzina soil to 35 (heavy alluvial soil of species reached high constancy degrees (V-III. Stellaria media, Myosotis arvensis, Polygonum aviculare, Agropyron repens and Cirsium arvense predominated on the all of the soil examined. Among the weed flora registered, 25 species, recorded only on rendzina soils, were distinguishable for that soils.

  7. Integrating geophysics and geochemistry to evaluate coalbed natural gas produced water disposal, Powder River Basin, Wyoming (United States)

    Lipinski, Brian Andrew

    Production of methane from thick, extensive coalbeds in the Powder River Basin of Wyoming has created water management issues. More than 4.1 billion barrels of water have been produced with coalbed natural gas (CBNG) since 1997. Infiltration impoundments, which are the principal method used to dispose CBNG water, contribute to the recharge of underlying aquifers. Airborne electromagnetic surveys of an alluvial aquifer that has been receiving CBNG water effluent through infiltration impoundments since 2001 reveal produced water plumes within these aquifers and also provide insight into geomorphologic controls on resultant salinity levels. Geochemical data from the same aquifer reveal that CBNG water enriched in sodium and bicarbonate infiltrates and mixes with sodium-calcium-sulfate type alluvial groundwater, which subsequently may have migrated into the Powder River. The highly sodic produced water undergoes cation exchange reactions with native alluvial sediments as it infiltrates, exchanging sodium from solution for calcium and magnesium on montmorillonite clays. The reaction may ultimately reduce sediment permeability by clay dispersion. Strontium isotope data from CBNG wells discharging water into these impoundments indicate that the Anderson coalbed of the Fort Union Formation is dewatered due to production. Geophysical methods provide a broad-scale tool to monitor CBNG water disposal especially in areas where field based investigations are logistically prohibitive, but geochemical data are needed to reveal subsurface processes undetectable by geophysical techniques. The results of this research show that: (1) CBNG impoundments should not be located near streams because they can alter the surrounding hydraulic potential field forcing saline alluvial groundwater and eventually CBNG water into the stream, (2) point bars are poor impoundment locations because they are essentially in direct hydraulic communication with the associated stream and because plants

  8. In-depth improvement of soil at the base of roads on taliks

    Institute of Scientific and Technical Information of China (English)

    Alexey Y Burukin; Svyatoslav Ya Lutskiy; Konstantin N Khripkov


    The article presents a new technological solution to improve the safety of embankment bases on taliks during construction periods. The use of geotextile-sleeved sand columns and geogrids on low-temperature permafrost is investigated. The correlations between mechanical and temperature processes under this in-depth base improvement method are calculated.

  9. Response to in-depth safety audit of the L Lake sampling station

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.B.


    An in-depth safety audit of several of the facilities and operations supporting the Biological Monitoring Program on L Lake was conducted. Subsequent to the initial audit, the audit team evaluated the handling of samples taken for analysis of Naegleria fowleri at the 704-U laboratory facility.

  10. Two independent mechanisms for motion-in-depth perception: evidence from individual differences

    Directory of Open Access Journals (Sweden)

    Harold T Nefs


    Full Text Available Our forward-facing eyes allow us the advantage of binocular visual information: using the tiny differences between right and left eye views to learn about depth and location in three dimensions. Our visual systems also contain specialized mechanisms to detect motion-in-depth from binocular vision, but the nature of these mechanisms remains controversial. Binocular motion-in-depth perception could theoretically be based on first detecting binocular disparity and then monitoring how it changes over time. The alternative is to monitor the motion in the right and left eye separately and then compare these motion signals. Here we used an individual differences approach to test whether the two sources of information are processed via dissociated mechanisms, and to measure the relative importance of those mechanisms. Our results suggest the existence of two distinct mechanisms, each contributing to the perception of motion in depth in most observers. Additionally, for the first time, we demonstrate the relative prevalence of the two mechanisms within a normal population. In general, visual systems appear to rely mostly on the mechanism sensitive to changing binocular disparity, but perception of motion in depth is augmented by the presence of a less sensitive mechanism that uses interocular velocity differences. Occasionally, we find observers with the opposite pattern of sensitivity. More generally this work showcases the power of the individual differences approach in studying the functional organisation of cognitive systems.

  11. Digital model of the Bates Creek alluvial aquifer near Casper, Wyoming (United States)

    Glover, K.C.


    A digital model was used to simulate ground-water flow within the Bates Creek alluvial aquifer, southwest of Casper, Wyoming. Hydrologic data collected during 1977 and 1978 were used to develop the flow model under steady-state and transient conditions. Three scenarios for operating the stream-aquifer system were evaluated with the digital model. The scenarios represent no ground-water pumping, pumping by all existing wells , and pumping by all existing and proposed wells. The model simulations used average values of stream discharge, ground-water pumpage and water use as input parameters. A decrease in the quantitity of ground-water discharge to Bates Creek is predicted to occur through 1988 as a result of pumping. The magnitude and timing of the predicted decrease in ground-water discharge may differ from actual ground-water discharge if hydrologic conditions through 1988 vary significantly from the averaged input values used in the simulations. (USGS)

  12. Soil mycoflora of banana and cassava in peatland and alluvial soil in Bengkulu

    Directory of Open Access Journals (Sweden)



    Full Text Available In order to discover the diversity and population of soil fungi, a study was carried out at banana (Musa paradisiaca and cassava (Manihot utilissima plants where both those plants planted in peatland and alluvial soil. Soil fungi were isolated using serial dilution plate method and they were incubated at both room temperature (27-28oC and 45oC. This process was replicated two times for each sample. The result indicated that from 4 soil samples, 24 genera of fungi representing 4 Ascomycotina, 15 Deuteromycotina, and 5 Zygomycotina were detected. The highest soil fungi population was found in cassava planted in peat land and incubated at room temperature (8.5 105 cfu/ g dry soil, while the lower soil fungi population came from banana plant that was planted in peat land and incubated at 45oC (7.1 103 cfu/g dry soil.

  13. Sex Determination of Carolina Wrens (Thryothorus ludovicianus) in the Mississippi Alluvial Valley (United States)

    Twedt, D.J.


    I identified sexual dimorphism in wing length (unflattened chord) of Carolina Wrens (Thryothorus ludovicianus) within the central Mississippi Alluvial Valley (northeast Louisiana and west-central Mississippi) and used this difference to assign a sex to captured wrens. Wrens were identified as female when wing length was less than 57.5 mm or male when wing length was greater than 58.5 mm. Verification of predicted sex was obtained from recaptures of banded individuals where sex was ascertained from the presence of a cloacal protuberance or brood patch. Correct prediction of sex was 81% for adult females and 95% for adult males. An alternative model, which categorized wrens with wing lengths of 58 and 59 mm as birds of unknown sex, increased correct prediction of females to 93% but reduced the number of individuals to which sex was assigned. These simple, predictive, wing-length-based models also correctly assigned sex for more than 88% of young (hatching-year) birds.

  14. Cosmogenic helium and volatile-rich fluid in Sierra Leone alluvial diamonds (United States)

    Mcconville, P.; Reynolds, J. H.


    Noble gas measurements were carried out on two identical splits of a finely powdered harshly acid-washed sample derived from fragments of a single alluvial diamond from Sierra Leone, with essentially identical results obtained for both splits. Isotopic ratios for Ar, Kr, and Xe were found to be atmospheric. Their elemental abundances were high relative to published data, owing to the effect of shock implantation in the crushing step, as was verified in a supplementary experiment. No Ne was detected above the blank level. The He-3 was exceptionally abundant, while He-4 was exceptionally depleted, possibly due to the acid wash. The He-3/He-4 ratio was anomalously high at an R/Ra value of 246 + or - 16. The results support the hypothesis that the He-3 excess in diamonds is cosmogenic.

  15. Characterization of land subsidence induced by groundwater withdrawals in Wenyu River alluvial fan, Beijing, China (United States)

    Wang, R.; Luo, Y.; Yang, Y.; Tian, F.; Zhou, Y.; Tian, M.-Z.


    The Beijing plain area has suffered from severe land subsidence owing to groundwater overdraft. A major example is the Wenyu River alluvial fan in the Beijing plain area. This area has experienced as much as 10 m of land subsidence through 2000s. An integrated subsidence-monitoring program, including borehole extensometer and multilayer monitoring of groundwater, has been designed to meet the needs of monitoring land subsidence in this region. This work has allowed us to characterize land subsidence and understand the mechanical properties of the strata. The analysis results show the development of the land subsidence in this area is consistent with water-level change. The major strata contributing to compression deformation are Mid-Pleistocene stratum which contributed around 70 % of total subsidence. The shallow stratum and deep stratum show elastic mechanical behavior the intermediate stratum exhibit elastic-plastic mechanical behavior.

  16. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure (United States)

    Miranda, Leandro E.


    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  17. Geological and geochemical characteristics of sedimentary rocks in Kremna, basin (Serbia) (United States)

    Perunović, Tamara; Jovančićević, Branimir; Brčeski, Ilija; Šajnović, Aleksandra; Stojanović, Ksenija; Simić, Vlada; Kašanin-Grubin, Milica


    Studying lacustrine sediments is important because of their potential economic value since they often bear coal, oil shales and non-metallic mineral raw materials. Besides this, lacustrine sediments offer valuable information on the climate conditions which existed during the sedimentation. In Serbia there are 14 lacustrine basins spanning in age from Oligocene to Lower Pliocene. The aim of this study was to examine Lower Miocene Kremna basin, located in southwest Serbia. Kremna basin is a small basin, covering 15km2, but sedimentologically very interesting. For the purpose of this study, 43 sediment samples were taken from a borehole at different depths, from surface to 343 m depth of the basin. The borehole ended in weathered serpentinite. Mineralogical composition of sediments was determined using thin-sections and X-ray diffraction analysis, contents of macro-and microelements and rare-earth elements were determined by ICP-ES and ICP-MS techniques. Also, elemental analysis was applied to determine the contents of carbon, sulphur and nitrogen and n-alkanes, isoprenoide aliphatic alkanes and bitumen were also determined using GC-MS technique. Mineralogical analyses proved presents of several lithological types in Kremna basin: clastic sediments, tuffs, tuffaceous sediments, marlstones, dolomites, magnezites, and coal of non-economic value. Occurrence of sirlezite and sepiolite was also determined. Furthermore, according to all obtained results two faciae were determined: alluvial-marginal lacustrine and intrabasinal. Alluvial-marginal facies originated from predominantly ultramafic rocks which underlie the basin. Magnezites and Mg-marls and Mg-dolomites are dominant sediments in this facies. These sediments formed under arid, slightly saline conditions. Intrabasinal facies is represented mostly with marls, Mg-marls and dolomitic limestones. These sediments were deposited under a more humid climate with increase in paleoproductivity. The uppermost sediments of

  18. Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait (United States)

    AlShuaibi, Arafat A.; Khalaf, Fikry I.


    A model is proposed for the development of the Quaternary palustrine carbonate-calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.

  19. The role of the Wetland Reserve Program in conservation efforts in the Mississippi River Alluvial Valley (United States)

    King, Sammy L.; Twedt, Daniel J.; Wilson, R. Randy


    The Mississippi River Alluvial Valley includes the floodplain of the Mississippi River from Cairo, Illinois, USA, to the Gulf of Mexico. Originally this region supported about 10 million ha of bottomland hardwood forests, but only about 2.8 million ha remain today. Furthermore, most of the remaining bottomland forest is highly fragmented with altered hydrologic processes. During the 1990s landscape-scale conservation planning efforts were initiated for migratory birds and the threatened Louisiana black bear (Ursus americanus luteolus). These plans call for large-scale reforestation and restoration efforts in the region, particularly on private lands. In 1990 the Food, Agriculture, Conservation and Trade Act authorized the Wetlands Reserve Program (WRP). The WRP is a voluntary program administered by the United States Department of Agriculture that provides eligible landowners with financial incentives to restore wetlands and retire marginal farmlands from agricultural production. As of 30 September 2005, over 275,700 ha have been enrolled in the program in the Mississippi River Alluvial Valley, with the greatest concentration in Louisiana, Arkansas, and Mississippi, USA. Hydrologic restoration is common on most sites, with open-water wetlands, such as moist-soil units and sloughs, constituting up to 30% of a given tract. Over 33,200 ha of open-water wetlands have been created, potentially providing over 115,000,000 duck-use days. Twenty-three of 87 forest-bird conservation areas have met or exceed core habitat goals for migratory songbirds and another 24 have met minimum area requirements. The WRP played an integral role in the fulfillment of these goals. Although some landscape goals have been attained, the young age of the program and forest stands, and the lack of monitoring, has limited evaluations of the program's impact on wildlife populations.


    Directory of Open Access Journals (Sweden)



    Full Text Available The Permian to Triassic transition in Jordan is characterised by a sequence boundary underlain by red-bed, alluvial lithofacies deposited in a humid-tropical climate by low-sinuosity rivers, and overlain by shallow marine siliciclastics with thin carbonates. The low-gradient alluvial floodplain was repeatedly subjected to the development of ferralitic and pisolitic paleosols on the interfluves. In contrast, dysaerobic environments in the fluvial channels and abandoned lakes resulted in the preservation of a prolific flora of macro-plants and palynomorphs that indicate a probable range from Mid- to Late Permian age, though the abundant presence of the distinctive pollen Pretricolpipollenites bharadwajii  indicates the youngest part of that range.  Above the sequence boundary, reddened shallow-marine beds characterised by ripple cross-laminated, siltstones/sandstone with desiccation cracks and sparse surface burrows mark the initial Triassic marine transgression in the region (Arabian Plate Tr 10. These are followed by two thin limestone (packstone beds with shallow scours and bivalve shell lags, that have yielded a low diversity assemblage of conodonts (e.g. Hadrodontina aequabilis and foraminifera (“Cornuspira” mahajeri that are interpreted as euryhaline  taxa characterising the early Induan (Early Triassic. Thus the absence of body fossils and vertical infaunal burrows in the lowest marine beds may reflect low-diversity ecosystems following the Permian-Triassic extinction event, or be a result of stressed shallow marine environments. A gradational upward increase in grey, green and yellow siltstones beds accompanied by a concomitant increase in bioturbation (and infaunal vertical burrows and thin-shelled bivalves about 15 m above the boundary indicates colonisation of the substrate under more normal shallow marine conditions perhaps indicating recovery phase following the extinction event.

  1. Controls on modern tributary-junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco (United States)

    Stokes, Martin; Mather, Anne E.


    Modern tributary-junction alluvial fans (cone-shaped depositional landforms formed in confined valley settings) were analysed from a 20-km-long reach of the Dades River in the distal part of the fold-thrust belt region in the south-central High Atlas Mountains of Morocco. Here, a deeply dissected network of ephemeral tributary streams and a perennial trunk drainage characterised by an arid mountain desert climate are configured onto a folded and thrust faulted Mesozoic sedimentary sequence. Out of 186 tributary streams, only 29 (16%) generated alluvial fans at their tributary junctions. The fan-generating catchments possess higher relief, longer lengths, lower gradients, and larger areas than nonfan-generating catchments. Whilst geologically, fan-generating catchments are underlain by folded/steeply dipping weak bedrock conducive to high sediment yield. Tributary-junction fans are built from debris flow or fluvial processes into open or confined canyon trunk valley settings. The proximity of the perennial trunk drainage combined with the valley morphology produces lobate or foreshortened trimmed fan forms. Analysis of fan (area, gradient, process), catchment (area, relief, length, gradient), and tributary valley (width) variables reveals weak morphometric relationships, highlighted by residual plots that show dominance of smaller and lower gradient than expected fan forms. These morphometric relationships can be explained by interplay between the catchment and trunk drainage geology, morphology, climate, and flood regime that are combined into a conceptual 'build and reset' model. Ephemeral tributary-junction fans develop progressively during annual localised winter-spring storm events, attempting to build towards a morphological equilibrium. However, the fans never reach an equilibrium morphological form as they are reset by rare (> 10 year) large floods along the River Dades that are linked to regional incursions of Atlantic low pressure troughs. The model

  2. Grain size trends reveal alluvial fan sensitivity to late Pleistocene climate change (United States)

    Whittaker, A. C.; D'Arcy, M. K.; Roda Boluda, D. C.


    The effects of climate change on eroding landscapes and the sedimentary record remain poorly understood. The measurement of grain size fining rates in stream-flow dominated deposits provides one way to address this issue because, in principle, these trends embed important information about the dynamics of sediment routing systems and their sensitivities to external forcing. At a fundamental level, downstream fining is often driven by selective deposition of sediment. The relative efficiency of this process is determined by the physical characteristics of the input sediment supply and the spatial distribution of subsidence rate, which generates the accommodation necessary for mass extraction. Here, we measure grain size fining rates from apex to toe on two alluvial fan systems in northern Death Valley, California, which have well-exposed modern and 70 ka surfaces, where the long-term tectonic boundary conditions are known and where climatic variation over this time period is well-constrained. We integrate a self-similar gravel fraction fining model, based on selective sediment extraction, with cosmogenically-derived catchment erosion rates and gravel fining data, to estimate the change in sediment flux that occurred between 70 ka and the present day. Our results show that a 30 % decrease in average precipitation rate led to a 20 % decrease in sediment flux and a clear increase in the down-fan rate of fining. This supports existing landscape evolution models that relate a decrease in precipitation rate to a decrease in sediment flux, but implies that this relationship may be sub-linear. This study offers a new approach to applying grain size fining models to mountain catchments and their alluvial fan systems, and shows fan stratigraphy can be highly sensitive to climate changes over sensitivity is lost when sediment is remobilised and recycled over a time period longer than the duration of the climatic perturbation.

  3. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley (United States)

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.


    Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree

  4. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain


    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  5. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.


    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  6. The role of floodplain width and alluvial bar growth as a precursor for the formation of anabranching rivers (United States)

    Morón, S.; Edmonds, D. A.; Amos, K.


    Anabranching rivers are defined as a system of multiple channels separated by stable alluvial islands. While substantial progress has been made in developing a physics-based understanding of what drives the differences between meandering and braided river channels, anabranching rivers have not been well-integrated into these models. Here, we propose that alluvial bar growth on the floodplain may be a precursor for the formation of anabranching rivers. Alluvial bar growth strongly depends on the aspect ratio of the flow (width divided by depth) and rivers with wide floodplains have flows with a large aspect ratio. Consistent with this idea, remotely sensed measurements of floodplain width of four rivers from different climatic and tectonic settings show that anabranching river patterns are often associated with relatively wide floodplains. To explore the physics behind that empirical relationship we carried out two sets of morphodynamic numerical simulations using boundary conditions from field-scale modern anabranching rivers spanning different climatic and geologic settings as well as hypothetical floodplain widths. Results from the simulations show that, for a given flood discharge, widening the floodplain changes the river pattern from single channel to multi-threaded with mobile bars to multi-channeled with immobile islands. Multi-channeled patterns arise because the emergence of bars causes flow bifurcation. Subsequent bifurcation instability leads to the emergence of multiple stable channels. As the channels increase their cross-sectional area, shields stresses on intervening bars are reduced until the bars stabilize into islands. We suggest that the presence of stable islands allows vegetation to grow or cohesive sediment to accumulate leading to enhanced channel bank strength and a stable anabranching pattern. Our results suggest that alluvial bar growth can be a precursor to formation of anabranching rivers. Compared with field measurements our simulations

  7. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael


    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  8. Triassic rift-related sedimentary basins in northern Chile (24° 29°S) (United States)

    Suarez, M.; Bell, C. M.


    Triassic rocks in northern Chile (latitude 24°-29°S) include marine and continental rift-related sedimentary deposits, associated with basaltic, andesitic, and silicic volcanic rocks. Five main successions include the deposits of two marine basins (Profeta and San Félix) separated by three continental basins (Cifuncho, La Ternera, and La Coipa). The marine strata include turbidites and debris flow deposits interpreted as coarse-grained fan-delta sediments. The continental sediments include lacustrine fan delta, open lake, braided river, alluvial fan, and sabkha deposits. The widespread fan-delta systems (both marine and lacustrine), together with abrupt lateral and vertical facies discontinuities and large-scale depositional cycles, are indicative of rift-controlled sedimentation. The associated magmatic activity indicates that this rifting was the product of subduction-related extension or strike-slip movement on the active plate margin. Triassic rifting was followed in Late Triassic to Early Jurassic times by widespread thermotectonic subsidence.

  9. Dominant events in the northern Danube Basin palaeogeography – a tool for specification of the Upper Miocene and Pliocene stratigraphy

    Directory of Open Access Journals (Sweden)

    Peter Joniak


    Full Text Available Late Neogene palaeogeography and geodynamics of the Danube Basin is characterized by wide rifting of the back arc basin, its gradual infill, followed by the Pliocene uplift and denudation. Basin development is well recorded in its sedimentary succession, where three 3rd order sequence stratigraphy cycles were documented. DB1 cycle comprising the Lower and Middle Pannonian sediments (A – E zones sensu Papp, 1951 deposited in time span 11.6 – (9.7? 8.9 Ma is represented in Slovakia by the Ivanka and Beladice formations, in Hungary (where the formations are defined as appearance of sedimentary facies in time and space the equivalents are: deepwater setting marls, clays and sandy turbidites of the Endrőd and Szolnok formations, towards overlying strata by deposits of the basin palaeoslope or delta-slope represented by the Algyő Formation and the final shallow water setting deposits of marches, lagoons, coastal and delta plain built up by clays, sands with coal seams, represented by the Újfalu Formation. DB2 cycle comprises the Upper Pannonian sediments of the Danube Basin (F, G & H zones sensu Papp, 1951 deposited in time span (9.7? 8.9 – 6.3? Ma and is represented by the uppermost part of the Beladice and Volkovce formations, in Hungary by the Zagyva Formation. Sedimentary environment can be characterized as alluvial – with wide range of facies – from fluvial, deltaic, ephemeral lake to marches and dry land deposits. DB3 cycle comprises the Pliocene sediments of the Danube Basin Slovak part represented by the Kolárovo Formation, dated 4.1? – 2.6 Ma. The formation was deposited in fluvial to lake, and alluvial environment.

  10. A high-resolution 14C chronology from the Cormor alluvial megafan (Tagliamento glacier, NE Italy) for the reconstruction of Alpine glacier activity during 50-20 ka BP (United States)

    Hippe, Kristina; Fontana, Alessandro; Hajdas, Irka; Ivy-Ochs, Susan


    During the Last Glacial Maximum (LGM), the Cormor alluvial megafan was delivering large amounts of glacial sediment from the Alpine Tagliamento glacier onto the southern Alpine foreland basin. Rate and character of sedimentation were primarily controlled by the glacier activity and, thus, by variations in climate. To gain a better understanding of the late-Pleistocene sedimentary processes in the Alpine foreland alluvial megafans and their response to climate changes, we have performed high-resolution radiocarbon dating of a drilling core (PNC1, 65 m deep) located in the distal sector of the Cormor alluvial megafan, near the Marano Lagoon [1]. The stratigraphic sequence of the core is characterized by an alternation of silt and clay deposits with the intercalation of several peaty and humic horizons. These organic layers (5-40 cm thick) correspond to phases of locally inactive fluvioglacial sedimentation, allowing plant remains to be accumulated at the surface. A series of about 55 peat samples between 33 to 4 m of depth with sample distances of few cm-dm were dated with radiocarbon. Half of these samples were separated into various fractions in order to check for systematic age differences with regard to the size and/or type of the organic particles. Additionally, the influence of sample pre-treatment was evaluated by using the ABA treatment as well as two different ABOX treatment protocols for each sample fraction. While no systematic age differences with size and/or type of the organic particles was observed, some samples indicate a shift towards younger ages after ABOX treatment. Moreover, deposits containing old carbon (too old ages) were observed suggesting that a careful approach and high-resolution sampling is an imperative in obtaining accurate chronologies. Radiocarbon ages obtained for the PNC1 record range from ~50-20 cal ka BP and provide a detailed chronology of the pre-LGM and LGM fluvioglacial sequence. Due to the immediate connection of the Cormor

  11. Great Basin paleoenvironmental studies project; Technical progress report, second quarter, September--November, 1993

    Energy Technology Data Exchange (ETDEWEB)



    Progress is described in the four tasks associated with this project. Task 1, Paleobotanical studies in the Great Basin, has as its objective the reconstruction of the response of vegetation to climate in order to identify periods of mesic climate at Yucca Mountain during the last 20,000 to 50,000 years. Past extremes in infiltration rates are expected to serve as estimates of climate that may be expected during the next 10,000 years at Yucca Mtn. Task 2, Paleofaunas, will construct a history of Great Basin vertebrates that will provide empirical evidence of past environmental and climatic conditions. The objective of Task 3, Geomorphology, is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollen, and faunal distributions. The goal of Task 4, Transportation, is to compare the results from three models that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research for Yucca Mountain. This research looked at three alluvial fans with rail transportation alignments crossing them.

