WorldWideScience

Sample records for alluvial basins in-depth

  1. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    Science.gov (United States)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and

  2. Response of alluvial systems to Late Pleistocene climate changes recorded by environmental magnetism in the Añavieja Basin (Iberian Range, NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Urcia, B.; Muñoz, A.; Larrasoaña, J.C.; Luzon, A.; Perez, A.; Gonzalez, A.; Jiang, Z.; Liu, Q.; Roman-Berdi, T.

    2016-07-01

    Environmental magnetic proxies were analyzed in a relatively monotonous, ~25.3m thick alluvial sedimentary sequence drilled in the Añavieja Basin (NE Spain). Results from the core AÑ2 suggest that the concentrationdependent magnetic parameters mainly reflect variations in the content of detrital magnetite, sourced in the catchment rocks and soils of the basin, via changes in the dynamics of alluvial fans due to temperature changes in the northern hemisphere during the Late Pleistocene. The correspondence between the magnetic proxies and the temperature variations in the North Atlantic region (NGRIP curve) indicates that higher (lower) concentrations and finer (coarser) magnetite grains coincide with warm (cold) periods. We propose that during cold periods, a sparser vegetation cover favored the incoming of higher energy runoff bearing coarser sediments to the basin that are relatively impoverished in magnetite. In contrast, during warm periods, the wider distribution of the vegetation cover associated with the lower runoff energy lead to finer, magnetite-richer sediment input to the basin. Maghemite, presumably of pedogenic origin, appears to be present also in the studied alluvial sediments. Further studies are necessary to unravel its palaeoclimatic significance. (Author)

  3. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    Science.gov (United States)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  4. The Quaternary alluvial systems tract of the Pantanal Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Mario Luis Assine

    Full Text Available ABSTRACT The Pantanal Basin is an active sedimentary basin in central-west Brazil that consists of a complex alluvial systems tract characterized by the interaction between different river systems developed in one of the largest wetlands in the world. The Paraguay River is the trunk river system that drains the water and part of the sediment load received from areas outside of the basin. Depositional styles vary considerably along the river profiles throughout the basin, with the development of entrenched meandering belts, anastomosing reaches, and floodplain ponds. Paleodrainage patterns are preserved on the surface of abandoned lobes of fluvial fans, which also exhibit many degradational channels. Here, we propose a novel classification scheme according to which the geomorphology, hydrological regime and sedimentary dynamics of these fluvial systems are determined by the geology and geomorphology of the source areas. In this way, the following systems are recognized and described: (I the Paraguay trunk-river plains; (II fluvial fans sourced by the tablelands catchment area; (III fluvial fans sourced by lowlands; and (IV fluvial interfans. We highlight the importance of considering the influences of source areas when interpreting contrasting styles of fluvial architectures in the rock record.

  5. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  6. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  7. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    Science.gov (United States)

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  8. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    Science.gov (United States)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the

  9. Radon concentration in the springs of the alluvial fan

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi; Kobayashi, Masao

    2003-01-01

    Rokugo alluvial fan is one of the typical stratified alluvial fans which have grown in the east edge of Yokote basin in Akita Prefecture. Many of Rokugo's springs are gushing out from 45 m to 50 m above the sea level where city town have been developed. Mechanism of gushing out of spring is closely bound up with the landform of this area. There is nearly no radon existing in the surface water, but in groundwater, radon concentrations are stable in every stratums and infiltration of groundwater to surface water. We would like to obtain some hydrological information by measuring radon concentration in water samples of Rokugo alluvial fan. (author)

  10. Estimation of alluvial recharge in the semiarid

    OpenAIRE

    Andrade,Tafnes S.; Montenegro,Suzana M. G. L.; Montenegro,Abelardo A. de A.; Rodrigues,Diogo F. B.

    2014-01-01

    In areas where there is irrigated agriculture, the recuperation of water reserves in alluvial aquifers may occur preferentially due to precipitation. Recharging can be evaluated from variation information of water depth measured in piezometers or observation wells. Thus, the aim of this research is to study the recharge in the alluvial aquifer formed by the Mimoso temporary stream in the semiarid region of Pernambuco (PE), Brazil, using the method of the fluctuation of the water level. This s...

  11. Sedimentological analysis of the Estefaniense de Tineo basin (Asturias): example of coal deposits in alluvial fans. Analisis sedimentologico de la cuenca Estefaniense de Tineo (Asturias): ejemplo de depositos de carbon en abanicos aluviales

    Energy Technology Data Exchange (ETDEWEB)

    Santos Garcia, J.A. (Empresa Nacional ADARO, Madrid (Spain))

    1991-01-01

    A sedimentological analysis of the Stephanian deposits of Tineo Basin is carried out. Three unities are established (Basal Breachs, Intermediate Unit and Conglomerate Unit) by means of lithological, mining and sedimentological criteria, which represent larger episodes in the filling of the basin. The first episode corresponds to the initial configuration of the basin, with coarse grained breccia deposits related to steep slopes (Basal Breccia). The second and more complex (Intermediate Unit), is represented by four larger sequences (stages from UI-1 to UI-4, La Prohida Zone) which show secondary tectonic pulsations. At this moment the sedimentation is carried out in several subbasins separated by palaeoreliefs or thresholds. The third episode corresponds to a strong reactivation of the northern edge of the basin, with deposition of the Conglomeratic Unit. The filling of the basin is assimilated to a pattern of alluvial fans in a tectonically-active basin, in which the coal deposition look place during calm (tranquil) periods when a large alluvial fan flanked by coalescent smaller sized fans developed along the northern margin of the basin. 24 refs., 9 figs.

  12. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    Science.gov (United States)

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  13. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  14. Spectral Depth Analysis of some Segments of the Bida Basin ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-16

    Dec 16, 2017 ... ABSTRACT: Spectral depth analysis was carried out on ten (10) of the 2009 total magnetic field intensity data sheets covering some segments of the Bida basin, to determine the depth to magnetic basement within the basin. The data was ... groundwater lie concealed beneath the earth surface and the ...

  15. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    Science.gov (United States)

    Nakamura, T.

    2009-12-01

    Agriculture has significant effects on the rate and composition of groundwater recharge. The chemical loading into groundwater have been dominated by the constituents derived directly or indirectly from agricultural practices and additives. The contamination of groundwater with nitrate is a major public health and environmental concern around the world. The inorganic constituents like, K+, Ca2+, Mg2+, SO42-, Cl- and variety of other minor elements of groundwater are often used as agricultural additives; and the natural occurrence of these elements are dominated by the agricultural sources. A recent study has reported that Kofu basin groundwater aquifer is contaminated by nitrate from agricultural areas because of the fertilizer application for the orchard (Kazama and Yoneyama, 2002; Sakamoto et al., 1997, Nakamura et al., 2007). The water-oxygen and hydrogen stable isotope (δ18O and δD) and nitrate-nitrogen stable isotope (δ15N) of groundwater, river water and precipitation samples were investigated to identify the source of groundwater and nitrate nitrogen contamination in groundwater in the Fuefukigawa and Hikawa_Kanegawa alluvial fans in Kofu basin. The plot of δD versus δ18O values of groundwater, river water and precipitation samples suggest that the groundwater is a mixture of precipitation and river water. And nitrate-nitrogen isotope values have suggested the nitrate contamination of groundwater is from agricultural area. The study revealed positive correlation between groundwater δ18O values and NO3-, Cl-, SO42-, Ca2+, Mg2+ concentration, which shows the agricultural contamination is carried by the recharge of groundwater from precipitation in alluvial fan. Whereas, NO3-, Cl-, SO42-, Ca2+, Mg2+ are diluted by the river water recharges. This study showed the quality of groundwater is resulted from the mixing of water from the different source during the groundwater recharge in the study area. References Kazama F, Yoneyama M (2002) Nitrogen generation

  16. A Hydrological Tomography Collocated with Time-varying Gravimetry for Hydrogeology -An Example in Yun-Lin Alluvial Plain and Ming-Ju Basin in Taiwan

    Science.gov (United States)

    Chen, K. H.; Cheng, C. C.; Hwang, C.

    2016-12-01

    A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.

  17. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2012-03-01

    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  18. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  19. Residence times and alluvial architecture of a sediment superslug in response to different flow regimes

    Science.gov (United States)

    Moody, John A.

    2017-10-01

    A superslug was deposited in a basin in the Colorado Front Range Mountains as a consequence of an extreme flood following a wildfire disturbance in 1996. The subsequent evolution of this superslug was measured by repeat topographic surveys (31 surveys from 1996 through 2014) of 18 cross sections approximately uniformly spaced over 1500 m immediately above the basin outlet. These surveys allowed the identification within the superslug of chronostratigraphic units deposited and eroded by different geomorphic processes in response to different flow regimes. Over the time period of the study, the superslug went through aggradation, incision, and stabilization phases that were controlled by a shift in geomorphic processes from generally short-duration, episodic, large-magnitude floods that deposited new chronostratigraphic units to long-duration processes that eroded units. These phases were not contemporaneous at each channel cross section, which resulted in a complex response that preserved different chronostratigraphic units at each channel cross section having, in general, two dominant types of alluvial architecture-laminar and fragmented. Age and transit-time distributions for these two alluvial architectures evolved with time since the extreme flood. Because of the complex shape of the distributions they were best modeled by two-parameter Weibull functions. The Weibull scale parameter approximated the median age of the distributions, and the Weibull shape parameter generally had a linear relation that increased with time since the extreme flood. Additional results indicated that deposition of new chronostratigraphic units can be represented by a power-law frequency distribution, and that the erosion of units decreases with depth of burial to a limiting depth. These relations can be used to model other situations with different flow regimes where vertical aggradation and incision are dominant processes, to predict the residence time of possible contaminated

  20. Hydrogeological bedrock inferred from electrical resistivity model in Taichung Basin, Taiwan

    Science.gov (United States)

    Chiang, C. W.; Chang, P. Y.; Chang, L. C.

    2015-12-01

    The four-year project of the study of groundwater hydrogeology and recharge model was indicated by Central Geological Survey, MOEA, Taiwan (R.O.C.) to evaluate recharge groundwater areas in Taiwan where included Taipei, Taichung Basins, Lanyang and Chianan Plains. The groundwater recharge models of Lanyang Plain and Taipei Basin have successfully been estimated in two years ago (2013-2014). The third year of the project integrates with geophysical, geochemistry, and hydrogeology models to estimate the groundwater recharge model in Taichung Basin region. Taichung Basin is mainly covered by Pre-Pleistocene of thick gravel, sandy and muddy sediment rocks within a joint alluvial fan, whereas the depth of the hydrological bedrock remains uncertain. Two electrical resistivity geophysical tools were carried out utilizing direct current resistivity and audio-magnetotelluric (AMT) explorations, which could ideally provide the depth resolutions from shallow to depth for evaluating the groundwater resources. The study has carried out 21 AMT stations in the southern Taichung Basin in order to delineate hydrological bedrock in the region. All the AMT stations were deployed about 24 hours and processed with remote reference technique to reduce culture noises. The quality of most stations shows acceptable in the area which two stations were excluded due to near-field source effect in the southwestern basin. The best depth resolution is identified in 500 meters for the model. The preliminary result shows that the depths of the bedrock gradually changes from southern ~20 m toward to ~400 m in central, and eastern ~20 m to 180 m in the western basin inferred from the AMT model. The investigation shows that AMT method could be a useful geophysical tool to enhance the groundwater recharge model estimation without dense loggings in the region.

  1. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    Science.gov (United States)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  2. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    Science.gov (United States)

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  3. Quality of water in alluvial aquifers in eastern Iowa

    Science.gov (United States)

    Savoca, Mark E.; Sadorf, Eric M.; Linhart, S. Michael; Barnes, Kimberlee K.

    2001-01-01

    The goal of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is to assess the status and trends in the quality of the Nation's surface and ground water, and to better understand the natural and human factors affecting water quality. The Eastern Iowa Basins study unit encompasses an area of about 50,500 square kilometers (19,500 square miles) in eastern Iowa and southern Minnesota and is one of 59 study units in the NAWQA program. Land-use studies are an important component of the NAWQA program, and are designed to assess the concentration and distribution of water-quality constituents in recently recharged ground water associated with the most significant land use and hydrogeologic settings within a study unit. The focus of the land-use study in the Eastern Iowa Basins study unit is agricultural and urban land uses and alluvial aquifers. Agriculture is the dominant land use in the study unit. Urban areas, although not extensive, represent important potential source areas of contaminants associated with residential, commercial, and industrial activities. Alluvial aquifers are present throughout much of the study unit, and constitute a major ground-water supply that is susceptible to contamination from land-use activities.

  4. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method

    Science.gov (United States)

    Tün, M.; Pekkan, E.; Özel, O.; Guney, Y.

    2016-10-01

    Amplification can occur in a graben as a result of strong earthquake-induced ground motion. Thus, in seismic hazard and seismic site response studies, it is of the utmost importance to determine the geometry of the bedrock depth. The main objectives of this study were to determine the bedrock depth and map the depth-to-bedrock ratio for use in land use planning in regard to the mitigation of earthquake hazards in the Eskişehir Basin. The fundamental resonance frequencies (fr) of 318 investigation sites in the Eskişehir Basin were determined through case studies, and the 2-D S-wave velocity structure down to the bedrock depth was explored. Single-station microtremor data were collected from the 318 sites, as well as microtremor array data from nine sites, seismic reflection data from six sites, deep-drilling log data from three sites and shallow drilling log data from ten sites in the Eskişehir Graben. The fundamental resonance frequencies of the Eskişehir Basin sites were obtained from the microtremor data using the horizontal-to vertical (H/V) spectral ratio (HVSR) method. The phase velocities of the Rayleigh waves were estimated from the microtremor data using the spatial autocorrelation (SPAC) method. The fundamental resonance frequency range at the deepest point of the Eskişehir Basin was found to be 0.23-0.35 Hz. Based on the microtremor array measurements and the 2-D S-wave velocity profiles obtained using the SPAC method, a bedrock level with an average velocity of 1300 m s-1 was accepted as the bedrock depth limit in the region. The log data from a deep borehole and a seismic reflection cross-section of the basement rocks of the Eskişehir Basin were obtained and permitted a comparison of bedrock levels. Tests carried out using a multichannel walk-away technique permitted a seismic reflection cross-section to be obtained up to a depth of 1500-2000 m using an explosive energy source. The relationship between the fundamental resonance frequency in the

  5. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site

    Science.gov (United States)

    Rits, Daniël S.; van Balen, Ronald T.; Prins, Maarten A.; Zheng, Hongbo

    2017-06-01

    The Luo River is located in the southern part of the Chinese Loess Plateau and the northern part of the Weihe Basin, in Central China. In the basin it flows proximal to the site of the Luyang Wetland core, which is an important archive of climate change over the past 1 Myr in this region. In this paper, the contribution of the Luo River to the sedimentary record is analyzed by reconstructing the evolution of this river during the Middle to Late Pleistocene. It is argued that an alluvial fan of the Luo River has contributed to the sedimentary archive until approximately 200-240 ka. From this moment onwards, the fan became incised and terraces began to form. The formation of a new alluvial fan further downstream led to the disconnection of the Luo River from the Luyang Wetland core site. We propose that this series of events was caused by the displacement of an intra-basinal fault and the resultant faulting-forced folding, which caused increased relative subsidence, and thus increased sedimentation rates at the core site. Therefore, a complete sediment record in the 'Luyang Wetland' was preserved, despite the disconnection from the Luo River. The chronology of the fans and terraces was established using existing age control (U-series, ESR, OSL, pIRIR290 and magnetic susceptibility correlation), and through correlation of the loess-paleosol cover to marine isotope stages. Based on sedimentological characteristics of the fluvial sequence, we suggest that incision of the Luo River occurred in two steps. Small incisions took place at transitions to interglacials and the main incision phases occur at the transition from an interglacial to glacial climate. Due to the incision, basal parts of the oldest Luo River alluvial fan are exposed, and it is in one of these exposures that the famous Dali Man skull was retrieved. This study shows that the Dali Man did not live on a river terrace as previously thought, but on an aggrading alluvial fan, during wet, glacial conditions.

  6. Influence of geologic structure on alluvial sedimentation in northwestern Yucca Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1983-01-01

    Using downhole photography, alluvial sediments are described in 5 emplacement holes in northwestern Yucca Flat. The holes are located on or near the Grouse Canyon fan. The 3 most proximally located holes contain the coarsest sediments and display a general decrease in grain size in the downfan direction. The 2 most distally located holes contain fine-grained distal facies sediment in the upper parts of the holes and coarse-grained proximal facies gravels lower in the holes. The proximal gravels in the lower half of the sections were derived from the gravity high, a north-south-trending horst which was exposed early during the history of Yucca Flat basin. Alluvial sedimentation eventually exceeded uplift of the horst, which was buried by distal facies sediments, derived from the western basin margin

  7. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    Science.gov (United States)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  8. Residence times and alluvial architecture of a sediment superslug in response to different flow regimes

    Science.gov (United States)

    Moody, John A.

    2017-01-01

    A superslug was deposited in a basin in the Colorado Front Range Mountains as a consequence of an extreme flood following a wildfire disturbance in 1996. The subsequent evolution of this superslug was measured by repeat topographic surveys (31 surveys from 1996 through 2014) of 18 cross sections approximately uniformly spaced over 1500 m immediately above the basin outlet. These surveys allowed the identification within the superslug of chronostratigraphic units deposited and eroded by different geomorphic processes in response to different flow regimes.Over the time period of the study, the superslug went through aggradation, incision, and stabilization phases that were controlled by a shift in geomorphic processes from generally short-duration, episodic, large-magnitude floods that deposited new chronostratigraphic units to long-duration processes that eroded units. These phases were not contemporaneous at each channel cross section, which resulted in a complex response that preserved different chronostratigraphic units at each channel cross section having, in general, two dominant types of alluvial architecture—laminar and fragmented. Age and transit-time distributions for these two alluvial architectures evolved with time since the extreme flood. Because of the complex shape of the distributions they were best modeled by two-parameter Weibull functions. The Weibull scale parameter approximated the median age of the distributions, and the Weibull shape parameter generally had a linear relation that increased with time since the extreme flood. Additional results indicated that deposition of new chronostratigraphic units can be represented by a power-law frequency distribution, and that the erosion of units decreases with depth of burial to a limiting depth. These relations can be used to model other situations with different flow regimes where vertical aggradation and incision are dominant processes, to predict the residence time of possible contaminated

  9. End-Pleistocene to Holocene paleoenvironmental record from piston corer samples and the challenge of stratigraphic correlation of playa sediment data with a connected alluvial apron from Damghan Basin, Iran

    Science.gov (United States)

    Büdel, Christian; Hoelzmann, Philipp; Wennrich, Volker; Majid Padashi, Sajed; Baumhauer, Roland

    2015-04-01

    The study yields a first characterization and correlation of the end-Pleistocene to Holocene sediment archive of playa and playa lake deposits in the Damghan Basin, northern Iran. The Basin sediments are deposited since Mio- and Pliocene, which is valid for the connected alluvial fans, too. These are covering the area between the playa and mountains and while prograding from the mountain ranges they deliver gravels and fine-sediments to the basins sink. The processes on the studied alluvial apron are described and dated already and can be explained in seven morphodynamic phases, which are linked to a general lake level high-stand in north-east Iran at about 8000-9000 years ago. If and how these phases are passed on from the alluvial record down to the playa sediment record is aim of this study. Today the salt pans margins are highly affected by salt tectonic drifting and access was suboptimal. Only here drilling could be performed through about 280 centimeters of salt-crust unfrequently intercalated with loamy layers. For yielding undisturbed playa sediment records sampling was performed with inliner-tubes deployed in a piston corer (Kullenberg type). Thus at two different drilling sites in summation seven cores could be taken, down to a maximum depth of 129 cm and 1000 cm. Back in Germany the cores had been opened and initially described, photographed and optically scanned with a core logger. Regarding future studies, the aim was a best possible comprehensive documentation of the cores. Therefore basically grainsize measurements (laser diffraction), multi element analyses (XRF, ICP-OES, titrimetry) and mineralogical measurements (XRD) had been deployed on samples taken from every single previously identified layer. Continuous elemental data was secured by use of a XRF-scanning core logger. The sedimentological description together with laboratory element analyses shows saline conditions in the first three meters coincide with general coarser grain sizes. The next

  10. Groundwater quality in the Coastal Los Angeles Basin, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.

  11. Nitrogen Isotopes and Chemocline Depth in Stratified Basins

    Science.gov (United States)

    Fulton, J. M.; Arthur, M. A.