  12. Characteristics of Heavy Minerals in Tertiary System of Western Qaidamu Basin

    Institute of Scientific and Technical Information of China (English)

    PENG De-hua; WANG Chao-yong


    According to tectonic position and mineral inclusions, supply resource in western Qaidamu basin is divided into the front of Aerjinshan mountain and the front of Qimantageshan mountain. The former is mainly composed of zircon, garnet inclusions, indicating that its mother rocks are mainly metamorphic rocks. Gas and zircon, iron ore, carbon grain inclusions is common in the front of Qimantage mountain, indicating that its mother rock are mainly magmatite and mixed metamorphic rocks. The supply resource is abundant and tectonic movement is active in the joint of the two mountains. The western Qaidamu basin is further divided into 6 heavy mineral sub-regions according to their features of association and stable coefficient of heavy mineral. They are approximately corresponding to their sedimentary environment. Of the 6 sub-regions, the unstable region is corresponding to fluvial fan, middle stable region is corresponding to river-alluvial plain-delta, stable region is corresponding to river-alluvial plain -delta-offshore. The fragment transported distance is presumed based on stable coefficient. In vertical, stable coefficient of heavy mineral becomes small from Xiaganchai formation to Xiayoushashan formation, indicating that the supply resource became nearer and nearer.

  13. Desert evolution and climatic changes in the Tarim River basin since 12 ka BP

    Institute of Scientific and Technical Information of China (English)

    冯起; 苏志珠; 金会军


    Climatic changes in the Tarim River basin since 12 kaBP were divided into four stages based on the analyses of sedimentary phase, the features of some climatic and environmental biomarks in the sedimentary strata and desert evolution. During the Holocene, cool-dry and temperate-dry climates resulted in apparent alluvial-fluvial and weak aeolian activities. During 10—8 kaBP, the climate was dry and cold, large-scale sand dunes activities led to regional desert expansion. During the hypsithermal (8—3 kaBP), the climate was dry and warm, shifting sand areas decreased and a lot of sand dunes were fixed along the banks of the Tarim River and its tributaries, lowlands and lakes. As a result, fluvial-alluvial areas increased. Since 3 kaBP, the aeolian activity and sandstorms have been enhancing due to the combined influences of climatic warming and illogical exploitation of land and water resources. The climate in the Tarim River basin have been persistently dry and alternated by warm and cold periods. Conse

  14. Permian continental paleoenvironments in Southeastern Asia: New insights from the Luang Prabang Basin (Laos) (United States)

    Bercovici, Antoine; Bourquin, Sylvie; Broutin, Jean; Steyer, Jean-Sébastien; Battail, Bernard; Véran, Monette; Vacant, Renaud; Khenthavong, Bounxou; Vongphamany, Sotsy


    In Laos (Southeastern Asia), Late Paleozoic sediments were identified by early French explorations across Indochina during the late 19th century (Pavie missions), but little work was undertaken to characterize the sedimentological and stratigraphical context until now. From detailed sedimentological and paleontological studies, we propose an interpretation of the depositional environment and of the stratigraphic context of series located on the right bank of the Mekong River in the Luang Prabang Basin where three main formations were described. The silicoclastic Red Claystone Formation, attributed to alluvial plain environment, contains large fragments of unidentified dicynodonts. The Limestones and Sandstones Formation preserves a new macrofloral assemblage displaying affinities with Middle to Late Permian Cathaysian floras of South China. This assemblage occurs as an intercalation within marine calcareous sandstones that have yielded a marine fauna, including the ammonoid Pseudotirolites sp. which indicates a Late Permian (Changhsingian) age. The well-developed Purple Claystones Formation yielded an abundant and well preserved Late Permian fauna composed of a carnivorous amphibian and numerous Dicynodon cranial and postcranial elements. This formation shows a vertical evolution from braided river to alluvial plain with sheet-flood sand bed and bed-load rivers, with a constant supply of volcanic clasts. Results from the analysis of the paleontological associations in the Luang Prabang Basin suggest that a continental communication between Laurussia and the Indochina Block existed during the Permian, allowing for migration of the terrestrial Dicynodon fauna.

  15. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    CERN Document Server

    Pepe, Alberto


    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a fairly small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin, unveiling ...

  16. Data for in-depth characterisation of the lamb meat proteome from longissimus lumborum

    Directory of Open Access Journals (Sweden)

    Tzer-Yang Yu


    Full Text Available This Data article provides Supplementary data related to the research article titled “In-depth characterisation of the lamb meat proteome from longissimus lumborum” by Yu et al. [1]. This research article reports the proteome catalogue of the 48 h post-mortem lamb longissimus lumborum. A list of 388 ovine-specific proteins were identified and characterised after separating the samples into sarcoplasmic, myofibrillar and insoluble fractions, followed by an in-depth shotgun proteomic evaluation and bioinformatic analysis. The detailed list of identified proteins, the annotated MS/MS spectra corresponding to the proteins identified by a single peptide-spectrum match, the raw Gene Ontology annotation data and other miscellaneous files, as will be described below, were contained in this Data article. We hope the data presented here will contribute to the current knowledge of the global protein composition of lamb skeletal muscle/meat.

  17. Coping With Antigay Violence: In-Depth Interviews With Flemish LGB Adults. (United States)

    D'haese, Lies; Dewaele, Alexis; Van Houtte, Mieke


    In view of the possible negative mental health outcomes of antigay violence and the limited understanding of how lesbian, gay, and bisexual (LGB) men and women cope with such experiences, this study examined the coping and social support-seeking strategies that victims adopt. In 2012, in-depth interviews were conducted with 19 Flemish sexual minority victims of violence. These in-depth interviews show that antigay violence can generate profound negative outcomes. However, the respondents employed a range of coping strategies, of which four were discerned: (1) avoidance strategies, (2) assertiveness and confrontation, (3) cognitive change, and (4) social support. Applying a diverse set of coping strategies and actively attaching meaning to negative experiences helps victims of antigay violence to overcome negative effects such as fear, embarrassment, or depressive feelings. However, the presence of a supportive network seems an important condition in order for these positive outcomes to occur.

  18. Service Quality and Customers’ Patronage Decision of Healthcare Insurance Products: ?In-Depth Interview Approach


    Muhammad Sabbir Rahman; Fadi AbdelMuniem AbdelFattah; Osman Bin Mohamad


    The purpose of this qualitative research is to explore the role of service quality on customers’ patronage decision of Malaysian health insurance products. Through a critical review of the literature about service quality and customers’ patronage intention this research proposed a relationship of service quality, customer’s satisfaction, perceived value and corporate image on customer’s patronage intention. This research applied qualitative approach (in-depth interview) from 20 participants. ...

  19. Effects of Shear Fracture on In-depth Profile Modification of Weak Gels

    Institute of Scientific and Technical Information of China (English)

    Li Xianjie; Song Xinwang; Yue Xiang'an; Hou Jirui; Fang Lichun; Zhang Huazhen


    Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the in-depth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs,and the weak gels in these two cases became small gel particles after water flooding. The differences were:the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack,which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack,while in the quartz sand pack,the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water,the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.

  20. Infant manual performance during reaching and grasping for objects moving in depth. (United States)

    Domellöf, Erik; Barbu-Roth, Marianne; Rönnqvist, Louise; Jacquet, Anne-Yvonne; Fagard, Jacqueline


    Few studies have investigated manual performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored object-oriented behavioral strategies and side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left and right). Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and hand opening prior to grasping. Additionally, assessments of hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings regarding infant hand use strategies when reaching and grasping for objects moving in depth are similar to those from earlier studies using objects moving along a horizontal path. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  1. Infant manual performance during reaching and grasping for objects moving in depth

    Directory of Open Access Journals (Sweden)

    Erik eDomellöf


    Full Text Available Few studies have observed investigated manual asymmetries performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored manual object-oriented behavioral strategies and hand side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left, and right, midline. Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and . The study also involved measurements of hand position opening prior to grasping., and Additionally, assessments of general hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings support the possibility of a shared underlying mechanism regarding for infant hand use strategies when reaching and grasping for horizontally objects moving in depth are similar to those from earlier studies using objects moving along a horizontal pathand vertically moving objects. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  2. In-Depth Assessment of the Nutritional Status of Korean American Elderly


    Lee, Young Hee; Lee, Jongeun; Kim, Miyong T.; Han, Hae-Ra


    While studies of immigrants have generally indicated significant dietary changes upon immigration that mirror a Western diet, previous data are limited to the dietary patterns and intakes of younger and middle-aged adults. Using a relatively large sample of Korean American elderly (KAE) immigrants, this paper offers an in-depth assessment of the nutritional status of KAE, one of the most rapidly increasing minority populations in the United States. A total of 202 KAE in a metropolitan city on...

  3. Unemployment persistence in Belgium : An in-depth econometric analysis of the flows out of unemployment/


    Dejemeppe, Muriel


    Finding an explanation for the rise and persistence of European unemployment has been one of the main research programmes of labour economists during the last decade. In this doctoral thesis, we contribute to this literature by questioning the causes of unemployment persistence in Belgium. To that purpose, we conduct an in-depth econometric analysis of the flows out of unemployment in this country. In Chapters 2 and 3, we study the behaviour of the exit rate out of unemployment over duration ...

  4. Cenozoic Sedimentation and Tectonic Deformation in the Central Part of the Potiguar Basin

    Directory of Open Access Journals (Sweden)

    Elissandra Nascimento Moura-Lima


    Full Text Available Neogene and Quaternary sedimentary covers occur along the Brazilian coast and have been frequently describedtogether as a single unit. The study of Brazilian sedimentary basins concentrates on their rift phase, whereas the post-riftphase has been considered a tectonic quiescent period. In the Potiguar basin, although post-rift Cretaceous units are wellinvestigated, the Neogene and Quaternary sedimentary covers, as well as their identifi cation and differentiation, are still poorly known. A few previous studies have demonstrated that post-rift sedimentary units with no apparent deformation have a complexdeformation pattern in all scales of observation. The study of this deformation, however, did not include Neogene and Quaternary units.The main aim of the present study is the characterization of Neogene and Quaternary sedimentary units that outcrop in the central partof the Potiguar Basin, State of Rio Grande do Norte, Brazil, and related tectonics. The study has concentrated on the description ofthe Barreiras Formation and overlying Quaternary alluvial, marine, and aeolian deposits at 1:100,000 scale. Facies analyses, grain sizestudies, and luminescence dating were carried out. Ten informal and formal lithostratigraphic sedimentary units were described, inaddition to the Precambrian crystalline basement. The main results indicate that several Quaternary alluvial deposits were previouslymapped as the Miocene Barreiras Formation. It was possible to locate the new boundaries of the Quaternary sedimentary deposits andtheir stratigraphic relationships with older units. In addition, it was possible to identify the major fault systems in the basin that show NW- and NE-trending directions, which coincide with macro landforms. It follows that these major fault systems, mainly the NW trending system, control the deposition of Neogene and Quaternary sedimentary units.

  5. The Perception of Symmetry in Depth: Effect of Symmetry Plane Orientation

    Directory of Open Access Journals (Sweden)

    Bart Farell


    Full Text Available The visual system is sensitive to symmetries in the frontoparallel plane, and bilateral symmetry about a vertical axis has a particular salience. However, these symmetries represent only a subset of the symmetries realizable in three-dimensional space. The retinal image symmetries formed when viewing natural objects are typically the projections of three-dimensional objects—animals, for example—that have a symmetry in depth. To characterize human sensitivity to depth symmetry, experiments measured observers’ ability to discriminate stereo displays that were symmetrically distributed in depth and those that were asymmetrically distributed. Disparity values were distributed about one of four planes passing through the z-axis and differing in frontoparallel orientation. Asymmetrical patterns were generated by perturbing one of these disparities. Symmetrical-asymmetrical discrimination thresholds were lowest for symmetry about the vertical plane and highest for the horizontal plane. Thresholds for discriminating repetitions and non-repetitions of depth values did not differ across the four planes, whereas discriminations for depth gradients differed from both the symmetry and repetition cases. The heightened sensitivity to symmetry in depth about the vertical plane is a 3-D analog of 2-D mirror-image symmetry performance and could be its source.

  6. Depositional architecture of the Tertiary tectonic sequences and their response to foreland tectonism in the Kuqa depression, the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    林畅松; 刘景彦; 张燕梅; 肖建新; 陈建强; 纪云龙


    The Tertiary Kuqa depression is a foreland basin generated by flexural subsidence resulting from the southward thrusting of the southern Tianshan Mountains. Tertiary basin fills of the depression can be classified into four tectonic sequences bounded by gentle angular unconformities. The sequences are composed of two parts, the lower transgressive and the upper progradational successions, which are separated by a regional maximum transgressive surface. The development of these sequences is attributed to the foreland tectonic process from flexural subsidence caused by thrust loading to rebounded uplift due to the erosion and stress release. The generation of the angular unconformities defining the tectonic sequences has been interpreted as the result of the rebounded uplift and the following thrusting. It has been found that there is a significant difference in depositional pattern between the northeastern and the northwestern margins. The relatively strong thrusting and mountain building occurring along the northwestern margin resulted in the development of thick-bedded alluvial fan and angular unconformities. The northeastern margin, in contract, lacks thick alluvial fan accumulation due to weak thrusting. This difference is likely related to the pre-existing east-west partition of the basin basement.

  7. How does sediment affect the hydraulics of bedrock-alluvial rivers? (United States)

    Hodge, Rebecca; Hoey, Trevor; Maniatis, George; Leprêtre, Emilie


    Relationships between flow, sediment transport and channel morphology are relatively well established in coarse-grained alluvial channels. Developing equivalent relationships for bedrock-alluvial channels is complicated by the two different components that comprise the channel morphology: bedrock and sediment. These two components usually have very different response times to hydraulic forcing, meaning that the bedrock morphology may be inherited from previous conditions. The influence of changing sediment cover on channel morphology and roughness will depend on the relative magnitudes of the sediment size and the spatial variations in bedrock elevation. We report results from experiments in a 0.9m wide flume designed to quantify the interactions between flow and sediment patch morphology using two contrasting bedrock topographies. The first topography is a plane bed with sand-scale roughness, and the second is a 1:10 scale, 3D printed, model of a bedrock channel with spatially variable roughness (standard deviation of elevations = 12 mm in the flume). In all experiments, a sediment pulse was added to the flume (D50 between 7 and 15 mm) and sediment patches were allowed to stabilise under constant flow conditions. The flow was then incrementally increased in order to identify the discharges at which sediment patches and isolated grains were eroded. In the plane bed experiments ˜20% sediment cover is sufficient to alter the channel hydraulics through the increased roughness of the bed; this impact is expressed as the increased discharge at which isolated grains are entrained. In the scaled bed experiments, partial sediment cover decreased local flow velocities on a relatively smooth area of the bed. At the scale of the entire channel, the bed morphology, and the hydraulics induced by it, was a primary control on sediment cover stability at lower sediment inputs. At higher inputs, where sediment infilled the local bed topography, patches were relatively more stable

  8. Investigating the impact of vegetation on alluvial fans using laboratory experiments (United States)

    Clarke, Lucy; McLelland, Stuart; Tom, Coutlhard


    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved, whereas the controlled conditions afforded by laboratory experiments provide the ideal opportunity to explore these relationships. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator (operated by the University of Hull). The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (Medicago Sativa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on 2x2m fan plots, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography were used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution

  9. Radon hazard in shallow groundwaters II: Dry season fracture drainage and alluvial fan upwelling

    Energy Technology Data Exchange (ETDEWEB)

    Tommasone, F. Pascale [Office of Civil Protection, Meteorology, Climatology and Natural Hazards, Piazza Municipio, 81051 Pietramelara, Caserta (Italy); De Francesco, S., E-mail: [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); Cuoco, E.; Verrengia, G.; Santoro, D. [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); Tedesco, D. [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); C.N.R. (Italian National Council), Institute of Environmental Geology and Geological Engineering, Piazzale Aldo Moro, 00100 Roma (Italy)


    {sup 222}Rn concentrations have been measured in a well located on the edge of a large Pleistocene-Holocene fan and belonging to the shallow pyroclastic aquifer of the Pietramelara Plain, southern Italy. The aim of this study has been both to characterise the hydrological inputs that determine the influx of {sup 222}Rn to the shallow aquifer and to understand the correlations between {sup 222}Rn, major ions, physical-chemical parameters and rainfall. Results obtained from the time series indicate that the studied well shows a {sup 222}Rn variability that is inconsistent with a mechanism of pure hydrological amplification, such as described in Radon hazard in shallow groundwaters: Amplification and long term variability induced by rainfall (De Francesco et al., 2010a). On the contrary, in this well hydrological amplification appears to be mainly tied to the upwelling of alluvial fan waters, rich in radon, in response to pistoning from recharge in the carbonate substrate. This upwelling of alluvial fan waters occurs during almost the whole period of the annual recharge and is also responsible of the constant increase in {sup 222}Rn levels during the autumn-spring period, when both the water table level and weekly rainfall totals drop. Furthermore, a rapid delivery mechanism for {sup 222}Rn likely operates through fracture drainage in concomitance with the very first late summer-early autumn rains, when rainfall totals appear largely insufficient to saturate the soil storage capacity. Results obtained from this study appear to be particularly significant in both radon hazard zoning in relation to the shallow aquifer and possibly also for indoor radon, owing to possible shallow aquifer-soil-building exchanges. Moreover, both the spike-like events and the long wave monthly scale background fluctuations detected can also have potential significance in interpreting {sup 222}Rn time series data as seismic and/or volcanic precursors. Finally, {sup 222}Rn has proved to be an

  10. Alluvial fan sensitivity to glacial-interglacial climate change: case studies from Death Valley. (United States)

    Whittaker, Alexander; D'Arcy, Mitch; Roda-Boluda, Duna; Brooke, Sam


    The effects of climate change on eroding landscapes and the sedimentary record remain poorly understood. The measurement of regional grain size trends in stream-flow deposits provides one way to address this issue because, in principle, these trends embed important information on the dynamics of sediment routing systems and their sensitivity to external forcings. In many cases, downstream stratigraphic fining is primarily driven by selective deposition of sediment. The relative efficiency of this process is determined by the physical characteristics of the input sediment supply and the spatial distribution of subsidence rate, which generates the accommodation necessary for mass extraction. Here, we measure grain size fining rates from apex to toe for alluvial fan systems in Death Valley, California, which have well-exposed modern and late Pleistocene deposits, where the long-term tectonic boundary conditions are known and where climatic variation over this time period is well-constrained. Our field data demonstrate that input grain sizes and input fining rates do vary noticeably over the late Pleistocene-Holocene period in this study area, although there is little evidence for significant changes in rates of faulting in the last 200 ky. For two catchments in the Grapevine Mountains for which we have excellent stratigraphic constraints on modern and 70 ka fan deposits, we use a self-similarity based grain size fining model to understand changes in sediment flux to the fans over this time period. When calibrated with cosmogenically-derived catchment erosion rates, our results show that a 30 % decrease in average precipitation rate over this time-frame led to a 20 % decrease in sediment flux to the fans, and a clear increase in the down-fan rate of fining. This supports existing landscape evolution models that relate a decrease in precipitation rate to a decrease in sediment flux, but implies that the relationship between sediment flux and precipitation rate may be

  11. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer (United States)

    Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; Chakraborty, Romy; Brodie, Eoin L.; Williams, Kenneth H.; Beller, Harry R.


    Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed

  12. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia

    KAUST Repository

    Hanafy, Sherif M.


    In this work we use geophysical methods to locate and characterize active faults in alluvial sediments. Since only subtle material and velocity contrasts are expected across the faults, we used seismic refraction tomography and 2D resistivity imaging to locate the fault. One seismic profile and one 2D resistivity profile are collected at an alluvial fan on the Gulf of Aqaba coast in Saudi Arabia. The collected data are inverted to generate the traveltime tomogram and the electric resistivity tomogram (ERT). A low velocity anomaly is shown on the traveltime tomogram indicates the colluvial wedge associated with the fault. The location of the fault is shown on the ERT as a vertical high resistivity anomaly.

  13. Numerical modelling of shaking effects due to strong motions on the tiber alluvial deposits in Rome (Italy)

    CERN Document Server

    Bonilla, Fabian; Gelis, Céline; Giacomi, Anna Chiara; Lenti, Luca; Martino, Salvatore; d'Avila, Maria Paola Santisi; Semblat, Jean-François


    A multidisciplinary approach is proposed for evaluating the effects of shaking due to strong motions on the Tiber river alluvial deposits in Rome's historical centre. At this aim, a detailed 3D geological model of the Tiber river alluvial deposit has been constructed and a numerical analysis of site response was performed along two geological sections across the historical centre of Rome. The numerical models were performed in both 1D and 2D configurations assuming linear and nonlinear conditions, by applying a three component seismic input. The results show that the maximum shear strains are strongly conditioned by the layer geometries (i.e. 2D or 1D conditions) and by the soil heterogeneity. Moreover, the reliability of the maximum strains obtained by numerical modeling is discussed comparing these values respect to both the volumetric and the degradation dynamic thresholds of the considered soils.

  14. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of a constant recharge value for the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake...

  15. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of a constant hydraulic conductivity value for the alluvial and terrace deposits along the North Canadian River from...

  16. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma....

  17. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant hydraulic conductivity values for the alluvial and terrace deposits along the Cimarron River from Freedom to...

  18. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-level elevation contours for the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake...

  19. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-level elevation contours for the alluvial and terrace deposits along the Cimarron River in northwestern Oklahoma during...

  20. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of a constant recharge rate for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in...

  1. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in...

  2. Active tectonics in the NW-German Basin: Evidence from correlations between the modern landscape and deep geological structures (Lower Saxony, river Hunte) (United States)

    Szeder, T.; Sirocko, F.


    The catchment basin of the river Hunte (NW-German Basin, Lower Saxony) was studied on a mesoscale (length of ˜90 km) to investigate if tectonic movements in the upper crust influence modern landscape formation. Crustal movements led to upwarping of the Lower Weichselian Terrace above the transition zone of a major crustal boundery of the NW-German Basin (Lower Saxony Basin/Pompeckj Block) with an average vertical velocity of about 0,5 mm/a over the last 12 ka. The Lower Weichselian Terrace and the Hunte catchment basin are narrowest at the same position. Even the Holocene Alluvial Plain is affected by active tectonics. The Holocene Alluvial Plain is narrower and shows a negative gradient directly above a deep seated Permian salt pillow which can be traced over a vertical distance of about 4000 m as an anticline structure to the uppermost Tertiary (100 m b.s.l.). The spatial similarity of fluvial anomalies with anomalies of the geological subground indicates that crustal movements still exercise control on fluvial dynamics and are coupled to the geological predesign. Basin subsidence is thought to have triggered primarily the aggradation of the Lower Weichselian Terrace, because there is an accordance between the mean recent velocity of basin subsidence (˜-0,21 mm/a), calculated from repeated geodetic fine levelling and the mean sedimentation rate of the Lower Weichselian Terrace (˜0,2--0,4 mm/a). In addition, sedimentation rates of the Lower Weichselian Terrace were nearly constant over a time span of about 35 ka (˜47--12 ka BP). During these times the climate has changed rapidly over Northern Europe (Dansgaard-Oeschger Cycles) which affected river morphology, hydrology and sediment supply. However, the observation that no change of the mean sedimentation rate is observable indicates a long term subsiding tendency which enables accumulation of longer fluvial sequences independent of short scale climatic fluctuations. Most likely northward tilting of the NW

  3. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport (United States)

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.