    2006-12-01

    Black shale samples commonly have bulk δ15N values below 0‰, previously interpreted as the result of bacterial nitrogen fixation. In this study we examine the effect of chemocline depth on the δ15N values of water column particulate matter and sediments of two meromictic basins. In particular, we produced δ15N profiles of bulk Black Sea sediments, bulk sediments from Fayetteville Green Lake (FGL), and nutrients and particulates from FGL. We also analyzed pigments from FGL samples to trace the occurrences of deep-dwelling bacteria. Our results suggest that a shallow chemocline leads to relatively 15N-depleted sediments in the absence of nitrogen fixation, probably due to increased availability of ammonium for growth near the chemocline. FGL is meromictic with a shallow chemocline at 20 meters. Ammonium released in the monimolimnion and sediments supports productivity of cyanobacteria and purple (PSB) and green sulfur bacteria near and below the chemocline. The PSB at 20m generate 15N-depleted biomass (δ15N = -3‰), compared with 0 to 3‰ for deep water ammonium. High concentrations of Bchl a extracted from particulate matter at deeper depths, where high sulfide concentrations inhibit PSB growth, suggest that sinking particulate matter contains PSB biomass, transmitting the 15N-depleted signal to the sediments. The Black Sea chemocline depth has varied over the past 7500 years. Published biomarker and pyrite framboid size data suggest that a shallow chemocline persisted through much of the past 7500 years, except for three intervals when the chemocline was deeper than 205 meters. We have measured bulk δ15N on six cores spanning depths from 205 to 2088 meters. Each of the deep chemocline intervals coincides with basin-wide sedimentary δ15N values between 2 and 4‰, compared with values near or below 0‰ for periods characterized by a shallower chemocline. The most 15N-depleted values probably result from a much shallower chemocline than that at present

  12. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, David S., E-mail: dsv3@duke.edu [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States); McIntosh, Jennifer C. [University of Arizona, Department of Hydrology and Water Resources, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Dwyer, Gary S.; Vengosh, Avner [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States)

    2011-08-15

    Highlights: > Elevated natural As and F occur in the Willcox Basin aquifer of Arizona. > Oxyanion-forming elements are derived from volcanic-source aquifer sediments. > Sr isotopes trace sediment sources linked to oxyanion-forming trace elements. > {sup 87}Sr/{sup 86}Sr > 0.720 indicates Proterozoic crystalline-source sediment contributing low As. > Both sediment source and hydrogeochemical evolution (Ca/Na) affect As levels. - Abstract: The Willcox Basin is a hydrologically closed basin in semi-arid southeastern Arizona (USA) and, like many other alluvial basins in the southwestern USA, is characterized by oxic, near-neutral to slightly basic groundwater containing naturally elevated levels of oxyanion-forming trace elements such as As. This study evaluates the sources and mobilization of these oxyanionic trace elements of health significance by using several isotopic tracers of water-rock interaction and groundwater sources ({sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S{sub SO4}, {delta}{sup 11}B, {delta}{sup 2}H, {delta}{sup 18}O, {sup 3}H). Values of {delta}{sup 2}H (-85 per mille to -64 per mille) and {delta}{sup 18}O (-11.8 per mille to -8.6 per mille) are consistent with precipitation and groundwater in adjacent alluvial basins, and low to non-detectable {sup 3}H activities further imply that modern recharge is slow in this semi-arid environment. Large variations in {sup 87}Sr/{sup 86}Sr ratios imply that groundwater has interacted with multiple sediment sources that constitute the basin-fill aquifer, including Tertiary felsic volcanic rocks, Paleozoic sedimentary rocks, and Proterozoic crystalline rocks. In general, low concentrations of oxyanion-forming trace elements and F{sup -} are associated with a group of waters exhibiting highly radiogenic values of {sup 87}Sr/{sup 86}Sr (0.72064-0.73336) consistent with waters in Proterozoic crystalline rocks in the mountain blocks (0.73247-0.75010). Generally higher As concentrations (2-29 {mu}g L{sup -1}), other

  13. Hydrocarbon Status of Alluvial Soils in the Istra Morphostructural Node (Moscow Oblast)

    Science.gov (United States)

    Pikovskiy, Yu. I.; Gennadiev, A. N.; Kovach, R. G.; Khlynina, N. I.; Khlynina, A. V.

    2017-12-01

    The effect of the current block structure of the earth's crust and its most active sites (morphostructural nodes) on the natural hydrocarbon status of alluvial soils has been considered. Studies have been performed in the Istra district of Moscow oblast within the Istra morphostructural node. The node represents an area of increased geodynamic activity of the earth's crust located at the convergence or intersection of block boundaries: mobile linear zones following large river valleys with alluvial soils. Soil cover mainly consists of alluvial humic-gley soils (Eutric Gleyic Fluvisols) of different depths and alluvial mucky-gley soils (Eutric Gleyic Histic Fluvisols). Some soils manifest stratification. Two factors forming the hydrocarbon status of soils are considered: soil processes and the effect of geodynamic activity, which is manifested within the morphostructural node. The contents of bitumoids and retained methane and butanes in alluvial soils appreciably increase at the entry of river valley into the node. The occurrence frequency of 5-6-ring polycyclic aromatic hydrocarbons (perylene and benzo[ghi]perylene) in mineral horizons increases. It has been concluded that alluvial soils within the Istra morphostructural node are characterized by the biogeochemical type of hydrocarbon status with signs of emanation type at sites with the highest geodynamic activity.

  14. Climatic controls on arid continental basin margin systems

    Science.gov (United States)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  15. Use of morphometric analysis and self-organizing maps for alluvial fan classification: case study on Ostorankooh altitudes, Iran

    International Nuclear Information System (INIS)

    Mokarram, Marzieh; Seif, Abdollah; Sathyamoorthy, Dinesh

    2014-01-01

    The aim of this study is to classify alluvial fans formed by high-gradient braided streams and torrents that discharge into the Oshtorankook altitudes in the Lorestan province, Iran. The morphology of the fans and their watershed is quantitatively described through estimated morphometric parameters. For relationships between geomorphological features of the fans and their drainage basins, self-organizingmaps (SOM) were used. In SOM, according to both qualitative data and morphometric variables, the clustering tendency of alluvial fans was investigated using 15 alluvial fans parameters. The results of the analysis showed that several morphologically different fan types were recognizedbased on their geomorphological characteristics in the study area. A strong positive relationship was found between the drainage basin area and size of the fan with a simple power function. In addition, the relationship between fan slope and drainage area was found to be negative and moderately strong with a simple power function

  16. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    Science.gov (United States)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  17. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  18. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  19. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  20. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin ... accompanied by passive subsidence. ... margins, whereas the concentration of fine-grained clastic sediments and ..... concentrated at the marginal areas of the basin. .... faults favoured the accumulation of alluvial fan.

  1. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    Science.gov (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  2. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.

    1982-04-01

    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  3. KAJIAN SPASIAL KUALITAS AIR TANAH BEBAS BERDASARKAN KEDALAM MUKA AIR TANAH: STUDI KASUS DI DATARAN ALUVIAL DAS PEMALI KABUPATEN BREBES (Spatial Study of the Quality of Free Groundwater Based on the Surface Depth of Groundwater at an Alluvial Land

    Directory of Open Access Journals (Sweden)

    Siti Sundari Miswadi

    2009-07-01

    kadarnya melebihi NAB. Kedalaman MAT yang menunjukkan kualitas air cukup baik sesuai analisis adalah pada kedalaman di atas 8,51 meter dan antara 5,80-6,70 meter.   ABSTRACT Most of the alluvial areas of Pemali River Basin (DAS in Brebes district are onion, soybean, cassava, and chili farm production centre. Besides, the area is also known for duck husbandry producing eggs, and it is developed fast. The agriculture and husbandry are mostly met in the residential area, whereas the activities use fertilizer and pesticides and also produce cattle waste which, of course, will contaminate people’s wells. Since the clean water service of the Municipal Waterworks (PDAM has not reach all of the Pemali River Basin (DAS, especially in alluvial residential area, so for cooking, drinking, bathing, washing and other needs, the people make well with various depth, without concerning the right well making and health requirements. The purpose of the research is to map the quality of free ground water based on the depth of water ground surface in the Pemali DAS alluvial area. The method used is analyzing the quality of the free ground water laboratorically, and the result is plotted to 30 sample points in the map of groundwater surface depth divided into 11 classes. The result of the research shows that there are 10 parameters of water quality which content over the Limit Edge Value (NAB, they are, TDS, DHL, Organochlorine, Carbamat, Alkalinity, COD, BOD, Coliform Total, waste Coliform, and pH, whether the NO3-, NO2-, SO4=, Ca2+, phosphate, and muddiness parameter generally have content below NAB in all depth. Seen from some of the sample points which parameter amount has content over the NAB,  the 0.37-3.98 meters ground water surface depth has eight parameters which over the NAB, then 0.10-0.36 meter depth with five parameters, and 3.99-8.50 meters with four parameters which over the NAB. Based on the parameter amount of each sample point, so in 0.37-1.27 meters MAT depth there are

  4. Rainfall and runoff characteristics of Namman Basin in the Kingdom of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Wagdany, A.S.

    2008-01-01

    Namman basin is an arid mountainous basin located in the western region of Saudi Arabia and has drainage area of about 650 km2. Namman unconfined groundwater aquifer is the source of water to the historic underground galleries known as Ain Zubaidah. The galleries became dry due to the fall of groundwater levels dramatically in the last few decades. The galleries can only be restored only if a proper water resources management is utilized in the basin. The aim of this research is to investigate two major hydrological components, namely rainfall and runoff, which are essential for a proper management of the water resources of the basin. Rainfall and runoff records for ten rain gauge stations and one runoff gauge station are used to investigate major characteristics of rainfall and runoff in Namman basin. Rainfall records are analyzed to derive conclusion about rainfall occurrence, depth duration, temporal distribution and extreme values. The relation between rainfall depth and elevation is also investigated. Runoff records are utilized to investigate seasonal variation of runoff. Values of runoff coefficient for all runoff events are computed and the relation between rainfall and runoff for the basin are discussed. The results show that there are more than 30 rainstorms per year and only about two runoff events are usually observed. The temporal analysis of rainfall and runoff indicates that there are two rainy seasons, one is during fall and winter season and other is during spring seasons while runoff is mainly observed in the winter season and the other is during spring seasons while runoff is mainly observed in the winter season. Values of runoff coefficient were very low with mean value of 0.013, which indicate that most rainfall infiltrate through the alluvial channels of the basin. (author)

  5. Continental Environment of Triassic Alluvial Beds in the Northern North Sea Area: Core Examples from the Lunde Formation, Snorre Field

    Energy Technology Data Exchange (ETDEWEB)

    Nystuen, Johan Petter; Bergan, Morten

    1999-07-01

    Alluvial processes transport and deposit gravel, sand and mud in a series of depositional systems such as alluvial fans, fluvial channels, floodplain and lacustrine basins. In the northernmost part of the North Sea alluvial sandstones form major reservoir rocks in several oil fields in the Tampen Spur area. In the Snorre Field, the Norian- Early Rhaetian Lunde Formation has given a great database from exploration and production wells, seismic studies, reservoir modelling, production experience and comparative analogue studies on facies distribution, alluvial architecture, heterogeneities and reservoir properties of alluvial successions. The Lunde Formation is subdivided in three members, the lower, middle and upper Lunde members, with the upper member being the main part of the Lunde reservoir rocks. The scope of presenting core samples from the upper Lunde member is to demonstrate main alluvial facies and facies associations, how facies analysis proceeds into construction of conceptual fluvial models that in turn are fundamental in evaluation of reservoir heterogeneities and reservoir modelling. The upper Lunde member consists of repeated units of red and grey sandstone and mudstone. Sandstones are dominantly medium-grained with common range from coarse- to very fine-grained. A basic building stone of the alluvial succession consists of a thick single- or multi-storey sandstone body overlain by a thick mudstone unit. Such couplets form allostratigraphic units and define the main reservoir zones.

  6. Analysis on sequence stratigraphy and depositional systems of Mangbang formation, upper tertiary in Longchuanjiang basin

    International Nuclear Information System (INIS)

    Sun Zexuan; Yao Yifeng; Chen Yong; Li Guoxin

    2004-01-01

    Longchuanjiang basin is a small Cenozoic intramontane down-faulted basin. This paper, combining the Pliocene structure, the volcanic activities and the sedimentation of the basin, analyses the sequence stratigraphy and the depositional systems of Mangbang formation (the cover of the basin). Based on the analysis of depositional systems of Mangbang formation, the depositional pattern of Pliocene in Longchuanjiang basin is set up. It is suggested that because of the fast accumulation in early down-faulted zone during Pliocene time, the alluvial fan depositional system was dominated at that time. During the middle-late period, the alluvial fan entered the lake forming a combination of fan-fandelta-lacustrine depositional systems. Authors propose a view point that the formation of Mangbang formation sequence was constrained by multistage tectonic movement, and three structural sequences were established, and system tracts were divided. (authors)

  7. Distal alluvial fan sediments in early Proterozoic red beds of the Wilgerivier formation, Waterberg Group, South Africa

    Science.gov (United States)

    Van Der Neut, M.; Eriksson, P. G.; Callaghan, C. C.

    The 1900 - 1700 M.a. Waterberg Group belongs to a series of southern African cratonic cover sequences of roughly equivalent age. Red beds of the Wilgerivier Formation comprise sandstones, interbedded with subordinate conglomerates and minor mudrocks. These immature sedimentary rocks exhibit lenticular bedding, radial palaeocurrent patterns and features indicative of both streamflow and gravity-flow deposition. A distal wet alluvial fan palaeoenvironmental setting is envisaged, with fan-deltas forming where alluvial lobes prograded into a lacustrine basin. Intrastratal, diagenetic alteration of ferromagnesian detrital grains and ferruginous grain coatings led to the red colouration of the Wilgerivier sediments.

  8. INFLUENCE OF SEDIMENT SUPPLY, LITHOLOGY, AND WOOD DEBRIS ON THE DISTRIBUTION OF BEDROCK AND ALLUVIAL CHANNELS

    Science.gov (United States)

    Field surveys in the Willapa River basin, Washington State, indicate that the drainage area?channel slope threshold describing the distribution of bedrock and alluvial channels is influenced by the underlying lithology and that local variations in sediment supply can overwhelm ba...

  9. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    Science.gov (United States)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  10. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fuzhong [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Yang Wanqin, E-mail: scyangwq@163.com [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Zhang Jian; Zhou Liqiang [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China)

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 {+-} 19.22 and 576.75 {+-} 40.55 {mu}g cadmium per plant with 110.77 {+-} 12.68 and 202.54 {+-} 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  11. Calibration of a neutron probe for determining the humidity in deep alluvial soils

    International Nuclear Information System (INIS)

    Ferrer, A.; Rivero, H.; Lopez, F.; Cantillo, O.

    1993-01-01

    Preliminary data for the calibration of a neutron probe in deep alluvial soils for determining the humidity are reported. Comparisons of Neutron flow behaviour with the depth of the land are established. A characteristic curve of amount of detected neutrons according to the humidity percentage (from 50 to 100 % of the field humidity) is obtained

  12. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    Science.gov (United States)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  13. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    International Nuclear Information System (INIS)

    Wu Fuzhong; Yang Wanqin; Zhang Jian; Zhou Liqiang

    2010-01-01

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 ± 19.22 and 576.75 ± 40.55 μg cadmium per plant with 110.77 ± 12.68 and 202.54 ± 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  14. Role of initial depth at basin margins in sequence architecture: field examples and computer models

    Czech Academy of Sciences Publication Activity Database

    Uličný, David; Nichols, G.; Waltham, D.

    2002-01-01

    Roč. 14, č. 3 (2002), s. 347-360 ISSN 0950-091X R&D Projects: GA ČR GA205/01/0629 Institutional research plan: CEZ:AV0Z3012916 Keywords : basin margin * initial depth * sedimentation * depositional sequences Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.022, year: 2002

  15. Temporal correlation of fluvial and alluvial sequences in the Makran Range, SE-Iran

    Science.gov (United States)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Burg, J.-P.; Bahroudi, A.; Kubik, P. W.; Baur, H.; Wieler, R.; Haghipour, N.

    2009-04-01

    The Makran region of southeastern Iran is an active accretionary wedge with a partially subaerial component. New investigations have revealed a rather complex geodynamic evolution of the Makran active accretionary wedge that is not yet fully understood in its entity. Ongoing convergence between the Arabian and Eurasian plates and tectonic activity since the late Mesozoic has extended all trough the Quaternary. We focus here on fluvial and alluvial sequences in tectonically separated basins that have been deposited probably in the Pliocene/Quaternary, based on stratigraphic classification in official geological maps, in order to understand the climatic and tectonic forces occurring during the ongoing accretionary wegde formation. Specifically, we investigate the influence of Quaternary climate variations (Pleistocene cold period, monsoonal variations) on erosional and depositional processes in the (semi)arid Makran as well as local and regional tectonic forces in the Coastal and Central Makran Range region. Necessary for such an analysis is a temporal calibration of alluvial and fluvial terrace sequences that will allow an inter-basin correlation. We utilize the exposure age dating method using terrestrial cosmogenic nuclides (TCN) due to the lack of otherwise datatable material in the arid Makran region. Limited radiocarbon data are only available for marine terraces (wave-cut platforms). Our preliminary 21Ne and 10Be TCN-ages of amalgamated clast samples from (un)deformed terrace and alluvial sequences range from ~250 ky to present day (modern wash). These ages agree in relative terms with sequences previously assigned by other investigations through correlation of Quaternary sequences from Central and Western Iran regions. However, our minimum ages suggest that all age sequences are of middle to late Pleistocene age, compared to Pliocene age estimates previously assigned for the oldest units. Although often suggested, a genetical relation and connection of those

  16. Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (southern Italy

    Directory of Open Access Journals (Sweden)

    N. Santangelo

    2011-10-01

    Full Text Available This paper deals with the risk assessment to alluvial fan flooding at the piedmont zone of carbonate massifs of the southern Apennines chain (southern Italy. These areas are prime spots for urban development and are generally considered to be safer than the valley floors. As a result, villages and towns have been built on alluvial fans which, during intense storms, may be affected by flooding and/or debris flow processes.

    The study area is located at the foothills of the Maddalena mountains, an elongated NW-SE trending ridge which bounds to the east the wide intermontane basin of Vallo di Diano. The area comprises a wide detrital talus (bajada made up by coalescent alluvial fans, ranging in age from the Middle Pleistocene to the Holocene. Historical analysis was carried out to ascertain the state of activity of the fans and to identify and map the zones most hit by past flooding. According to the information gathered, the Sala Consilina fans would appear prone to debris flows; in the past these processes have produced extensive damage and loss of life in the urban area. The watershed basins feeding the fans have very low response times and may produce debris flow events with high magnitudes. Taking into account the historical damage, the fan surface morphology, and the present urban development (street orientation and hydraulic network, the piedmont area was zoned and various susceptibility classes were detected. These results may represent a useful tool for studies aiming at territorial hazard mapping and civil protection interventions.

  17. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  18. A new report on the occurrence of zeolitites in the abyssal depths of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    of Oceanography, Dona Paula, Goa 403 004, India (Received August 13, 1992; revised version accepted November 18, 1992) ABSTRACT Forty-two indurated slabs of zeolites collected from the abyssal depths of the Central Indian Basin have been studied. The slabs... Depth Sampler Topography/ No. (dimensions in cm) (°S) (°E) (m) deployed sediment type 1 SS17/877 (A) Ferromanganese oxides with patches of 13.032 75.743 4275 Dredge Seamount flank/ orangish-yellow material, 25 × 21...

  19. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  20. Application of the authigenic 10Be/9Be dating method to Late Miocene-Pliocene sequences in the northern Danube Basin (Pannonian Basin System): Confirmation of heterochronous evolution of sedimentary environments

    Science.gov (United States)

    Šujan, Michal; Braucher, Régis; Kováč, Michal; Bourlès, Didier L.; Rybár, Samuel; Guillou, Valéry; Hudáčková, Natália

    2016-02-01

    Authigenic 10Be/9Be dating method was applied to lacustrine, deltaic and alluvial sequences of the northern Danube Basin (Pannonian Basin System), to bridge the insufficiency of geochronological data for the Late Miocene to Pliocene period. The measurements of 51 samples (both lacustrine and floodplain), ranging from 11.6 to 0.95 Ma are consistent with the existing magnetostratigraphic and biostratigraphic data standing mainly on the evolution degree of endemic mollusk fauna, mammals and dinocysts. This agreement confirms our assumption that the incoming beryllium fluxes remained constant over the studied time period and thus that the two initial 10Be/9Be ratios determined in actual Holocene/Late Pleistocene sediments (lacustrine and floodplain) are valid for these environments. The obtained ages indicate gradual progradation of the deltaic depositional systems across the Danube Basin with a clear time-transgressional character, replacing basin floor and shelfal environments. Deltaic sedimentation occurred firstly in the north at foothills of the Western Carpathians from 11.0 Ma, and changed to the alluvial environment after 10.5 Ma. At the same time (~ 10.5 Ma), the paleo-Danube deltaic system draining the Eastern Alps entered the study area from the Vienna Basin situated on the West. Later, the deltaic systems were merged in the central part of the basin and reached its southeastern margin at ~ 9.4 Ma. Regression of the Lake Pannon from the southernmost part of the study area is evidenced after 8.7 Ma. Alluvial deposition of meandering rivers lasting until 6.0-5.0 Ma followed and was interrupted by the early Pliocene basin inversion. Sedimentation of braided streams took place during the late Pliocene and Pleistocene, reflecting uplift of mountains surrounding the basin margins. This study documents the powerful potential of the authigenic 10Be/9Be dating method and its reliability in a basin with complicated tectonic and sedimentary history. It demonstrates that

  1. Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards

    OpenAIRE

    Yáñez, Gonzalo; Muñoz, Mauricio; Flores-Aqueveque, Valentina; Bosch, Andrés

    2015-01-01

    A recording of 1,115 gravimetric stations, the review of 368 wells, and the petrophysics measurements of 106 samples from representative outcrops have been used for a comprehensive geological/geophysical study of Santiago Basin. 2.5D and 3D gravimetric modeling, constrained by regional geology, soil and bedrock densities, edge-basin outcrops, depth (minimum) to basement from wells, and detailed modeling of heterogeneous bedrock and midcrustal blocks, provided a well-constrained depth to basem...