    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  4. Risk assessment of heavy metal pollution in alluvial soils and sediments of the Grote Beek river (Belgium)


    Cappuyns, Valérie; Swennen, Rudy


    Consoil 2003 RISK ASSESSMENT OF HEAVY METAL POLLUTION IN ALLUVIAL SOILS AND SEDIMENTS OF THE GROTE BEEK RIVER (BELGIUM) Valérie Cappuyns, Rudy Swennen and Katrien De Nil Katholieke Universiteit Leuven, Fysico-chemische Geologie, Celestijnenlaan 200C, 3001 Heverlee, Belgium Tel. +3216327297, Fax. +3216327981, e-mail: 1. Introduction Wastewater discharge from the processing of phosphate ores has contributed to pollution by heavy metals ...

  5. Mesozoic basins and associated palaeogeographic evolution in North China

    Institute of Scientific and Technical Information of China (English)

    Yong-Qing Liu; Hong-Wei Kuang; Nan Peng; Huan Xu; Peng Zhang; Neng-Sheng Wang; Wei An


    complicated thrust and fold, the previous uniifed Ordos-North China Basin was separated by the northeast-oriented Great Xing’an Range and Taihang Mountain uplifted linearment. The differential evolution of basins and sedimentary palaeoge-ography between eastern and western North China was initiated, and was interpreted to result in the closure of Okhotsk Ocean and the subduction of Palaeo-Paciifc Plate (late stage 2). During the Late Jurassic (the early phase of stage 3), a variety of faulted basins occurred in the Yanshan and Yinshan areas in the northeastern North China. In Yanshan area, basins were iflled with thickened intermediate volcanic rocks and purple-red coarse-grained clastic rocks. In contrast, only thick layered sedimentary rocks with rare volcanic rocks developed in the Yinshan faulted basins, the Ordos Basin and basins in sourthern North China. XMOB was the main provenance of the Early Mesozoic basins in the North China, while the Ordos Basin and the Hefei Basin were partly supplied by the northern Qinling Orogenic Belt. During the Late Jurassic-early Early Cretaceous (the late phase of stage 3), the north-ern and northeastern North China experienced extensional movement after the subduction of the Palaeo-Paciifc Plate, the closure of the Mongolia-Okhotsk Ocean and the subsequent Yanshanian orogeny. At the same time, a NE-oriented, giant rift basin system (NE Asia Rift) extended from the Yanshan to the western Great Xing’an Range, where rift basins were iflled with the regional, NE-oriented, thick coarse-grained clastic rocks and a belt of volcanic rocks. In the meantime, the eastern and northeastern China and most areas of NCC were presented as highland terrains. During the middle-late Early Cretaceous (stage 4), rift basins developed and accumulated alluvial sediments and interbedded alkaline volcanic rocks in the western and northern North China, including Yingen, Ejinaqi and Erlian regions. Basins were formed on both sides of the Tan-Lu Fault Zone

  6. Composition and provenance of Late Pleistocene-Holocene alluvial sediments of the eastern Andean piedmont between 33 and 34° S (Mendoza Province, Argentina) (United States)

    Mehl, A.; Blasi, A.; Zárate, M.


    The Andean cordillera, and its piedmont in the central western Argentina, has been long considered as one of the main source areas of detritus for the Chaco-Pampean plain sand dune fields and loess/loess-like deposits of central Argentina. The main goal of this study is to evaluate the composition of the late Pleistocene-Holocene alluvial deposits of the Andes cordillera piedmont, from 33° to 34° S. The results are interpreted in the context of the regional geology, tectonic setting of the study area and its implications in the continent-wide perspective of modern alluvial sands proposed by Potter (1994). Sampling was conducted at the alluvial stratigraphic sequences of four study sites along three Andean piedmont arroyos; modal mineralogy in the very fine sand fraction (3 phi to 4 phi) was determined using standard petrographic microscope methods. Q:F:LF average compositions indicate that the Late Pleistocene-Holocene very fine-grained alluvial sands of the Cordillera Frontal piedmont reflects the modern lithic arenites of the Argentine Association reported by Potter (1994). The results show two geologically distinct sources in the catchment areas, volcaniclastic and metamorphic rocks. High concentrations of mica and volcanic glass are likely related to particle morphologies and to the deposition sedimentary environment recorded in the alluvial sequences—floodplains. The overabundance of micas over the volcanic glass in the mid-late Holocene alluvial sequence indicates the drainage of a metamorphic area at the expense of other lithological sources. Source areas are located mainly in the Frontal cordillera, and to a lesser extent, in the piedmont Tertiary deposits, another likely source for the analyzed Quaternary alluvial sediments. The mineralogical signature of the late Pleistocene and Holocene alluvial sequences is in agreement with the composition of the southern Pampean sand mantles, loess and loess-like deposits mainly formed by a volcanic mineral

  7. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. (United States)

    Majumder, Shyam Prasad; Das, Amal Chandra


    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.


    Institute of Scientific and Technical Information of China (English)

    Gigi RICHARD; Pierre JULIEN


    The impact of construction of dams and reservoirs on alluvial rivers extends both upstream and downstream of the dam. Downstream of dams, both the water and sediment supplies can be altered leading to adjustments in the river channel geometry and ensuing changes in riparian and aquatic habitats.The wealth of pre and post-regulation data on the Middle Rio Grande, New Mexico, provides an excellent case study of river regulation, channel adjustments, and restoration efforts. Cochiti Dam was constructed on the main stem of the Rio Grande in 1973 for flood control and sediment retention. Prior to dam construction, the Rio Grande was a wide, sandy braided river. Following dam construction, the downstream channel bed degraded and coarsened to gravel size, and the planform shifted to a more meandering pattern. Ecological implications of the geomorphic changes include detachment of the river from the floodplain, reduced recruitment of riparian cottonwoods, encroachment of non-native saltcedar and Russian olive into the floodplain, and degraded aquatic habitat for the Rio Grande silvery minnow.Recent restoration strategies include removal of non-native riparian vegetation, mechanical lowering of floodplain areas, and channel widening.

  9. Impact of forest type and management strategy on avian densities in the Mississippi Alluvial Valley, USA (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Hamilton, R.B.


    Avian territory densities were determined from 20 Breeding Bird Censuses in mature (>30 years) bottomland hardwood stand: and 18 Breeding Bird Censuses in young (6-9 years old) cottonwood (Populas deltoides) plantations in the Mississippi Alluvial Valley. Avian species richness, diversity, and territory density were greater (p 0.05). Even so, detrended correspondence analysis based on avian territory densities readily segregated forest types and silvicultural treatments. Timber harvest within bottomland hardwood stands resulted in a shift in bird communities toward those found in cottonwood stands by increasing the densities of early-successional species such as Indigo Bunting (Passerina cyanea), Yellow-breasted Chat (Icteria virens), and Common Yellowthroat (Geothlypis trichas). Conversely, regenerating cottonwood stands from root sprouts, rather than planting stem cuttings, resulted in a shift in bird communities toward those found in bottomland hardwood stands by increasing densities of species such as White-eyed Vireo (Vireo griseus) and Wood Thrush (Hylocichla mustelina). Tree species diversity, angular canopy cover, and midstory density were positively associated with bird species assemblages in bottomland hardwood stands, whereas vegetation density at ground level was positively associated with bird communities in cottonwood plantations. Conversion of agricultural fields to short-rotation cottonwood plantations results in increased breeding bird populations by adding up to 140 additional territories 40 ha-1. Even so, relative conservation values, derive, from indicator species analysis and Partners in Flight concern scores, suggest that mature bottomland hardwood forests are twice as 'valuable' for bird conservation as are cottonwood plantations.

  10. Three-dimensional Modelling Of Nitrate Tranfer In A Flooded Alluvial Zone (United States)

    Trémolières, M.; Lachenal, C.; Sánchez-Pérez, J. M.

    In the groundwater of a flooded alluvial forest in Alsace (Illwald forest, Eastern France), upstream of the forest nitrate concentrations (close to 40 mg/l) are largely higher than those downstream (lower than 5 mg/l). The objective of this study is to evaluate the effect of two factors which could be responsible for nitrogen elim- ination : drainage by streams and river (very significant in the area) and reduction by the groundwater U plant complex (bacterial denitrification and root uptake). A three-dimensional hydrodynamic model was used to estimate horizontal and vertical flows of water in the aquifer. The conception of this model required data of hydraulic conductivity, surface water - groundwater exchanges and nitrate concentrations. The model was validated with the three following variables, which were measured locally : piezometric level, volume exported by streams and chloride concentrations in ground- water (used as an hydrological tracer). The main results showed that the drainage by streams contributed to the elimination of polluted groundwater to a depth of at least 40 m. The balance input-output of the system was calculated acroos the whole surface (2100ha) over a period of three years. The total purifying capacity of this wetland was close to 240 kgN/ha/year and only 40kg/ha/year were eliminated by stream drainage, the greater part of the rest was eliminated by denitrification and/or root uptake.

  11. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain (United States)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.


    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  12. Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley (United States)

    Jenkins, W.A.; Murray, B.C.; Kramer, R.A.; Faulkner, S.P.


    This study assesses the value of restoring forested wetlands via the U.S. government's Wetlands Reserve Program (WRP) in the Mississippi Alluvial Valley by quantifying and monetizing ecosystem services. The three focal services are greenhouse gas (GHG) mitigation, nitrogen mitigation, and waterfowl recreation. Site- and region-level measurements of these ecosystem services are combined with process models to quantify their production on agricultural land, which serves as the baseline, and on restored wetlands. We adjust and transform these measures into per-hectare, valuation-ready units and monetize them with prices from emerging ecosystem markets and the environmental economics literature. By valuing three of the many ecosystem services produced, we generate lower bound estimates for the total ecosystem value of the wetlands restoration. Social welfare value is found to be between $1435 and $1486/ha/year, with GHG mitigation valued in the range of $171 to $222, nitrogen mitigation at $1248, and waterfowl recreation at $16. Limited to existing markets, the estimate for annual market value is merely $70/ha, but when fully accounting for potential markets, this estimate rises to $1035/ha. The estimated social value surpasses the public expenditure or social cost of wetlands restoration in only 1 year, indicating that the return on public investment is very attractive for the WRP. Moreover, the potential market value is substantially greater than landowner opportunity costs, showing that payments to private landowners to restore wetlands could also be profitable for individual landowners. ?? 2009 Elsevier B.V.

  13. Sediments and processes on a small stream-flow dominated, devonian alluvial fan, Shetland Islands (United States)

    Allen, Philip A.


    The main conglomerate type of a small Devonian alluvial fan in Shetland, northern Britain, is an inverse to normally graded framework-supported gravel. The sedimentological details of these beds and fundamental considerations of the mechanics of movement of highly concentrated flows suggests that neither debris-flow nor grain-flow were responsible for the deposition of these conglomerates. On the contrary, these inverse to normally graded conglomerates were deposited by water as thick gravel sheets with little topographic relief, but broadly analogous to longitudinal bars. They were deposited under high aggradation conditions first on the rising and then on the falling flood. The high concentration of material in transport on the rising and peak flood was responsible for the polymodal and unstratified nature of the conglomerates. As the flood waned, normal grading was developed and a preferred horizontal fabric was produced under low concentrations of sediment. Other conglomerate types, comparatively of lesser importance, were deposited from highly concentrated clast dispersions and are notably richer in matrix and locally possess inverse grading. The hydrological environment was one of flashy discharges of short duration but of high velocity. Flow was dissipated rapidly, perhaps due to extreme water loss. This example from the Devonian of Shetland provides an interesting alternative to the mass-transport dominated fan models currently in vogue.

  14. Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform (United States)

    Ragozin, A. L.; Zedgenizov, D. A.; Kuper, K. E.; Shatsky, V. S.


    The specific gray to almost black diamonds of rounded morphology are especially typical in alluvial placers of the northeastern part of the Siberian platform. The results of study of internal structure of these diamonds are presented. X-ray topography and birefringence patterns of polished plates of studied diamonds show their radial mosaic structure. Diamonds consists of slightly misorientated (up to 20') subindividuals which are combined to mosaic wedge-shaped sectors. Electron back-scatter diffraction technique has demonstrated that subindividuals are often combined in the single large blocks (subgrains). The whole crystals commonly consist of several large subgrains misoriented up to 5° to one another. The total nitrogen content of these diamonds vary in the range 900-3300 ppm and nitrogen aggregation state (NB/(NB + NA)*100) from 25 to 64 %. Rounded diamond crystals of variety V are suggested to have been formed at the high growth rate caused by the high oversaturation of carbon in the crystallization medium. It may result in the splitting of growing crystal and their radial mosaic structure as a sequence. High content of structural nitrogen defects and the great number of mechanical impurities - various mineral and fluid inclusions may also favor to generation of this structure.

  15. Geomorphic and hydrodynamic responses of experimental alluvial channels to rigid vegetation (United States)

    Bennett, S. J.


    Vegetation such as trees and woody debris remains a key component of bank stabilization and stream restoration programs because of the beneficial ecologic and hydraulic effects and attributes it brings to river corridors. Yet few design criteria currently are available to guide the use and application of these activities, and part of this problem may lie in not knowing precisely how river corridors respond to the newly introduced vegetation. Physical experiments provide the unambiguous quantification of the geomorphic, hydraulic, and hydrodynamic responses of alluvial channels to the introduction of vegetation. To this end, a range of physical experiments have been conducted using simulated stands of rigid, emergent vegetation and submerged large woody debris in both fixed- and mobile-bed channels to identify these geomorphic responses to and hydrodynamic effects of the introduced vegetation. Experimental results will focus on flow resistance, secondary flow and meander development, coherent flow structures and turbulent mixing, localized erosion and deposition, and the potential for nutrient retention, all in relation to the size, shape, orientation, and density of managed plantings of vegetation or the placement of large woody debris. These experimental results will be compared to both theory and numerical models, and will be discussed within the context of stream restoration design.

  16. Application of Large-Scale Inversion Algorithms to Hydraulic Tomography in an Alluvial Aquifer. (United States)

    Fischer, P; Jardani, A; Soueid Ahmed, A; Abbas, M; Wang, X; Jourde, H; Lecoq, N


    Large-scale inversion methods have been recently developed and permitted now to considerably reduce the computation time and memory needed for inversions of models with a large amount of parameters and data. In this work, we have applied a deterministic geostatistical inversion algorithm to a hydraulic tomography investigation conducted in an experimental field site situated within an alluvial aquifer in Southern France. This application aims to achieve a 2-D large-scale modeling of the spatial transmissivity distribution of the site. The inversion algorithm uses a quasi-Newton iterative process based on a Bayesian approach. We compared the results obtained by using three different methodologies for sensitivity analysis: an adjoint-state method, a finite-difference method, and a principal component geostatistical approach (PCGA). The PCGA is a large-scale adapted method which was developed for inversions with a large number of parameters by using an approximation of the covariance matrix, and by avoiding the calculation of the full Jacobian sensitivity matrix. We reconstructed high-resolution transmissivity fields (composed of up to 25,600 cells) which generated good correlations between the measured and computed hydraulic heads. In particular, we show that, by combining the PCGA inversion method and the hydraulic tomography method, we are able to substantially reduce the computation time of the inversions, while still producing high-quality inversion results as those obtained from the other sensitivity analysis methodologies.

  17. Free Oxide Distribution in Poorly and Well Drained Soils Developed on Calcareous Alluvial Deposits

    Institute of Scientific and Technical Information of China (English)



    A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicarbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms,independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.

  18. Land use change and its driving forces in alluvial-plain oasis (United States)

    Xiao, Luxiang; Zhang, Zengxiang; Chen, Xi; Luo, Geping; Wen, Qingke


    Land use change and its driving factors are hot topics of global change research, and also important topics of sustainable development. This paper selected a small area in alluvial plain oasis in Xinjiang Autonomous region of China as the study area. Using Landsat TM data of 1987, 1998 and 2004, the dynamic process of the spatial-temporal characteristics of land use changes were analyzed to improve understanding and to find the driving forces of land use changes so that sustainable land utilization could be practiced. During the 17 years salt-alkali tolerant cropland, cereal cropland, vegetable-fruit land, and shrubbery, had decreased remarkably by 78.59%, 85.95%, 92.13%, 68.43%, respectively. Cotton-liquorice land, grape-hop land, planted forest, residential area in town, residential area in village, and saline-alkaline field had increased dramatically. The increased percentage received the value of 2432.11%, 10103.18%, 889.91%, 222.45%, 96.00%, 44.18%, respectively. By the logistic regression, the main driving factors were derived for each land use type. The advance of technology (fertilizer input, irrigation quota, and animal labor et al.) and market (unit are yield net) were the main driving factors. Policy, in a higher level, influenced the land use dynamics for all the land use changes.

  19. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.


    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  20. Analysis of managed aquifer recharge for retiming streamflow in an alluvial river (United States)

    Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.


    Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.

  1. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado (United States)

    Konikow, Leonard F.


    A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.

  2. Sedimentology and clast fabric of subaerial debris flow facies in a glacially-influenced alluvial fan (United States)

    Eyles, N.; Kocsis, S.


    A large alluvial fan (2 km 2), constructed between 11,000 and 7000 years B.P. at the mouth of Cinquefoil Creek in interior British Columbia, Canada, is identified as "glacially-influenced, debris flow-dominated". The fan was rapidly constructed during and immediately after deglaciation when large volumes of glacial debris were resedimented downslope; fans of this type are widespread in the glaciated portion of the North American Cordillera. Diamict facies, deposited as debris flows, account for 48% of the fan volume, sheetflodd gravels 37%, and other facies 15%. Diamicts show three facies types; crudely-bedded facies containing rafts of soft sediment that are attributed to downslope collapse and mixing of heterogeneous glacial deposits. These occur within the core of the fan. Massive and weakly graded (inverse to normal) diamict facies, derived from the downslope flow of weathered volcanic bedrock, occur within a well-defined bed that can be traced across the entire fan. The occurrence of weakly graded facies as lateral equivalents to massive facies within the same bed, implies the partial development of turbulent, high-velocity "streams" within a viscous debris flow moving over a slope of 6°. Clast fabrics in these facies show weakly-clustered a-axes dipping up and downslope comparable to other debris flows and lahars. The Cinquefoil fan, its internal structure and facies, provides a good "modern" analogue for ancient diamictite sequences deposited in areas of active uplift, rifting and glaciation.

  3. Nocturnal insect availability in bottomland hardwood forests managed for wildlife in the Mississippi Alluvial Valley (United States)

    Loraine Ketzler,; Christopher Comer,; Twedt, Daniel J.


    Silviculture used to alter forest structure and thereby enhance wildlife habitat has been advocated for bottomland hardwood forest management on public conservation lands in the Mississippi Alluvial Valley. Although some songbirds respond positively to these management actions to attain desired forest conditions for wildlife, the response of other species, is largely unknown. Nocturnal insects are a primary prey base for bats, thereby influencing trophic interactions within hardwood forests. To better understand how silviculture influences insect availability for bats, we conducted vegetation surveys and sampled insect biomass within silviculturally treated bottomland hardwood forest stands. We used passive blacklight traps to capture nocturnal flying insects in 64 treated and 64 untreated reference stands, located on 15 public conservation areas in Arkansas, Louisiana, and Mississippi. Dead wood and silvicultural treatments were positively associated with greater biomass of macro-Lepidoptera, macro-Coleoptera, and all insect taxa combined. Biomass of micro-Lepidoptera was negatively associated with silvicultural treatment but comprised only a small proportion of total biomass. Understanding the response of nocturnal insects to wildlife-forestry silviculture provides insight for prescribed silvicultural management affecting bat species.

  4. Liquefaction analysis of alluvial soil deposits in Bedsa south west of Cairo

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim


    Full Text Available Bedsa is one of the districts in Dahshour that lays south west of Cairo and suffered from liquefaction during October 1992 earthquake, Egypt. The soil profile consists of alluvial river Nile deposits mainly sandy mud with low plasticity; the ground water is shallow. The earthquake hypocenter was 18 km far away with local magnitude 5.8; the fault length was 13.8 km, as recorded by the Egyptian national seismological network (ENSN at Helwan. The analysis used the empirical method introduced by the national center for earthquake engineering research (NCEER based on field standard penetration of soil. It is found that the studied area can liquefy since there are saturated loose sandy silt layers at depth ranges from 7 to 14 m. The settlement is about 26 cm. The probability of liquefaction ranges between 40% and 100%. The presence of impermeable surface from medium cohesive silty clay acts as a plug resisting and trapping the upward flow of water during liquefaction, so fountain and spouts at weak points occurs. It is wise to use point bearing piles with foundation level deeper than 14 m beyond the liquefiable depth away from ground slopes, otherwise liquefaction improving techniques have to be applied in the area.

  5. Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment

    Directory of Open Access Journals (Sweden)

    K. Edmaier


    Full Text Available The establishment of riparian pioneer vegetation is of crucial importance within river restoration projects. After germination or vegetative reproduction on river bars juvenile plants are often exposed to mortality by uprooting caused by floods. At later stages of root development vegetation uprooting by flow is seen to occur as a consequence of a marked erosion gradually exposing the root system and accordingly reducing the mechanical anchoring. How time scales of flow-induced uprooting do depend on vegetation stages growing in alluvial non-cohesive sediment is currently an open question that we conceptually address in this work. After reviewing vegetation root issues in relation to morphodynamic processes, we then propose two modelling mechanisms (Type I and Type II, respectively concerning the uprooting time scales of early germinated and of mature vegetation. Type I is a purely flow-induced drag mechanism, which causes alone a nearly instantaneous uprooting when exceeding root resistance. Type II arises as a combination of substantial sediment erosion exposing the root system and resulting in a decreased anchoring resistance, eventually degenerating into a Type I mechanism. We support our conceptual models with some preliminary experimental data and discuss the importance of better understanding such mechanisms in order to formulate sounding mathematical models that are suitable to plan and to manage river restoration projects.

  6. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)


    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  7. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis. (United States)

    Abdel-Sabour, M F; Abdel-Basset, N


    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  8. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA (United States)

    Madole, Richard F.


    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~1 m) incision. Published

  9. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA (United States)

    Madole, Richard F.


    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  10. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas (United States)

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.


    A study to assess the potential of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas, as a viable source of public-supply water was conducted by the U.S. Geological Survey in cooperation with the Little Rock, District, U.S. Army Corps of Engineers. An important study component was to identify possible changes in hydrologic conditions following installation of James W. Trimble Lock and Dam 13 (December 1969) on the Arkansas River near the study area. Data were gathered for the study in regard to the lithology, hydrologic characteristics, and water quality of the aquifer. Lithologic information was obtained from drillers’ logs of wells drilled from 1957 through 1959. Water-quality samples were collected from 10 irrigation wells and analyzed for inorganic constituents and pesticides. To evaluate the potential viability of the alluvial aquifer in the Van Buren area, these data were compared to similar stratigraphic, lithologic, and groundwater-quality data from the Arkansas River Valley alluvial aquifer at Dardanelle, Ark., where the aquifer provides a proven, productive, sole-source of public-supply water.