  2. Radiotracer technique to study movement of pollutants in an alluvial aquifer

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sharma, Suman

    2001-01-01

    Radioisotopes are being used as tracers in many research areas. Their use in determination of groundwater flow velocity is well known. They also provide insight into the understanding the hydrological systems. In this paper, pollutant movement in an alluvial aquifer in the Ganga basin near Kanpur is evaluated using radiotracer method. Radioactive 82 Br in the form of aqueous ammonium bromide was used as a tracer to measure filtration velocity of the groundwater in the vicinity of an effluent storage lagoon of a fertilizer plant at Kanpur, U.P. Point dilution technique in a single well was applied. Filtration velocity so obtained provided relevant information about the pollutant movement in the groundwater. (author)

  3. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  4. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  5. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    Science.gov (United States)

    The Lower Mississippi River Basin (LMRB) is a nationally- and internationally-important region of intensive agricultural production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for row crop irrigation. Extensive irrigation coupled with the region’s geology ...

  6. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  7. Development of a stream–aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin

    International Nuclear Information System (INIS)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-01-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream–aquifer relationship under these future scenarios. The Arbúcies River basin (116 km 2 ) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  8. Deposition and diagenesis of the Brushy Basin Member and upper part of the Westwater Canyon member of the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Bell, T.E.

    1986-01-01

    The Brushy Basin Member and the upper part of the Westwater Canyon Member of the Morrison Formation in northwest New Mexico are nonmarine sedimentary rocks of Late Jurassic age. This stratigraphic interval consists of as many as four lithofacies deposited in fluvial and playa-lake environments. Lithofacies A is composed of crossbed feldspathic sandstone and was deposited by braided streams on an alluvial plain. Lithofacies B is composed of crossbedded feldspathic sandstone and tuffaceous mudstone, and was deposited by braided and anastomosing streams at the distal end of the alluvial plain. Lithofacies C is composed of calcareous, tuffaceous mudstone and was deposited on a mudflat between the alluvial plain and a playa lake. Lithofacies D is composed of zeolitic, tuffaceous mudstone and was deposited in a playa lake. The distribution of diagenetic facies in mudstones and tuffs in the Brushy Basin Member and upper part of the Westwater Canyon Member reflects the pH and salinity gradients common to fluvial/playa-lake systems. The abundant vitric ash in the sediments reacted to form montmorillonite in the fluvial facies. Calcite and montmorillonite were the reaction products where the fluvial and outermost playa facies met. Vitric ash reacted to form clinoptilolite and heulandite along the playa margins. In the center of the playa facies, analcime replaced clinoptilolite, an early zeolite. These early diagenetic minerals were replaced by albite, quartz, and mixed-layer illitemontmorillonite where the Brushy Basin Member and upper part of the Westwater Canyon Member have been deeply buried in the San Juan basin

  9. Stratigraphy of Guichon Formation (lower cretaceous) in litoral basin, Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Perea, D.; Perinotto, J.

    1999-01-01

    This report is about the stratigraphic al analysis of the Guichon Formation (lower cretaceous, litoral basin in Uruguay). The facies association is represented by conglomerates mainly fine sandstones and mud stones wi ch is interpreted as an alluvial system. A regional palaeogeography and a new geochronological alternative are established for this formation. (author).

  10. Sediment deposition rate in the Falefa River basin, Upolu Island, Samoa

    International Nuclear Information System (INIS)

    Terry, James P.; Kostaschuk, Ray A.; Garimella, Sitaram

    2006-01-01

    The 137 Cs method was employed to investigate the recent historical rate of sediment deposition on a lowland alluvial floodplain in the Falefa River basin, Upolu Island, Samoa. Caesium stratigraphy in the floodplain sediment profile was clearly defined, with a broad peak at 145-175 cm depth. The measured rate of vertical accretion over the last 40 years is 4.0 ± 0.4 cm per year. This rate exceeds observations in humid environments elsewhere, but is similar to that recorded on other tropical Pacific Islands. Available flow data for the Vaisigano River in Samoa give a 'near-catastrophic' index value of 0.6 for flood variability. This is associated with the occurrence of tropical cyclones and storms in the Samoa area. Large floods therefore probably contribute to the high rate of floodplain sedimentation on Upolu Island. A small but growing body of evidence suggests that fluvial sedimentation rates on tropical Pacific islands are some of the highest in the world

  11. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France

    Science.gov (United States)

    Rejiba, Fayçal; Schamper, Cyril; Chevalier, Antoine; Deleplancque, Benoit; Hovhannissian, Gaghik; Thiesson, Julien; Weill, Pierre

    2018-01-01

    The La Bassée floodplain area is a large groundwater reservoir controlling most of the water exchanged between local aquifers and hydrographic networks within the Seine River basin (France). Preferential flows depend essentially on the heterogeneity of alluvial plain infilling, whose characteristics are strongly influenced by the presence of mud plugs (paleomeander clayey infilling). These mud plugs strongly contrast with the coarse sand material that composes most of the alluvial plain, and can create permeability barriers to groundwater flows. A detailed knowledge of the global and internal geometry of such paleomeanders can thus lead to a comprehensive understanding of the long-term hydrogeological processes of the alluvial plain. A geophysical survey based on the use of electromagnetic induction was performed on a wide paleomeander, situated close to the city of Nogent-sur-Seine in France. In the present study we assess the advantages of combining several spatial offsets, together with both vertical and horizontal dipole orientations (six apparent conductivities), thereby mapping not only the spatial distribution of the paleomeander derived from lidar data but also its vertical extent and internal variability.

  12. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Science.gov (United States)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  13. Paleomagnetic record determined in cores from deep research wells in the Quaternary Santa Clara basin, California

    Science.gov (United States)

    Mankinen, Edward A.; Wentworth, Carl M.

    2016-01-01

    Paleomagnetic study of cores from six deep wells provides an independent temporal framework for much of the alluvial stratigraphy of the Quaternary basin beneath the Santa Clara Valley. This stratigraphy consists of 8 upward-fining cycles in the upper 300 m of section and an underlying 150 m or more of largely fine-grained sediment. The eight cycles have been correlated with the marine oxygen isotope record, thus providing one means of dating the section. The section has also proved to contain a rich paleomagnetic record despite the intermittent sedimentation characteristic of alluvial environments.

  14. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  15. Evaluation of site effects in Loja basin (southern Ecuador)

    Science.gov (United States)

    Guartán, J.; Navarro, M.; Soto, J.

    2013-05-01

    Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;

  16. Radon-hazard potential the Beaver basin, Utah

    International Nuclear Information System (INIS)

    Bishop, C.E.

    1995-01-01

    Indoor-radon levels in the Beaver basin of southwestern Utah are the highest recorded to date in Utah, ranging from 17.5 to 495 picocuries per liter (pCi/L). Because the U.S. Environment Protection Agency considers indoor-radon levels above 4 pCi/L to represent a risk of lung cancer from long-term exposure, the Utah Geological Survey is preparing a radon-hazard-potential map for the area to help prioritize indoor testing and evaluate the need for radon-resistant construction. Radon is a chemically inert radioactive gas derived from the decay of uranium-238, which is commonly found in rocks and soils. Soil permeability, depth to ground water, and uranium/thorium content of source materials control the mobility and concentration of radon in the soil. Once formed, radon diffuses into the pore space of the soil and then to the atmosphere or into buildings by pressure-driven flow of air or additional diffusion. The Beaver basin has been a topographic and structural depression since late Miocene time. Paleocene to Miocene volcanic and igneous rocks border the basin. Uraniferous alluvial-fan, piedmont-slope, flood-plain, and lacustrine sediments derived from the surrounding volcanic rocks fill the basin. A soil-gas radon and ground radioactivity survey in the Beaver basin shows that soils have high levels of radon gas. In this survey, uranium concentrations range from 3 to 13 parts per million (ppm) and thorium concentrations range from 10 to 48 ppm. Radon concentrations in the soil gas ranged from 85 to 3,500 pCi/L. The highest concentrations of uranium, thorium, and radon gas and the highest radon-hazard-potential are in the well-drained permeable soils in the lower flood- plain deposits that underlie the city of Beaver

  17. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  18. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail: kangjoo@kunsan.ac.kr; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)

    2008-01-15

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  19. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    International Nuclear Information System (INIS)

    Kim, Kangjoo; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon; Park, Eungyu; Koh, Dong-Chan; Yun, Seong-Taek

    2008-01-01

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO 4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO 4 , supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO 3 at shallow depths and by SO 4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO 3 and SO 4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area

  20. Weighing the Oligocene extensional event in the Salar de Atacama Basin by analysis of depth-converted sections and geophysical data.

    Science.gov (United States)

    Bascunan, S. A.; Maksymowicz, A.; Martínez, F.; Becerra, J.; Rubilar, J. F.; Arriagada, C.; Peña Gomez, M. A.; Gómez, I.

    2016-12-01

    Multiple studies of industry seismic lines across the Salar de Atacama Basin, in the Central Andes of northern Chile (22°-24°S), have led to opposite interpretations regarding its internal architecture, particularly for the Cenozoic successions. These differences can be attributed to the yet uncertain stratigraphy of the 5425 m-deep Toconao-1 well, its relation to outcrops around the El Bordo Escarpment, the tie between the well and the seismic lines, and the lack of a depth conversion of these lines. An analysis of these data allows for the proper location in the depth domain of the most important reflectors found in line Z-1G010, which intersects the borehole. The vertical seismic profile and the density log show that the most significant change in lithological properties occurs at ca. 1 s TWT (1580 m), at the transition from mainly evaporitic deposits to more clastic units, presumably belonging to the Loma Amarilla Formation. This modification in velocity and density can be seen in the seismic line as a major west-dipping surface, dubbed the San Pedro Reflector (SPR). The use of 3D software and the depth conversion allow following the SPR along most of the basin. The surface shows an east-to-west, south-to-north increase in depth, reaching a maximum close to 8 km. The geometry of the surface closely follows the trend of the El Bordo Escarpment. Based on paleomagnetic data, recent mapping and geochronology data, the reflector is estimated to have formed during the Oligocene. Additional extensional features confirm its origin due to small-scale collapse of the Cordillera de Domeyko after the Eocene Incaic Event, after which the deformation front migrated eastwards, thus explaining the presence of extension and compression along the margin at the same time. This change in stress state also affected other parts of the range, such as the Calama Basin.

  1. Depth anomalies in the Arabian Basin, NW Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.

    that the excess subsidence of basement of the western part of the basin is probably caused by a relatively cold mantle, compared to the nearby eastern part of the basin which is affected by the intense thermal field of the former Reunion hotspot. Here, the rise...

  2. Timing and nature of alluvial fan and strath terrace formation in the Eastern Precordillera of Argentina

    Science.gov (United States)

    Hedrick, Kathryn; Owen, Lewis A.; Rockwell, Thomas K.; Meigs, Andrew; Costa, Carlos; Caffee, Marc W.; Masana, Eulalia; Ahumada, Emilio

    2013-11-01

    Sixty-eight 10Be terrestrial cosmogenic nuclide (TCN) surface exposure ages are presented to define the timing of alluvial fan and strath terrace formation in the hyper-arid San Juan region of the Argentine Precordillera. This region is tectonically active, and numerous fault scarps traverse Quaternary landforms. The three study sites, Marquesado strath complex, Loma Negra alluvial fan and Carpintería strath complex reveal a history of alluvial fan and strath terrace development over the past ˜225 ka. The Marquesado complex Q3m surface dates to ˜17 ± 3 ka, whereas the Loma Negra Q1ln, Q2ln, Q3ln, Q4ln, and Q5ln surfaces date to ˜24 ± 3 ka, ˜48 ± 2 ka, ˜65 ± 13 ka, ˜105 ± 21 ka, and ˜181 ± 29 ka, respectively. The Carpintería complex comprises eight surfaces that have been dated and include the Q1c (˜23 ± 3 ka), Q2c (˜5 ± 5 ka), Q3ac (˜25 ± 12 ka), Q3bc (˜29 ± 15 ka), Q4c (˜61 ± 12 ka), Q5c (˜98 ± 18 ka), Q6c (˜93 ± 18 ka), and Q7c (˜212 ± 37 ka). 10Be TCN depth profile data for the Loma Negra alluvial fan complex and Carpintería strath terrace complex, as well as OSL ages on some Carpintería deposits, aid in refining surface ages for comparison with local and global climate proxies, and additionally offer insights into inheritance and erosion rate values for TCNs (˜10 × 10410Be atoms/g of SiO2 and ˜5 m Ma-1, respectively). Comparison with other alluvial fan studies in the region show that less dynamic and older preserved surfaces occur in the Carpintería and Loma Negra areas with only younger alluvial fan surfaces preserved both to the north and south. These data in combination with that of other studies illustrate broad regional agreement between alluvial fan and strath terrace ages, which suggests that climate is the dominant forcing agent in the timing of terrace formation in this region.

  3. Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates

    Science.gov (United States)

    Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.

    2017-12-01

    Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.

  4. Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques

    Science.gov (United States)

    Romulus, Costache; Iulia, Fontanine; Ema, Corodescu

    2014-09-01

    S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

  5. Moho Depth and Geometry in the Illinois Basin Region Based on Gravity and Seismic Data from an EarthScope FlexArray Experiment

    Science.gov (United States)

    Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.

    2017-12-01

    We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.

  6. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  7. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    Directory of Open Access Journals (Sweden)

    B. V. Chubarenko

    2000-06-01

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  8. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Directory of Open Access Journals (Sweden)

    S. Swarnkar

    2018-04-01

    Full Text Available High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE and the sediment delivery ratio (SDR equations are used to estimate the spatial pattern of soil erosion (SE and sediment yield (SY in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1 with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1 compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1. Furthermore, the topographic steepness (LS and crop practice (CP factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD for the period 1962–2008 and Husepur gauging station (HGS for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2  ×  105 t yr−1 and 6.7 ± 1.4  ×  106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4  ×  105 t yr−1 and 7.2  ×  106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and

  9. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    ) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.

  10. Analysis of Taipei Basin Response for Earthquakes of Various Depths and Locations Using Empirical Data

    Directory of Open Access Journals (Sweden)

    Vladimir Sokolov

    2009-01-01

    Full Text Available The response of Taipei basin upon earthquake excitation was studied using records of recent earthquakes. The strong-motion database includes records obtained at 32 stations of the Taipei TSMIP net work from 83 deep and 142 shallow earthquakes (M > 4.0 that occurred in 1992 - 2004. The characteristics of frequency-de pendent site response were obtained as spectral ratios between the actual earthquake records (horizontal components and those modelled for a hypothetical Very Hard Rock (VHR condition. The models for VHR spectra of Taiwan earthquakes had been recently proposed by Sokolov et al. (2005b, 2006. Analysis of site response characteristics and comparison with simple 1D models of the soil column resulted in the following conclusions: (1 The spectral ratios through out the basin obtained from deep earth quakes (depth > 35 km exhibit good agreement with the theoretical ratios calculated using the 1D models constructed using avail able geological and geotechnical data. (2 The spectral ratios obtained from shallow earth quakes show influence of: (a surface waves generated when travelling from distant sources to the basin and (b relatively low-frequency (< 1 - 2 Hz waves generated within the basin. (3 Some shallow earth quakes pro duce extremely high amplification at frequencies 0.3 - 1 Hz within the basin that may be dangerous for high-rise buildings and high way bridges. (4 The obtained results may be used in probabilistic seismic microzonation of the basin when many possible earth quakes located at various distances are considered. 2D and 3D simulation is necessary to model the seismic influence from particularly large earthquakes.

  11. Depositional conditions on an alluvial fan at the turn of the Weichselian to the Holocene – a case study in the Żmigród Basin, southwest Poland

    Directory of Open Access Journals (Sweden)

    Zieliński Paweł

    2016-06-01

    Full Text Available Presented are the results of research into the fluvio-aeolian sedimentary succession at the site of Postolin in the Żmigród Basin, southwest Poland. Based on lithofacies analysis, textural analysis, Thermoluminescence and Infrared-Optical Stimulated Luminescence dating and GIS analysis, three lithofacies units were recognised and their stratigraphic succession identified: 1 the lower unit was deposited during the Pleni-Weichselian within a sand-bed braided river functioning under permafrost conditions within the central part of the alluvial fan; 2 the middle unit is the result of aeolian deposition and fluvial redeposition on the surface of the fan during long-term permafrost and progressive decrease of humidity of the climate at the turn of the Pleni- to the Late Weichselian; 3 the upper unit accumulated following the development of longitudinal dunes at the turn of the Late Weichselian to the Holocene; the development of dunes was interrupted twice by the form being stabilised by vegetation and soil development.

  12. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    Directory of Open Access Journals (Sweden)

    B. V. Chubarenko

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.

    Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  13. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    Science.gov (United States)

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  14. Effects of the Biofuels Initiative on Water Quality and Quantity in the Mississippi Alluvial Plain

    Science.gov (United States)

    Welch, H. L.; Green, C. T.; Coupe, R. H.

    2010-12-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The manifestation of the Biofuels Initiative in the Mississippi Delta was a 47-percent decrease in cotton acreage with a concurrent 288 percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation, this crop type change has implications for water quantity and quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged due to concerns about sustainability. A mathematical model calibrated to existing conditions in the Delta shows that increased fertilizer applications on corn will increase the extent of nitrate movement into the alluvial aquifer. Estimates based on surface-water modeling results indicate that higher application rates of nitrogen from increased corn production increases the amount of nitrogen exported from the Yazoo River basin to the Gulf of Mexico by about 7 percent; increasing the Delta’s contribution to hypoxic conditions in the Gulf of Mexico.

  15. Preliminary results on quaternary studies from Bajestan Basin (Kavir-e Namak), Iran

    Science.gov (United States)

    Majid Padashi, Seyed; Büdel, Christian; Ullmann, Tobias; Tintrup, Angela; Baumhauer, Roland

    2017-04-01

    The increasing population and demand for developing infrastructures on the one hand, and the recent issues on water and air quality on the other hand, in addition to droughts and the shrinking of many wetlands and lakes, have encouraged Iran recently to invest more in palaeoenvironmental research - specifically on quaternary basins. Preliminary results of our study through field work, satellite imagery processing, SRTM data analysis and drilling, have created new insights on the Iranian playas and the history of the lakes. A combined geological and geomorphological approach for studying young lakes and playas of Iran has led to the identification of at least five major types of lakes and playas in different parts of Iran; for example the Bajestan basin which ranks the second biggest playa of Iran, is placed in the edge of the central Iranian microplate and Lut structural block. The Bajestan Playa (Kavir-e Namak) is surrounded by cretaceous limestones in the south and Paleozoic formations in the north. The basin comprises several kinds of quaternary deposits including sand dunes and Aeolian deposits, fluvial sediments, alluvial fans and lake sediments. The aeolian activity in the basin is primarily shaping landforms in the southwest and the north of the area. The major fluvial activity is considered to be driven from east and south of the playa. The integration of field observations and data derived from the analysis of SRTM digital elevation model (90m) and Landsat satellite imagery shows that the major part of the playa has flat slope. In addition, the morphometric assessment and the hydrological modelling showed that the major current alluvial channels have SW/NE trend with the highest density and intensity of activity in south west of the basin. The major alluvial deposits in the north and south of the playa represent a dissimilar geomorphology. While the northern part of the basin, from the rock unit outcrops to the edge of playa, is occupied by a narrow

  16. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    Science.gov (United States)

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  17. Temporal changes in the distribution of 137Cs in alluvial soils at Los Alamos

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.; Miera, F.R. Jr.; Bostick, K.V.

    1978-05-01

    The alluvial soils of three liquid-effluent receiving areas at Los Alamos were sampled to determine 137 Cs temporal distributional relationships. Soil radionuclide concentrations were determined as a function of soil depth and distance from the waste outfall, and discussed relative to runoff transport of 137 Cs-contaminated alluvium. The inventories of soil 137 Cs in various segments of each effluent-receiving area were calculated for two sampling periods and compared with amounts of 137 Cs added to the canyons in the liquid wastes. The distribution patterns of soil cesium were compared with the waste-use history of the three study areas and the hydrologic characteristics of the canyons

  18. Geology of the Pennsylvanian and Permian Culter Group and Permian Kaibab Limestone in the Paradox Basin, southeastern Utah and southwestern Colorado

    Science.gov (United States)

    Condon, Steven M.