  11. In-Depth Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.


    A national survey of inorganic chemists explored the self-reported topics covered in in-depth inorganic chemistry courses at the postsecondary level; an in-depth course is defined by the American Chemical Society's Committee on Professional Training as a course that integrates and covers topics that were introduced in introductory and foundation…

  12. Teaching Beginning Undergraduates How to Do an In-Depth Interview: A Teaching Note with 12 Handy Tips (United States)

    Healey-Etten, Victoria; Sharp, Shane


    In-depth interviewing is now a common method in sociology. Although there are many potential benefits of in-depth interviewing assignments for both majors and nonmajors, few have developed tools one can use to teach this method at the first and second year, especially in substantive classes where instruction in interviewing is constrained by time…

  13. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004 (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick


    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  14. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)


    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  15. Using reflexivity to enhance in-depth interviewing skills for the clinician researcher

    Directory of Open Access Journals (Sweden)

    Hegarty Kelsey


    Full Text Available Abstract Background Primary health care clinicians are being encouraged to undertake qualitative research, however the in-depth interviewing skills required are not as straightforward as might be first supposed. While there are benefits and certain skills that clinicians can bring to interview-based research, there are important new skills to develop. To date there has been neither discussion about these new skills, nor any preparatory guidelines for clinicians entering into interview-based research in the qualitative research literature. In the absence of formal guidelines, we suggest the use of reflexivity throughout the interview process as a means to become more accomplished in this area. We present our own experiences as a novice general practitioner (GP researcher undertaking a PhD study and her experienced supervisors. The PhD study used critical phenomenology through in-depth interviews to understand the experience of the patient-doctor relationship between same-sex attracted women and their usual GP in Australia. Results We used reflexivity to improve the rigour of the data collection. This enabled improved probing, fewer assumptions, avoidance of premature interpretation, and an accentuated sense of curiosity during interviews. We also enlisted reciprocity between interviewer and interviewee as a tool to improve engagement and trust, share interview control, and ultimately improve the depth of the interview content. Conclusion Preparatory recommendations for novice clinician research interviewers include the importance of recognising the multiple identities that they bring to the interview. In this setting in particular this involves acknowledging the clinician interviewer as a potential insider in relation to interviewees and negotiating shared understanding to avoid insider assumptions. Other essential requirements are having an experienced research supervisor, arranging pilot interviews that include active feedback on interviewing

  16. An In-depth Study of Sparse Codes on Abnormality Detection

    DEFF Research Database (Denmark)

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor


    Sparse representation has been applied successfully in abnormal event detection, in which the baseline is to learn a dictionary accompanied by sparse codes. While much emphasis is put on discriminative dictionary construction, there are no comparative studies of sparse codes regarding abnormality...... detection. We present an in-depth study of two types of sparse codes solutions - greedy algorithms and convex L1-norm solutions - and their impact on abnormal- ity detection performance. We also propose our framework of combining sparse codes with different detection methods. Our comparative experiments...

  17. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment (United States)

    Mwenge Kahinda, J.; Meissner, R.; Engelbrecht, F. A.


    A three-phase study was initiated as a way to promote Integrated Catchment Management approaches in the Limpopo River basin. This paper presents the situational assessment, which should enable De Beers to understand how their Venetia Mine operations are located within a broader and highly dynamic socio-economic and ecohydrological landscape as it pertains to water risks. The second phase, Risk assessment, aims to develop conservation interventions in the identified areas; the third phase will develop mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates that the institutional arrangement of the Limpopo River basin is neither simple nor effective. The basin is rapidly approaching closure in the sense that almost all of the available supplies of water have already been allocated to existing water users. If the proposed ecological flow requirements were to be met for all of the tributaries, the basin would be 'closed'. On-going and projected land use changes and water resources developments in the upper reaches of the basin, coupled with projected rainfall reductions and temperature increases, and allocation of the flows for the ecological reserve, are likely to further reduce downstream river flows. The coupled increase in temperature and decrease in rainfall is of great concern for everyone in the basin, especially the poorer communities, who rely on rain-fed agriculture for their livelihoods. Increased temperatures also lead to increased evaporation from reservoirs and therefore result in a decrease in water availability. This will lead to increased abstraction of groundwater, especially from alluvial aquifers, and consequently an increase in river transmission losses and a decrease in river flows.

  18. Radar facies and architecture of alluvial fans and related sediments in high-energy alpine environments, British Columbia (United States)

    Ekes, Csaba


    It is widely recognized that the dominant depositional processes on alluvial fans include rock falls, rock slides, rock avalanches, debris flows, sheetfloods and incised-channel floods. A fundamental question addressed in this thesis is: Can ground penetrating radar (GPR) differentiate between the sediments associated with these processes? Do these individual deposits have characteristic radar reflection signatures? The dissertation is divided into two parts. In part one, a calibration exercise conducted in southern British Columbia, it was demonstrated that GPR was able to obtain good penetration and resolution in rock fall, rock slide, fluvial and alluvial fan sediments, and that a characteristic radar reflection pattern (or radar facies) can be assigned to these deposits. Bedrock reflection pattern is characterised by a discontinuous radar signal and by stacked diffractions. The radar facies for rock slide and rock avalanche sediments, where boulders constitute the predominant clast size, is characterized by discontinuous, high amplitude, macro-scale, hyperbolic reflections that are different from diffractions generated by bedrock. Alluvial fans dominated by debris flow processes produce a chaotic and discontinuous radar pattern; diffractions in these patterns are attributed to boulders. Alluvial fans dominated by sheetflood processes are likely to produce surface-parallel, gently dipping, more or less continuous radar patterns. Large-scale meandering-river radar-patterns are characterized by high amplitude, continuous, dipping clinoforms. Braided-river radar facies, based on data collected on the Kicking Horse braidplain, are characterized by predominantly horizontally continuous reflections with few identifiable features. Based solely on GPR data, it was possible to distinguish between sediments of meandering and braided rivers. Analysis of over 95 km GPR data suggests that alluvial fan radar-reflection patterns are distinctly different from those observed in

  19. Mapeamento de áreas aluvionares no semiárido brasileiro por meio de dados colaterais e imagens orbitais Mapping alluvial areas in semi-arid region of Brazil through collateral data and satellite images

    Directory of Open Access Journals (Sweden)

    Helio L. Lopes


    Full Text Available A região semiárida do Brasil possui grande potencial para armazenamento de água em áreas aluvionares, podendo potencializar a pequena agricultura. Verifica-se a necessidade de uma metodologia para mapeamento dessas áreas, com o objetivo de futuros estudos in loco para implantação de barragens subterrâneas e manejo correto dos solos aluvionares. Neste sentido, objetivou-se a aplicação de imagens Landsat- Mapeador Temático 5 em conjunto com dados colaterais, como a rede de drenagem, mapa de classes de solo e mapa de relevo para auxiliar na classificação de terraços aluviais. Teve-se, como área de estudo, a bacia do Rio Pajeú, no sertão do estado de Pernambuco. Buscou-se também, por meio de dados SRTM (Shuttle Radar Topography Mission, a avaliação topográfica das áreas classificadas. Verifica-se que a utilização única de dados orbitais traz classificação incongruente mas com a inserção de dados colaterais é possível obter melhores resultados na classificação. A rede de drenagem é fundamental no mascaramento de classificações espúrias. Quando procede à análise topográfica por meio de dados do SRTM das áreas classificadas como terraços aluvionares, observa-se a inconsistência desses dados.The semi-arid region of Brazil has great potential for storing water in alluvial areas, and may give support to small-scale family farming. There is a need to establish a methodology for mapping these areas with the objective of future studies to implement underground dams and suitable management of the soils that occur on alluvial terraces. In this way, the aim of this study was to apply Landsat-Thematic Mapper images together with collateral data such as the drainage network, map of soil classes and elevation data to assist in the classification of alluvial terraces. The study area was Pajeú River basin located in the 'Caatinga' ecosystem of the Pernambuco state. Topographic assessment of the alluvial areas was done by

  20. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia (United States)

    Ulmishek, Gregory F.


    The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in

  1. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA


    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  2. A Defense-in-Depth Approach to Securing the Wireless Vehicle Infrastructure

    Directory of Open Access Journals (Sweden)

    Dennis K. Nilsson


    Full Text Available The automobile industry has grown to become an integral part of our everyday life. As vehicles evolve, the primarily mechanical solutions for vehicle control are gradually replaced by electronics and software solutions forming in-vehicle computer networks. An emerging trend is to introduce wireless technology in the vehicle domain by attaching a wireless gateway to the in-vehicle network. By allowing wireless communication, real-time information exchange between vehicles and between infrastructure and vehicles become reality. This communication allows for road condition reporting, decision making, and remote diagnostics and _rmware updates over-the-air. However, allowing external parties wireless access to the in-vehicle network creates a potential entry-point for cyber attackers. In this paper, we investigate the security issues of allowing external wireless communication. We use a defense-in-depth perspective and discuss security challenges and propose solutions for each of the prevention, detection, de_ection, and forensics approaches. We stress the important need for applying security using the defense-in-depth principle.

  3. Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns. (United States)

    Pepe, Alberto; Rodriguez, Marko A


    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research centerin the development and application of wireless and sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers' propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  4. Security Risk Minimization for Desktop and Mobile Software Systems. An In-Depth Analysis

    Directory of Open Access Journals (Sweden)

    Florina Camelia PUICAN


    Full Text Available In an extremely rapid growing industry such as the information technology nowadays, continuous and efficient workflows need to be established within any integrated enterprise or consumer software system. Taking into consideration the actual trend of data and information migrating to mobile devices, which have became more than just simple gadgets, the security threats and vulnerabilities of software products have created a new playground for attackers, especially when the system offers cross-platform (desktop and mobile functionalities and applicability. In this context, the paper proposes an in depth analysis over some of the weaknesses software systems present, providing also a set of solutions for minimizing and mitigating the risks of any solution, be it mobile or desktop. Subsequently, even though consumer and enterprise systems have fundamentally different structures and architectures (due to the different needs of the end user, data loss or information leakage may and will affect any type of machine if proper securization of the systems is not taken into consideration, therefore risk minimization through an in-depth analysis of any integrated software system becomes mandatory and needs extensive care.

  5. Practical In-Depth Analysis of IDS Alerts for Tracing and Identifying Potential Attackers on Darknet

    Directory of Open Access Journals (Sweden)

    Jungsuk Song


    Full Text Available The darknet (i.e., a set of unused IP addresses is a very useful solution for observing the global trends of cyber threats and analyzing attack activities on the Internet. Since the darknet is not connected with real systems, in most cases, the incoming packets on the darknet (‘the darknet traffic’ do not contain a payload. This means that we are unable to get real malware from the darknet traffic. This situation makes it difficult for security experts (e.g., academic researchers, engineers, operators, etc. to identify whether the source hosts of the darknet traffic are infected by real malware or not. In this paper, we present the overall procedure of the in-depth analysis between the darknet traffic and IDS alerts using real data collected at the Science and Technology Cyber Security Center (S&T CSC in Korea and provide the detailed in-depth analysis results. The ultimate goal of this paper is to provide practical experience, insight and know-how to security experts so that they are able to identify and trace the root cause of the darknet traffic. The experimental results show that correlation analysis between the darknet traffic and IDS alerts is very useful to discover potential attack hosts, especially internal hosts, and to find out what kinds of malware infected them.

  6. In-depth micro-spectrochemical analysis of archaeological Egyptian pottery shards (United States)

    Khedr, A.; Harith, M. A.


    Old Egyptian pottery samples have been in-depth microchemically analyzed using laser induced breakdown spectroscopy (LIBS), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. Samples from two different ancient Islamic eras, Mamluk (1250-1517 AD), Fatimid (969-1169 AD) in addition to samples from the Roman period (30 BC-395 AD) were investigated. LIBS provided the analytical data necessary to study in micrometric steps the depth profiling of various elements in each sample. Common elements such as silicon, calcium, and aluminum relevant to the originally manufactured and processed clay, showed up in all the investigated samples. EDX and XRD techniques that have been used in the present work provided important chemical insight about the structure of the samples. The obtained analytical results demonstrated the possibility of using LIBS technique in performing in situ spectrochemical analysis of archaeological pottery. This leads to fast in-depth spatial characterization of the samples in the micron range with nearly invisible surface destructive effects. There is no doubt that this can help in restoration and conservation of such precious objects.

  7. An in-depth analysis of theoretical frameworks for the study of care coordination

    Directory of Open Access Journals (Sweden)

    Sabine Van Houdt


    Full Text Available Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods: We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination.Results: Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(interorganizational outcome’.Conclusion: These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive.

  8. In-depth characterisation of the lamb meat proteome from longissimus lumborum

    Directory of Open Access Journals (Sweden)

    Tzer-Yang Yu


    Full Text Available Lamb is one of the major red meats consumed globally, both as a key component in the diet of some countries, and as a niche meat product in others. Despite this relatively wide consumption, an in-depth description of the global protein composition of lamb has not been reported. In this study, we investigated the proteome of the 48 h post-mortem lamb longissimus lumborum through separation of the samples into sarcoplasmic, myofibrillar and insoluble fractions, followed by an in-depth shotgun proteomic evaluation and bioinformatic analysis. As a result, 388 ovine-specific proteins were identified and characterised. The 207 proteins found in the sarcoplasmic fraction were dominated by glycolytic enzymes and mitochondrial proteins. This fraction also contained several sarcomeric proteins, e.g., myosin light chains and titin. Some of them might be the degradation products from the post-mortem proteolysis. Actin, myosin and tropomyosin were abundant in the myofibrillar fraction while nebulin and titin were also present. Collagen type I, III and IV were found in the insoluble fraction but there were also sequences from myosin and titin. The present study also confirms the existence of at least 300 predicted protein sequences obtained from the latest issue of the sheep genome (version 3 with high confidence.

  9. An in-depth analysis of theoretical frameworks for the study of care coordination

    Directory of Open Access Journals (Sweden)

    Sabine Van Houdt


    Full Text Available Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods: We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination. Results: Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(interorganizational outcome’. Conclusion: These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive.

  10. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM (United States)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne


    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  11. Comparison between Bessel and Gaussian beam propagation for in-depth optogenetic stimulation (United States)

    Tejeda, Hector; Li, Ting; Mohanty, Samarendra


    Optogenetics technology has opened new landscapes for neuroscience research. Due to its non-diffracting and selfhealing nature, Bessel beam has potential to improve in-depth optogenetic stimulation. A detailed understanding of Bessel beam propagation, as well as its superiority over commonly used Gaussian beam, is essential for delivery and control of light irradiation for optogenetics and other light stimulation approaches. We developed an algorithm for modeling Bessel beam propagation and then compared both beam propagations in two-layered mice brain under variance of multiple variables (i.e., wavelength, numerical aperture, and beam size). These simulations show that Bessel beam is significantly advantageous over Gaussian beam for in-depth optogenetic stimulation, leading to development of lessinvasive probes. While experimental measurements using single-photon Bessel-Gauss beam generated by axicon-tip fiber did not show improved stimulation-depth, near-infrared Bessel beam generated using free-space optics and an axicon led to better penetration than near-infrared Gaussian beam.

  12. Tulare Basin protection plan (United States)

    US Fish and Wildlife Service, Department of the Interior — The Tulare Basin Protection Plan has been initiated by The Nature Conservancy to elucidate the problems and opportunities of natural diversity protection....

  13. Mitigation : Closed Basin Project (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program. A...

  14. California Air Basins (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  15. Watershed Planning Basins (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  16. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.


    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  17. K Basins Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    WEBB, R.H.


    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  18. Modelling the Holocene Evolution of a Drift-dominated Alluvial-fan Coast (United States)

    Hicks, M.; Dickson, M.; Coco, G.


    A numerical model is being developed to simulate shore evolution along an alluvial fan coast over the Holocene. The alluvial fan of the Waitaki River, on the east coast of New Zealand's South Island, was built by Pleistocene glacial advances but has been eroded back by waves over recent millennia. The retreat has left a cliffed shore fronted by a narrow beach of mixed sand and gravel and a gently sloping seabed with only a thin, patchy sand cover over the Pleistocene substrate. The study motivation is to examine the sensitivity of shoreline movements in this setting to wave-climate change, sea-level rise, and river sediment supplies. The modelling couples a profile evolution model with a shoreline model. The profile evolution model is operational and is driven by a series of coupled process models which include seabed scour, berm construction during normal waves, berm overtopping and subsequent beach-stripping and scour of the exposed substrate and cliff-toe notching by storm waves, gravity failure of the cliffs and talus construction, and beach sediment abrasion. Negative feedback regulates the rate of cliff erosion through the protection provided by the new material added into the beach from the eroding cliffs and substrate. The model is forced by two wave conditions: a normal swell and a randomly-varying storm wave. These operate for proportions of the yearly time step. The model was begun on a sloping fan surface inundated by the last stages of post-glacial sea-level rise (8000 yr BP). The initial response is for rapid growth of a gravel beach ridge fed by wave-excavation of the nearshore. As the nearshore profile nears equilibrium with the wave climate, the onshore feed wanes below the abrasion rate and the beach ridge loses volume. As sea level rises the beach ridge moves upward and landward, but its capacity to do so is limited by the rate of sediment feed from the nearshore. When the beach size reduces to a threshold at which storm waves periodically

  19. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona (United States)

    Pool, D.R.


    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  20. Assessment of spatial flow patterns in unsaturated sandy alluvial sediments using high- resolution GPR. (United States)

    Haarder, E. B.; Looms, M. C.; Nielsen, L.; Jensen, K. H.


    Traditional sampling and monitoring techniques have inherent limitations in capturing the detailed spatial patterns of water flow in the unsaturated zone particularly for complex flow conditions such as unstable wetting fronts or preferential flow. Dye tracer experiments can help visualise the dynamics of water flow but they are highly destructive as well. High-resolution Ground Penetrating Radar (GPR) is an attractive technique for non-destructive mapping of soil moisture changes and thus flow patterns in the shallow subsurface. In this study we test the method at a field site in western Denmark developed on a sandy alluvial outwash plane. We compare high-resolution reflection GPR data with visual observations from a dye tracer experiment using Brilliant Blue (BB). 100 mm of BB-stained water was infiltrated over a 5x5 m area and 3D reflection GPR data sets using high-frequency antennae were collected before and after infiltration. Subsequently a 2 m deep trench was excavated for visual observations of the flow patterns in a cross-section as evidenced by the dye staining patterns. The dye infiltration experiment had an overall attenuating effect on the GPR signal, and reflections were delayed significantly because of the increase in soil moisture. In the excavated cross-section we found a reasonable agreement between the areas subject to attenuation of the GPR signal and the areas affected by dye. Also, we found that displacement flow was responsible for a delay of deeper reflections below the extend of the dye staining. An amplitude analysis performed for a shallow 1.3 m thick section shows a general decrease in electromagnetic wave amplitude within the region bounded by the area exposed to infiltration, but also suggests that lateral flow along sedimentary boundaries occurs. The results suggest that high-resolution GPR provides important insight into the spatial patterns of unsaturated flow and highlight the applicability of this method as a non-destructive means

  1. Physical context for theoretical approaches to sediment transport magnitude-frequency analysis in alluvial channels (United States)

    Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian


    Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.

  2. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality (United States)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.


    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  3. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.


    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  4. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river (United States)

    Konsoer, Kory M.; Rhoads, Bruce L.; Langendoen, Eddy J.; Best, James L.; Ursic, Mick E.; Abad, Jorge D.; Garcia, Marcelo H.


    Spatial heterogeneity in the erosion-resistance properties of the channel banks and floodplains associated with sediment characteristics, vegetation, or bedrock can have a substantial influence on the morphodynamics of meandering rivers, resulting in highly variable rates of bank erosion and complex patterns of planform evolution. Although past studies have examined the spatial variability in bank erodibility within small rivers, this aspect of the erosion-resistance properties for large rivers remains poorly understood. Furthermore, with the exception of recent numerical modeling that incorporates stochastic variability of floodplain erosional resistance, most models of meandering river dynamics have assumed uniform erodibility of the bank and floodplain materials. The present paper investigates the lateral and vertical heterogeneity in bank material properties and riparian vegetation within two elongate meander loops on a large mixed bedrock-alluvial river using several geotechnical field and laboratory methods. Additionally, the bank stability and toe-erosion numerical model (BSTEM) and repeat terrestrial LiDAR surveys are used to evaluate the capacity of the bank material properties to modify the rates and mechanisms of bank retreat. Results show that the textural properties of the bank materials, soil cohesion, and critical shear stress necessary for sediment entrainment differ substantially between the two bends and are also highly variable within each bend - laterally and vertically. Trees growing along the banks increase the resistance to erosion by contributing to the shear strength of the bank materials and are capable of increasing bank stability along a large river. Locally outcropping bedrock also influences bank erodibility in both bends. The results of this study demonstrate that spatial variability in the erosion-resistance properties of the channel banks is an important factor contributing to spatial variability in the rates and mechanisms of bank


    Directory of Open Access Journals (Sweden)

    Marijana PEŠAKOVIĆ


    Full Text Available The influence of different NPK fertilizer rates on the developement of the saprophytic fungi of the alluvial soil planted with plum culture has been studied over the three-year period (2003 – 2005. The trial was set up in the experimental plum orchard established by Fruit Research Institute Čačak (Serbia and at the laboratory of Department of Microbiology, Faculty of Agronomy Čačak (Serbia. The soil was treated with 8:16:24 + 3% of MgO mineral fertilizer in the following treatment variants: variant N1 – 400 kgha-1; variant N2 – 600 kgha-1; variant N3 – 800 kgha-1 and variant N4 –1000 kgha-1, all treatment variants being applied in three replications. Unfertilized soil served as the control. The size of the trial plot was 68 m2. The effect of the studied mineral fertilizer rates was determined three times over the growing season. It was checked by identification of the number of saprophytic fungi by the indirect rarefaction method on Czapek nutritive medium. The results of the study suggested that the number of the saprophytic fungi varied by different fertilizer rates, periods of sampling and years of study. The application of fertilizers brought about increase in the number of the saprophytic fungi. Of all studied treatment variants, the one with highest nitrogen rate (variant N4 exhibited the strongest effect. The influence of the applied fertilizer was highest over the third sampling period. Furthermore, the effect thereof was highest in 2003. The application of 600 kgha-1 of mineral fertilizer resulted in the highest plum yield.

  6. Probability distribution functions of turbulence in seepage-affected alluvial channel (United States)

    Sharma, Anurag; Kumar, Bimlesh


    The present experimental study is carried out on the probability distribution functions (PDFs) of turbulent flow characteristics within near-bed-surface and away-from-bed surfaces for both no seepage and seepage flow. Laboratory experiments were conducted in the plane sand bed for no seepage (NS), 10% seepage (10%S) and 15% seepage (15%) cases. The experimental calculation of the PDFs of turbulent parameters such as Reynolds shear stress, velocity fluctuations, and bursting events is compared with theoretical expression obtained by Gram-Charlier (GC)-based exponential distribution. Experimental observations follow the computed PDF distributions for both no seepage and seepage cases. Jensen-Shannon divergence (JSD) method is used to measure the similarity between theoretical and experimental PDFs. The value of JSD for PDFs of velocity fluctuation lies between 0.0005 to 0.003 while the JSD value for PDFs of Reynolds shear stress varies between 0.001 to 0.006. Even with the application of seepage, the PDF distribution of bursting events, sweeps and ejections are well characterized by the exponential distribution of the GC series, except that a slight deflection of inward and outward interactions is observed which may be due to weaker events. The value of JSD for outward and inward interactions ranges from 0.0013 to 0.032, while the JSD value for sweep and ejection events varies between 0.0001 to 0.0025. The theoretical expression for the PDF of turbulent intensity is developed in the present study, which agrees well with the experimental observations and JSD lies between 0.007 and 0.015. The work presented is potentially applicable to the probability distribution of mobile-bed sediments in seepage-affected alluvial channels typically characterized by the various turbulent parameters. The purpose of PDF estimation from experimental data is that it provides a complete numerical description in the areas of turbulent flow either at a single or finite number of points.