    1997-01-01

    The Cutler Formation is composed of thick, arkosic, alluvial sandstones shed southwestward from the Uncompahgre highlands into the Paradox Basin. Salt tectonism played an important role in deposition of the Cutler in some areas. In the northeast part of the basin, more than 8,000 ft, and as much as 15,000 ft, of arkose was trapped between rising salt anticlines - this arkose is thin to absent over the crests of some anticlines. In the western and southern parts of the basin, the Cutler is recognized as a Group consisting of, in ascending order: the lower Cutler beds, Cedar Mesa Sandstone, Organ Rock Formation, White Rim Sandstone, and De Chelly Sandstone. The aggregate thickness of these formations is less than 2,000 ft. The formations of the Cutler Group were deposited in a complex system of alluvial, eolian, and marine environments characterized by abrupt vertical and lateral lithologic changes. The basal Cutler is Pennsylvanian in age, but the bulk of the Group was deposited during the Permian. The Cutler is conformably underlain by the Pennsylvanian Hermosa Group across most of the basin. It is overlain unconformably by the Permian Kaibab Limestone in the western part of the Paradox Basin. The Cutler or Kaibab are overlain unconformably by the Triassic Moenkopi or Chinle Formations.

  19. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria

    Science.gov (United States)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.

    2018-01-01

    Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical

  20. Distribution of monazite in granite and alluvial of South Bangka

    International Nuclear Information System (INIS)

    Ngadenin

    2011-01-01

    Monazite is one source of thorium (Th), which has significant economic value and potential as an alternative fuel of nuclear power plants. The aims of research is to find out the distribution monazite alternative fuel of nuclear power plants. The aims of research is to find out the distribution monazite and its potential as a resource of radioactive minerals on the Bangka Island, then the data will be used and its potential as a resource of radioactive minerals on the Bangka Island, then the data will be used as a reference in the development of radioactive minerals exploration areas in the coming year. The research location is in the Bencah and Gadung villages, South Bangka Regency. The method used is the geological mapping, sampling of rock for petrographic, mineragraphic and autoradiographic analysis and heavy mineral for grains counting analysis. The results showed that lithologic area of Bencah Village composed of clay stone and alluvial deposits, while the Gadung Village composed by granite and alluvial deposits. Granite Gadung is predicted as the ilmenite series granite and tend to be of S type, while the material of Bencah alluvial is predicted come from the Klabat granite groups. In general, distribution of monazite in the alluvial slightly more potent of monazite than in the granite so that the development of radioactive minerals exploration will be prioritized in the alluvial areas. (author)

  1. Distribution of plutonium and cesium in alluvial soils of the Los Alamos environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Miera, F.R. Jr.; Peters, R.J.

    1976-01-01

    The alluvial soils of three liquid waste disposal areas at Los Alamos were sampled to determine plutonium and cesium distributional relationships and correlations with soil physical-chemical properties. Radionuclide concentrations were determined for soil samples as a function of soil depth and distance from the waste outfall. The cesium-plutonium data were correlated with levels of organic carbon, carbonates, exchangeable and water-soluble cations, pH, cation exchange capacity, bulk density, surface area and geometric particle size of these soils. The distribution patterns of soil plutonium and cesium were also compared to the waste use history of the three study areas

  2. Magnetic Basement Depth Inversion in the Space Domain

    Science.gov (United States)

    Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.

    2008-10-01

    We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.

  3. Laboratory alluvial fans in one dimension.

    Science.gov (United States)

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  4. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    Science.gov (United States)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.

  5. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  6. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    Science.gov (United States)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  7. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  8. The Lower Cretaceous Way Group of northern Chile: An alluvial fan-fan delta complex

    Science.gov (United States)

    Flint, S.; Clemmey, H.; Turner, P.

    1986-01-01

    Alluvial fan sediments of the Lower Cretaceous Coloso Basin in northern Chile were deposited in a half-graben and derived from andesitic volcanics of a former island arc. Transport directions were towards the east, away from the present-day Peru-Chile trench. Grain flow, density modified grain flow and sheetflow processes were responsible for most of the sediment deposition with cohesive debris flows playing only a minor part. An early phase of conglomerate deposition (Coloso Formation) into a restricted basin records the transition from proximal fan facies with abundant grain flows and remobilized screes to mid-fan facies dominated by sheetflows. Stratiform copper mineralization near the top of the lower conglomerates is related to the unroofing of the Jurassic island arc. This mineralization comprises copper sulphide-cemented sands and gravels and formed by the reaction of mineralized detritus with diagenetic and hydrothermal solutions. A later phase of deposition (Lombriz Formation) includes sandstones, siltstones and conglomerates with a source area different from the Coloso Formation. This change in source may be related to strike-slip tectonics as the basin extended. The Lombriz conglomerates pass distally (eastwards) into red sandstones and purple siltstones with thin limestones deposited under marine conditions. This sequence is interpreted as a major fan delta complex. It passes conformably into marine carbonates of the Tableado Formation signifying the complete drowning of the basin in lower Cretaceous times.

  9. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  10. Assessment of Intrinsic Vulnerability to Contamination for the Alluvial Aquifer in El-Fayoum Depression Using the Drastic Method

    International Nuclear Information System (INIS)

    Ahmed, M.A.

    2012-01-01

    Intrinsic vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. The vulnerability for the alluvial aquifer in El-Fayoum depression was assessed by applying the Drastic model as well as utilizing sensitivity analyses to evaluate the reliability of this model. This method uses seven parameters including climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by applying the Generic and Agricultural models according to the Drastic charter. The resulting agricultural Drastic vulnerability map indicates that 23.3%, 22.7% and 12.4% of El-Fayoum depression is under low, low-moderate and moderately high vulnerability of groundwater contamination, respectively, while 41.6% of the area of study can be designated as an area of moderate vulnerability of groundwater contamination. Resulting maps revealed that the potential for polluting groundwater with agricultural chemicals is greater than with Generic Drastic index pollutants. Depth to water table parameter inflicted the largest impact on the intrinsic vulnerability of the alluvial aquifer in El-Fayoum depression. Both the map removal and single-parameter sensitivity analyses indicated that the vulnerability index is the least sensitive to the removal of the recharge and hydraulic conductivity parameters but is highly sensitive to the removal of depth to water parameter.

  11. Cosmogenic helium and volatile-rich fluid in Sierra leone alluvial diamonds

    International Nuclear Information System (INIS)

    McConville, P.; Reynolds, J.H.

    1989-01-01

    Pursuant to the discovery elsewhere of cosmogenic 10 Be in alluvial diamond fragments from Zaire, noble gas measurements were made on two identical splits of a finely powdered, harshly acid-washed sample derived from selected (for clarity) fragments of a single alluvial diamond from Sierra Leone (sample LJA → L4 and L5). Essentially identical results were obtained for both splits. Isotopic ratios for Ar, Kr, and Xe were atmospheric and their elemental abundances were high relative to published data, owing to shock implantation in the crushing as verified in a supplementary experiment. No neon was detected above blank level. 3 He was exceptionally abundant, 4 He exceptionally depleted, possibly from the acid wash, and the ratio 3 He/ 4 He almost unprecedentedly high at an R/R a value of 246 ± 16. The results support the hypothesis that excess 3 He in diamonds is cosmogenic, although a cosmic-ray exposure of 5, 35, or (impossibly) 152 Ma for cyclic gardening of the sample to a maximum depth of 0, 4.6 m, or 20 m, respectively, is required. Troublesome for the cosmogenic hypothesis is a sample from very deep in the Finsch mine, South Africa, found by Zadnik et al (1987) to have an R/R a value of 1,000. This paper includes histograms of noble gas data published prior to mid-1988 for diamonds of known provenance. The Sierra Leone diamond studied in the supplementary experiment belongs to a distinct population of 40* Ar-rich diamonds consisting mostly of cubic diamonds for Zaire

  12. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  13. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  14. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2014-02-01

    Geochemical investigations of uranium (U) occurrence in the environments were conducted at Datong basin of northern China. The results suggest that U contents were generally < 1 mg/kg for the igneous and metamorphic rocks, typically 2–5 mg/kg for the Carboniferous and Permian sedimentary rocks and around 3 mg/kg for sediments and topsoil, respectively. U in the Quaternary aquifer sediments may be primarily associated with carnotite from the Carboniferous and Permian coal-bearing clastic rocks around the basin. Shallow groundwater had U concentrations of < 0.02–288 μg/L (average 24 μg/L), with 24% of the investigated boreholes above the WHO provisional guideline of 30 μg/L for U in drinking water. Average U concentration for surface water was 5.8 μg/L. In oxidizing waters, uranyl (UO{sub 2}{sup 2+}) species is dominant and strongly adsorbed onto iron (hydro)xides, while it would be preferentially complexed with carbonate in the alkaline groundwater, forming highly soluble uranyl-carbonate complexes at Datong. Under reducing conditions, uranous (U(IV)) species is ready to precipitate or bind to organic matter, therefore having a low mobility. At the study area, high U groundwater (> 30 μg/L) occurs at the alluvial plains due to intermediate redox and enhanced alkaline conditions. The abnormally high levels of U in groundwater (> 100 μg/L) are locally found at the west alluvial plains. By contrast, U co-precipitation with secondary carbonate minerals like Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} in the dominant Ca–Mg–Na–HCO{sub 3} type groundwater may prevail at the east alluvial plains. Besides, bedrocks such as Carboniferous and Permian sedimentary rocks, especially the coal-bearing strata which have higher U contents at the west mountain areas may also account for the abnormally high levels of U in groundwater. - Highlights: • High U groundwater occurs at the alluvial plains of Datong basin. • Redox state, complexation and adsorption are responsible

  15. Temporal changes in the distribution of /sup 137/Cs in alluvial soils at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Nyhan, J.W.; Hakonson, T.E.; Miera, F.R. Jr.; Bostick, K.V.

    1978-05-01

    The alluvial soils of three liquid-effluent receiving areas at Los Alamos were sampled to determine /sup 137/Cs temporal distributional relationships. Soil radionuclide concentrations were determined as a function of soil depth and distance from the waste outfall, and discussed relative to runoff transport of /sup 137/Cs-contaminated alluvium. The inventories of soil /sup 137/Cs in various segments of each effluent-receiving area were calculated for two sampling periods and compared with amounts of /sup 137/Cs added to the canyons in the liquid wastes. The distribution patterns of soil cesium were compared with the waste-use history of the three study areas and the hydrologic characteristics of the canyons.

  16. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology

    Science.gov (United States)

    Larsen, Annegret; May, Jan-Hendrick

    2016-04-01

    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  17. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    Science.gov (United States)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  18. A basin on an unstable ground: Correlation of the Middle Archaean Moodies Basin, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ohnemueller, Frank; Heubeck, Christoph; Kirstein, Jens; Gamper, Antonia

    2010-05-01

    The 3.22 Ga-old Moodies Group, representing the uppermost part of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), is the oldest well-exposed, relatively unmetamorphosed, quartz-rich sedimentary unit on Earth. Moodies facies (north of the Inyoka Fault) were thought to be largely of alluvial, fluvial, deltaic or shallow-marine origin (Anhaeusser, 1976; Eriksson, 1980; Heubeck and Lowe, 1994) and in its upper part syndeformational. However, units can only locally be correlated, and the understanding of the interplay between Moodies sedimentation and deformation is thus limited. We mapped and measured Moodies units in the northern BGB. They partly consist of extensive turbiditic deepwater deposits, including graded bedding, flame structures, and slumped beds, interbedded with jaspilites. These contrast with shallow-water environments, south-facing progressive unconformities and overlying alluvial-fan conglomerates along the northern margin of the Saddleback Syncline further south. The palaeogeographic setting in which late BGB deformation was initiated therefore appears complex and cannot be readily explained by a simple southward-directed shortening event. In order to constrain Moodies basin setting before and during late-Moodies basin collapse, we correlated ~15 measured sections in the northern and central BGB. Most units below the Moodies Lava (MdL, ca. 3230.6+-6 Ma) can be correlated throughout although facies variations are apparent. Above the Moodies Lava, coarse-grained units can only be correlated through the Eureka Syncline and the Moodies Hills Block but not with the Saddleback Syncline. Fine-grained and jaspilitic units can be correlated throughout the northern BGB. Moodies below-wavebase deposition occurred largely north of the Saddleback Fault. The observations are consistent with a pronounced basin compartmentalization event following the eruption of the MdL which appeared to have blanketed most of the Moodies basin(s) in middle Moodies

  19. Regional deformation of late Quaternary fluvial sediments in the Apennines foreland basin (Emilia, Italy)

    Science.gov (United States)

    Stefani, Marco; Minarelli, Luca; Fontana, Alessandro; Hajdas, Irka

    2018-04-01

    Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines chain. Beneath the study alluvial plain, compressive fault-fold structures are seismically active. We reconstructed the stratigraphic architecture and the depositional evolution of the alluvial deposits, which accumulated in the first 40 m of subsurface, through the last 45,000 years, from before the Last Glacial Maximum to the present. A 58 km-long stratigraphic profile was correlated from the foothill belt near Bologna to the vicinity of the Po River. The analysis of the profile documents subsidence movements through the last 12,000 years, exceeding - 18 m in syncline areas, with subsidence rates of at least 1.5 m/ka. Anticlines areas experienced a much lower subsidence than the syncline ones.

  20. Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Christiansen, Anders Vest; Fiandaca, Gianluca

    2015-01-01

    A recent airborne TEM survey in the Machile–Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Ωm) in a low electrical resistivity (below 13 Ωm) background. The near surface (0–40 m depth range) electrical resistivity distribution of these anomalies...... appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geo-electrics and time domain induced polarisation...... thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were...

  1. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  2. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  3. Geology Structure Identification Using Pre-Stack Depth Migration (PSDM Method of Tomography Result in North West Java Basin

    Directory of Open Access Journals (Sweden)

    Sudra Irawan

    2017-06-01

    Full Text Available North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend. Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.

  4. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Journal of Seismology, 1, 237-251. Field, E.H., T.H. Jordan, and C.A. Cornell (2003

  5. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  6. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  7. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins

    OpenAIRE

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.

    2016-01-01

    Using a comprehensive data set (dissolved CH4, ?13C-CH4, ?2H-CH4, ?13C-DIC, ?37Cl, ?2H-H2O, ?18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. ?13C-CH4 data in the gas reservoir (?58? to ?49?) and sha...

  8. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    Science.gov (United States)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  9. The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat

    Science.gov (United States)

    Ortuño, Vicente M.; Gilgado, José D.; Jiménez-Valverde, Alberto; Sendra, Alberto; Pérez-Suárez, Gonzalo; Herrero-Borgoñón, Juan J.

    2013-01-01

    In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic. In addition, compared to other types of MSS, it is a very unstable habitat. It is possible that the “alluvial MSS” may be found in other areas of the world with strongly seasonal climatic regimes, and could play an important role as a biogeographic corridor and as a refuge from climatic changes. PMID:24124544

  10. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  11. Uranium investigation in an alluvial aquifer with direct push methods - 59281

    International Nuclear Information System (INIS)

    De Weirdt, Fabian

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The U.S. EPA has established a maximum contaminant level of 30 ug/l for uranium in drinking water due to its toxicity as a heavy metal. This regulation has affected many small public water supply systems in the US and several of them are struggling to come into compliance with the new standard. One such community is Clarks, NE, US which is situated on the alluvial deposits of the Platte River that are underlain by the Cretaceous Age Niobrara formation. Geoprobe Systems coordinated with the Nebraska Dept. of Health and Human Services, Water Well Stds. Program to investigate the cause of the elevated uranium in the groundwater that supplies drinking water to the village of Clarks. Initially hydraulic profiling tool (HPT) logs were obtained at selected locations across the Clarks well field. The HPT probe was advanced to depths of almost 36 m (120 ft) at several locations and the logs provided detailed information about the hydro-stratigraphy of the local aquifer not available from the drillers logs. The HPT logs were used to guide selection of screen depths for small diameter wells that were installed with direct push (DP) methods. A total of nine wells were installed at two locations at the facility with well depths ranging from as little as 6 m (20 ft) to a maximum of 36 m (118 ft). All wells were grouted bottom-up with a tremie tube using 25% solids bentonite slurry to assure screen interval isolation. (author)

  12. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Huaming; Zhang Bo; Li Yuan; Berner, Zsolt; Tang Xiaohui; Norra, Stefan; Stueben, Doris

    2011-01-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO 4 2- concentrations and δ 34 S values indicates that bacterial reduction of SO 4 2- occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L -1 ), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. - Research highlights: → Low As groundwaters occur in alluvial fans. → We find low As groundwaters near irrigation and drainage channels. → Both hydrogeologic conditions and biogeochemical processes control As distribution. - Both hydrogeologic conditions and biogeochemical processes control As distribution of shallow groundwaters, which results in the occurrence of low As groundwater in alluvial fans and near irrigation channels and drainage channels.

  13. Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data

    Science.gov (United States)

    Teknik, Vahid; Ghods, Abdolreza

    2017-06-01

    To estimate the shape of sedimentary basins, a critical parameter in hydrocarbon exploration, we calculated the depth of magnetic basement by applying a fractal spectral method to the aeromagnetic map of Iran. The depth of magnetic basement is a close proxy for the shape of sedimentary basins provided that igneous basement is strongly magnetized relative to the overlying sediments and there is no interbedding magnetic layer in the sediments. The shape of the power spectrum of magnetic anomalies is sensitive to the depth of magnetic basement, the thickness of the magnetic layer, the fractal parameter of magnetization and the size of the window used for the calculation of the power spectrum. Using a suite of synthetic tests, we have shown that the estimation of the depth of magnetic basement of up to 20 km is not very sensitive to the often unknown fractal parameter and thus the spectral method is a reliable tool to calculate the depth of magnetic basement. The depth of magnetic basement is in the range of 7-16 km in the Zagros, east Alborz, Tabas, Jazmurian and Makran regions, showing a close correlation with depths estimated from the maximum thickness of stratigraphic columns. We have also found new sedimentary basins in Bostan Abad, Bijar and south of Orumiyeh Lake. The significant depth of the magnetic basement in the Makran, Jazmurain depression, southeast Caspian Sea, Tabas, Great Kavir, south of Orumiyeh Lake, Bostan Abad and Bijar sedimentary basins makes them future prospects for hydrocarbon explorations. The depth of magnetic basement is strongly reduced over the Neyriz and Kermanshah Ophiolites, but it does not show any meaningful correlation with other outcrops of ophiolitic rocks in Iran.

  14. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    Energy Technology Data Exchange (ETDEWEB)

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  15. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    International Nuclear Information System (INIS)

    Goodell, P.; Walton, J.; Rodriguez, P.J.

    2005-01-01

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration

  16. Distribution and migration mechanism of fluoride in groundwater in the Manas River Basin, Northwest China

    Science.gov (United States)

    Liu, Yalei; Jin, Menggui; Ma, Bin; Wang, Jianjun

    2018-04-01

    Elevated fluoride (F) concentration in groundwater is posing a public health risk in the Manas River Basin (MRB), Northwest China. Based on the characterization of regional groundwater flow, 90 groundwater samples from aquifers were analyzed, along with top-soil leachate and pore-water samples from aquitards. Stable oxygen (δ18O) and hydrogen isotopes, radiocarbon and hydrochemical analyses of the groundwater and pore-water samples were conducted to trace groundwater hydrological and hydrochemical processes and thereby understand the distribution and migration mechanism of F. The groundwater is recharged by meteoric precipitation through vapor condensation processes in the Tianshan Mountains. The F concentration in groundwater samples from this basin ranged from 0.11 to 48.15 mg/L (mean 2.56 mg/L). In 37 of the 90 groundwater samples, the F concentrations were above the safe level for drinking water. The F concentrations progressively increased with the residence time and well depths in the northwest of the alluvial-fluvial plain, where groundwater is overexploited for agricultural and domestic use. Positive correlations between F and sodium (Na)/calcium (Ca) indicate that the enrichment and migration of F are influenced by cation exchange processes under high-Na and alkaline pH conditions. The relationships between δ18O and F and chloride (Cl) concentrations were nonlinear due to leaching and mixing processes. This shows that vertical leaching by irrigation return flow and mixing with pore water are the dominant processes driving the migration of F in the groundwater flow system of MRB, in addition to geochemical processes.

  17. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding

    Science.gov (United States)

    Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim

    One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux

  18. Turkana Grits - a Cretaceous braided alluvial system in northern Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Handford, C.R.

    1987-05-01

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record a major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.