  7. Breeding birds in managed forests on public conservation lands in the Mississippi Alluvial Valley (United States)

    Twedt, Daniel J.; Wilson, R. Randy


    Managers of public conservation lands in the Mississippi Alluvial Valley have implemented forest management strategies to improve bottomland hardwood habitat for target wildlife species. Through implementation of various silvicultural practices, forest managers have sought to attain forest structural conditions (e.g., canopy cover, basal area, etc.) within values postulated to benefit wildlife. We evaluated data from point count surveys of breeding birds on 180 silviculturally treated stands (1049 counts) that ranged from 1 to 20 years post-treatment and 134 control stands (676 counts) that had not been harvested for >20 years. Birds detected during 10-min counts were recorded within four distance classes and three time intervals. Avian diversity was greater on treated stands than on unharvested stands. Of 42 commonly detected species, six species including Prothonotary Warbler (Prothonotaria citrea) and Acadian Flycatcher (Empidonax virescens) were indicative of control stands. Similarly, six species including Indigo Bunting (Passerina cyanea) and Yellow-breasted Chat (Icteria virens) were indicative of treated stands. Using a removal model to assess probability of detection, we evaluated occupancy of bottomland forests at two spatial scales (stands and points within occupied stands). Wildlife-forestry treatment improved predictive models of species occupancy for 18 species. We found years post treatment (range = 1–20), total basal area, and overstory canopy were important species-specific predictors of occupancy, whereas variability in basal area was not. In addition, we used a removal model to estimate species-specific probability of availability for detection, and a distance model to estimate effective detection radius. We used these two estimated parameters to derive species densities and 95% confidence intervals for treated and unharvested stands. Avian densities differed between treated and control stands for 16 species, but only Common Yellowthroat

  8. Analysis of cutin and suberin biomarker patterns in alluvial sedi-ments (United States)

    Herschbach, Jennifer; Sesterheim, Anna; König, Frauke; Fuchs, Elmar


    Cutin and suberin are the primary source of hydrolysable aliphatic lipid polyesters in soil organic matter (SOM). They are known as geochemical biomarkers to estimate the contribution of different plant species and tissues to SOM. Despite their potential as biomarkers, cutin and suberin have received less attention as flood plain sediment biomarkers. The objectives of this study were to investigate the efficiency of cutin and suberin as biomarkers in floodplains. Therefore similarities between the lipid pattern in alluvial sediments and in the actual vegetation were considered. Lipids of plant tissues (roots, twigs, leaves) from different species (reed (e.g. Phalaris arun-diacea), Salix alba, Ulmus laevis and grassland (e.g. Carex spec.)) and of the un-derlying soils and sediments were obtained and investigated at four sites in the nature reserve Knoblauchsaue (Hessen, Germany). The four sampling sites differ not only with respect to their vegetation, but also within their distance to the river Rhine. Cutin and suberin monomers of plants and soils were analysed by alkaline hydrolysis, methylation and acetylation and subsequent gas chromatography-mass spectrometry. Resulting lipid patterns were specific for the appropriate plant species and tissues. However, the traceability of single selected lipids was decreasing alongside the soil profile, with the exception of monomers in softwood floodplain soils. Selected tissue specific lipid ratios showed a higher traceability due to strong attributions of lipid ratios in soils and roots of U. laevis and Carex spec. and in leaves of U. laevis and S. alba. In contrast, there was no accordance between the suberin specific lipid ratios in soils and roots of S. alba and P. arundiacea. The most robust interpretations were afforded when a set of multiple biomarkers (i.e. a combination of free lipid ratios and ratios of hydrolysable lipids) was used to collectively reconstruct the source vegetation of different sediment layers.

  9. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    Energy Technology Data Exchange (ETDEWEB)

    Flores, R.M. (US Geological Survey, Denver, CO (United States). Denver Federal Center)


    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favoured by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic raised swamps of the Baram and Mahakam Rivers of Borneo. 32 refs., 19 figs., 1 tab.

  10. Rift border system: The interplay between tectonics and sedimentation in the Reconcavo basin, northeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Magnavita, L.P.; Silva, T.F. da [Petrobras/E & P - BA, Bahia (Brazil)


    A geometric and depositional model is proposed to explain the tectonic and sedimentary evolution of the main border of the Reconcavo basin. The architecture of the rift margin is characterized by a rift border system constituted by (1) a master fault, (2) a step, and (3) a clastic wedge. This footwall-derived clastic wedge is interpreted as alluvial fans and fan deltas composed of conglomerates that interfinger with hanging-wall strata. The analysis of the vertical distribution of coarse-grained components of this wedge suggests that its composition is geographically controlled, and no regular inverted stratigraphy is commonly described for this type of succession. During an initial lacustrine phase, turbidites accumulated farther from and parallel to the rift margin. The mapping of marker beds that bound these lacustrine turbidite deposits may be used to infer major periods of clastic influx and, therefore, to correlate with periods of fault-related subsidence or climatic fluctuations in the depositional basin and erosion of the sediment source area. Periods of limited back-faulting and basin expansion toward the main border are distinguished through patterns of progradation and aggradation indicating progressive retreat of the rift border and younging; in the footwall direction. The overall evolution of the rift border seems to be related to extension, block rotation, hanging-wall subsidence, and footwall uplift associated with the initial master fault, with limited propagation of faults away from the basin into the footwall.


    Directory of Open Access Journals (Sweden)



    Full Text Available The Guadalquivir foreland basin, located between the Iberian basement northward and the Betic orogen to the South, represents the western sector of the earlier foredeep basin of the Betic Cordillera. Along the northern foreland margin, the sedimentary fill of this basin includes a Tortonian Basal Transgressive Complex (BTC, composed of five internal sequences bounded by transgressive surfaces. Two main parts are distinguished within each sequence: the lower transgressive lag deposits, and the upper stillstand/prograding sediments. Three facies associations were distinguished within this stratigraphic succession along the central sector of this basin margin: unfossiliferous conglomerates and coarse-grained sands (A, fossiliferous conglomerates and coarse-grained sands (B, and yellow medium-coarse-grained fossiliferous sands (C. A fourth facies association (D: blue silty marlstones and shales overlies the BTC. Deposits of alluvial sediments (facies association A and shallow-marine/foreshore sediments (facies association C, were recurrently interrupted by transgressive pulses (facies associations B and C. Every pulse is recorded by an erosional, cemented sandy-conglomerate bar with bivalves (Ostreidae, Isognomon, balanids, gastropods and other marine bioclasts; or their transgressive equivalents. The lateral facies changes in each individual sequence of the BTC are related to: (1 the influence on the northern foreland margin of the tectonic activity of the southern orogenic margin; (2 the palaeorelief formed by irregularities of the substrate which controls the sediment dispersal; and (3 the evolution stages of the sedimentary systems. 

  12. The association of land cover with aeolian sediment production at Jornada Basin, New Mexico, USA (United States)

    Floyd, Kevin W.; Gill, Thomas E.


    We investigated amounts and particle size distributions (PSDs) of aeolian sediments collected at five heights in five ecosystem types at the Jornada Basin, Chihuahuan Desert, New Mexico, USA. Particle size distributions, mass fluxes, and percent of dust-sized (⩽50 μm) mass flux were determined for all heights and all ecosystem types. Differences between sites were determined using ANOVA followed by Tukey-Kramer post hoc tests to find groupings. For creosote shrublands, grasslands, and two tarbush-dominated alluvial flats, samples collected at 5, 10, and 20 cm had >80% sand-sized (>50 μm) particles, while one playa and tarbush site yielded ˜45% dust-sized particles at 5 and 10 cm. The transition from saltation to suspension was ˜20 cm for most sites. Two mesquite dune sites and an anthropogenically devegetated site, all with high overall mass fluxes, shifted to suspension at ˜50 cm. Highest dust fluxes occurred at the devegetated site, followed by the playa, a mesquite site with unvegetated "streets," and tarbush sites. These field observations are consistent with laboratory-based dust emission experiments and remote sensing studies in the Chihuahuan Desert. Playas and tarbush sites are major dust producers due to high proportions of fines, whereas the mesquite site produces much dust because of greater overall mass flux. Mesquite dunes covering most of the basin likely produce the most dust overall, though playas and tarbush-dominated alluvial flats (which cover about 8%) can emit large amounts of dust. Continuing shrubland encroachment will likely increase dust emissions from the Jornada Basin, as well as in other arid regions.

  13. The Aquitaine basin

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, J.-J.; Le Marrec, A.; Le Vot, M.; Masset, J.-M.


    The Aquitaine Basin is located in the southwest of France, between the Gironde Arch in the north and the Pyrenean Mountain Chain in the south. It is a triangular-shaped domain, extending over 35000km{sup 2}. From north to south, six main geological provinces can be identified: (1) the Medoc Platform located south of the Gironde Arch; (2) the Parentis sub-basin; (3) the Landes Saddle; (4) the North Aquitaine Platform; (5) the foreland of the Pyrenees (also known as the Adour, Arzacq and Comminges sub-basins); and (6) the Pyrenean fold-and-thrust belt. Only the Parentis sub-basin, the foreland of the Pyrenean Chain and a minor part of the fold-and-thrust belt itself are proven hydrocarbon provinces. The Aquitaine Basin, in turn, is subdivided into four sub-basins - the Parentis, Adour-Arzacq, Tarbes and Comminges areas. The lozenge shape of these depocentres is related to the Hercynian tectonic framework of the Palaeozoic basement, reactivated during Early Cretaceous rifting. This rift phase aborted at the end of the Albian (prior to the development of an oceanic crust) in response to the beginning of the subduction of the Iberian plate under the European plate. During the Upper Cretaceous, continued subduction led to the creation of northwards-migrating flexural basins. In the Eocene, a paroxysmal phase of compression was responsible for the uplift of the Pyrenean Mountain Chain and for the thin-skinned deformation of the foreland basin. The resulting structuration is limited to the south by the internal core of the chain and to the north by the leading edge of the fold-and-thrust belt, where the Lacq and Meillon gas fields are located. Four main petroleum provinces have been exploited since the Second World War: (1) the oil-prone Parentis sub-basin and (2) salt ridges surrounding the Arzacq and Tarbes sub-basins; and (3) the gas-prone southern Arzacq sub-basin (including the external Pyrenean fold-and-thrust belt and the proximal foreland sub-basin) and (4

  14. Pliocene and Quaternary Deposits in the Northern Part of the San Juan Basin in Southwestern Colorado and Northwestern New Mexico (United States)

    Scott, Glenn R.; Moore, David W.


    Unconsolidated late Cenozoic deposits in the northern part of the San Juan Basin range in age from late Pliocene to Holocene. Most of the deposits are alluvial gravel composed of resistant quartzite, sandstone, and igneous, metamorphic, and volcanic rocks derived from the uplifted central core of the San Juan Mountains 20-50 miles (32-80 kilometers) north of the basin. Alluvial deposits are most voluminous in the Animas Valley, but deposits of gravel of the same general age are present in the La Plata, Florida, Los Pinos, and Piedra River valleys as well. Alluvial gravel forms tabular deposits, generally about 20 feet (6 meters) thick, that are exposed beneath a sequence of terraces at many levels above the rivers. Gravel layers 360 feet (110 meters) or less above the Animas River are glacial outwash. The gravel layers begin at the south toes of end moraines and extend discontinuously downvalley at least 10-20 miles (16-32 kilometers). Farther south, distinction between outwash and nonglacial alluvium is problematical. Alluvial gravel beneath higher terraces does not grade to end moraines. Glacial till forms a series of end moraines at the north edge of the town of Durango. The oldest moraines are farthest downvalley, are higher above the river, and have more mature surficial soils than do moraines farther north. The two youngest moraines, the Animas City moraines, are interpreted to be Pinedale in age. They have narrow, ridgelike crests and form nearly unbroken arcs across the valley floor. Small segments of still more weathered moraines, the Spring Creek moraines, are 170-230 feet (52-70 meters) above the river and are 660-990 feet (200-300 meters) farther downvalley. The oldest moraines, the Durango moraines, are on the north end of the unnamed mesa on which Fort Lewis College is located. The base is about 180 feet (55 meters) above the river. These oldest moraines may be of Bull Lake age. Alluvial fans, pediment gravel, and landslides are scattered at several

  15. Ground-Water Resource Assessment in the Rio Grande de Manati Alluvial Plain, Rio Arriba Saliente Area, Puerto Rico (United States)

    Torres-Gonzalez, Sigfredo; Gómez-Gómez, Fernando; Warne, Andrew G.


    The alluvial aquifer within a 160-acre area of the Rio Grande de Manati alluvial plain was investigated to evaluate its potential as a water-supply source for the Barrios Rio Arriba Saliente and Pugnado Afuera, municipio of Manati, Puerto Rico. Analysis of well boring samples and the results of electric resistivity surveys indicate that the average thickness of the unconsolidated alluvial deposits in the study area is about 100 to 110 feet. The alluvium is a mixture of sand and gravel, which generally has a porosity of 0.2 to 0.35. Short-duration pump tests in small-diameter piezometers indicate that the alluvial aquifer has a hydraulic conductivity of about 200 feet per day and a transmissivity of about 7,900 feet squared per day. Analyses of water levels in piezometers, combined with stage measurements at a series of surveyed reference points along the Rio Grande de Manati channel, indicate that the water-table gradient in the alluvial aquifer is about 0.001, and that ground-water flow is generally from south to north, in the general direction of river flow. The water-table data indicate that the Rio Grande de Manati is the principal source of ground-water recharge to the alluvial aquifer in the study area. Because base flow for the Rio Grande de Manati is usually greater than 44 cubic feet per second, a continuous withdrawal rate of 0.5 to 1.0 cubic foot per second (225 to 450 gallons per minute) from a production well is possible. Chemical analysis of a ground-water sample indicates that the alluvial aquifer water meets U.S. Environmental Protection Agency secondary standards for selected constituents. Bacteriological analysis of ground-water samples indicates that the ground water contains little or no fecal coliform or fecal streptococcus bacteria. Although long-term data from upstream of the study area indicate high levels of fecal coliform and fecal streptococcus prior to 1996, bacteriological analyses of Rio Grande de Manati water samples obtained during

  16. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada (United States)

    Lopes, Thomas J.; Allander, Kip K.


    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline

  17. From Flysch to Molasse-Sedimentary and Tectonic Evolution of Late Caledonian-Early Hercynian Foreland Basin in North Qilian Mountains

    Institute of Scientific and Technical Information of China (English)


    The Late Caledonian to Early Hercynian North Qilian orogenic belt in northwestern China is an elongate tectonic unit situated between the North China plate in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to Late Silurian shallow marine to tidal flat deposits and the Early and Middle Devonian terrestrial molasse are developed along the corridor Nanshan. The shallowing-upward succession from subabyssal flysch, shallow marine, tidal flat to terrestrial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stage during the Silurian and Devonian time.

  18. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi


    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  19. Defense-in-depth approach against a beyond design basis event

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, H., E-mail: [GE Hitachi Nuclear Energy, 1989 Little Orchard St., 95125 San Jose, California (United States)


    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  20. Impact of in-depth interviews on the interviewer: roller coaster ride. (United States)

    Beale, Barbara; Cole, Rose; Hillege, Sharon; McMaster, Rose; Nagy, Sue


    The authors investigated the experiences of parents with children/adult children in metropolitan Sydney, Australia who were living with, or had recovered from, an eating disorder. During regular team meetings, the research assistant who conducted the interviews had described her reactions which led the research team to investigate her experience in more depth. The aim of the present paper was to explore the impact on the research assistant who conducted 22 in-depth interviews with the parents. One of the members of the research team interviewed the research assistant to elicit her reactions. The interview was content analyzed and the following themes were identified: (i). appreciation of an egalitarian model of research; (ii). the emotions expressed by the research assistant; (iii). making sense of the inexplicable and (iv). reflections and comparison to her own life role. The research team would like to advance the theory that the adoption of a formal debriefing mechanism be integrated into the qualitative research process.

  1. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. (United States)

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Hübner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J R; Guryev, Victor


    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.

  2. In-depth Evaluation of Content-Based Phishing Detection to Clarify Its Strengths and Limitations (United States)

    Komiyama, Koichiro; Seko, Toshinori; Ichinose, Yusuke; Kato, Kei; Kawano, Kohei; Yoshiura, Hiroshi

    Zhang et al. proposed a method for content-based phishing detection (CBD) and reported its high performance in detecting phishing sites written in English. However, the evaluations of the CBD method performed by Zhang et al. and others were small-scale and simply measured the detection and error rates, i.e, they did not analyze the causes of the detection errors. Moreover, the effectiveness of the CBD method with non-English sites, such as Japanese and Chinese language sites, has never been tested. This paper reports our in-depth evaluation and analysis of the CBD method using 843 actual phishing sites (including 475 English and 368 Japanese sites), and explains both the strengths of the CBD method and its limitations. Our work provides a base for using the CBD method in the real world.

  3. Modeling Safety Barriers and Defense in Depth with Mulitlevel Flow Modeling

    DEFF Research Database (Denmark)

    Lind, Morten


    The barrier concept plays a central role in designand operation of safety critical processes. In plant design barriers are provided as means of prevention to avoid critical process conditions which may be harmful to the environment. In plant operations barriers may beestablished and maintained...... through control actions in order to limit the consequences of critical plant events. The barrier concept has had a significant practical value for industry by guiding the design thinking of safety engineers. The provision of material barriers preventing the release of radioactive materials from...... the reactor core to the environment is accordingly a basic principle of nuclear safety design. The application of barriers is furthermore an integral part of the defence in depth principle applied by nuclear industry. Here several barriers are combined with reliability techniques such as redundancy...

  4. Configuration of Risk Monitor System by PLant Defense-In.Depth Monitor and Relability Monitor

    DEFF Research Database (Denmark)

    Yoshikawa, Hidekazu; Lind, Morten; Yang, Ming;


    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability...... monitor derived from the four aspects of (i) design principle of nuclear safety to realize DiD concept, (ii) definition of risk and risk to be monitored, (iii) severe accident phenomena as major risk, (iv) scheme of risk ranking, and (v) dynamic risk display. In this paper, the overall frame...... of the proposed frame on risk monitor system is summarized and the detailed discussion is made on the definitions of major terminologies of risk, risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor and its example...

  5. Probing multifractality in depth-resolved refractive index fluctuations in biological tissues using backscattering spectral interferometry (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, P. K.; Ghosh, Nirmalya


    Fourier domain low coherence interferometry is a promising method for quantification of the depth distribution of the refractive index in a layered scattering medium such as biological tissue. Here, we have explored backscattering spectral interferometric measurement in combination with multifractal detrended fluctuation analysis to probe and quantify multifractality in depth distribution of the refractive index in tissue. The depth resolution of the experimental system was validated on model systems comprising of polystyrene microspheres and mica sheet, and was initially tested on turbid collagen layer, the main building blocks of the connective tissue. Following successful evaluation, the method was applied on ex vivo tissues of human cervix. The derived multifractal parameters of depth-resolved index fluctuations of tissue, namely, the generalized Hurst exponent and the width of the singularity spectrum showed interesting differences between tissues having different grades of precancers. The depth-resolved index fluctuations exhibited stronger multifractality with increasing pathological grades, demonstrating its promise as a potential biomarker for precancer detection.


    Institute of Scientific and Technical Information of China (English)

    Andreas MALCHEREK


    Due to centrifugal forces in a bend secondary currents perpendicular to the main flow are generated.Because they can be the reason for important bed forming processes such as meandering they have to be taken into account in morphodynamic simulations. Their influence on the bed shear stress is proportional to the ratio of water depth and curve radius. The latter one is a curve parameter and is not defined in 2D digital terrain models. This paper presents a new formulation for the bed shear stress which takes into account the influence of secondary currents in depth averaged simulations without using the curve radius.The new formulation is applied to a morphodynamic model of the Weser estuary located in Northern Germany. Its capability to simulate the deflection of the bed shear stress in bends is shown.Because of the smoothness of the curves in the Weser no significant differences in the bed evolutioncan be seen in this case.

  7. Synchronized audio-visual transients drive efficient visual search for motion-in-depth.

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    Full Text Available In natural audio-visual environments, a change in depth is usually correlated with a change in loudness. In the present study, we investigated whether correlating changes in disparity and loudness would provide a functional advantage in binding disparity and sound amplitude in a visual search paradigm. To test this hypothesis, we used a method similar to that used by van der Burg et al. to show that non-spatial transient (square-wave modulations of loudness can drastically improve spatial visual search for a correlated luminance modulation. We used dynamic random-dot stereogram displays to produce pure disparity modulations. Target and distractors were small disparity-defined squares (either 6 or 10 in total. Each square moved back and forth in depth in front of the background plane at different phases. The target's depth modulation was synchronized with an amplitude-modulated auditory tone. Visual and auditory modulations were always congruent (both sine-wave or square-wave. In a speeded search task, five observers were asked to identify the target as quickly as possible. Results show a significant improvement in visual search times in the square-wave condition compared to the sine condition, suggesting that transient auditory information can efficiently drive visual search in the disparity domain. In a second experiment, participants performed the same task in the absence of sound and showed a clear set-size effect in both modulation conditions. In a third experiment, we correlated the sound with a distractor instead of the target. This produced longer search times, indicating that the correlation is not easily ignored.

  8. Segmentations of foreland belts and their tectonic mechanism in the Southwest Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    QU; Guosheng; LI; Yigang; LI; Yanfeng; J.; Canerot; CHEN; X


    Based on lots of field investigations and comprehensive interpretations of seismic profiles with outcrop cross-sections, this paper shows that the foreland belts surrounding the Southwest Tarim Foreland Basin have the regularity of segmentation along the strike of foreland belts. There are many thin-skinned thrusting systems thrusting from mountains to the basin and the arcuate back-thrusting systems to the mountains distributed at intervals in the front of West Kunlun-Pamir and Southern Tianshan. Between thrusting and back-thrusting systems, the strike-slip faults developed. The northeast uplifts and depressions of Southwest Tarim Basin correspond with the segmentation of foreland basin. The thin-skinned thrusting system is formed in the case that the thickness of sedimentary covers is less than 10 km in depth where the basement is an uplift belt in general. The back-thrusting systems and triangle zones are formed in the case that the thickness of sedimentary covers is larger than 8 km in depth where the basement is a depression zone. The main mechanics of segmentation of foreland basin are the difference of mountain uplift and deformation rate along the longitude of the mountains, the huge sedimentary rocks in different depression centers, the uplift belts and depression zones in the basement rocks, and multi-displaced weak layers in the foreland basin. The segmentation of Southwest Tarim Foreland Basin is due to the intra-plate deformation of re-orogenies of West Kunlun-Pamir and Southwest Tianshan and the co-related deformation between mountains and basement of basin since Neocene.

  9. Tectono-sedimentary evolution of an extensional basin revealed by a combined photo-geological and field-mapping approach. The Montefalco Basin (Northern Apennines, Italy) (United States)

    Bucci, Francesco; Mirabella, Francesco; Santangelo, Michele; Cardinali, Mauro; Guzzetti, Fausto


    Active extensional basins are important since their sedimentary infills and bounding tectonic structures provide: i) sinks with preservation potential for sedimentary and fossil records of past changes in climate and sediment/water supply, ii) information on the growth, activity, decay and death of normal faults, iii) vast economic reserves of hydrocarbons, water and minerals. Unfortunately, quaternary extensional basins, especially if located in humid and temperate climate environments, are often characterized by extensively cultivated areas, homogeneous terrains and quite flat morphologies. Furthermore, they commonly host human settlements, together with roads, economic and industrial infrastructures, with a consequent limited availability of good outcrops. Such a limitation can (often severely) hamper an adequate mapping of the sedimentary infill. Therefore alternative methodological approaches (such as aerial photographs interpretation, API) are needed to integrate heterogeneous and incomplete datasets. This contribution presents an updated photo-geological map of a Quaternary extensional basin in Central Italy, the Montefalco Basin. This basin developed in a continental environment characterized by clayey-sandy lacustrine and fluvial sequences (late Pliocene - early Pleistocene) underlying more recent coarse grained deposits related to alluvial fan environment (early-to-late Pleistocene) and younger palustrine deposits (late Pleistocene). Since the late Pleistocene, regional uplift and local tectonics led to the end of deposition in the Montefalco basin, which experienced a diffuse incision and the modification of the drainage network, in response to the W-to-E migration of active faulting and tectonic subsidence. The new photo-geological map represents an important improvement compared to the existing data, since it provides unprecedented and spatially distributed information on the geometry of the continental deposits and on the tectonic structures affecting

  10. Spatial variability of organochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yan; GAO Ru-tai; HUANG Yuan-fang; JIA Xiao-hong; JIANG Shu-ren


    The spatial variability in the concentrations of 1,2,3,4,5,6-hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) in surface soils was studied on the basis of the analysis of 131 soil samples collected from the surface layer (0-20 cm depth) of the alluvial region of Beijing, China. The concentrations of total HCHs (including α-, β-, γ-, and δ-isomers) and total DDTs (i ncluding p,p'-DDT, p,p'-DDD, p,p'-DDE, and o,p'-DDT) in the surface soils tested were in the range from nondetectable to 31.72 μg/kg dry soil, with a mean value of 0.91, and from nondetectable to 5910.83 μg/kg dry soil, with a mean value of 32.13,respectively. It was observed that concentrations of HCHs in all soil samples and concentrations of DDTs in 112 soil samples were much lower than the first grade (50 μg/kg) permitted in "Environment quality standard for soils in China (GB15618-1995)". This suggests that the pollution due to organochlorine pesticides was generally not significant in the farmland soils in the Beijing alluvial region. In this study, the spatial distribution and trend of HCHs and DDTs were analyzed using Geostatistical Analyst and GS+(513).Spatial distribution indicated how these pesticides had been applied in the past. Trend analysis showed that the concentrations of HCHs,DDTs, and their related metabolites followed an obvious distribution trend in the surface soils from the alluvial region of Beijing.

  11. Marine Ingressive Events Recorded in Epicontinental Sequences:Example from the Cretaceous Songliao Basin of NE China in Comparison with the Triassic Central Europe Basin of SW Germany

    Institute of Scientific and Technical Information of China (English)

    WANG Pujun; LIU Wanzhu; YIN Xiuzhen; SCHNEIDER Werner; MATTERN Frank


    Songliao Basin is filled predominantly with continental facies sediments including alluvial fan, fluvial plain, fan delta, lacustrine delta, shore - shallow lacustrine, beach salty flat, semi - deep to deep lacustrine, subaqueous gravity flow,lacustrine swamp and pyroclastic sediments. However, some event units were formed during lake - marine linking periods of the Mid - Cretaceous in the basin, which include black shales with high values for salinity (Sr/Ba) , alkalinity ( Ca + Mg)/(Si + Al) , reducibility (Ni + Zn)/Ga and sulfide sulfur as well as heavy isotopes. The Breitenholz -section to be represented for facies comparison with the Cretaceous evaporitic series in Northeast China is localized in Southwest Germany. Stratigraphically it belongs to the Crabfeld Formation of Keuper of the Germanic Triassic corresponding to Ladinian - Carnian of the international reference scale, and is generally called Lower Gipskeuper. The Germanic Triassic was deposited in the epicontinental (cratonic) central Europe Basin. It covered the area in between Great Britain, North Sea, Poland and Southern Germany. It is composed of cyclic deposits of multicolored mudstones, gypsum/anhydrite, and dolomite beds. The two cases of marine ingression - influenced sequences share some common features.

  12. Tectonic control on sediment sources in the Jaca basin (Middle and Upper Eocene of the South-Central Pyrenees) (United States)

    Roigé, Marta; Gómez-Gras, David; Remacha, Eduard; Daza, Raquel; Boya, Salvador


    The Eocene clastic systems of the Jaca foreland Basin (southern Pyrenees) allow us to identify changes in sediment composition through time. We provide new data on sediment composition and sources of the northern Jaca basin, whose stratigraphic evolution from Middle Lutetian deep-marine to Priabonian alluvial systems record a main reorganization in the active Pyrenean prowedge. Petrological analysis shows that the Banastón and the Lower Jaca turbidite systems (Middle-Upper Lutetian) were fed from an eastern source, which dominated during the sedimentation of the Hecho Group turbidites. In contrast, the upper part of the Jaca turbidite systems (Lutetian-Bartonian transition) records an increase in the number of subvolcanic rock and hybrid-sandstone fragments (intrabasinal and extrabasinal grains) being the first system clearly fed from the north. This change is interpreted as associated with an uplifting of the Eaux-Chaudes/Lakora thrust sheet in the northern Axial Zone. The Middle Bartonian Sabiñánigo sandstone derives from eastern and northeastern source areas. In contrast, the overlying Late Bartonian-Early Priabonian Atarés delta records sediment input from the east. The Santa Orosia alluvial system records a new distinct compositional change, with a very high content of hybrid-sandstone clasts from the Hecho Group, again from a northern provenance. Such cannibalized clasts were sourced from newly emerged areas of the hinterland, associated with the basement-involved Gavarnie thrust activity in the Axial Zone.

  13. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Tamara, E-mail:; Brkić, Željka; Larva, Ozren


    The Zagreb alluvial aquifer system is located in the southwest of the Pannonian Basin in the Sava Valley in Croatia. It is composed of Quaternary unconsolidated deposits and is highly utilised, primarily as a water supply for the more than one million inhabitants of the capital city of Croatia. To determine the origin and dynamics of the groundwater and to enhance the knowledge of groundwater flow and the interactions between the groundwater and surface water, extensive hydrogeological and hydrochemical investigations have been completed. The groundwater levels monitored in nested observation wells and the lithological profile indicate that the aquifer is a single hydrogeologic unit, but the geochemical characteristics of the aquifer indicate stratification. The weathering of carbonate and silicate minerals has an important role in groundwater chemistry, especially in the area where old meanders of the Sava River existed. Groundwater quality was observed to be better in the deeper parts of the aquifer than in the shallower parts. Furthermore, deterioration of the groundwater quality was observed in the area under the influence of the landfill. The stable isotopic composition of all sampled waters indicates meteoric origin. NETPATH-WIN was used to calculate the mixing proportions between initial waters (water from the Sava River and groundwater from “regional” flow) in the final water (groundwater sampled from observation wells). According to the results, the mixing proportions of “regional” flow and the river water depend on hydrological conditions, the duration of certain hydrological conditions and the vicinity of the Sava River. Moreover, although the aquifer system behaves as a single hydrogeologic unit from a hydraulic point of view, it still clearly demonstrates geochemical stratification, which could be a decisive factor in future utilisation strategies for the aquifer system. - Highlights: • The Zagreb aquifer is the largest utilised source of

  14. Delineation of alluvial fans from Digital Elevation Models with a GIS algorithm for the geomorphological mapping of the Earth and Mars (United States)

    Norini, Gianluca; Zuluaga, Maria Clara; Ortiz, Iris Jill; Aquino, Dakila T.; Lagmay, Alfredo Mahar F.


    Alluvial fans are prominent depositional geomorphic features present in nearly all global climates on Earth, and also found on Mars. In this study, we present a Geographic Information System (GIS) algorithm designed for the semi-automated detection of alluvial fans that are connected to their contributing upstream drainage network, from the analysis of Digital Elevation Models (DEMs). Through a combination of spatial analysis procedures, the GIS algorithm generates maps of alluvial fans and their upstream source drainage and watersheds. Tests of the algorithm in areas with well-known alluvial fans indicate that this new GIS procedure is capable of high-accuracy mapping of the fan apexes and correct delineation of fan deposits, in both arid and humid climates. Possible future applications of the GIS algorithm presented in this study include the systematic survey of alluvial fans at the local, regional and planetary scales, important for geologic hazard assessment, studies on the evolution of climate, analysis of continental sedimentary environments, understanding of the interplay between the endogenous dynamics and exogenous processes, and the evaluation of natural resources.

  15. Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona (United States)

    Hereford, R.; Thompson, K.S.; Burke, K.J.; Fairley, H.C.


    Bouldery debris fans and sandy alluvial terraces of the Colorado River developed contemporaneously during the late Holocene at the mouths of nine major tributaries in eastern Grand Canyon. The age of the debris fans and alluvial terraces contributes to understanding river hydraulics and to the history of human activity along the river, which has been concentrated on these surfaces for at least two to three millennia. Poorly sorted, coarse-grained debris-flow deposits of several ages are interbedded with, overlie, or are overlapped by three terrace-forming alluviums. The alluvial deposits are of three age groups: the striped alluvium, deposited from before 770 B.C. to about A.D. 300; the alluvium of Pueblo II age deposited from about A.D. 700 to 1200; and the alluvium of the upper mesquite terrace, deposited from about A.D. 1400 to 1880. Two elements define the geomorphology of a typical debris fan: the large, inactive surface of the fan and a smaller, entrenched, active debris-flow channel and fan that is about one-sixth the area of the inactive fan. The inactive fan is segmented into at least three surfaces with distinctive weathering characteristics. These surfaces are conformable with underlying debris-flow deposits that date from before 770 B.C. to around A.D. 660, A.D. 660 to before A.D. 1200, and from A.D. 1200 to slightly before 1890, respectively, based on late-19th-century photographs, radiocarbon and archaeologic dating of the three stratigraphically related alluviums, and radiocarbon dating of fine-grained debris-flow deposits. These debris flows aggraded the fans in at least three stages beginning about 2.8 ka, if not earlier in the late Holocene. Several main-stem floods eroded the margin of the segmented fans, reducing fan symmetry. The entrenched, active debris-flow channels contain deposits debris fans at the mouth of the channel adjacent to the river. Early and middle Holocene debris-flow and alluvial deposits have not been recognized, as they were

  16. Using Synthetic Aperture Radar data of terrestrial analogs to test for alluvial fan formation mechanisms on Titan (United States)

    Cartwright, R. J.; Burr, D. M.


    Landforms on Titan include features hypothesized to be alluvial fans. Terrestrial alluvial fans form via two processes: fluid-gravity flows (sheetfloods) and sediment-gravity flows (debris flows). Along the Panamint Mountain Range in Death Valley, California, USA, seven fans formed primarily by debris flows are located adjacent to seven fans formed primarily by sheetfloods. The causal difference between these two groupings stems from their catchment lithologies; the debris flow fan catchments are clay-rich and relatively sand-poor, and the sheetflood fan catchments are clay-poor and sand-rich. On Titan, the low and mid latitudes are dominated by sand seas, demonstrating that sand is available for transport. At high latitudes, these sand seas are absent, suggesting that transportable sand is scarce. Based on the sedimentology of the two Panamint Range fan types, we hypothesize that possible fans at lower latitudes on Titan are formed by sheetfloods, whereas those at higher latitudes formed primarily by debris flows. To test these hypotheses, we measured and analyzed the mean normalized radar cross sections (σ°) and changes in σ° with downfan distance for debris flow and sheetflood fans along the Panamint Range. We then compared the results with the same measurements for possible fans on Titan. We find that, in the Panamint Range, debris flow fans are brighter than sheetflood fans and have greater change in σ° with downfan distance, and that on Titan, low-latitude possible fans are likewise brighter than the fans at high latitudes with greater change in σ° with downfan distance. Consequently, our findings suggest that low-latitude possible fans on Titan are formed primarily by debris flows, whereas high-latitude possible fans on Titan are formed primarily by sheetfloods. Thus, our results do not support our hypotheses. Scenarios to explain these results include: (1) high-latitude possible fans are dominated by radar-dark debris flow deposits, (2) low- and mid

  17. The significance of avulsion phenomena in the alluvial filling configuration of a mountain stream: Venero Claro (Central Spain) (United States)

    Ruiz-Villanueva, V.; Díez-Herrero, A.; Bodoque, J. M.; Fernández-García, P.; Ballesteros, J. A.


    In the dynamics and evolution of large river floodplains, alluvial fans and debris cones, avulsion phenomena have been considered very important. However, traditionally, in mountain streams, avulsion phenomena have been underestimated because they are not very frequent, and usually they are restricted to little chute cut-off. Nevertheless, there are mountainous areas where the valley bottom gets wider, and the alluvial filling works like an elongated debris cone. The Cabrera Stream in the Venero Claro reach (Spanish Central System) is one of these special areas. In this case, avulsion phenomena took place triggered by flash floods, and they were usually associated with hyperconcentrated flows, which exceeded the upper level of levees and banks, redefining the sedimentary architecture of the alluvial filling. In this study, an analysis of geomorphologic and sedymentological evolution of the alluvial filling in Venero Claro have been carried out. On this way, cartography made from the 19th Century until ninety ages were compared, and a stereoscopic analysis of aerial photographs and digital ortoimages were applied. Furthermore, the sedimentary filling was studied applying classic sedimentological techniques, such as a description and interpretation of sedimentary structures and facies analysis at field. As a result of the geomorphologic evolution analysis, a straightforward evolution model is proposed. This model enhances the relevant importance of the avulsion phenomena in the geomorphologic configuration of the Cabrera Stream in the Venero Claro reach. From the river pattern point of view, the avulsion phenomena originate capture processes in the main stream and its tributaries. As a result of these processes, the drainage network pattern changes successively from dendritic to sub-parallel. On other hand, from the sedimentologic point of view, the stratigraphy is composed of channel facies (debris flow facies and fluvial-torrential gravelbars) and back

  18. Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia)

    Energy Technology Data Exchange (ETDEWEB)

    Sotak, J. [Slovak Academy of Sciences, Banska Bystrica (Slovakia). Geological Institute; Pereszlenyi, M. [VVNP Research Oil Company for Exploration and Production, Bratislava (Slovakia); Marschalko, R.; Starek, D. [Slovak Academy of Sciences, Bratislava (Slovakia). Geological Institute; Milicka, J. [Comenius University, Bratislava (Slovakia). Dept. of Geochemistry


    The Central Carpathian Paleogene Basin accommodates a subsiding area of the destructive plate-margin. The basin history comprises marginal faulting and alluvial fan accumulation (E{sub 2}); transgressive onlap by shoreface sediments and carbonate platform deposits (E{sub 2}); glacio-eustatic regression induced by cooling (Terminal Eocene Event); forced regression, tectonic subsidence and growth-fault accumulation of basin-floor and slope fans (E{sub 3}); decelerating subsidence, aggradation and sea-level rising during the mud-rich deposition (O{sub 1}); high-magnitude drop in sea-level (Mid-Oligocene Event), retroarc backstep of depocenters and lowstand accumulation of sand-rich fans and suprafans (O{sub 2}-M{sub 1}); subduction-related shortening and basin inversion along the northern margins affected by backthrusting and transpressional deformation (O{sub 2}-M{sub 1}). The basin-fill sequence has poor (TOC {<=} 0.5%) to fair (TOC < 1.0%) quality of source rocks. Maturity of OM ranges from initial to relic stage of HC generation. Paleogene rock-extracts display a good correlation with scarce trapped oils. 'The presence of solid bitumens and HC-rich fluid inclusions indicates overpressure conditions during HC generation and migration. Potential HC reservoirs can be expected in porous lithologies (scarp breccias), in basement highs and traps related to backthrusting, fault-propagation folding and strike-slip tectonics. (author)

  19. Volcanosedimentary Basins in the Arabian-Nubian Shield: Markers of Repeated Exhumation and Denudation in a Neoproterozoic Accretionary Orogen

    Directory of Open Access Journals (Sweden)

    Victoria Pease


    Full Text Available The Arabian-Nubian Shield (ANS includes Middle Cryogenian-Ediacaran (790–560 Ma sedimentary and volcanic terrestrial and shallow-marine successions unconformable on juvenile Cryogenian crust. The oldest were deposited after 780–760 Ma shearing and suturing in the central ANS. Middle Cryogenian basins are associated with ~700 Ma suturing in the northern ANS. Late Cryogenian basins overlapped with and followed 680–640 Ma Nabitah orogenesis in the eastern ANS. Ediacaran successions are found in pull-apart and other types of basins formed in a transpressive setting associated with E-W shortening, NW-trending shearing, and northerly extension during final amalgamation of the ANS. Erosion surfaces truncating metamorphosed arc rocks at the base of these successions are evidence of periodic exhumation and erosion of the evolving ANS crust. The basins are evidence of subsequent subsidence to the base level of alluvial systems or below sea level. Mountains were dissected by valley systems, yet relief was locally low enough to allow for seaways connected to the surrounding Mozambique Ocean. The volcanosedimentary basins of the ANS are excellently exposed and preserved, and form a world-class natural laboratory for testing concepts about crustal growth during the Neoproterozoic and for the acquisition of data to calibrate chemical and isotopic changes, at a time in geologic history that included some of the most important, rapid, and enigmatic changes to Earth’s environment and biota.

  20. Preliminary study of favorability for uranium of the Sangre de Cristo Formation in the Las Vegas basin, northeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Strand, J.R.; Reid, B.E.; Phillips, W.R.


    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments. The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.

  1. Moist-soil seed abundance in managed wetlands in the Mississippi Alluvial Valley (United States)

    Kross, J.; Kaminski, R.M.; Reinecke, K.J.; Penny, E.J.; Pearse, A.T.


    Managed moist-soil units support early succession herbaceous vegetation that produces seeds, tubers, and other plant parts used by waterfowl in the Mississippi Alluvial Valley (MAV), USA. We conducted a stratified multi-stage sample survey on state and federal lands in the MAV of Arkansas, Louisiana, Mississippi, and Missouri during autumns 2002?2004 to generate a contemporary estimate of combined dry mass of seeds and tubers (herein seed abundance) in managed moist-soil units for use by the Lower Mississippi Valley Joint Venture (LMVJV) of the North American Waterfowl Management Plan. We also examined variation in mean seed abundance among moist-soil units in 2003 and 2004 in relation to management intensity (active or passive), soil pH and nutrient levels, proportional occurrence of plant life-forms (e.g., grass, flatsedge, and forb; vine; woody plants), and unit area. Estimates of mean seed abundance were similar in 2002 (X over bar = 537.1 kg/ha, SE = 100.1) and 2004 (X over bar = 555.2 kg/ha, SE = 105.2) but 35?40% less in 2003 (X over bar = 396.8 kg/ha, SE = 116.1). Averaged over years, seed abundance was 496.3 kg/ha (SE = 62.0; CV = 12.5%). Multiple regression analysis indicated seed abundance varied among moist-soil units inversely with proportional occurrence of woody vegetation and unit area and was greater in actively than passively managed units (R2adj = 0.37). Species of early succession grasses occurred more frequently in actively than passively managed units (P < 0.09), whereas mid- and late-succession plants occurred more often in passively managed units (P < 0.02). We recommend the LMVJV consider 556 kg/ha as a measure of seed abundance for use in estimating carrying capacity in managed moist-soil units on public lands in the MAV. We recommend active management of moist-soil units to achieve maximum potential seed production and further research to determine recovery rates of seeds of various sizes from core samples and the relationship between

  2. Soil Moisture and Turgidity of Selected Robusta Coffee Clones on Alluvial Plain with Seasonal Rainfall Pattern

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyono


    Full Text Available Observation on the seasonal variations of hydrological condition and turgidity of selected Robusta coffee clones has been carried out in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute in Jember. The aim was to evaluate the effect of hydrological variation on the coffee plants and the degree of soil moisture effect on plant performance. Experimental site overlays on alluvial plain, + 45 m a.s.l., 8o 15’ South with D rainfall type. Observation was conducted by survey method at the experimental plots of organic fertilizer and nitogen treatments on selected Robusta coffee clones derived from rooted cuttings, i.e. BP 436, BP 42, BP 936 and BP 358. Observation was only conducted at the experimental blocks of organic matter trials of 20 l/tree/year at nitrogen (Urea application of locally recommanded rate during the subsequent years of 1999 to 2001. Parameters observed included plant turgidity and soil moisture content of three different depths, i.e. 0—20, 20—40 and 40—60 cm and the weather. Observation was carried out in five replicates designed as blocks of barn manure treatment and N-fertilizer of recommended rate as basal fertilizer. The results showed that meteorological condition and soil moisture of experimental site through the years have seasonal patterns following the seasonal pattern of rainfall. Compared to other meteorological characteristics, relative humidity dominantly determined evaporation and plant turgidity. Plant turgi-dity was not only determined by soil moisture condition, but also atmospheric demand. When relative humidity (RH was relatively high, plant turgidity was relatively stable although soil moisture of surface layers was very low, and the reversal when soil moisture content was high plant turgidity was controlled by atmospheric demand (relative humidity. With a 3—4 dry month period, relative turgidity of the coffee plants was relatively stable above 82%, except when soil

  3. Physical and microbiological properties of alluvial calcareous Çumra province soils (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Ahmet Sami Erol


    Full Text Available Alluvial calcareous soils in Central Anatolia (Konya province, Çumra district has a heavy granulometric composition (average clay, low organic carbon content (less than 1%, but stable pore space structure and favorable agrophysical properties. Studies of the water regime in drip irrigation confirm favorable hydrological properties of these soils. It is assumed that the favorable structure of the pore space due to vigorous activity a large and diverse soil biota. Four phyla dominate in soil biota, among which predominate Actinobacteria. The higher (Streptomyces, and lower (three species Rhodococcus actinobacteria are predominant in large amounts as a part of this phyla. Large biodiversity at a sufficiently high bacteria richness formed the structure of the microbial community that contribute to the balanced production of specific metabolites, including gases (CO2, N2, which allows the soil to function actively, preventing compaction of the pore space and maintaining optimal density, porosity, hydrologic properties of the studied silty clay soils. m the uppermost soil horizons. Analyses of heavy mineral fraction show presence of metamorphic and igneous minerals which indicate participation of weathering products from other rock types in the nearby area. The types of heavy minerals in soils depend more on composition of parent rocks and geomorphic position than on climate type. Soils from Nova Lovcha show similar composition, but the quantity of goethite and hematite significantly increase in soil from plain. Typical high-metamorphic minerals as andalusite, kyanite and sillimanite present only in Nova Lovcha, while garnet dominates in Petrovo and opaque minerals - in Dobrostan. Red soils, formed on slopes, where erosion prevails over accumulation, contain more illite, smectite and vermiculite-smectite, and very few or no kaolinite, whereas the kaolinite is dominant in soils formed on plain. The mineralogical composition of clays in different

  4. Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.


    Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually

  5. Surface processes on a mud-dominated Mars analogue alluvial fan, Atacama Desert, northern Chile (United States)

    Hobley, D. E.; Howard, A. D.; Morgan, A. M.; Matsubara, Y.; Moore, J. M.; Parsons, R.; Williams, R. M.; Burr, D. M.; Hayes, A. G.; Dietrich, W.


    We characterize surface processes on highly unusual terrestrial alluvial fans, which we interpret as a strong analogue for large fans on Mars. The Mars fans date to post-Noachian periods when the martian climate was dominated by cold, hyperarid conditions. Some of the martian fans are differentially eroded to leave their distributary channels in positive relief. This inversion, along with the lack of boulders visible on most fan surfaces, reveals that the dominant grain size of the fans is fine enough for the overbank deposits to be stripped by wind. Degradation, image resolution, and lack of ground truthing all act to obscure the nature of the past flow processes. The fans in the Pampa de Tamarugal of the Atacama Desert of northern Chile are excellent potential Mars analogues for a number of reasons: 1. Hyperaridity, with ~2 mm/y rainfall over the fans themselves, resulting in 2. very little vegetation, 3. no fluvial erosion on the fans themselves, and 4. wind-driven erosion of the fan surfaces; 5. equivalent fan scale (tens of km); 6. similar fan gradient (low); 7. low channel branching density; 8. runoff fed from adjacent, much steeper terrain receiving more precipitation (~500 km2 drainages receiving 0.1-1 m/y precipitation in the High Andes, crater walls and interpreted orographic effects on Mars). Both the modern channels and the preserved stratigraphy are dominated by debris flow-like sheetflow mud deposits. Channels are leveed by concrete-like mass-supported deposits of granules and sand suspended in a silt and clay matrix, often overtopping the channel margins and forming up to 150 m wide levees and km-length sheet flows. This leveeing strongly constrains the aggrading channel, which is typically dominated by better sorted and imbricated fluvial deposits. We infer that the wetter tail of mudlfows sorts the deposits, keeping the central channel unblocked by mud. Relatively few channels are active at any time, but aggradation triggers occasional avulsions

  6. Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds (United States)

    Kosman, Charles W.; Kopylova, Maya G.; Stern, Richard A.; Hagadorn, James W.; Hurlbut, James F.