  19. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker

    2015-11-01

    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  20. Investigation on distribution of paleo-channels and prospect of uranium metallogenesis in Erlian basin, inner mongolia

    International Nuclear Information System (INIS)

    Dong Tingkuan; Kang Xiuping

    2001-01-01

    According to the characteristics of paleo-channel sedimentary evolution in Erlian Basin, the authors investigate the geomorphological forms, regional hydrogeological conditions, the distribution of recent and paleo-stream channels and alluvial-proluvial fans, the hydrodynamic conditions of recharge-run off-discharge for phreatic water and interlayer ground water, as well as the spatial distribution of local discharge areas applying the satellite image analysis techniques. Guided by the theory of hydrogenetic uranium deposit, and using geological, geophysical, hydrogeological data and materials of uranium occurrences and anomalies obtained by previous researchers the environmental relation between the distribution of paleo-channels-alluvial proluvial fans and the dispersion-concentration of uranium are synthesized and analysed. As a result, 19 uranium metallogenic prospective areas are delineated, and the direction for further uranium prospecting is proposed

  1. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    Directory of Open Access Journals (Sweden)

    M. El Bastawesy

    2013-04-01

    Full Text Available This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases, which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM digital elevation model (DEM has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and

  2. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  3. Liquefaction analysis of alluvial soil deposits in Bedsa south west of Cairo

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2014-09-01

    Full Text Available Bedsa is one of the districts in Dahshour that lays south west of Cairo and suffered from liquefaction during October 1992 earthquake, Egypt. The soil profile consists of alluvial river Nile deposits mainly sandy mud with low plasticity; the ground water is shallow. The earthquake hypocenter was 18 km far away with local magnitude 5.8; the fault length was 13.8 km, as recorded by the Egyptian national seismological network (ENSN at Helwan. The analysis used the empirical method introduced by the national center for earthquake engineering research (NCEER based on field standard penetration of soil. It is found that the studied area can liquefy since there are saturated loose sandy silt layers at depth ranges from 7 to 14 m. The settlement is about 26 cm. The probability of liquefaction ranges between 40% and 100%. The presence of impermeable surface from medium cohesive silty clay acts as a plug resisting and trapping the upward flow of water during liquefaction, so fountain and spouts at weak points occurs. It is wise to use point bearing piles with foundation level deeper than 14 m beyond the liquefiable depth away from ground slopes, otherwise liquefaction improving techniques have to be applied in the area.

  4. Geochemical characterization of the middle and late Pleistocene alluvial fan-dominated infill of the northern part of the Weihe Basin, Central China

    NARCIS (Netherlands)

    Rits, Daniël S.; Beets, Christiaan J.; Prins, Maarten A.; van Balen, Ronald T.; Troelstra, Simon R.; Luo, Chao; Wang, B.; Li, Xiaoqiang; Zhou, Jie; Zheng, Hongbo

    2017-01-01

    Major reorganizations in climate and tectonic regime occurred in East Asia during the Pleistocene, resulting in large-scale environmental changes. In this paper a detailed geochemical and mineralogical record of these changes is presented from a distal alluvial fan sedimentary sequence in the

  5. Geomorphic Characterization of the FortyMile Wash Alluvial Fan, Nye County, Nevada, In Support of the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Cline; De Long; Pelletier; Harrington

    2005-01-01

    In the event of an unlikely volcanic eruption through the proposed high-level radioactive waste repository at Yucca Mountain, contaminated ash would be deposited in portions of the Fortymile Wash drainage basin and would subsequently be redistributed to the Fortymile Wash alluvial fan by fluvial processes. As part of an effort to quantify the transport of contaminated ash throughout the fluvial system, characterization of the Fortymile Wash alluvial fan is required, especially the spatial distribution of fluvial activity over time scales of repository operation, and the rates of radionuclide migration into different soils on the fan. The Fortymile Wash alluvial fan consists of extremely low relief terraces as old as 70 ka. By conducting soils-geomorphic mapping and correlating relative surface ages with available geochronology from the Fortymile Wash fan and adjacent piedmonts, we identified 4 distinct surfaces on the fan. Surface ages are used to predict the relative stability of different areas of the fan to fluvial activity. Pleistocene-aged surfaces are assumed to be fluvially inactive over the 10 kyr time scale, for example. Our mapping and correlation provides a map of the depozone for contaminated ash that takes into account long-term channel migration the time scales of repository operation, and it provides a geomorphic framework for predicting radionuclide dispersion rates into different soils across the fan. The standard model for vertical migration of radionuclides in soil is diffusion; therefore we used diffusion profiles derived from 137 Cs fallout to determine infiltration rates on the various geomorphic surfaces. The results show a strong inverse correlation of the geomorphic surface age and diffusivity values inferred from the 137 Cs profiles collected on the different surfaces of the fan

  6. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  7. Interaction of fine sediment with alluvial streambeds

    Science.gov (United States)

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  8. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    Science.gov (United States)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  9. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  10. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Science.gov (United States)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  11. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-01-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform

  12. Gondwana sedimentation in the Chintalapudi sub-basin, Godavari Valley, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G. [Geological Survey of India, Calcutta (India). Division of Monitoring

    1995-10-01

    A 3000 m thick Gondwana lithic fill consisting of multifacies associations were preserved in a NW-SE oriented intracratonic Chintalapudi sub-basin set across the Eastern Chat Complex (EGC). Sedimentation commenced with the deposition of diamictite-rhythmite sequence of the Talchir Formation in glacio-lacustrine environment. The succeeding sandstone-coal cyclothems of the Barakar Formation were formed in fluvial-coal swamps complex. The fluvial streams flowed across the EGC, originating somewhere in the southeast beyond the East Coast of India. Phase wise upliftment of the EGC during Mesozoic imparted changes to the Permian intercontinental drainage system which started supplying increased amount of detritus to the basin. Basin marginal faults were first formed at the beginning of Triassic. Alluvial fans originated in the east and southeast and northwesterly flowing braided streams deposited the conglomerate sandstone sequence of the Kamthi Formation. The Early Jurassic uplift of the Mailaram high in the north imparted westerly shift to the braided rivers during the Kota sedimentation. Due to prominence of Kamavarapukota ridge in the south by Early Cretaceous, the drainage pattern became centripetal and short-lived high sinuous rivers debouched into the basin. The silting up of the Chintalapudi sub-basin with the sandstone-claystone sequence of the Gangapur Formation marks the culmination of the Gondwana sedimentation, perhaps, coinciding with the breakup of India from the Gondwanaland.

  13. Investigation of Scour Depth at Bridge Piers using Bri-Stars Model in Iran

    OpenAIRE

    Gh. Saeidifar; F. Raeiszadeh

    2011-01-01

    BRI-STARS (BRIdge Stream Tube model for Alluvial River Simulation) program was used to investigate the scour depth around bridge piers in some of the major river systems in Iran. Model calibration was performed by collecting different field data. Field data are cataloged on three categories, first group of bridges that their rivers bed are formed by fine material, second group of bridges that their rivers bed are formed by sand material, and finally bridges that their rivers bed a...

  14. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    Science.gov (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  15. Metallogenic geologic conditions and prospecting direction of sandstone type uranium mineralizations in Yili basin of Xinjiang

    International Nuclear Information System (INIS)

    Chen Daisheng; Wang Ruiying; Li Shengxiang; Zhang Kefang

    1994-09-01

    Yili basin is a Mesozoic down-warped basin superimposed on the late Paleozoic volcanic taphrogenic basin. Uranium mineralizations are hosted in the Middle-Lower Jurassic coal-bearing series. The depositions environment in the basin is turbulent in the east and relatively stable in the west. It is characterized by coarse-grained sequence with thin thickness in the eastern part and fine-grained with thick thickness in the western part. On the analytical basis of sedimentary facies indices, it is the first time to present a sedimentary model of 'alluvial fan-braided stream-(narrow) lakeshore delta-lacustrine facies and marsh facies' for the coal-bearing series. The authors have summarized the basic geologic features of U-mineralizations in the interlayer oxidation zone, analyzed the difference and cause of U-mineralizations between the south and north, as well as the east and west. The genetic mechanism of U-mineralizations in the basin is discussed. Finally, seven items of geologic prerequisites for the formation of in-situ leachable sandstone type uranium deposits have been suggested and the potential of sandstone type U-mineralizations in the basin has been evaluated. Four promising target areas are selected

  16. Quaternary alluvial stratigraphy and palaeoclimatic reconstruction at the Thar margin

    DEFF Research Database (Denmark)

    Jain, M.; Tandon, S.K.

    2003-01-01

    Quaternary alluvial record at the Thar desert margin has been examined using the exposed succession along Mahudi, Sabarmati river, Western India. Different alluvial facies, their associations and granulometry have been studied for palaeoenvironmental reconstruction. Clay mineral indices smectite/...

  17. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  18. Preliminary study of favorability for uranium of the Sangre de Cristo Formation in the Las Vegas basin, northeastern New Mexico

    International Nuclear Information System (INIS)

    May, R.T.; Strand, J.R.; Reid, B.E.; Phillips, W.R.

    1977-12-01

    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments. The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material

  19. Feast to famine: Sediment supply control on Laramide basin fill

    Science.gov (United States)

    Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.

    2006-03-01

    Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.

  20. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagø ien, Espen; Melle, Webjø rn; Kaartvedt, Stein

    2012-01-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  1. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagøien, Espen

    2012-09-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  2. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  3. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  4. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate

    Science.gov (United States)

    Scholl, M.A.; Cozzarelli, I.M.; Christenson, S.C.

    2006-01-01

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for ??18O, ??2H, non-volatile dissolved organic carbon (NVDOC), SO42-, NO3- and Cl-. Monthly recharge amounts were quantified using the offset of the ??18O or ??2H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO42- in the top 1 to 2??m of the saturated zone was associated with recharge; SO42- averaged 2.2??mM, with maximum concentrations of 15??mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6??mM. Temporal monitoring of ??2H and SO42- showed that vertical transport of recharge carried SO42- to depths up to 1.75??m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of ??34S in SO42- indicated both SO42- reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO42- reduction rates, calculated using the natural Cl- gradient as a conservative tracer, ranged from 7.5 ?? 10- 3 to 0.61??mM??d- 1 (over various depth intervals from 0.45 to 1.75??m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO42- reduction rates were higher at the contaminated site. Although estimated SO42- reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be

  5. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.

    Science.gov (United States)

    Scholl, Martha A; Cozzarelli, Isabelle M; Christenson, Scott C

    2006-08-10

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated

  6. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  7. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  8. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K

    International Nuclear Information System (INIS)

    Izquierdo, M.; Tye, A.M.; Chenery, S.R.

    2012-01-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0–15 cm) and subsoil (35–50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type (‘BHT’) Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. -- Highlights: ► The labile

  9. Chronostratigraphic study of the Grottaperfetta alluvial valley in the city of Rome (Italy: investigating possible interaction between sedimentary and tectonic processes

    Directory of Open Access Journals (Sweden)

    G. Di Giulio

    2008-06-01

    Full Text Available We carried out geomorphologic and geological investigations in a south-eastern tributary valley of the Tiber River in Rome, the Grottaperfetta valley, aimed to reconstruct its buried geometry. Since results of the geomorphologic study evidenced anomalies of the stream beds, we performed geoelectric and boreholes prospecting to check whether recent faulting, rather than an inherited structural control, possibly contributed to the evolution of the alluvial valley. Vertical offsets of the stratigraphic horizons across adjacent boreholes were evidenced within the Late Pleistocene-Holocene alluvium and its substratum. In order to rule out the effects of irregular geometry of the alluvial deposits, we focussed on sectors where vertical offsets affected all the stratigraphic horizons (alluvium and pre-Holocene substratum, showing an increasing displacement with depth. We identified a site where repeated displacements occur coupled with a lateral variation of soil resistivity, and we drilled an oblique borehole aimed to cross and sample the possible fault zone affecting the terrain. A 7 cm thick granular layer, inclined 50°÷70° on the horizontal, was recovered 5 m b.g., and it was interpreted as the filling material of a fracture. The convergence of the reported features with independent evidence from geoelectric and geomorphologic investigations leads to hypothesize the presence of a faulting zone within the Holocene alluvial terrains and to propose the excavation of a trench to verify this hypothesis.

  10. Comparison of Scour and Flow Characteristics Around Circular and Oblong Bridge Piers in Seepage Affected Alluvial Channels

    Science.gov (United States)

    Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh

    2018-06-01

    The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.

  11. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    Science.gov (United States)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  12. Streambed infiltration and ground-water flow from the trout creek drainage, an intermittent tributary to the Humboldt River, north-central Nevada: Chapter K in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    finer-grained but better sorted gravels and sands are deposited near the foot.All flow in Trout Creek is lost to infiltration in the upper and middle reaches of the channel during years of normal to below-normal precipitation. During years of above-normal precipitation, streamflow extends beyond the piedmont alluvial plain to the lower reaches of the channel, where high rates of infiltration result in rapid stream loss. The frequency and duration of streambed infiltration is sufficient to maintain high water contents and low chloride concentrations, compared with interchannel areas, to depths of at least 6 m beneath the channel. Streamflow, streambed infiltration, and unsaturated-zone thickness are all highly variable along intermittent streams, resulting in recharge that is highly variable as well.Average annual ground-water recharge in the mountainous part of the Trout Creek drainage upstream of Marigold Mine was estimated on the basis of chloride balance to be 5.2 × 105 cubic meters. Combined with an average annual surface runoff exiting the mountains of 3.4 × 105cubic meters, the total annual volume of inflow to alluvial-basin sediments from the mountainous part of the Trout Creek is 8.6 × 105 cubic meters, assuming that all runoff infiltrates the stream channel. This equates to about 7 percent of average annual precipitation, which is about the same percentage estimated for ground-water recharge using the original Maxey-Eakin method.

  13. Design of flood protection for transportation alignments on alluvial fans

    International Nuclear Information System (INIS)

    French, R.H.

    1991-01-01

    The method of floodplain delineation on alluvial fans developed for the national flood insurance program is modified to provide estimates of peak flood flows at transportation alignments crossing an alluvial fan. The modified methodology divides the total alignment length into drainage design segments and estimates the peak flows that drainage structures would be required to convey as a function of the length of the drainage design segment, the return period of the event, and the location of the alignment on the alluvial fan. An example of the application of the methodology is provided. 16 refs., 5 figs

  14. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.; Warudkar, A.S.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular gird slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected struxtures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumpions required to be made in developing the mathematical model are briefly discussed in the paper. (Auth.)

  15. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators

    Science.gov (United States)

    Ma, Bin; Jin, Menggui; Liang, Xing; Li, Jing

    2018-02-01

    Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain-oasis-desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial-oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial-oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.

  16. Estimate of subsurface formation temperature in the Tarim basin, northwest China

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2015-04-01

    Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.

  17. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    International Nuclear Information System (INIS)

    Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng

    2016-01-01

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO_2(CO_3)_2"2"− and UO_2(CO_3)_3"4"− species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO_3"− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As. - Highlights:

  18. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huaming, E-mail: hmguo@cugb.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Jia, Yongfeng [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wanty, Richard B. [U.S. Geological Survey, MS 964d Denver Federal Center, Denver, CO 80225 (United States); Jiang, Yuxiao; Zhao, Weiguang [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Xiu, Wei [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Shen, Jiaxing [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Li, Yuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Cao, Yongsheng [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wu, Yang [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); Zhang, Di [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wei, Chao [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); The National Institute of Metrology, Beijing 100013 (China); Zhang, Yilong; Cao, Wengeng [Institute of Hydrogeology and Environmental Geology, China Academy of Geological Sciences, Shijiazhuang, Hebei, 050061 (China); and others

    2016-01-15

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO{sub 2}(CO{sub 3}){sub 2}{sup 2−} and UO{sub 2}(CO{sub 3}){sub 3}{sup 4−} species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO{sub 3}{sup −} were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high

  19. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  20. ESR as a method for the characterization of alluvial sediments

    International Nuclear Information System (INIS)

    Tissoux, H.; Voinchet, P.; Lacquement, F.; Despriée, J.

    2015-01-01

    The possibility of using the parameters involved in the ESR dating of optically bleached quartz grains in a purpose of source determination was checked. In that aim, samples previously taken in different sedimentary formations of the Middle Loire Basin (Central France) and dated by ESR have been observed. First discrimination was made using the thorium and potassium content in the sediments obtained by gamma spectrometry. The plot of these 119 data on the Th/K Schlumberger diagram clearly demonstrated that it was possible to discriminate the clays associations included in the sediment from which the dated quartz are extracted. Clay's nature could then be indicative of the geological nature of the substratum of rivers from their sources. Second discrimination was made using the ESR intensities calculated from Al, Ti–H and Ti–Li paramagnetic centres on 18 samples. It appears that the combination of the non-bleachable aluminum trap (DAT) saturation intensity and the Ti–H/Ti–Li ratio intensities make possible the discrimination of the two main sources of the sediment: Massif Central and Paris Basin. More deeply, The Ti/OBAT (Optically bleachable aluminum traps) intensities made possible the discrimination of quartz grains of different geological sources or with different geothermal history within the Massif Central group. - Highlights: • We used ESR and gamma spectrometry for source determination of alluvial quartz grains. • Th/K ratio distinguishes sediments from rivers flowing in various geological contexts. • Al, Ti–H and Ti–Li ESR centers discriminate quartz of different geological sources.

  1. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  3. Potential land use planning and assessment in the west part of the Büyük Menderes basin by ILSEN Model

    Directory of Open Access Journals (Sweden)

    Mustafa Bolca

    2013-01-01

    Full Text Available This research was planned to investigate the structural properties and soil mapping capability according to rules of the 7. Approximation Soil Taxonomic System of the region western part of the Büyük Menderes Basin by using Landsat satellite images in remote sensing technique. The data gathered from field observation about some soil properties and land requirements of different land use types were correlated and as a result of that the boundaries of land use patterns were carried out. Land use patterns were detected according to suitable land use classes for soil mapping units and potential land use map were done. Land use assessment is likely to be the prediction of land potential for productive land use types. This case is great important in guiding decisions on land uses in terms of potential and conserving natural resources for future generations. The main objective of this study was to determine land resources and to assess potential land use in the west part of the Büyük Menderes Basin of Aegean region. The study area covers about 24.300 km2 and formed on alluvial material deposited by Büyük Menders River. Using Landsat 5 TM satellite images, which cover back and foot slope of mountain and alluvial plains of the western part of Menderes Basin, and taking physiographic units of the region as basis, detailed soil series and phases were determined. Soils of the region were classified as Entisol, Inceptisol as 2 orders, 4 suborders, 4 great groups and 6 sub groups, and 10 series. Twenty-five different land utilization types grouped into 4 major land use groups were evaluated for the studied area’s soils. ILSEN computer model was used to determined potential land use groups and suitable classes for agricultural uses. In addition, ArcGIS software was used to generate their maps and database. Suitability map for agricultural uses results showed that, distributions of the best, relatively good, problematic and restricted agricultural lands

  4. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    Science.gov (United States)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  5. A microseismic study in a low seismicityarea: the 2001 site-response experimentin the Città di Castello Basin (Italy

    Directory of Open Access Journals (Sweden)

    A. Michelini

    2003-06-01

    Full Text Available A site response experiment was performed in the basin of Città di Castello (a small town in Central Italy in May 2001. This study is part of a project on the evaluation of seismic hazard in seismogenic areas funded by the Gruppo Nazionale Difesa dai Terremoti (GNDT. The experiment consisted of a dense fixed transect configuration with most of the stations recording in continuous mode, and several ambient noise measurements both in single station and in array configuration spread over the investigated area. The dense transect was composed of 26 seismic stations in a crosswise configuration with a maximum inter-station distance of 250 m. The stations were deployed in the southern part of the basin, from the eastern bedrock outcrop to the western edge, across the town. About 70 earthquakes were recorded during 10 days of deployment, generally low magnitude or regional events. We located 23 earthquakes and 17 of them were located using the waveform similarity approach at 4 stations outside the target area. These 4 stations were part of a dense temporary seismic network involved in a previous experiment of the same project, aimed at performing a high-resolution picture of the local seismicity. Delay analysis on the recorded waveforms allowed us to infer the basin geometry at depth and estimate the S-wave velocity of sediments. Moreover, we evaluated relative site response along the E-W transect by performing a standard spectral ratio. Amplification factors up to 9 are found inside the basin; at frequencies above 5 Hz stations closer to the edges show higher amplification, whereas stations located in the middle of the basin, where the alluvial sediments are thicker (CD11-CD14, show higher amplification below 5 Hz. We considered the average amplification in two frequency bands (1-5 Hz and 5-10 Hz, representative of the resonance frequency for 2-3 storey buildings and 1 storey houses,respectively. Our results suggest that the potential hazard for 2

  6. Seismic Velocity Structure and Improved Seismic Image of the Southern Depression of the Tainan Basin from Pre-Stack Depth Migration

    Directory of Open Access Journals (Sweden)

    Qunshu Tang Chan Zheng

    2010-01-01

    Full Text Available In this paper, a velocity model of the Southern Depression of the Tainan Basin is obtained along with its migrated image from an iterative pre-stack depth migration approach. The Cenozoic strata are uniformly layered with velocities varying from ~1.8 to ~3.6 km s-1. However, the general velocity is slightly lower in the NW segment than the SE. Both fractures and burial depth might be the controls of their seismic velocities. There is an unconformable contact between the Cenozoic and underlying Mesozoic strata with an abrupt velocity jump from ~3.2 to ~4.3 km s-1. The Mesozoic strata are recognized with acoustically distinct reflection patterns (chaotic, deformed and discontinuous and complex internal structures (uplift, folds and faults. Their interval velocities range from ~4.3 to ~4.7 km s-1 within a depth from ~3.5 down to ~12.5 km, and the maximum depositional thickness reaches up to 6.5 km. Multiple tectonic events such as collision, subsidence and uplift might be responsible for the complexity of the Mesozoic strata.