    Alluvial diamonds from the Kasai River, Democratic Republic of the Congo (DRC) are sourced from Cretaceous kimberlites of the Lucapa graben in Angola. Analysis of 40 inclusion-bearing diamonds provides new insights into the characteristics and evolution of ancient lithospheric mantle of the Congo craton. Silicate inclusions permitted us to classify diamonds as peridotitic, containing Fo91-95 and En92-94, (23 diamonds, 70% of the suite), and eclogitic, containing Cr-poor pyrope and omphacite with 11-27% jadeite (6 diamonds, 18% of the suite). Fluid inclusion compositions of fibrous diamonds are moderately to highly silicic, matching compositions of diamond-forming fluids from other DRC diamonds. Regional homogeneity of Congo fibrous diamond fluid inclusion compositions suggests spatially extensive homogenization of Cretaceous diamond forming fluids within the Congo lithospheric mantle. In situ cathodoluminescence, secondary ion mass spectrometry and Fourier transform infrared spectroscopy reveal large heterogeneities in N, N aggregation into B-centers (NB), and δ13C, indicating that diamonds grew episodically from fluids of distinct sources. Peridotitic diamonds contain up to 2962 ppm N, show 0-88% NB, and have δ13C isotopic compositions from - 12.5‰ to - 1.9‰ with a mode near mantle-like values. Eclogitic diamonds contain 14-1432 ppm N, NB spanning 29%-68%, and wider and lighter δ13C isotopic compositions of - 17.8‰ to - 3.4‰. Fibrous diamonds on average contain more N (up to 2976 ppm) and are restricted in δ13C from - 4.1‰ to - 9.4‰. Clinopyroxene-garnet thermobarometry suggests diamond formation at 1350-1375 °C at 5.8 to 6.3 GPa, whereas N aggregation thermometry yields diamond residence temperatures between 1000 and 1280 °C, if the assumed mantle residence time is 0.9-3.3 Ga. Integrated geothermobaromtery indicates heat fluxes of 41-44 mW/m2 during diamond formation and a lithosphere-asthenosphere boundary (LAB) at 190-210 km. The hotter

  7. Modifed Great Basin Extent (Buffered) (United States)

    U.S. Geological Survey, Department of the Interior — Two different great basin perimeter files were intersected and dissolved using ArcGIS 10.2.2 to create the outer perimeter of the great basin for use modeling...

  8. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter


    Motivation RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis...... of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  9. Coarse grain deposit feature of Guantao formation in western depression Shuyi area of Liaohe basin

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-hua; LIU Chen-sheng; ZHU Mei-heng


    The extensive distribution of coarse-grained clastic rock of Guantao formation in Shuyi area of Liaohe basin was considered as a result of fluvial deposit. According to the comprehensive analysis of seism data, well log, core observation and experimental data, this kind of clastic rock is composed of pebblestone-cobblestone, microconglomerate, sand conglomerate, medium-coarse grained sandstone and fine-sandstone. According to the clast composition, sedimentary texture, structure and rock type, 3 kinds of sediment facies can be recognized ie the mixed accumulation-conglomerate dominated debris flow, pebblestone-cobblestone dominated gradient flow and sandstone dominated braided stream. Vertically, the bottom gradient current deposit and top braided stream deposit form fining-upward sediment sequence, and the debris flow deposit distributes in them at random. The sedimentary feature of coarse grain clastic of Guantao formation in Shuyi area is accordant with proximal wet alluvial fan deposited in wet climate at foreland and this kind of alluvial fan is different from the traditional one.

  10. A Reinterpretation of the Baturetno Formation: Stratigraphic Study of the Baturetno Basin, Wonogiri, Central Java

    Directory of Open Access Journals (Sweden)

    Purna Sulastya Putra


    Full Text Available This paper focuses on the Quaternary Baturetno Formation. An earlier research concluded that the black clay of the Baturetno Formation formed as a ‘palaeolake’ deposit. The ‘palaeolake’ was interpreted to form due to the shifting course of the Bengawan Solo Purba River in relation to Pliocene tectonic tilting in the southern Java. The stratigraphy of the Baturetno Formation was observed in the western part of the Baturetno Basin, and based on marker beds, the Baturetno Formation was classified into three units: (1 Gravel unit (GR in the upper part, (2 clay unit (CU in the middle part, and (3 sand-gravel unit (SG in the lower part. There are floating gravel fragments of andesite, claystone, coral, and limestone with diameters of up to 10 cm in the clay unit. The particle size of sediment reflects the environment, but the lake deposition occurs under very quiet conditions. The occurrence of these fragments within the clay cannot be explained if the clay was deposited within a lake environment. The occurrence of floating fragments in the black clay of Baturetno Formation can best be explained through mudflow process. The cohesive strength of the mudflow is responsible for the ability of large fragments to float within the mud matrix. In general, the Baturetno Formation is inferred to be an alluvial fan deposit. The presence of sand, gravel, and mud are characteristics of alluvial fan deposits.

  11. Water resources in the Big Lost River Basin, south-central Idaho (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.


    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  12. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia (United States)

    Karthe, Daniel


    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  13. Stratigraphic and structural analysis of the Rio do Peixe Basin, Northeastern Brazil: integration on the pioneer seismic survey 0295{sub R}IO{sub D}O{sub P}EIXE{sub 2}D; Analise estratigrafica e estrutural da Bacia do Rio do Peixe, Nordeste do Brasil: integracao a partir do levantamento sismico pioneiro 0295{sub R}IO{sub D}O{sub P}EIXE{sub 2}D

    Energy Technology Data Exchange (ETDEWEB)

    Cordoba, Valeria Centurion; Antunes, Alex Francisco; Sa, Emanuel Ferraz Jardim de; Silva, Ajosenildo Nunes da; Sousa, Debora do Carmo; Lins, Fernando Antonio Pessoa Lira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Geologia e Geofisica de Petroleo. Programa de Pos-Graduacao em Geodinamica e Geofisica


    The Northeast Brazil Interior Basins are the erosional remnants of a series of basins located south of he Potiguar Basin, overlying the crystalline basement of Precambrian Borborema Province . These basins were originated during the Early Cretaceous rifting that shaped the present continental margin of northeastern Brazil. Besides their exploration potential, the Interior Basins represent terrain analogues for better understanding of the continental margin basins, one of the objectives of the Interior Basins Project (agreement PETROBRAS/UFRN/PPGG), which supported the seismic survey in the Rio do Peixe Basin, subject to this paper. Combined with gravity and field data, the seismic sections allowed an improved view of the three-dimensional architecture of the Rio do Peixe Basin. In this basin, the combination of the current erosion level with the geometry of the main faults highlights the existence of different half-grabens (Pombal, Sousa, Brejo das Freiras), whose sedimentary filing (apart from cenozoic deposits) defines the Rio do Peixe Group, comprising the Antenor Navarro (alluvial fans/braided channels), Sousa (shallow lacustrine/floodplain) and Rio Piranhas (alluvial fans/braided channels). Structural data integration allows characterization of a NW-extension kinematics for the rifting event, responsible for fault nucleation controlled by basement structures, particularly the location and foliation dip of the Late Neoproterozoic, Brasiliano shear zones. Based on the structural style and petrographic-diagenetic features, one can infer larger original dimensions for this basin and similar counterparts in the region, which were reduced (with exposure of the crystalline highs) by the significant erosion that occurred in late to post-rift and subsequent evolutionary stages. (author)

  14. Sufficiency and Deficiency Indices of Soil Available Zinc for Rice in the Alluvial Soil of the Coastal Yellow Sea

    Institute of Scientific and Technical Information of China (English)


    To determine the sufficiency and deficiency indices of soil available Zn by the Agro Services International (ASI) method (ASI-Zn) for Zn fertilizer recommendation in rice production in the alluvial soil of the coastal Yellow Sea, the relationship between relative rice yield and soil available ASI-Zn concentration was analyzed from a ten-field experiment with various soil test classes ranging from low to high fertility in 2005 and 2006, and nine Zn fertilizer application rates (0, 7.5,15, 22.5, 30, 37.5, 45, 52.5 and 60 kg Zn/ha) arranged at random with three replications in each field. There was a significant quadratic relationship between soil available ASI-Zn and rice yield, and a significant linear relationship between soil available ASI-Zn concentration and Zn fertilization rate. For rice variety Wuyujing 3, soil available ASI-Zn was deficient when the value was at lower than 1 mg Zn/L, low at 1 to 2 mg Zn/L, sufficient at 1 to 2 mg Zn/L, excessive at higher than 7.5 mg Zn/L. Thus, Zn fertilizer recommendation could be done according to the sufficiency and deficiency indices of soil ASI-Zn. For most of alluvial soils of the coastal Yellow Sea in the study, the available ASI-Zn was lower than 1 mg Zn/L, and then the optimum application rate of Zn fertilizer was about 20 kg Zn/ha.

  15. On the Role of Flash Floods for Dust Emission over North Africa: Alluvial Sediments acting as Dust Source (United States)

    Schepanski, K.; Klueser, L.; Tegen, I.


    Studies analyzing satellite dust products show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions. There, alluvial sediments deposited on valley bottoms and flood plains are very susceptible to wind erosion and frequently serve as dust source. This study focuses on the spatio-temporal distribution of dust source activation events over the mountain foothills and flood plains over North Africa. Satellite dust retrievals with sub-daily resolution such as from Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and METOP A/B Infrared Atmospheric Sounding Interferometer (IASI) instruments are used to identify dust source regions. Identified dust source regions are then linked to soil properties and land type classification data sets. Information on the mineralogical composition of transported dust inferred from IASI observation are used (a) to investigate the impact of different source geomorphologies and thus different radiative properties of airborne dust particles, and (b) to estimate the contribution of dust uplift from alluvial sediments compared to dust emission from non-hydrological sources. Ultimately, this study contributes to the understanding of controlling mechanism on the interannual variability of dust source activation and will improve current dust emission modules coupled to atmosphere models.

  16. Using direct current resistivity sounding and geostatistics to aid in hydrogeological studies in the Choshuichi alluvial fan, Taiwan. (United States)

    Yang, Chieh-Hou; Lee, Wei-Feng


    Ground water reservoirs in the Choshuichi alluvial fan, central western Taiwan, were investigated using direct-current (DC) resistivity soundings at 190 locations, combined with hydrogeological measurements from 37 wells. In addition, attempts were made to calculate aquifer transmissivity from both surface DC resistivity measurements and geostatistically derived predictions of aquifer properties. DC resistivity sounding data are highly correlated to the hydraulic parameters in the Choshuichi alluvial fan. By estimating the spatial distribution of hydraulic conductivity from the kriged well data and the cokriged thickness of the correlative aquifer from both resistivity sounding data and well information, the transmissivity of the aquifer at each location can be obtained from the product of kriged hydraulic conductivity and computed thickness of the geoelectric layer. Thus, the spatial variation of the transmissivities in the study area is obtained. Our work is more comparable to Ahmed et al. (1988) than to the work of Niwas and Singhal (1981). The first "constraint" from Niwas and Singhal's work is a result of their use of linear regression. The geostatistical approach taken here (and by Ahmed et al. [1988]) is a natural improvement on the linear regression approach.

  17. Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle (United States)

    Burnham, A. D.; Bulanova, G. P.; Smith, C. B.; Whitehead, S. C.; Kohn, S. C.; Gobbo, L.; Walter, M. J.


    Diamonds from the Machado River alluvial deposit have been characterised on the basis of external morphology, internal textures, carbon isotopic composition, nitrogen concentration and aggregation state and mineral inclusion chemistry. Variations in morphology and features of abrasion suggest some diamonds have been derived directly from local kimberlites, whereas others have been through extensive sedimentary recycling. On the basis of mineral inclusion compositions, both lithospheric and sublithospheric diamonds are present at the deposit. The lithospheric diamonds have clear layer-by-layer octahedral and/or cuboid internal growth zonation, contain measurable nitrogen and indicate a heterogeneous lithospheric mantle beneath the region. The sublithospheric diamonds show a lack of regular sharp zonation, do not contain detectable nitrogen, are isotopically heavy (δ13CPDB predominantly - 0.7 to - 5.5) and contain inclusions of ferropericlase, former bridgmanite, majoritic garnet and former CaSiO3-perovskite. This suggests source lithologies that are Mg- and Ca-rich, probably including carbonates and serpentinites, subducted to lower mantle depths. The studied suite of sublithospheric diamonds has many similarities to the alluvial diamonds from Kankan, Guinea, but has more extreme variations in mineral inclusion chemistry. Of all superdeep diamond suites yet discovered, Machado River represents an end-member in terms of either the compositional range of materials being subducted to Transition Zone and lower mantle or the process by which materials are transferred from the subducted slab to the diamond-forming region.

  18. Ground motions around a semi-circular valley partially filled with an inclined alluvial layer under SH-polarized excitation (United States)

    Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa


    A simplified mathematical model, composed of a semi-circular valley partially filled with an inclined alluvial layer under plane SH-wave incidence, is presented. To evaluate the site response theoretically, a rigorous series solution is derived via the region-matching technique. For angular wavefunctions constrained by an inclined free surface, the original form of Graf's addition formula is recast to arbitrarily shift the local coordinate system. The valley geometry, filling material, angle of incidence, and wave frequency are taken as significant parameters in exploring the site effect on ground motions. Also included are the frequency- and time-domain computations. Two canonical cases, the semi-circular vacant canyon and the fully filled semi-circular alluvial valley, with exact analytical solutions, and the partly horizontally filled case previously studied, are taken to be particular cases of the proposed general model. Steady-state results show that the peak amplitudes of motion may increase at low frequencies when the filling layer inclines to the illuminated region. At low-grazing incidence, the phenomenon of wave focusing becomes evident on the shadow side of the filling layer. Transient-state simulations elucidate how a sequence of surface waves travel on the topmost alluvium along opposite directions and interfere with multiple reflected waves within the filling layer.

  19. Wetland Reserve Program enhances site occupancy and species richness in assemblages of anuran amphibians in the Mississippi Alluvial Valley, USA (United States)

    Walls, Susan C.; Waddle, J. Hardin; Faulkner, Stephen P.


    We measured amphibian habitat use to quantify the effectiveness of conservation practices implemented under the Wetland Reserve Program (WRP), an initiative of the U.S. Department of Agriculture’s Natural Resources Conservation Service. From February to June 2007, we quantified calling male anurans in cultivated cropland, former cultivated cropland restored through the WRP, and mature bottomland hardwood forest. Sites were located in two watersheds within the Mississippi Alluvial Valley of Arkansas and Louisiana, USA. We estimated detection probability and site occupancy within each land use category using a Bayesian hierarchical model of community species occurrence, and derived an estimate of species richness at each site. Relative to sites in cultivated cropland, nine of 1 l species detected were significantly more likely to occur at WRP sites and six were more likely to occur at forested sites. Species richness estimates were also higher for WRP and forested sites, compared to those in cultivated cropland. Almost half (45 %) of the species responded positively to both WRP and forested sites, indicating that patches undergoing restoration may be important transitional habitats. Wetland Reserve Program conservation practices are successful in restoring suitable habitat and reducing the impact of cultivation-induced habitat loss on amphibians in the Mississippi Alluvial Valley.

  20. Quantification of sediment supply : a method and an example from Triassic of Western European basins (United States)

    Peron, S.; Bourquin, S.; Duran, M.; Fluteau, F.; Guillocheau, F.


    Triassic is a key period of Earth history, with tectonic, climatic and eustatic events. It corresponds to (i) the initial fragmentation of the Pangea, (ii) a transition from Paleozoic ice house to Mesozoic green house, (iii) a sea-level rise from Upper Triassic, followed by an eustatic fall during Lias. This special geological setting has led to the formation of large Mesozoic basins, mainly characterized by a continental sedimentation, with fluvial and/or evaporitic environments, well-conserved in Pangean supercontinent. This Triassic specificity implies a total free space for sedimentation, i.e. accommodation (A), balanced with an important sediment supply (S), as SgeA.The purpose of this study is to develop a good methodology for understanding the S parameter in past geological systems, as Triassic. Firstly, by considering three key periods of Triassic : (1) the Lower Scythian, (2) the Lower Ladinian, (3) the Carnian-Norien ; we have realized paleogeographic and paleotopographic maps either for Western Europe or entire world. These reconstructions allow us to precise (i) erosional or sedimentary areas, (ii) coastal lines and sebkha boundaries, (iii) river basins and continental systems associated. Moreover, by using an atmospheric general circulation model (AGCM), we are actually simulating the climatic response by applying data of maps for Triassic European areas. By this way, we are able to obtain different parameters of climate (rainfall, temperature variations,...) in order to test the effect on topography, evaporitic plains and climate interactions. In parallel, paleoenvironmental maps allow us to separate three main fluvial systems developed during the Triassic period : (1) larged braided alluvial systems in vast endoreic basins that characterize the transitional stage between the Zeichstein system (Permian) and the Tethyan system (Triassic) ; (2) anastomosed systems whose preservation is controlled by sea-level (Anisian and Middle Carnian) ; (3) alluvial

  1. Chronology of processes in high-gradient channels of medium-high mountains and their influence on the properties of alluvial fans (United States)

    Šilhán, Karel


    High-gradient channels are the locations of the greatest geomorphological activity in medium-high mountains. The channels' frequency and character influence the contemporary morphology and morphometry of alluvial fans. There is currently no detailed information regarding the frequency of these processes in high-gradient channels and the evolution of alluvial fans in medium-high mountains in Central Europe. This study in the Moravskoslezské Beskydy Mts. analysed 22 alluvial fans (10 debris flow fans and 12 fluvial fans). The processes occurring on the fans were dated using dendrogeomorphological methods. A total of 748 increment cores were taken from 374 trees to reconstruct 153 geomorphological process events (60 debris flow and 93 floods). The frequency of the processes has been considerably increasing in the last four decades, which can be related to extensive tree cutting since the 1970s. Processes in high-gradient channels in the region (affecting the alluvial fans across the mountain range) are predominantly controlled by cyclonal activity during the warm periods of the year. Probable triggers of local events are heavy downpours in the summer. In addition, spring snowmelt has been identified as occasionally important. This study of the relations affecting the type and frequency of the processes and their effect on the properties of alluvial fans led to the creation of a universal framework for the medium-high flysch mountains of Central Europe. The framework particularly reflects the influence of the character of hydrometeorological extremes on the frequency and type of processes and their reflection in the properties of alluvial fans.

  2. An investigation into variable recharge behaviors among eight alluvial observation wells in Pajarito Canyon, Los Alamos, New Mexico (United States)

    Schmeer, S. R.


    Pajarito Canyon in Los Alamos, New Mexico trends west to east through the Pajarito Plateau from the headwaters in the Jemez Mountains, thirteen miles to the Rio Grande. In summer 2008, Los Alamos National Laboratory installed eight shallow wells, numbered PCAO-5, 6, 7a, 7b1, 7b2, 7c, 8 and 9, in the middle four miles of this canyon. Among these wells, five distinct recharge behaviors have been observed. PCAO-5 demonstrates seasonal recharge in response to annual snowmelt. PCAO-6, while just 400 feet further downstream, is considerably flashier and the well is often dry for months at a time. In PCAO-7a, 7b2 and 7c, another two miles downstream, the water level declined steadily since installation, with no recharge until spring 2010. PCAO-7b1 has not contained water since drilling. Downstream a further two miles, PCAO-8 and PCAO-9 were dry for the majority of 2009 and their hydrographs are more attenuated. This investigation was undertaken to explain the recharge behaviors of the wells, with the goal of improving site selection and design of alluvial wells to provide better representation of the alluvial aquifer. Water level data collected since July 2008 were used to compare the water columns of each well. Well construction diagrams were utilized to construct stratigraphic maps in order to compare well construction and lithology. Results indicate that PCAO-5 consistently contains water due to its location above a flood retention structure (FRS) and the placement of its screened interval immediately above the tuff layer, forcing water to travel through the screened interval. PCAO-6’s flashy, intermittent hydrograph is due to its location downstream of the FRS, and because the bottom of the screened interval rests 2.5 feet above the alluvium-tuff interface, providing a conduit below the screen of the well. The similar behaviors of PCAO-7a, 7b2 and 7c result from their near-identical construction, lithology and location. The general decline of water level until

  3. Variation in depth of whitetip reef sharks: does provisioning ecotourism change their behaviour? (United States)

    Fitzpatrick, Richard; Abrantes, Kátya G.; Seymour, Jamie; Barnett, Adam


    In the dive tourism industry, shark provisioning has become increasingly popular in many places around the world. It is therefore important to determine the impacts that provisioning may have on shark behaviour. In this study, eight adult whitetip reef sharks Triaenodon obesus were tagged with time-depth recorders at Osprey Reef in the Coral Sea, Australia. Tags collected time and depth data every 30 s. The absolute change in depth over 5-min blocks was considered as a proxy for vertical activity level. Daily variations in vertical activity levels were analysed to determine the effects of time of day on whitetip reef shark behaviour. This was done for days when dive boats were absent from the area, and for days when dive boats were present, conducting shark provisioning. Vertical activity levels varied between day and night, and with the presence of boats. In natural conditions (no boats present), sharks remained at more constant depths during the day, while at night animals continuously moved up and down the water column, showing that whitetip reef sharks are nocturnally active. When boats were present, however, there were also long periods of vertical activity during the day. If resting periods during the day are important for energy budgets, then shark provisioning may affect their health. So, if this behaviour alteration occurs frequently, e.g., daily, this has the potential to have significant negative effects on the animals' metabolic rates, net energy gain and overall health, reproduction and fitness.

  4. Long-term experiences of Norwegian live kidney donors: qualitative in-depth interviews (United States)

    Bjørk, Ida Torunn; Wahl, Astrid Klopstad; Lennerling, Annette; Andersen, Marit Helen


    Objective Live kidney donation is generally viewed as a welcome treatment option for severe kidney disease. However, there is a disparity in the body of research on donor experiences and postdonation outcome, and lack of knowledge on long-term consequences described by the donors. This study was conducted to provide insight into donors' subjective meanings and interpretation of their experiences ∼10 years after donation. Design Qualitative explorative in-depth interviews. The sampling strategy employed maximum variation. Setting Oslo University Hospital is the national centre for organ transplantation and donation in Norway, and there are 26 local nephrology centres. Participants 16 donors representing all parts of Norway who donated a kidney in 2001–2004 participated in the study. The interviews were analysed using an interpretative approach. Results The analysis resulted in 4 main themes; the recipient outcome justified long-term experiences, family dynamics—tension still under the surface, ambivalence—healthy versus the need for regular follow-up, and life must go on. These themes reflect the complexity of live kidney donation, which fluctuated from positive experiences such as pride and feeling privileged to adverse experiences such as altered family relationships or reduced health. Conclusions Live kidney donors seemed to possess resilient qualities that enabled them to address the long-term consequences of donation. The challenge is to provide more uniform information about long-term consequences. In future research, resilient qualities could be a topic to explore in live donation. PMID:28209606

  5. In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Konstandinidou, Myrto [Institute of Nuclear Technology-Radiation Protection, National Center for Scientific Research ' Demokritos' , Aghia Paraskevi 15310 (Greece); Nivolianitou, Zoe, E-mail: [Institute of Nuclear Technology-Radiation Protection, National Center for Scientific Research ' Demokritos' , Aghia Paraskevi 15310 (Greece); Kefalogianni, Eirini; Caroni, Chrys [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 9 Iroon Polytexneiou Str., Zografou Campus, 157 80 Athens (Greece)


    This paper presents a statistical analysis of all reported incidents in the Greek petrochemical industry from 1997 to 2003. A comprehensive database has been developed to include industrial accidents (fires, explosions and substance releases), occupational accidents, incidents without significant consequences and near misses. The study concentrates on identifying and analyzing the causal factors related to different consequences of incidents, in particular, injury, absence from work and material damage. Methods of analysis include logistic regression with one of these consequences as dependent variable. The causal factors that are considered cover four major categories related to organizational issues, equipment malfunctions, human errors (of commission or omission) and external causes. Further analyses aim to confirm the value of recording near misses by comparing their causal factors with those of more serious incidents. The statistical analysis highlights the connection between the human factor and the underlying causes of accidents or incidents. - Highlights: > The research work is original, based on field data collected directly from the petrochemical industry. > It deals with the in-depth statistical analysis of accident data on human-organizational causes. > It researches underlying causes of accidents and the parameters affecting them. > The causal factors that are considered cover four big taxonomies. > Near misses are worth recording for comparing their causal factors with more serious incidents.

  6. Studies of multilayer structure in depth direction by soft X-ray spectroscopy

    Institute of Scientific and Technical Information of China (English)


    It is demonstrated that two kinds of soft X-ray spectroscopy are useful as nondestructive methods to investigate multilayer structures modified by interdiffusion or by chemical reaction of adjoining layers in depth direction. One is the total electron yield (TEY) spectroscopy involving angular dependence measurement. Using this method, it was found that in LiF/Si/LiF trilayers, the Si layers exhibited a characteristic similar to porous Si, and in CaF2/Si/CaF2 trilayers, it was found that CaF2 segregated through the Si layer. Moreover, it has been shown that the thickness of the top layer of a Mo/Si X-ray multilayer can be determined by analyzing TEY signals generated by the standing wave. The other is the soft X-ray emission spectroscopy involving spectral shape analysis. Using this method,it was found that in Mo/Si X-ray multilayers, the interdiffusion or chemical reaction giving rise to deterioration of reflectance character occurs in as-deposited samples as well as in heated samples. In antiferromagnetic Fe/Si multilayers, it was confirmed that there was no existence of pure Si layers, but insulating FeSi2 layers were present. This result suggests that the source of antiferromagnetic coupling is not conduction electrons but quantum wave interference.