  7. Topographic and hydraulic controls over alluviation on a bedrock template

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2017-04-01

    Bedrock-alluvial anastomosed channels found in dryland rivers are characterised by an over-wide channel cut into the host rock containing a network of interconnecting bedrock sub-channels separated by bedrock influenced interfluve areas. Whilst the channels remain largely free of sediment the interfluves display varying levels of alluviation ranging from bare rock, sand sheets and silt drapes through to consolidated bedrock core bars, islands and lateral deposits. Examination of the sedimentary units associated with the bedrock anastomosed reaches of the Sabie river in the Kruger National Park, South Africa reveal a repeating sequence of coarse sand / fine gravel grading through to silt representing successive flood related depositional units. Unit development in relation to the bedrock template was investigated using pre-flood aerial imagery of bedrock core bar locations and post flood LiDAR data of bedrock anastomosed sites stripped during the 2000 and 2012 extreme flood events. This revealed a propensity for bar development associated with bedrock hollows disconnected from the principal high-energy sub-channels. 2-D morpho-dynamic modelling was used to further investigate spatial patterns of deposition over the bedrock template. Although topographic lows displayed mid-range velocities during peak flow events, these are likely to be preferential routing areas, with sediments stalling in low energy areas on the falling limb of floods. It is also likely that vegetation development plays a fundamental role in the development of alluviated zones, through increasing strength of alluvial units and capturing new sediments. With these results in mind we present a conceptual model for the development of bedrock-core bars, the fundamental unit in bedrock-alluvial anastomosed channels.

  8. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    Directory of Open Access Journals (Sweden)

    J. R. Miller

    2013-02-01

    Full Text Available The management of sediment and other non-point source (NPS pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s, transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu–Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses.

    The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants.

    Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from

  9. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Science.gov (United States)

    2010-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  10. Alluvial architecture of the Holocene Rhine-Meuse delta (The Netherlands) and the Lower Mississippi Valley (U.S.A.)

    OpenAIRE

    Gouw, M.J.P.

    2007-01-01

    Alluvial architecture describes the geometry, proportion, and spatial distribution of different types of fluvial deposits in an alluvial succession. Alluvial architecture is frequently subject of study, because natural resources commonly occur in ancient fluvial sequences. The ability of models to simulate alluvial architecture realistically is largely unknown due to a lack of natural data to test the models. Generating high-resolution datasets describing alluvial architecture of natural fluv...

  11. Metabolism of 14C-lindane in flooded alluvial soil

    International Nuclear Information System (INIS)

    Siddaramappa, R.; Sethunathan, N.

    1975-01-01

    The effect of rice straw on the persistence of uniformly ring labelled 14 C-lindane in an alluvial soil was investigated under flooded conditions. The residues in the soil were extracted with chloroform-diethyl ether and the radioactivity was measured by liquid scintillation. The radioactivity in the solvent phase decreased more rapidly in amended soil than in unamended soil. Radioautograph of thin layer chromatograms of solvent phase indicated that lindane was readily converted to a breakdown product in both amended and unamended soils. This breakdown product was also formed in both autoclaved and nonautoclaved soils. Rice straw amendment enhanced further decomposition of lindane and its breakdown product. Heat treatment retarded further decomposition of lindane and its breakdown product whereas they were rapidly decomposed in nonautoclaved soil. These studies indicated that in flooded alluvial soil tested, lindane was initially decomposed by a chemical reaction and soil microorganisms appeared to attack the products of the chemical reaction. (author)

  12. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  13. Clogging of water supply wells in alluvial aquifers by mineral incrustations, central Serbia

    Directory of Open Access Journals (Sweden)

    Majkić-Dursun Brankica

    2015-01-01

    Full Text Available The formation of incrustations on public water supply well screens reduces their performance considerably. The incrustations increase hydraulic losses, reduce the capacity of the well and screen, affect the quality of the pumped water and increase maintenance costs. In alluvial environments, the most common deposits are iron and manganese hydroxides. However, the rates of formation, compositions and levels of crystallization vary, depending on the geochemical characteristics of the alluvial environment, the microbiological characteristics of the groundwater and the abstraction method. Samples of 15 incrustations were collected from wells that tap shallow alluvial aquifers and were found to be dominated by iron. XRD analyses detected low-crystalline ferrihydrite and manganese hydroxide in the samples collected from the water supply source at Trnovče (Velika Morava alluvial. The incrustations from the Belgrade Groundwater Source revealed the presence of ferrihydrite and a substantial amount of goethite α-FeOOH. Apart from goethite, greigite (Fe3S4 was detected in three samples, while one sample additionally contained bernalite Fe(OH3 and monoclinic sulfur S8. Among carbonates, only siderite was detected. Iron oxidizing bacteria generally catalyze deposition processes in wells, while sulfate reducing bacteria (SRB play a role in the biogenic formation of greigite. Determining the nature of the deposited material allows better selection of rehabilitation chemicals and procedure. [Projekat Ministarstva nauke Republike Srbije, br. TR37014

  14. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  15. Controls on alluvial fans morphology

    Science.gov (United States)

    Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.

    2017-12-01

    Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.

  16. A rapid screening-level method to optimize location of infiltration ponds.

    Science.gov (United States)

    Fennemore, G G; Davis, A; Goss, L; Warrick, A W

    2001-01-01

    A rapid-screening technique was developed to identify lithologies that best disperse artificial recharge via surface infiltration and minimize effects on ground water chemistry. The technique prospectively evaluates basin infiltration rates and water chemistry influences by integrating geotechnical, hydraulic, and water quality data with column test data and numerical modeling. The technique was validated using field data collected from surface infiltration basins designed to recharge ground water pumped from the Pipeline pit gold mine in Nevada. Observed recharge rates at these infiltration sites correlated most significantly with depth to groundwater, with basins in coarse-grained lithologies performing better (0.45 to 0.85 m/day) than those with fine-grained layers ( 2000 mg/L) than coarse-grained soils (infiltration basins for a variety of lithologies. Sites for infiltration basins can be rapidly screened to include areas with greatest depth to groundwater and in coarsest alluvial sediments, and impact to ground water chemistry can be reliably predicted using computer modeling and column test results.

  17. The migration, dissolution, and fate of chlorinated solvents in the urbanized alluvial valleys of the southwestern USA

    Science.gov (United States)

    Jackson, R. E.

    The migration, dissolution, and subsequent fate of spilled chlorinated solvents in the urban alluvial valleys of the southwestern U.S. appear to be governed by a unique set of hydrogeologic and geochemical processes occurring within terrigeneous clastic depositional systems. The alluvial and lacustrine fill of the basins, the trapping of solvents in fine-grained sediments beneath the urbanized valley centers, the oxic conditions typical of the deeper alluvium, and the contaminant-transport patterns produced by large-scale basin pumping combine to produce long aqueous-phase plumes derived from the dissolution of trapped chlorinated solvents. Although of limited aqueous solubility, these dense solvents are sufficiently mobile and soluble in the southwestern alluvial valleys to have produced aqueous plumes that have migrated several kilometers through the deeper alluvium and have contaminated valuable water-supply well fields in California, Arizona, and New Mexico. The typical length of these plumes and the presence of oxic groundwater indicate that it is unlikely that natural attenuation will be a practical remedial option in the southwestern alluvial valleys or in other alluvial systems in which similar hydrogeologic and geochemical conditions exist. Résumé La migration, la dissolution et l'évolution consécutive des rejets de solvants chlorés dans les vallées alluviales du sud-ouest des États-Unis paraissent déterminées par un même ensemble de processus hydrogéologiques et géochimiques intervenant dans des formations de dépôts clastiques terrigènes. Les remplissages alluviaux et lacustres des bassins, le piégeage des solvants par des sédiments fins sous les centres des vallées urbanisées, les conditions oxiques typiques des alluvions plus profondes et les types de transport de contaminants provoqués par le pompage à l'échelle du bassin se combinent pour produire des panaches, étendus dans la phase aqueuse, provenant de la dissolution de

  18. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  19. Remote-sensing and geological information for prospective area selection of in-situ leachable sandstone-type uranium deposit in Songliao and Liaohe faulted-depressed basins

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    On the basis of remote-sensing information and geological environments for the formation of in-situ leachable sandstone-type uranium deposits such as geomorphic features, distribution of drainage system, and paleo-alluvial (diluvial) fans and time-space distribution regularities of orehosting rocks and sandstone bodies in Songliao and Liaohe faulted-depressed basins, image features, tectonic patterns and paleo-geographic environment of the prospective areas are discussed for both basins, and based on a great number of petroleum-geological data and comparison analysis, a remote sensing-geological prospecting model for in-situ leachable sandstonetype uranium deposits in the region is established, providing indications for selection of prospective area

  20. Groundwater quality in alluvial and prolluvial areas under the influence of irrigated agriculture activities.

    Science.gov (United States)

    Kovacevik, Biljana; Boev, Blazo; Panova, Vesna Zajkova; Mitrev, Sasa

    2016-12-05

    The aim of this study was to investigate the groundwater pollution from alluvial aquifers lying under surface agriculture activities in two geologically different areas: alluvial and prolluvial. The groundwater in investigated areas is neutral to alkaline (pH 7.05-8.45), and the major dissolved ions are bicarbonate and calcium. Groundwater samples from the alluvial area are characterized by nitrate concentration above the national maximum concentration limit (MCL) at 20.5% of samples [mean value (Me) 6.31 mg/L], arsenic concentrations greater than national MCL at 35.6% of investigated samples (Me 12.12 µg/L) and elevated concentrations of iron (Me 202.37 µg/L) and manganese (Me 355.22 µg/L) at 22.7% and 81% of investigated samples, respectively. Groundwater samples from the prolluvial area did not show significantly elevated concentrations of heavy metals, but the concentration of nitrate was considerably higher (Me 65.06 mg/L). Factor analysis positively correlates As with Mn and Fe, suggesting its natural origin. Nitrate was found in positive correlation with SO 4 2- and Ni but in negative with NH 4 + , suggesting its anthropogenic origin and the relationship of these ions in the process of denitrification. The t-test analysis showed a significant difference between nitrate pollution of groundwater from alluvial and prolluvial areas. According to the chemical composition of groundwater, the process of denitrification is considered to be the main reason for the reduced presence of nitrate in the groundwater lying under alluvial deposits represented by chalk and sandstones. Denitrification in groundwater lying under prolluvial deposits represented by magmatic and metamorphic rock formations was not observed.

  1. Caesium-137 as an indicator of geomorphic processes in a drainage basin system

    International Nuclear Information System (INIS)

    Campbell, B.L.; Elliott, G.L.

    1982-01-01

    Caesium-137 from fallout from nuclear weapons tests is adsorbed on fine sediments and becomes an effective tracer. It is hypothesised that within a drainage basin, sites undergoing little or no erosion accumulate Cs-137 in their upper layers; cultivated soils will have Cs-137 uniformly distributed within the cultivated layer; eroded soils, cultivated or not, will have relatively less Cs-137, depending on the severity of erosion. Accumulated sediments will have characteristic Cs-137 profiles reflecting temporal fallout variations and sedimentation history. This hypothetical model is largely confirmed by results from Maluna Creek basin, where erosion and accumulation of sediments has taken place. Soils under viticulture have about one third the Cs-137 content of soils with grass cover, indicating more severe erosion under cultivation. Caesium-137 profiles in alluvial fan and flood plain deposits correlate with sediment layers and known cultivation history

  2. Maturity in the Styrian Basin. Maturitaet im Steirischen Tertiaerbecken

    Energy Technology Data Exchange (ETDEWEB)

    Sachsenhofer, R.F. (Montanuniversitaet Leoben (Austria). Inst. fuer Geowissenschaften/Geologie)

    1991-01-01

    The Styrian basin, situated at the south-eastern margin of the Alps, contains up to 3 km of Ottnangian to Pliocene sedimentary rocks. Main subsidence occured between Ottnangian and Sarmatian. Miocene and Plio-/Pleistocene volcanic phases can be distinguished. Maturity in the Styrian basin was studied with vitrinite reflectance curves of 25 boreholes. The oil window lies at shallow depths in the vicinty of Miocene volcanos. This is due to high heating rate during Karpatian to Lower Badenian times. Depth and thickness of the oil window increase with increasing distance from these volcanos. At a distance of some kilometers the thermal influence of this Miocene volcanism disappears. According to high recent heat flow the oil window is located below 1 500 to 2 000 m in these parts of the basin. An influence of Plio-/Pleistocene volcanism on maturity cannot be observed. (orig.).

  3. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil).

    Science.gov (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S

    2015-08-01

    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.

  4. Identification of igneous rocks in a superimposed basin through integrated interpretation dominantly based on magnetic data

    Science.gov (United States)

    LI, S.

    2017-12-01

    Identification of igneous rocks in the basin environment is of great significance to the exploration for hydrocarbon reservoirs hosted in igneous rocks. Magnetic methods are often used to alleviate the difficulties faced by seismic imaging in basins with thick cover and complicated superimposed structures. We present a case study on identification of igneous rocks in a superimposed basin through integrated interpretation based on magnetic and other geophysical data sets. The study area is located in the deepest depression with sedimentary cover of 14,000 m in Huanghua basin, which is a Cenozoic basin superimposed on a residual pre-Cenozoic basin above the North China craton. Cenozoic and Mesozoic igneous rocks that are dominantly intermediate-basic volcanic and intrusive rocks are widespread at depth in the basin. Drilling and seismic data reveal some volcanic units and intrusive rocks in Cenozoic stratum at depths of about 4,000 m. The question remains to identify the lateral extent of igneous rocks in large depth and adjacent areas. In order to tackle the difficulties for interpretation of magnetic data arisen from weak magnetic anomaly and remanent magnetization of igneous rocks buried deep in the superimposed basin, we use the preferential continuation approach to extract the anomaly and magnetic amplitude inversion to image the 3D magnetic units. The resultant distribution of effective susceptibility not only correlates well with the locations of Cenozoic igneous rocks known previously through drilling and seismic imaging, but also identifies the larger scale distribution of Mesozoic igneous rocks at greater depth in the west of the basin. The integrated interpretation results dominantly based on magnetic data shows that the above strategy is effective for identification of igneous rocks deep buried in the superimposed basin. Keywords: Identification of igneous rocks; Superimposed basin; Magnetic data

  5. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  6. Facies architecture of basin-margin units in time and space: Lower to Middle Miocene Sivas Basin, Turkey

    Science.gov (United States)

    Çiner, A.; Kosun, E.

    2003-04-01

    The Miocene Sivas Basin is located within a collision zone, forming one of the largest basins in Central Turkey that developed unconformably on a foundered Paleozoic-Mesozoic basement and Eocene-Oligocene deposits. The time and space relationships of sedimentary environments and depositional evolution of Lower to Middle Miocene rocks exposed between Zara and Hafik towns is studied. A 4 km thick continuous section is subdivided into the Agilkaya and Egribucak Formations. Each formation shows an overall fining upward trend and contains three members. Although a complete section is present at the western part (near Hafik) of the basin, to the east the uppermost two members (near Zara) are absent. The lower members of both formations are composed of fluvial sheet-sandstone and red mudstone that migrate laterally on a flood basin within a semi-arid fan system. In the Agilkaya Formation that crops out near Zara, alluvial fans composed of red-pink volcanic pebbles are also present. The middle members are composed of bedded to massive gypsum and red-green mudstone of a coastal and/or continental sabkha environment. While the massive gypsum beds reach several 10’s of m in Hafik area, near Zara, they are only few m thick and alternate with green mudstones. In Hafik, bedded gypsums are intercalated with lagoonal dolomitic limestone and bituminous shale in the Agilkaya Formation and with fluvial red-pink sandstone-red mudstone in the Egribucak Formation. The upper members are made up of fossiliferous mudstone and discontinuous sandy limestone beds with gutter casts, HCS, and 3-D ripples. They indicate storm-induced sedimentation in a shallow marine setting. The disorganized accumulations of ostreid and cerithiid shells, interpreted as coquina bars, are the products of storm generated reworking processes in brackish environments. Rapid vertical and horizontal facies changes and the facies associations in both formations reflect the locally subsiding nature of this molassic

  7. Assessment of On-site sanitation system on local groundwater regime in an alluvial aquifer

    Science.gov (United States)

    Quamar, Rafat; Jangam, C.; Veligeti, J.; Chintalapudi, P.; Janipella, R.

    2017-12-01

    The present study is an attempt to study the impact of the On-site sanitation system on the groundwater sources in its vicinity. The study has been undertaken in the Agra city of Yamuna sub-basin. In this context, sampling sites (3 nos) namely Pandav Nagar, Ayodhya Kunj and Laxmi Nagar were selected for sampling. The groundwater samples were analyzed for major cations, anions and faecal coliform. Critical parameters namely chloride, nitrate and Faecal coliform were considered to assess the impact of the On-site sanitation systems. The analytical results shown that except for chloride, most of the samples exceeded the Bureau of Indian Standard limits for drinking water for all the other analyzed parameters, i.e., nitrate and faecal coliform in the first two sites. In Laxmi Nagar, except for faecal coliform, all the samples are below the BIS limits. In all the three sites, faecal coliform was found in majority of the samples. A comparison of present study indicates that the contamination of groundwater in alluvial setting is less as compared to hard rock where On-site sanitation systems have been implemented.

  8. Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah

    Science.gov (United States)

    Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.

    2017-12-01

    The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in

  9. Level III Ecoregions of the Mississippi Alluvial Plain

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in...

  10. Level IV Ecoregions of the Mississippi Alluvial Plain

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in...

  11. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    Science.gov (United States)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  12. The risk of supply of Surface/groundwater in the Laja River Basin in the State of Guanajuato, Mexico

    Science.gov (United States)

    Li, Yanmei; Knappett, Peter; Giardino, John Rick; Horacio Hernandez, Jesus; Aviles, Manuel; Rodriguez, Rodrigo Mauricio; Deng, Chao

    2016-04-01

    Water supply in Laja River Basin, located in an arid, semi-arid area of Central Mexico, is dependent primarily on groundwater. Although multiple users depend on this groundwater, the majority of the groundwater is used for commercial irrigation. The water table is swiftly being lowered, as the result of a rapidly growing population, expanding industries and increased commercial agriculture production in the State of Guanajuato. The average historic drawdown rate, measured in various wells across the aquifer, is ~1 m/yr; some wells approach 4 m/yr. Hydraulic heads are lower in wells in the central, low-lying areas of the basin, near the main branch of Laja River, than in wells located along the outer edges of the basin. The resulting water depth ranges from 70-130 m in most of the area. As wells are drilled deeper, at increased costs, to access the falling groundwater table, toxic levels of fluoride (F) and arsenic (As) are being reported for these wells. These increases in toxicity are possibly caused by induced upwelling of deeper groundwater. Based on analysis of the water, we suggest that the groundwater is fresh and suggest that the reservoir rock is not very reactive or the groundwater is young. Unfortunately, F and As were found to exceed Maximum Contaminant Levels (MCL) in several wells. Concentrations of F and As were correlated to Total Dissolved Solids (TDS) suggesting a mixing with older, deeper groundwater. Mapping of the watershed and channel geomorphology indicates that the Laja River tends to be gravel bedded in some locations and sand-bedded in other locations with highly erodible banks. At multiple sample locations, as many as four terraces were present, suggesting an actively down-cutting channel. Geophysical measurements suggest the river is well connected to the alluvial aquifer. Thus, prior to intensive pumping in the 1950's the Laja River may have been recharged by aquifers. Whereas the discharge in the Laja River is decreasing yearly, a

  13. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K.

    Science.gov (United States)

    Izquierdo, M; Tye, A M; Chenery, S R

    2012-09-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0-15 cm) and subsoil (35-50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type ('BHT') Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. Copyright © 2012 Natural Environment

  14. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    Science.gov (United States)

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface

  15. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  16. Counter diffusion of zinc and iron in alluvial soil

    International Nuclear Information System (INIS)

    Rattan, R.K.; Deb, D.L.

    1980-01-01

    Half cell technique showed that an increase in moisture tension and CaCO 3 content caused reduction in the counter diffusion coefficients of zinc and iron in an alluvial soil. Increases in bulk density, ambient temperature and concentration of synthetic chelating agents e.g. EDTA and DTPA increased the counter diffusion coefficients of both zinc and iron. (author)

  17. Hydrochemical Processes in the Alluvial Aquifer of the Gwydir River (Northern New South Wales, Australia)

    OpenAIRE

    Menció, Anna; Mas-Pla, Josep; Korbel, Kathryn; Hose, Grant C.

    2013-01-01

    The hydrochemistry of the Narrabri Formation, the shallow aquifer system of the alluvial fan of the Gwydir River (NSW, Australia), is analyzed to better understand the hydrogeological processes involved in aquifer recharge, and to set up future management options that preserve the quantity and quality of water resources. Results show that groundwater hydrochemistry in this alluvial aquifer is mainly controlled by silicate weathering and cation exchange. However, salt remobilization in specifi...

  18. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  19. Isotope techniques in hydrological studies: application to Chacabuco-Polpaico basin

    International Nuclear Information System (INIS)

    Orphanopoulus Stehr, D.

    1982-01-01

    A hydrogeological study was carried out in a small alluvial valley, 45 kms. north of Santiago, Chile. Although the main economical activity is the agriculture, the valley only has small seasonal rivers. The irrigation water comes from a near basin through a channel of about 100 kms. and from the ground water. The study include aspects like: pumping tests evaluations, well stratigraphy, potentiometric surface fluctuation, water chemistry, stable isotopes and water balances. Isotopes, oxygen-18 and deuterium were used to identify the origin of the ground water in different sections of the valley and the importance of the infiltration. Also experiences were made to evaluate the evaporation of a small damm, using isotopes and the classical water balance methods. (O.S.)