  7. Influence of Guinier-Preston zone formation on plastic instabilities in depth sensing indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, N.Q.; Csikor, F.F.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics


    Guinier-Preston zone formation and its effect on plastic instabilities in supersaturated Al-Cu and Al-Zn-Mg-(Cu) alloys were investigated by tensile tests and depth sensing microhardness measurements. It has been shown that plastic instabilities occur in depth sensing microhardness tests performed on supersaturated solid solutions immediately after quenching. In these measurements the load-depth (F-h) indentation curves are not smoothly changing functions, but contain characteristic steps indicating the oscillation of dynamic microhardness. Experimental results show that the occurrence of the instability steps depends on the composition of the alloy. Furthermore, the formation of GP zones suppresses the instabilities, therefore the plastic instabilities disappear at a certain state of decomposition. In this paper some characteristics of the dynamic Vickers indentation instabilities and the effect of GP zone formation on these parameters are investigated. An interpretation is given for the occurrence of instability steps from the aspect that this phenomenon is a form of Portevin-Le Chatelier type plastic instabilities which is associated with a negative strain rate sensitivity. Results of indentation tests are compared with those of constant loading rate tensile tests. (orig.)

  8. Uncertainty Estimation for 2D PIV: An In-Depth Comparative Analysis (United States)

    Boomsma, Aaron; Bhattacharya, Syantan; Troolin, Dan; Vlachos, Pavlos; Pothos, Stamatios


    Uncertainty quantification methods have recently made great strides in accurately predicting uncertainties for planar PIV, and several different approaches are now documented. In the present study, we provide an analysis of these methods across different experiments and different PIV processing codes. To assess the performance of said methods, we follow the approach of Sciacchitano et al. (2015) and utilize two PIV measurement systems with overlapping fields of view-one acting as a reference (which is validated using simultaneous LDV measurements) and the other as a measurement system, paying close attention to the effects of interrogation window overlap and bias errors on the analysis. A total of three experiments were performed: a jet flow and a cylinder in cross flow at two Reynolds numbers. In brief, the standard coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI methods, 40%-50% for image matching methods. We present an in-depth survey of both global (e.g., coverage and error histograms) and local (e.g., spatially varying statistics) parameters to examine the strengths and weaknesses of each method in monitor their responses to different regions of the experimental flows.

  9. Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis

    Directory of Open Access Journals (Sweden)

    Teck Yew Low


    Full Text Available Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.

  10. Factors Affecting Alkaline Sodium Silicate Gelation for In-Depth Reservoir Profile Modification

    Directory of Open Access Journals (Sweden)

    Aly A. Hamouda


    Full Text Available Alkaline sodium silicate (Na-silicate is environment-friendly and possesses water-like viscosity during the injection stage for in-depth reservoir treatment to enhance sweep efficiency. Gel setting time (tg and gel strength are interrelated. Factors that accelerate tg are Na-silicate content (wt%, low pH, presence of divalent ions and temperature. Pressure drop across the gel accelerates syneresis; however, the gel appeared to remain intact. Presence of Ca2+ and Mg2+ ions is shown to increase gel strength. With a Na-silicate content of 4.5 wt%, for example, at a pH of 10.3 and a temperature of 20 °C, gel strength almost tripled and was reached about eight times faster at the combined tested concentration of 0.009 M, based on the average effect from the coexistence of both ions. Low-salinity water (LSW has an ion composition of 25-fold diluted seawater, did not show precipitation, and could accordingly be a candidate for a pre-flush before the injection of a Na-silicate solution in the event of a field application. This is important since LSW for enhancing oil recovery is a popular method in oil industry. A suggested predictive tool (simple graphical method to estimate the effect of different factors on gelation time and gel strength is presented.

  11. In-depth assessment of the nutritional status of Korean American elderly. (United States)

    Lee, Young Hee; Lee, Jongeun; Kim, Miyong T; Han, Hae-Ra


    Although studies of immigrants have generally indicated significant dietary changes that mirror a Western diet upon immigration, previous data are limited to the dietary patterns and intakes of younger and middle-aged adults. Using a relatively large sample of Korean American elderly (KAE) immigrants, this article offers an in-depth assessment of the nutritional status of KAE, one of the most rapidly increasing minority populations in the United States. In this study, 202 KAE in a metropolitan city on the East Coast participated in a comprehensive nutritional survey using 24-hour dietary recall. Despite their spending about 16 years in the United States, the KAE consumed more than 2 regular meals in a day that were considered part of a Korean food pattern. When compared with the National Health and Nutrition Examination Survey III, the average consumption of nutrients reported was generally lower than in Americans, with the exception of carbohydrates, vegetable protein, and sodium intake. Inadequate intake of calcium, dietary fiber, and folate were notable when examined in comparison to the Dietary Reference Intakes. These findings can help health care providers and researchers design appropriate nutritional education programs to facilitate the adoption of healthier dietary practices in this immigrant population. In particular, future interventions should consider ways to lower sodium intake and increase fruit and vegetable consumption among KAE, while encouraging them to maintain their healthy dietary pattern.

  12. RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family

    Directory of Open Access Journals (Sweden)

    Jessie M Sutherland


    Full Text Available Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs, which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs within the scope of male germ cell development, focusing on our recent knowledge of the Musashi proteins in spermatogenesis. The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development.

  13. An approach to vehicle design: In-depth audit to understand the needs of older drivers. (United States)

    Karali, Sukru; Mansfield, Neil J; Gyi, Diane E


    The population of older people continues to increase around the world, and this trend is expected to continue; the population of older drivers is increasing accordingly. January 2012 figures from the DVLA in the UK stated that there were more than 15 million drivers aged over 60; more than 1 million drivers were aged over 80. There is a need for specific research tools to understand and capture how all users interact with features in the vehicle cabin e.g. controls and tasks, including the specific needs of the increasingly older driving population. This paper describes an in-depth audit that was conducted to understand how design of the vehicle cabin impacts on comfort, posture, usability, health and wellbeing in older drivers. The sample involved 47 drivers (38% female, 62% male). The age distribution was: 50-64 (n = 12), 65-79 (n = 20), and those 80 and over (n = 15). The methodology included tools to capture user experience in the vehicle cabin and functional performance tests relevant to specific driving tasks. It is shown that drivers' physical capabilities reduce with age and that there are associated difficulties in setting up an optimal driving position such that some controls cannot be operated as intended, and many adapt their driving cabins. The cabin set-up process consistently began with setting up the seat and finished with operation of the seat belt.

  14. Quantification problems in depth profiling of pwr steels using Ar+ ion sputtering and XPS analysis. (United States)

    Ignatova, Velislava A; Van Den Berghe, Sven; Van Dyck, Steven; Popok, Vladimir N


    The oxide scales of AISI 304 formed in boric acid solutions at 300 degrees C and pH = 4.5 have been studied using X-ray photoelectron spectroscopy (XPS) depth profiling. The present focus is depth profile quantification both in depth and chemical composition on a molecular level. The roughness of the samples is studied by atomic force microscopy before and after sputtering, and the erosion rate is determined by measuring the crater depth with a surface profilometer and vertical scanning interferometry. The resulting roughness (20-30 nm), being an order of magnitude lower than the crater depth (0.2-0.5 microm), allows layer-by-layer profiling, although the ion-induced effects result in an uncertainty of the depth calibration of a factor of 2. The XPS spectrum deconvolution and data evaluation applying target factor analysis allows chemical speciation on a molecular level. The elemental distribution as a function of the sputtering time is obtained, and the formation of two layers is observed-one hydroxide (mainly iron-nickel based) on top and a second one deeper, mainly consisting of iron-chromium oxides.

  15. In-depth survey report of Early and Daniel Co. , Inc. , Louisville, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Zaebst, D.D.


    An in-depth industrial hygiene survey was conducted to evaluate worker exposures to phosphine during fumigation of grain at the Early and Daniel Co. grain elevator in Louisville, Kentucky. Stored grain was fumigated using aluminum phosphide. Aluminum-phosphide pellets were also added directly to the grain by the blender as it was poured into the storage containers. Local exhaust ventilation was used at points in the grain-moving system where grain dust was generated. Air samples were taken during full-shift periods at the breathing zone of the weighmaster, two bin floormen, and the blender. Area monitoring samples were also taken. If the operators spend considerable time in the vicinity of a bin which is being filled with grain, there is a likelihood of far greater exposure levels being noted. According to the author, further studies of the use of phosphide products at other elevators should be conducted to determine the effect of environmental and process parameters on phosphine exposures.

  16. In-depth study of personality disorders in first-admission patients with substance use disorders

    Directory of Open Access Journals (Sweden)

    Langås Anne-Marit


    Full Text Available Abstract Background Assessment of comorbid personality disorders (PDs in patients with substance use disorders (SUDs is challenging due to symptom overlap, additional mental and physical disorders, and limitations of the assessment methods. Our in-depth study applied methods to overcome these difficulties. Method A complete catchment area sample of 61 consecutively admitted patients with SUDs, with no previous history of specialized treatment (addiction clinics, psychiatry were studied, addressing PDs and associated clinical and demographic variables. The thorough assessments included the Psychiatric Research Interview for Substance and Mental Disorders and the Structured Clinical Interview for DSM-IV Axis II Personality Disorders. Results Forty-six percent of the SUD patients had at least one PD (16% antisocial [males only]; 13% borderline; and 8% paranoid, avoidant, and obsessive-compulsive, respectively. Cluster C disorders were as prevalent as Cluster B disorders. SUD patients with PDs were younger at the onset of their first SUD and at admission; used more illicit drugs; had more anxiety disorders, particularly social phobia; had more severe depressive symptoms; were more distressed; and less often attended work or school. Conclusion The psychiatric comorbidity and symptom load of SUD patients with PDs differed from those of SUD patients without PDs, suggesting different treatment needs, and stressing the value of the assessment of PDs in SUD patients.

  17. Uncovering Market Positioning Coordinates Using In-Depth Interviews. Evidence from the Romanian Modern Retail

    Directory of Open Access Journals (Sweden)

    Negricea Iliuta Costel


    Full Text Available Market positioning is not anymore just an outcome of the marketing endeavour but actually the essence of it. Organisations must develop and implement proper market positioning plans if they want to pursue an enduring existence. In this direction, an organisation must perform a brand situation analysis, its results being the starting point of a successful market positioning. This analysis entails collecting data about the brand and its competitors being performed through various qualitative and quantitative research methods. The current study focuses on the use of in-depth interviews, a very important qualitative research instrument, in collecting data necessary to build a market position in the form of inconspicuous consumer behaviour factors, such as perceptions, attitudes and motivations. The peculiarities and advantages of this tool are detailed in an analysis of the Romanian modern retail. The findings through their richness made possible configuring market positions for several companies under study. There is no doubt about the effectiveness of this tool in collecting essential data for an effective market positioning. However, in some instances an organisation might need data of quantitative nature in making market positioning decisions, situations in which the use of the indepth interview should be complemented with a survey.

  18. Headwater valley response to climate and land use changes during the Little Ice Age in the Massif Central (Yzeron basin, France) (United States)

    Delile, Hugo; Schmitt, Laurent; Jacob-Rousseau, Nicolas; Grosprêtre, Loïc; Privolt, Grégoire; Preusser, Frank


    The geomorphological response of valley bottoms in eastern France to climatic fluctuations of the Little Ice Age (LIA) was investigated using sedimentological analysis together with optically stimulated luminescence (OSL) and radiocarbon dating. Diachronic mapping of land use since the beginning of the nineteenth century was also carried out. Since A.D. 1500, the valley bottoms experienced three cycles of aggradation and subsequent incision, each characterized by paired periods of high and low detritic activity. While the impact of human activity on the aggradation of the alluvial plain is observed, the vertical dynamics of the valley bottom deposits seemingly were also linked to the hydroclimatic fluctuations during the LIA. The sensitivity to these fluctuations was increased by human activity at the scale of the basin. Variations of the winter North Atlantic Oscillation (NAO) and solar activity from the last five centuries correlate with wet and cold phases during which valley bottoms accumulated, and dry and warm phases during which the streams incised into the valley floors. This fluvial sensitivity to the meteorological conditions induced temporal variations in sedimentary supply originating from either direct input from remnants of periglacial alluvial sheets or local rocky outcrops and/or from indirect input from the erosion of alluvial and colluvial deposits. These two components, combined with the sheet runoff over the ploughlands, express the complex coupling between hillslopes and valley bottoms in the headwater catchments. This caused a cascade-shaped transit of the sediments characterized by alternating phases of storage and removal.

  19. Single-basined choice

    NARCIS (Netherlands)

    Bossert, W.; Peters, H.J.M.


    Single-basined preferences generalize single-dipped preferences by allowing for multiple worst elements. These preferences have played an important role in areas such as voting, strategy-proofness and matching problems. We examine the notion of single-basinedness in a choice-theoretic setting. In co

  20. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma (United States)

    Ryter, Derek W.; Correll, Jessica S.


    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  1. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.


    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  2. Tephrochronological study in the quaternary Val d'Agri intermontane basin (Southern Apennines, Italy) (United States)

    Zembo, Irene; Vignola, Pietro; Andò, Sergio; Bersezio, Riccardo; Vezzoli, Luigina


    In the south-eastern depocentre of the Val d'Agri basin (Southern Apennines), a volcanic ash layer crops out interbedded within poorly structured alluvial fan deposits of Late Pleistocene age. Textural, depositional and pedological features of this weathered layer suggest a primary deposition from a pyroclastic fall-out of volcanic ash. Chemical analyses of feldspars show an alkali trachytic composition and accessory minerals association allow to correlate this tephra layer with the regionally dispersed Y-7 marine tephra layer (Tufo Verde Epomeo eruption, Ischia volcano), dated at 56 ± 4 ka. The Val d'Agri tephra here described for the first time was deposited during MIS Stage 3. Its recovery and characterization permit to contribute to regional correlation of the Mediterranean climatic and volcanic events from marine to continental successions and to describe landscape evolution of the Southern Apennines during glacial-interglacial cycles.

  3. Paleogene Vertebrate Paleontology, Geology and Remote Sensing in the Wind River Basin (United States)

    Stucky, R. K.; Krishtalka, L.


    Biostratigraphic and lithostratigraphic studies were used to correlate different events in the geologic evolution of the northeastern part of the Wind River Basin and have suggested several conclusions. Laterally equivalent exposures of the Lysite member from Cedar Ridge to Bridger Creek show a gradation in lithology from interbedded boulder conglomerates and sandstones to interbedded lenticular sandstones and mudstones to interbedded carbonaceous shales, coals and tabular sandstones. This gradation suggests a shift from alluvial fan to braided stream to paludal or lacustrine sedimentary environments during the late early Eocene. The Lysite and Lost Cabin members of the Wind River Formation are in fault contact in the Bridger Creek area and may intertongue to the east along Cedar Ridge. Ways in which remote sensing could be used in these studies are discussed.

  4. Characterization of alluvial aquifers by multiscale hydrostratigraphic interpretation of DC resistivity data (United States)

    Mele, Mauro; Bersezio, Riccardo; Giudici, Mauro


    The characterization of aquifer heterogeneity plays a key role for the 3-D modelling of conductivity (K) distribution in the subsurface of alluvial plains. DC methods such as Vertical Electrical Soundings (VES) and Electrical Resistivity Ground Imaging (ERGI) yield respectively the 1-D and 2-D resistivity (ρ) distribution in the ground and are often applied in hydrogeology because ρ is controlled by the prevailing process of current conduction ('shale' vs. electrolytic conduction) determined by the occurrence of fine-grained sediments and saline groundwater. Assuming that the sedimentary heterogeneity can be described with hierarchical elements at different scales (from hydrofacies to hydrostratigraphic systems) and recalling that the resolution of DC surveys decreases with depth, we propose an interpretation of the subsurface ρ distribution as a function of the hierarchical properties of aquifers (i.e., the vertical trends of facies with prevailing 'shale' or electrolytic conduction) with hydrostratigraphic constrains. A correlation between ρ and pore-fluid saturation and chemistry permits the use of resistivity as a 'proxy' of facies stacking. Our case-study is the Quaternary valley of palaeo-Sillaro extinct meandering river (Po plain, Italy). The local stratigraphy up to 80 m below ground surface consists of LGM sand-gravel point bar and channel bodies overlying: i) clay to fine sand aquitard of an Upper Pleistocene flood plain, ii) alternating gravel-sand aquifer bodies and fine sand to silty-clay drapes formed by Middle-Upper Pleistocene braiding to meandering depositional systems that developed above iii) a basal aquiclude of silty-clays. To interpret 1-D resistivity models obtained by 89 VES collected with Schlumberger array (maximum half-spacing 300 m) over an area of 30 km2, a Coarse-to-Fine (C/F) litho-textural ratio (particle size cut-off=0.30 mm) was used to classify hydrofacies. The variability of C/F was compared with the K and ρ values of

  5. The role of the uncertainty in assessing future scenarios of water shortage in alluvial aquifers (United States)

    Romano, Emanuele; Camici, Stefania; Brocca, Luca; Moramarco, Tommaso; Guyennon, Nicolas; Preziosi, Elisabetta


    There are many evidences that the combined effects of variations in precipitation and temperature due to climate change can result in a significant change of the recharge to groundwater at different time scales. A possible reduction of effective infiltration can result in a significant decrease, temporary or permanent, of the availability of the resource and, consequently, the sustainable pumping rate should be reassessed. In addition to this, one should also consider the so called indirect impacts of climate change, resulting from human intervention (e.g. augmentation of abstractions) which are feared to be even more important than the direct ones in the medium term: thus, a possible increase of episodes of shortage (i.e. the inability of the groundwater system to completely supply the water demand) can result both from change in the climate forcing and change in the demand. In order to assess future scenarios of water shortage a modelling chain is often used. It includes: 1) the use of General Circulation Models to estimate changes in temperature and precipitation; 2) downscaling procedures to match modeling scenarios to the observed meteorological time series; 3) soil-atmosphere modelling to estimate the time variation of the recharge to the aquifer; 4) groundwater flow models to simulate the water budget and piezometric head evolution; 5) future scenarios of groundwater quantitative status that include scenarios of demand variation. It is well known that each of these processing steps is affected by an intrinsic uncertainty that propagates through the whole chain leading to a final uncertainty on the piezometric head scenarios. The estimate of such an uncertainty is a key point for a correct management of groundwater resources, in case of water shortage due to prolonged droughts as well as for planning purposes. This study analyzes the uncertainty of the processing chain from GCM scenarios to its impact on an alluvial aquifer in terms of exploitation

  6. Strath terraces on the western High Plains indicate climatically-driven variations in sediment supply from source basins in the Colorado Front Range (United States)

    Foster, M. A.; Dühnforth, M.; Anderson, R. S.


    Large strath terraces adjacent to the Colorado Front Range record the local history of fluvial planation and incision into the erodible rocks of the Denver basin over the last 2 million years. Terrace surfaces have been correlated into ~6 alluvial units using elevation and soil development; each alluvial unit was thought to represent a fairly consistent elevation of the Denver basin during various stages of exhumation, driven by base-level fall of the South Platte River. Here we show instead that (1) strath terraces in the western High Plains cannot be correlated based on elevation alone and (2) exhumation of the Denver basin is likely spatially and temporally variable due to climatically-driven variations in sediment supply from the source basins. We collected samples for cosmogenic radionuclide (CRN) profiles (10Be and 26Al) and a soil chronosequence from three strath terraces adjacent to Lefthand Creek near Boulder, CO. 10Be profile data on the upper- and middle-elevation terraces yield dates of 95 ka and 91 ka; these dates are much younger than the correlative alluvial units to the south of Boulder, which date to 1.5 Ma and 250 ka, respectively. Soils on the upper and middle terraces are similar in soil development and clast weathering, consistent with the narrow time window obtained from CRN dating of the two units. 10Be-derived rates for catchment-wide paleo-denudation are ~8.0 cm/ka from the flat and broad upper-terrace gravels and ~3.5 cm/ka from the steeper and narrower middle-terrace gravels. Young terraces at Lefthand Canyon are more consistent with a model of fluvial incision and aggradation driven by climate-controlled variations in sediment production from source basins in the Front Range. High catchment-wide denudation rates generate a high sediment supply, leading to aggradation and lateral planation. Terrace sediments are likely deposited and eroded multiple times during periods of lateral planation; the most recent occupation is preserved in the

  7. Frontier petroleum basins of Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J.F. Jr.; Perez, V.E.


    The frontier basins of Colombia with hydrocarbon potential are numerous, have varying geological histories, and are in different stages of exploration development. In this paper, sedimentary or structural basins are classified as frontier petroleum basins if commercial discoveries of hydrocarbons are lacking, if the basin has not attained a high degree of exploration development, or if a new play concept has been perceived or developed for a portion of a mature exploration basin. Using these criteria for classification, the authors discuss the Cauca-Patia Choco-Pacifico, and Lower Magdalena basin complexes; the Cordillera Oriental foreland basin; and the Cesar-Rancheria, Sabana, and Amazonas basins. A comprehensive geological and structural setting of each of these frontier basins will be presented. The depositional and tectonic evolution of the basins will be highlighted, and the play concepts for each will be inventoried, catalogued, and categorized as to whether they are theoretical or established. The discussion of the available plays in each of these basins will include the main play concept elements of reservoirs traps, seals, source rocks, maturation, and timing. When detailed data permit, the reservoir and trap geometry will be presented.

  8. Natural frequency of regular basins (United States)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.


    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  9. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli molasse (United States)

    Akgün, Funda; Sözbilir, Hasan

    The study, explains stratigraphy of the Oligo-Miocene molasse around the Denizli province (SW Anatolia), based on the palynology which is also supported by the detailed mapping and correlation of the measured sections from the coal-bearing sequences of the molasse deposits. For this purpose, two huge depressions named as the Kale-Tavas molasse and Denizli molasse basins were examined. The Kale-Tavas molasse deposits has a basal unconformity with the underlying pre-Oligocene basement and begins with the Chattian Karadere and Mortuma formations which are covered unconformably by the Aquitanian Yenidere formation. An angular unconformity between the Chattian and the Burdigalian is only observed in the middle part of the basin, around Kale. In the Tavas section, the Aquitanian and the Burdigalian are absent. The Denizli molasse is characterized by Chattian-Aquitanian sequence consisting of distinctive sedimentary facies, alluvial fan and deltaic-shallow marine deposits with carbonate patch reefs. Palynostratigraphic studies, which have given the Chattian age, have been carried out from the coal lenses of alluvial fan and delta plain deposits. In addition to the palynological determinations, coral and foraminiferal content of the carbonate patch reefs which rest conformably on the coal-bearing sequences have yielded the Chattian-Aquitanian age. Two different palynomorph associations have been determined from the molasse deposits. The first palynomorph association which is established in the samples from the Sağdere and Mortuma formations, corresponds to the Chattian age, whilst the second is of the Aquitanian age. The Late Oligocene-Early Miocene which is claimed as the time of N-S-extensional tectonics in western Turkey, is related to the depositional time of the molasse sequences in the study area. Thus, the molasse is older than the basal deposits of the Gediz and Büyük Menderes grabens.

  10. Confocal Raman microscopy for in depth analysis in the field of cultural heritage (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.


    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  11. In-depth Medical Nutrition Therapy for a Woman with Diabetes: From Pregnancy to Delivery (United States)


    Diabetes in pregnancy is associated with higher rates of miscarriage, pre-eclampsia, preterm labor, and fetal malformation. To prevent these obstetric and perinatal complications, women with diabetes have to control levels of blood sugar, both prior to and during pregnancy. Thus, individualized medical nutrition therapy for each stage of pregnancy is essential. We provided in-depth medical nutrition therapy to a 38-year-old pregnant woman with diabetes at all stages of pregnancy up to delivery. She underwent radiation therapy after surgery for breast cancer and was diagnosed with diabetes. At the t