  20. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    Science.gov (United States)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas

  1. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  2. A magnetic and gravity investigation of the Liberia Basin, West Africa

    Science.gov (United States)

    Morris Cooper, S.; Liu, Tianyou

    2011-02-01

    Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.

  3. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  4. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    Science.gov (United States)

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  5. Basinwide sedimentation and the continuum of paleoflow in an ancient river system: Kayenta Formation (Lower Jurassic), central portion Colorado Plateau

    Science.gov (United States)

    Luttrell, Patty Rubick

    1993-05-01

    Utilizing detailed documentation of alluvial architecture to reconstruct the continuum of paleoflow (perennial, intermittent, ephemeral), a basinwide study of the Kayenta Formation (Lower Jurassic) reveals that the northern half of the basin is characterized by sandy, low-sinuosity fluvial systems which exhibit perennial (Assoc. 1) to intermittent (Assoc. 2) discharge indicators. The rivers had headwaters east of the Uncompahgre Highlands (western Colorado) and flowed southwest across the basin depositing a braidplain of channel sands with well-preserved 3-dimensional macroforms. One significant aspect of the macroform architecture is documentation of macroform climb in both an upstream and downstream direction. The macroforms aggrade vertically by climbing (maximum 10° dip in an upstream direction) and migrating over the backs (upstream ends) of underlying macroforms. The process of macroform climb records a minimum water depth of 8 m and a maximum of 16 m which places the Kayenta perennial waterways (Assoc. 1) within a mesothermal hydrologic regime. The southern portion of the basin contains intermittent (Assoc. 2) to ephemeral (Assoc. 3) fluvial deposits, extensive floodplain preservation and eolian dune and interdune/sandsheet deposition (Assoc. 4). A tributary drainage pattern to the northwest was established by smaller, low- to moderately-sinuous streams. Eolian dune and interdune deposits migrated across this more arid windswept portion of the basin. The range of alluvial architecture present in the Kayenta attests to the diversity that can be found in a small continental sedimentary basin.

  6. Isotope studies on mechanisms of groundwater recharge to an alluvial aquifer in Gatton, Queensland, Australia

    International Nuclear Information System (INIS)

    Dharmasiri, J.K.; Morawska, L.

    1997-01-01

    Gatton is an important agricultural area for Queensland where about 40% of its vegetables needs are produced using groundwater as the main source. An alluvial Aquifer is located about 30m beneath the layers of alluvial sediments ranging from black soils of volcanic origin on top, layers of alluvial sands, clays and beds of sand and gravel. The leakage of creek flows has been considered to be the main source of recharge to this aquifer. A number of weirs have been built across the Lockyer and Laidley creeks to allow surface water to infiltrate through the beds when the creeks flow. Water levels in bores in a section located in the middle of the alluvial plain (Crowley Vale) have been declining for the last 20 years with little or no success in recharging from the creeks. Acute water shortages have been experienced in the Gatton area during the droughts of 1980-81, 1986-87 and 1994-97. Naturally occurring stable isotopes, 2 H, 18 0 and 13 C as well as radioisotopes 3 H and 14 C have been used to delineate sources of recharge and active recharge areas. Tritium tracing of soil moisture in the unsaturated soil was also used to determine direct infiltration rates

  7. Radioactive Contamination of Alluvial Soils in the Taiga Landscapes of Yakutia with 137Cs, 226Ra, and 238U

    Science.gov (United States)

    Chevychelov, A. P.; Sobakin, P. I.

    2017-12-01

    The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El'kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.

  8. Paleohydrogeology of the San Joaquin basin, California

    Science.gov (United States)

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  9. Alluvial architecture of the Holocene Rhine-Meuse delta (The Netherlands) and the Lower Mississippi Valley (U.S.A.)

    NARCIS (Netherlands)

    Gouw, M.J.P.

    2007-01-01

    Alluvial architecture describes the geometry, proportion, and spatial distribution of different types of fluvial deposits in an alluvial succession. Alluvial architecture is frequently subject of study, because natural resources commonly occur in ancient fluvial sequences. The ability of models to

  10. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.

    Science.gov (United States)

    Guo, Huaming; Zhang, Bo; Li, Yuan; Berner, Zsolt; Tang, Xiaohui; Norra, Stefan; Stüben, Doris

    2011-04-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO₄²⁻ concentrations and δ³⁴S values indicates that bacterial reduction of SO₄²⁻ occurs in reducing aquifers. Due to high concentrations of Fe (> 0.5 mg L⁻¹), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The role of discharge variability in the formation and preservation of alluvial sediment bodies

    Science.gov (United States)

    Fielding, Christopher R.; Alexander, Jan; Allen, Jonathan P.

    2018-03-01

    Extant, planform-based facies models for alluvial deposits are not fully fit for purpose, because they over-emphasise plan form whereas there is little in the alluvial rock record that is distinctive of any particular planform, and because the planform of individual rivers vary in both time and space. Accordingly, existing facies models have limited predictive capability. In this paper, we explore the role of inter-annual peak discharge variability as a possible control on the character of the preserved alluvial record. Data from a suite of modern rivers, for which long-term gauging records are available, and for which there are published descriptions of subsurface sedimentary architecture, are analysed. The selected rivers are categorized according to their variance in peak discharge or the coefficient of variation (CVQp = standard deviation of the annual peak flood discharge over the mean annual peak flood discharge). This parameter ranges over the rivers studied between 0.18 and 1.22, allowing classification of rivers as having very low ( 0.90) annual peak discharge variance. Deposits of rivers with very low and low peak discharge variability are dominated by cross-bedding on various scales and preserve macroform bedding structure, allowing the interpretation of bar construction processes. Rivers with moderate values preserve mostly cross-bedding, but records of macroform processes are in places muted and considerably modified by reworking. Rivers with high and very high values of annual peak discharge variability show a wide range of bedding structures commonly including critical and supercritical flow structures, abundant in situ trees and transported large, woody debris, and their deposits contain pedogenically modified mud partings and generally lack macroform structure. Such a facies assemblage is distinctively different from the conventional fluvial style recorded in published facies models but is widely developed both in modern and ancient alluvial

  12. Spatial distribution of triazine residues in a shallow alluvial aquifer linked to groundwater residence time.

    Science.gov (United States)

    Sassine, Lara; Le Gal La Salle, Corinne; Khaska, Mahmoud; Verdoux, Patrick; Meffre, Patrick; Benfodda, Zohra; Roig, Benoît

    2017-03-01

    At present, some triazine herbicides occurrence in European groundwater, 13 years after their use ban in the European Union, remains of great concern and raises the question of their persistence in groundwater systems due to several factors such as storage and remobilization from soil and unsaturated zone, limited or absence of degradation, sorption in saturated zones, or to continuing illegal applications. In order to address this problem and to determine triazine distribution in the saturated zone, their occurrence is investigated in the light of the aquifer hydrodynamic on the basis of a geochemical approach using groundwater dating tracers ( 3 H/ 3 He). In this study, atrazine, simazine, terbuthylazine, deethylatrazine, deisopropylatrazine, and deethylterbuthylazine are measured in 66 samples collected between 2011 and 2013 from 21 sampling points, on the Vistrenque shallow alluvial aquifer (southern France), covered by a major agricultural land use. The frequencies of quantification range from 100 to 56 % for simazine and atrazine, respectively (LQ = 1 ng L -1 ). Total triazine concentrations vary between 15 and 350 ng L -1 and show three different patterns with depth below the water table: (1) low concentrations independent of depth but related to water origin, (2) an increase in concentrations with depth in the aquifer related to groundwater residence time and triazine use prior to their ban, and (3) relatively high concentrations at low depths in the saturated zone more likely related to a slow desorption of these compounds from the soil and unsaturated zone. The triazine attenuation rate varies between 0.3 for waters influenced by surface water infiltration and 4.8 for water showing longer residence times in the aquifer, suggesting an increase in these rates with water residence time in the saturated zone. Increasing triazine concentrations with depth is consistent with a significant decrease in the use of these pesticides for the last 10 years on

  13. Alluvial architecture of fluvio-deltaic successions: a review with special reference to Holocene settings

    NARCIS (Netherlands)

    Gouw, M.J.P.

    2007-01-01

    Alluvial architecture has been subject of many studies because of the occurrence of natural resources in ancient fluvial successions. This paperprovides an overview of the current state of research on alluvial architecture with special reference to Holocene fluvio-deltaic settings. Severalexamples

  14. 75 FR 62137 - Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest Factors...

    Science.gov (United States)

    2010-10-07

    ... exchange Federal coal deposits for Alluvial Valley Floor (AVF) fee coal pursuant to the Federal Land Policy...; MTM-99236] Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest... Alluvial Valley Floor Environmental Assessment can be viewed on the BLM's Miles City Field Office Web page...

  15. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey

    Science.gov (United States)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.

    2011-12-01

    In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not

  16. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  17. Influence of topography on tide propagation and amplification in semi-enclosed basins

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, Henk M.

    2011-01-01

    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having

  18. Influence of topography on tide propagation and amplification in semi-enclosed basins

    NARCIS (Netherlands)

    Roos, P.C.; Schuttelaars, H.M.

    2010-01-01

    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having

  19. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    Science.gov (United States)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of

  20. Sedimentology and paleoecology of an Eocene Oligocene alluvial lacustrine arid system, Southern Mexico

    Science.gov (United States)

    Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro

    2006-10-01

    A depositional model of the Eocene-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.

  1. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  2. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    Pyritized ooids in association with turbidites were observed in a box core collected at a depth of 3627 m from the Arabian Sea Basin. Ooids having a shallow water origin were transported to the present depth by turbidity currents or slumping...

  3. Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies

    Science.gov (United States)

    Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.

    2018-05-01

    Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between

  4. Geomorphologic and sedimentologic controls on records of flood-induced alluviation in Las Cajas National Park, Ecuador

    Science.gov (United States)

    Rodbell, D. T.; Bustamante, M. G.; Marks, S.; Abbott, M. B.; Moy, C. M.

    2017-12-01

    The sediment record from Laguna Pallcacocha in Las Cajas National Park, southern Ecuador (4060 masl; 2°46'S; 79°14'W) has been interpreted to record El Niño floods spanning the Holocene (Rodbell et al., 1999; Moy et al., 2002). The sediment record is unusual for the nearly continuous dark- and light-colored laminations (0.1-2.0 cm thick) that comprise the Holocene. Light laminae typically have erosive basal contacts and fine-upwards, whereas dark laminae possess abrupt or gradational lower contacts and reveal no grain size trends. Light laminae contain 7%), and contain 3-10% biogenic silica. Light laminae represent deposition during periods of increased precipitation, mobilization of unvegetated sediment above the lake, and increased stream discharge, all of which generate density-driven undercurrents. Conversely, dark laminae are deposited relatively slowly by sedimentation of organic matter, some derived from surface soil horizons. Time series analysis of light laminae reveal the ENSO spectral signature (2-8 yr) that evolves through the Holocene. However, none of the sediment cores taken from many nearby lakes reveal an alluvial record comparable in terms of frequency and magnitude to that preserved in Pallcacocha thus raising questions as to the factors responsible for the rich stratigraphy preserved in Pallcacocha, and, moreover, the regional paleoclimatic significance of the Pallcacocha record. A review of lacustrine sediment cores obtained from Las Cajas National Park suggests that drainage basin factors are the primary control on the sedimentologic signal recorded. These factors include bedrock geology, presence of unvegetated sediment exposed on slopes, connectivity of exposed sediment to primary inflow streams, drainage basin slope, drainage basin:lake surface area ratio, and position of lake in paternoster sequence of lakes. Bedrock is comprised of Quaternary silicic ignimbrite, rhyolite, and andesite of the Tarqui Formation. Ignimibrite provides the

  5. Depth-To-Basement Mapping Using Fractal Technique: Application ...

    African Journals Online (AJOL)

    ... and can thus be obtained at source level. Application to aeromagnetic data from the Chad basin north eastern Nigeria produced a basement relief which range from depths of 2.47 km to 5.40 km with an average of 3.92 +- 0.66 km. Keywords: Fractal, depth, basement, spectra, aeromagnetic. Nigerian Journal of Physics Vol ...

  6. Controlled Source Audio Magneto Telluric (CSAMT) studies for uranium exploration in Durgi area, Palnad sub-basin, Cuddapah basin, India

    International Nuclear Information System (INIS)

    Kumar, Indresh; Kumar, S. Vijaya; Ramesh Babu, V.; Kumar, B.V.L.; Dash, J.K.; Chaturvedi, A.K.

    2017-01-01

    Cuddapah basin is known for hosting unconformity proximal uranium deposits viz., Lambapur, Peddagattu, Chitirial and Koppunuru along the northern margin of the basin. It is well known that these deposits are mostly associated with basement granitoids in Srisailam Sub-basin, and with cover sediments in Palnad subbasin where basement topography and fault/fracture system influence the fluid flow causing basement alteration and ore deposition. Geological setup, surface manifestation of uranium anomalies and association of the hydro-uranium anomalies near Durgi area in southern part of the Palnad sub-basin, have prompted detail investigation by geophysical methods to probe greater depths. Controlled Source Audio Magneto Telluric (CSAMT) survey conducted over five decades of frequency (0.1-9600 Hz) delineated the various lithounits of Kurnool and Nallamalai Groups along with their thicknesses as there exist an appreciable resistivity contrast. Interpretation of CSAMT sounding data are constrained by resistivity logs and litholog data obtained from the boreholes drilled within the basin indicated three to four layered structure. Sub-surface 2-D and 3-D geo-electrical models are simulated by stitching 1-D layered inverted resistivity earth models. Stitched 1-D inverted resistivity sections revealed the unconformity between the Kurnool Group and Nallamalai Group along with basement undulations. The faults/fractures delineated from the CSAMT data corroborated well with the results of gravity data acquired over the same area. Simulated 3-D voxel resistivity model helped in visualising the faults/fractures, their depth extent, thickness of the Banganapalle quartzite and basement configuration. Integrated interpretation of CSAMT, gravity and borehole data facilitated in delineating the unconformity and the structural features favourable for uranium mineralisation in deeper parts of the Palnad sub-basin. (author)

  7. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    Science.gov (United States)

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets. Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.

  8. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    Science.gov (United States)

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  9. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Science.gov (United States)

    2010-07-01

    ... alluvial valley floor exists if it finds that— (i) Unconsolidated streamlaid deposits holding streams are... on areas or adjacent to areas including alluvial valley floors in the arid and semiarid areas west of....19 Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

  10. Curie depth and geothermal gradient from spectral analysis of ...

    African Journals Online (AJOL)

    The resent (2009) aeromagnetic data covering lower part of Benue and upper part of Anambra basins was subjected to one dimensional spectral analysis with the aim of estimating the curie depth and subsequently evaluating both the geothermal gradient and heat flow for the area. Curie point depth estimate obtained were ...

  11. Hydrogeologic inferences from drillers' logs and from gravity and resistivity surveys in the Amargosa Desert, southern Nevada

    International Nuclear Information System (INIS)

    Oatfield, W.J.; Czarnecki, J.B.

    1989-01-01

    The Amargosa Desert of southern Nevada, in the Basin and Range province, is hydraulically downgradient from Yucca Mountain, the potential site of a repository for high-level nuclear waste. Ground-water flow paths and flow rates beneath the Amargosa Desert are controlled in part by the total saturated thickness and the hydraulic properties of basin-fill alluvial sediments. Drillers' logs of water wells completed in alluvium were analyzed to help characterize the hydrogeologic framework underlying the Amargosa Desert. Fractions of coarse-grained sediments, calculated from each of these logs, were contoured using a universal-kriging routine to interpolate values. Results from a previous electrical sounding survey also were contoured, including the estimated depth to Paleozoic basement rocks. The vertical electric sounding results were obtained from individual depth-to-resistivity profiles, from which the average resistivity of the total profile and the resistivity of the upper 75 meters were calculated. the distribution and variations in average resistivity of the total depth correlated reasonably well with the distribution of variations in regional gravity. 24 refs., 17 figs

  12. Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry

    Science.gov (United States)

    Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin

    2016-04-01

    Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and

  13. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Science.gov (United States)

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  14. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.

    Science.gov (United States)

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin

    2018-02-09

    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  15. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  16. Late Pleistocene to Holocene alluvial tableland formation in an intra-mountainous basin in a tectonically active mountain belt - A case study in the Puli Basin, central Taiwan

    NARCIS (Netherlands)

    Tseng, Chia Han; Lüthgens, Christopher; Tsukamoto, Sumiko; Reimann, Tony; Frechen, Manfred; Böse, Margot

    2016-01-01

    The morphology in Taiwan is a product of high tectonic activity at the convergent margin and East Asian monsoon climate. Tablelands are prominent geomorphic features in the Puli Basin in central Taiwan. These tablelands provide an archive to understand links between past climatic evolution and

  17. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.

    2010-01-01

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  18. Surface-water hydrology of the Little Black River basin, Missouri and Arkansas, before water-land improvement practices

    Science.gov (United States)

    Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.

    1987-01-01

    The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons

  19. Mars analogue alluvial fans along the Hilina Pali fault system, Island of Hawaíi

    Science.gov (United States)

    Morgan, A. M.; Craddock, R. A.

    2016-12-01

    Alluvial fans across the martian surface act as a testament to the planet's wetter past, but the magnitude and duration of runoff events and their formative environment remain poorly constrained. Here we describe the geomorphology and interpreted formative sedimentary processes of a series of coarse grained alluvial fans along the Hilina Pali fault system at the south end of the Island of Hawaíi. The Hilina Pali is a 500m fault scarp similar in slope to the interior of a crater rim, the preferential location for fan formation on Mars. Channels feeding the fans drain the Káū Desert on the leeward side of the Kilauea volcano. These channels take advantage of lava tubes and depressions in lava flows, and subsequent lava flows preferentially flow within channels. This creates a complicated stratigraphy that is difficult to interpret solely from remote sensing data. From measured channel cross sections and woody debris we calculate feeder channel discharges of 1.6-11.4 m3/s, implying runoff production rates of up to 4cm/hour. This value is in the range of rainfall that can be delivered during large cold core winter cyclones, locally known as `Kona storms', which can generate precipitation in excess of 1m/24h. While fluid is sourced from a broad area throughout the southern Káū Desert, interpolation-derived volumes of the fans and eroded alcoves above the fans suggest that fan sediment primarily is sourced directly from edge of the pali itself. We find that similar to fans on Mars, the Hilina Pali fans are relatively large relative to their contributing basin areas. However, the Hawaiian fans vary widely in their individual relations between area, slope, and grain size. We hypothesize this is due to variations in fine grained sediment supply. The fines required for increased suspension during debris flows are sourced from sand dunes and sand sheets consisting of volcanic tephra located several hundred meters north of the pali, and these dunes are unevenly

  20. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    Science.gov (United States)

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  1. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  2. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico

    DEFF Research Database (Denmark)

    Weber, A.; Jørgensen, BB

    2002-01-01

    Depth distribution and temperature dependence of bacterial sulfate reduction were studied in hydrothermal surface sediments of the southern trough of the Guaymas Basin at 2000 m water depth. In situ temperatures ranged from 2.8 degreesC at the sediment surface to > 130degreesC at 30 cm depth in t...

  3. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    Science.gov (United States)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  4. Storage in alluvial deposits controls the timing of particle delivery from large watersheds, filtering upland erosional signals and delaying benefits from watershed best management practices

    Science.gov (United States)

    Pizzuto, J. E.; Skalak, K.; Karwan, D. L.

    2017-12-01

    Transport of suspended sediment and sediment-borne constituents (here termed fluvial particles) through large river systems can be significantly influenced by episodic storage in floodplains and other alluvial deposits. Geomorphologists quantify the importance of storage using sediment budgets, but these data alone are insufficient to determine how storage influences the routing of fluvial particles through river corridors across large spatial scales. For steady state systems, models that combine sediment budget data with "waiting time distributions" (to define how long deposited particles remain stored until being remobilized) and velocities during transport events can provide useful predictions. Limited field data suggest that waiting time distributions are well represented by power laws, extending from 104 years, while the probability of storage defined by sediment budgets varies from 0.1 km-1 for small drainage basins to 0.001 km-1 for the world's largest watersheds. Timescales of particle delivery from large watersheds are determined by storage rather than by transport processes, with most particles requiring 102 -104 years to reach the basin outlet. These predictions suggest that erosional "signals" induced by climate change, tectonics, or anthropogenic activity will be transformed by storage before delivery to the outlets of large watersheds. In particular, best management practices (BMPs) implemented in upland source areas, designed to reduce the loading of fluvial particles to estuarine receiving waters, will not achieve their intended benefits for centuries (or longer). For transient systems, waiting time distributions cannot be constant, but will vary as portions of transient sediment "pulses" enter and are later released from storage. The delivery of sediment pulses under transient conditions can be predicted by adopting the hypothesis that the probability of erosion of stored particles will decrease with increasing "age" (where age is defined as the

  5. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  6. Heavy mineral potential of Ramnad Sub-basin, Tamil Nadu

    International Nuclear Information System (INIS)

    Shaji, T.S.; Alam, M.

    2016-01-01

    Atomic Minerals Directorate for the Exploration and Research (AMD) is actively engaged in the surveys and exploration of heavy mineral placers along 980 km long coast of Tamil Nadu since 1950's identifying many major heavy mineral deposits/occurrences of varying grade and dimensions in the beach, coastal dunes and Teri sand environs. Though most of the coastal stretch of Tamil Nadu is fairly understood for its heavy mineral potential, some of the coastal segments of the Ramnad basin of southeastern Tamil Nadu, a storehouse of heavy mineral placer repositories need intensive exploration inputs, to understand its potential completely. The 100 km long study area falls in parts of Ramnad sub basin from Vaippar in Tuticorin to Mandapam in Ramanathpuram districts, constitutes the southern part of Cauvery basin. The unconsolidated coastal sediments of the basin is under active exploration and evaluation since 2012, in a phased manner, to link the known deposits, and completely delineate geo-spatial disposition of the heavy mineral bearing sand bodies in different environs right from the present day shoreline to the inland. Geologically, the area is a part of a long narrow strip of Tertiary/Quaternary sediments which outcrops along the southern Tamil Nadu coast. Precambrian granulites terrain of Southern Granulitic Terrain (SGT) in the hinterland area consisting of predominantly charnockites, gneisses, leptynites with numerous pegmatitic, vein quartz injections. The geomorphological features identified include Holocene Beach ridges, swales, abandoned channels, coastal dunes, and alluvial delta plains of Vaippar

  7. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  8. Arsenic, Chromium, and Other Potentially Toxic Elements in the Rocks and Sediments of Oropos-Kalamos Basin, Attica, Greece

    Directory of Open Access Journals (Sweden)

    D. Alexakis

    2014-01-01

    Full Text Available Rocks and sediments are non-anthropogenic sources of elements contamination. In this study, a series of potentially toxic elements were quantified in rocks and sediments of the Oropos-Kalamos basin. Only As, Hg, Pb, and Sb contents, in all the examined rocks and sediments, were higher than the levels given in international literature. Concentration of the elements As, Cr, Hg, Mo, Ni, and U is highly elevated in the lignite compared to crustal element averages. The enrichment of Cr and Ni in the lignite can be attributed to the known ultramafic rock masses surrounding the basin, while enrichment of As, Hg, Mo, Sb, and U is associated with the past geothermal activity of the Upper Miocene (about 15 million years ago. Nickel and Cr were transported into the lignite deposition basin by rivers and streams draining ultramafic rock bodies. The results of this study imply the natural source of Cr3+ and Cr6+ contamination of the Oropos-Kalamos groundwater, since high Cr contents were also recorded in the lignite (212.3 mg kg−1, chromiferous iron ore occurrences (256.6 mg kg−1, and alluvial deposits (212.5 mg kg−1, indicating Cr leaching and transportation to the depositional basin dating from the Upper Miocene age.

  9. Geologic, geomorphologic evaluation and analysis of the degree of susceptibility to floods and torrential avenues in the sub-basin of the Cambia Ravine, Municipalities of Anserma, Risaralda and San Jose, (Caldas)

    International Nuclear Information System (INIS)

    Franco H, Mariana; Guapacha, Ana Maria

    2002-01-01

    The Cambia sub-basin is located in Colombia's western cordillera and has an extension of 89,39 k m2, it is affected by the Rome ral Fault System. The lithology of the area consists of cretaceous rocks of the Diabasic B/R's Formation which is the basement of the area, this unit is overlaid by the tertiary unit of alluvial terraces of the C.c. River and the quaternary units of the: Plan de Aeromonas Mud flow, and the recent alluvial deposits. This thesis aimed to know the geology, geomorphology, mass movements and the susceptibility to river flood susceptibility. The hazard analysis was based on the cartographic updating and analysis of the geology, fluvial geomorphology, the mass movements' characterization, the flow was calculated via the Swat software based on precipitation data and later on the delimitation of the flooded areas was accomplished by using the Heck-Gar's software plus a qualitative analysis of the sub-basin. The main conclusions of this study are: There is flood hazard within this sub-basin, The flooded hazard areas were delimited for the return periods calculated and these areas require an adequate management. This thesis intended to evaluate the susceptibility analysis but the hazard analysis was accomplished. The methodology used is highly recommended for areas, which have the necessary specification to apply it

  10. Lower crustal seismic activity in the Adana Basin (Eastern Mediterranean): Possible connection to gravitational flexure

    Science.gov (United States)

    Ergin, Mehmet; Aktar, Mustafa

    2018-04-01

    High quality broadband data, together with the application of the double difference relocation technique, has been used to study the characteristics of the lower crustal seismicity in the Adana Basin, in southwestern Turkey. Deep events are clearly seen to be restricted only to the Adana Basin and never extend outside its boundaries. Furthermore, the seismogenic zone is observed to align roughly with the main axis of the basin and plunges steadily in the SSW-direction, following the basement trend of the Adana Basin. Similarities between geometries of the basin evolution and the deep seismic production suggest that both processes are closely related. A flexure process is proposed related to the subsidence of the Adana Basin. The seismogenic zone, originally at a shallow depth, is assumed to have been displaced vertically into the lower crust, by flexure. The temperature evolution of the crust during the flexure has been studied in detail using finite difference modeling, with amplitude and duration parameters taken from earlier studies. It has been concluded that the physical conditions for brittle fracturing remained unchanged for an extended period of time after the flexure. The brittle layers originally at shallow depths, preserved their original thermal properties after the subsidence and will continue to produce earthquakes at considerable depths. Numerical tests using inferred parameters imply a total vertical shift of 7-8 km for the seismogenic zone. Discussions for additional processes, which may further contribute to the cooling of the crust, are also included.

  11. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  12. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    Science.gov (United States)

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  13. Correlation of alluvial deposits at the Nevada Test Site

    International Nuclear Information System (INIS)

    Grothaus, B.; Howard, N.

    1977-01-01

    Because characteristics of rock layers and problems in drilling must be studied before radioactive waste can be safely contained, an evaluation was made of methods for correlating alluvial deposits at Yucca Flat of the Nevada Test Site (NTS). Although correlation of Tertiary volcanic tuff beds at the NTS has been successfully achieved, correlation of stratigraphic zones in the overlying alluvium has posed technical difficulties. We have evaluated several methods for correlating alluvial deposits from drillholes, including electric resistivity logs (E logs), visual examination of sidewall samples and comparison of their carbonate (CO 2 ) content, downhole stereo photography for identifying debris flow deposits, caliche age-dating, and specific yield and permeability measurements of deposits. For predicting the thickness of zones having similar physical properties in the alluvium, E log measurements were found to be the most useful of these methods

  14. Magnetotelluric inversion for depth-to-basement estimation

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    The magnetotelluric (MT) method can be effectively applied for depth-to-basement estimation, because there exists a strong contrast in resistivity between a conductive sedimentary basin and a resistive crystalline basement. Conventional inversions of MT data are usually aimed at determining...... the volumetric distribution of the conductivity within the inversion domain. By the nature of the MT method, the recovered distribution of the subsurface conductivity is typically diffusive, which makes it difficult to select the sediment-basement interface. This paper develops a novel approach to 3D MT...... inversion for the depth-to-basement estimate. The key to this approach is selection of the model parameterization with the depth to basement being the major unknown parameter. In order to estimate the depth to the basement, the inversion algorithm recovers both the thickness and the conductivities...

  15. Radiogenic 3He/4He Estimates and Their Effect on Calculating Plio-Pleistocene Cosmogenic 3He Ages of Alluvial-Fan Terraces in the Lower Colorado River Basin, USA

    Science.gov (United States)

    Fenton, C.; Pelletier, J.

    2005-12-01

    Several alluvial-fan terraces near Topock, AZ were created by successive entrenchment of Pliocene and Pleistocene alluvial-fan gravels shed from the adjacent Black Mountains along the lower Colorado River corridor below Hoover Dam. These fans interfinger with and overlie main-stem Colorado River sands and gravels and grade to terrace levels that correspond with pre-existing elevations of the Colorado River. Absolute dates for the ages of Quaternary deposits on the lower Colorado River are rare and cosmogenic 3He age estimates of these surfaces would help constrain the timing of aggradation and incision in the lower Colorado River corridor. We analyzed individual basalt boulders from several terrace surfaces for total 3He/4He concentrations to calculate cosmogenic 3He ages of each fan terrace; 3He/4He values, expressed as R/Ra where Ra is the 3He/4He of air, range from 0.29 to 590. Black Mountain volcanic rocks have reported K-Ar ages between 15 and 30 Ma and basalt samples from adjacent alluvial fans contain 0.42 to 47× 1012 at/g of 4He, which has likely accumulated due to nuclear processes. The amount of radiogenic 3He/4He can be significant in old rocks with young exposure ages and can complicate determination of cosmogenic 3 He content. Alpha-decay of U, Th, and their daughter isotopes produces large amounts of 4He, whereas significant amounts of radiogenic 3He are only produced through the neutron bombardment of Li and subsequent beta-decay of tritium. We measured Li, U, Th, major and rare-earth element concentrations in whole-rock basalts and mineral separates. These concentrations are used to estimate the ratio of radiogenic helium contributed to the total helium system in our samples. Li concentrations typically range from 6 to 17 ppm, with one outlier of 62 ppm. U contents range from calculations predict that the average radiogenic helium (R/Ra) contributed to the total helium in Black Mountain basalt samples is 0.011. Other noble gas studies have shown

  16. Paleogene Vertebrate Paleontology, Geology and Remote Sensing in the Wind River Basin

    Science.gov (United States)

    Stucky, R. K.; Krishtalka, L.

    1985-01-01

    Biostratigraphic and lithostratigraphic studies were used to correlate different events in the geologic evolution of the northeastern part of the Wind River Basin and have suggested several conclusions. Laterally equivalent exposures of the Lysite member from Cedar Ridge to Bridger Creek show a gradation in lithology from interbedded boulder conglomerates and sandstones to interbedded lenticular sandstones and mudstones to interbedded carbonaceous shales, coals and tabular sandstones. This gradation suggests a shift from alluvial fan to braided stream to paludal or lacustrine sedimentary environments during the late early Eocene. The Lysite and Lost Cabin members of the Wind River Formation are in fault contact in the Bridger Creek area and may intertongue to the east along Cedar Ridge. Ways in which remote sensing could be used in these studies are discussed.

  17. Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan

    Science.gov (United States)

    Coleman, James; ten Brink, Uri S.

    2016-01-01

    Following its middle Miocene inception, numerous basins of varying lengths and depths developed along the Dead Sea fault zone, a large continental transform plate boundary. The modern day left-lateral fault zone has an accumulated left-lateral offset of 105 to 110 km (65 to 68 mi). The deepest basin along the fault zone, the Lake Lisan or Dead Sea basin, reaches depths of 7.5 to 8.5 km (24,500 ft to 28,000 ft), and shows evidence of hydrocarbons. The basins are compartmentalized by normal faulting associated with rapid basin subsidence and, where present, domal uplift accompanying synrift salt withdrawal.

  18. Oil, gas potential in shallow water: Peru`s continental shelf basins

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H. [BPZ and Associates Inc., Houston, TX (United States)

    1998-11-16

    This third article of a series highlights the three sedimentary basins that underlie the 16 million acres of continental shelf adjacent to a 650-mile stretch of Peruvian coastline. This area lies roughly between the ports of Chiclayo and Pisco. These basins offer a variety of reservoirs, traps, and source-rock potential in water depths of less than 1,000 ft. They are characterized by a thick sequence of Neogene strata, underlain by Paleogene, Mesozoic, and Upper Paleozoic sediments down to as much as 7 sec two-way time on modern seismic records. In some places the sedimentary section may reach an aggregate thickness in excess of 50,000 ft. From north to south these contiguous shelf basins are the Sechura-Salaverry, Huacho, and Pisco basins. All three basins are described.

  19. Basin and Range Province, Western US, USGS Grids #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  20. Basin and Range Province, Western US, USGS Grids, #1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  1. Basin and Range Province, Western US, USGS Grids #3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  2. Basin and Range Province, Western US, USGS Grids #5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  3. Basin and Range Province, Western US, USGS Grids #4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  4. THE STRUCTURE OF THE WATER CONSTRUCTIONS IN THE SEBES HYDROGRAPHIC BASIN AND THE STORAGE RESERVOIRS. EFFECT ON THE AVERAGE DISCHARGE

    Directory of Open Access Journals (Sweden)

    Stef Iulian Ioan

    2013-05-01

    Full Text Available In the upper basin of the Sebes Valley, the oldest storage lakes have been temporary artificial lakes, called haituri in Romanian. They were created within the forest exploitation areas. Inside the dams of those retention lakes, which dams are made of a wooden skeleton, filled with soil and stones, there have been weirs for the quick discharge of the water, having the purpose of creating some flood trends, capable of carrying over the logs, downstream the lake. At present, some of those temporary artificial lakes are used as trout farms, while others are damaged, or operate as basins for the sedimentation of the alluvial deposits. The difference of level between the springs of the Sebes and the Mures Rivers generates a convertible hydroelectric potential, having an average power exceeding 60,000 kW" />

  5. Searching for Ancient Lakebeds in Ladon Basin, Mars and Implications for Future Exploration

    Science.gov (United States)

    Colón, A. M.; Miranda, C.; Milliken, R.

    2017-12-01

    It is well known from terrestrial studies that clay-rich rocks, and lacustrine mudstones in particular, are efficient at trapping, binding, and preserving organic matter through geologic time. This has also been demonstrated on Mars, where the Curiosity rover has detected organics in ancient mudstones in Gale crater. A number of other potential ancient lake sites have been proposed as landing sties for the Mars 2020 rover, including regions within the Ladon Basin and Valles system. In this study we map of the distribution of clay deposits in the Uzboi-Morava-Ladon (ULM) System, a system thought to have been a series of lakes interconnected by channels, and assess how these hydrous minerals relate to topography, adjacent fluvial networks, and the overall stratigraphy of basin deposits. We use CTX images and near-IR spectral reflectance data from the Mars Reconnaissance Orbiter CRISM instrument to independently map morphological and mineralogical features within Ladon. We find a number of occurrences of stratified, light-toned outcrops within the basin, but individual outcrops are small even at the scale of CTX images and are concentrated in several locations in the basin. Some light-toned outcrops are associated with clay minerals, but in general the light-toned appearance appears to be a poor proxy for clay distribution. CRISM data reveal that some clay-bearing regions are visually indistinct from adjacent clay-poor terrains. Some of the best examples of stratified, clay-bearing rocks are found in Ladon Valles, where they occur in terraces. In general, the stratigraphic, topographic, and morphologic evidence do not preclude a lacustrine origin, but there is no diagnostic evidence to support this interpretation either. The clay-bearing and light-toned deposits within Ladon basin may instead reflect deposition in an alluvial/fluvial system that post-dates the peak period of inferred lacustrine activity in the ULM system.

  6. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins

    Directory of Open Access Journals (Sweden)

    Samuele Tecchio

    2011-06-01

    Full Text Available Abundance, biomass and diversity patterns of bathyal and abyssal Mediterranean megafauna (fishes and invertebrates were analyzed in the western Balearic Sea, the western Ionian Sea and the eastern Ionian Sea. Sampling was conducted with a Otter-trawl Maireta System (OTMS at depths ranging from 600 to 4000 m. A series of ecological indicators were computed: total abundance and biomass, Margalef species richness, Shannon-Wiener diversity and Pielou’s index of evenness. A multidimensional scaling was applied, indicating that the megafauna communities were grouped by depth, while geographic area had a less defined influence. Margalef richness declined with depth in all three areas, but more steeply in the western Ionian Sea. Pielou’s evenness behaved differently in the three zones, showing a V-shaped curve in the eastern Ionian while showing a decreasing pattern in the other two areas. At lower slope depths, massive presence of the fishes Alepocephalus rostratus in the western basin and Bathypterois mediterraneus in the central basin caused a sharp reduction in evenness.

  7. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    Science.gov (United States)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations

  8. The red bed-type and sandstone-type uranium deposits in the inland basins of the northwest China

    International Nuclear Information System (INIS)

    Wang Zhilong.

    1988-01-01

    On the basis of the study on the relationship between the red bed-type and sandstone-type uranium deposits in the inland basins of the northwest China, a classification of red beds based on sedimentary facies and redding origin is presented. Red beds in the inland badins can be divided into six types: 1. alluvial plain and 2. shallow lake red beds formed at the stage of continental disintegration; 3. fluvial alluvial red bed, 4. delta plain and 5. desert red beds formed at the diagenetic-epigenetic stage; 6. spattered red (secondaty red beds) formed at the hypergenic weathering stage. According to the characteristics, structural environments of these six types of red beds, and changes of various geochemical characteristic values (Eh, pH, Th/U, Fe 3+ /Fe 2+ , Sr/Ba, etc.) from host rocks to different kinds of red beds , the relationship between these values and sandstone-type uranium deposits was determined. it is an open system, the mobile uranium is easily leached, thus it is unfavoutable for mineralization; but when the rock reddens at the diagenetic epigenetic stage (closed system) that is favourable for mineraizaltion, the mobile uranium can be concentrated to form uranium deposits

  9. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    Science.gov (United States)

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  10. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  11. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  12. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  13. Cause of depth error of borehole logging and its correction

    International Nuclear Information System (INIS)

    Iida, Yoshimasa; Ikeda, Koki; Tsuruta, Tadahiko; Ito, Hiroaki; Goto, Junichi.

    1996-01-01

    Data by borehole logging can be used for detailed analysis of geological structures. Depths measured by portable borehole loggers commonly shift a few meters on the level of 400 to 500 meters deep. Therefore, the cause of depth error has to be recognized to make proper corrections for detailed structural analysis. Correlation between depths of drill core and in-rod radiometric logging has been performed in detail on exploration drill holes in the Athabasca basin, Canada. As a result, a common tendency of logging depth shift has been recognized, and an empirical formula (quadratic equation) for this has been obtained. The physical meaning of the formula and the cause of the depth error has been considered. (author)

  14. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  15. A comparison of mixing depths observed over horizontally inhomogeneous terrain

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); King, C.W. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    In this paper we used wind profiler observations to estimate the mixing depth on either side of the Continental Divide on days when a PTBC (plain-to-basin-circulation) occurred along the Front Range of Colorado during the summer of 1995. The mixing depths on the basin side were significantly deeper than the mountain barrier for all of the PTBC events we analyzed. On the plains side, the mixed layers often extended to or above the level of the mountain barrier. On certain days up-slope flow existed above the mixed layer. We depicted the vertical structure of the flow and features in the humidity profile on one of these days using measurements from a wind profiler. The results were consistent with the conceptual model presented by Wolyn and McKee (1994). (au)

  16. Slip slidin' away: A post-glacial environmental history of the Waipaoa River basin

    Science.gov (United States)

    Gomez, Basil; Rosser, Brenda J.

    2018-04-01

    The dramatic changes that occurred to the post-glacial landscape in the headwaters of the Waipaoa River basin are a consequence of perturbations about the equilibrium that exists between the rate of tectonic uplift and fluvial incision. At times when the amount of coarse sediment delivered to channels exceeds the capacity of streams to remove it, the channel bed rises at the rate of tectonic uplift. Once bedload overcapacity is replaced by undercapacity and the alluvial cover is depleted, streams reestablish contact with bedrock and recuperate the time lost to fluvial incision. The first major perturbation occurred during the final phase of the last glaciation (ca. 33-17.5 cal. ka), when aggradation was driven by a climate-forced variation in the relative supplies of sediment and water. We suggest that the subsequent transformation of channels in the headwaters of the Waipaoa River basin, from alluvial to bedrock, occurred as the atmospheric and oceanic circulation converged on their contemporary patterns ca. 12 cal. ka. A second major perturbation that continues to the present began ca. 1910-1912 CE, when a massive increase in sediment load was accompanied by a modest increase in water discharge after the native vegetation cover in the headwaters was replaced by pasture. The processes of terrace creation and incision are inherently unsteady, and in five interim cases incision was arrested by a transient increase in the thickness of the alluvial cover that was a response to climatic forcing. Events that disrupted the native vegetation cover in the headwaters also modulated patterns of sediment dispersal and accumulation in other parts of the fluvial system and caused rapid, storm-driven infilling of the Poverty Bay Flats. Tectonic subsidence dictates the course of the Waipaoa River across Poverty Bay Flats which, because the modern rate of floodplain construction by vertical accretion is rapid relative to the amount of destruction by lateral channel migration, has

  17. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I

  18. Bacterial biomass and DNA diversity in an alluvial meadow soil upon long-term fertilization

    NARCIS (Netherlands)

    Naumova, N.B.; Kuikman, P.J.

    2001-01-01

    The denaturing gradient gel-electrophoresis of bacterial DNA fragments and the assessment of bacterial biomass revealed changes in the diversity of the bacterial community in a meadow alluvial soil upon long-term fertilization.

  19. Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans

    Science.gov (United States)

    Cable, Stefanie; Christiansen, Hanne H.; Westergaard-Nielsen, Andreas; Kroon, Aart; Elberling, Bo

    2018-02-01

    In High Arctic northern Greenland, future responses to climatic changes are poorly understood on a landscape scale. Here, we present a study of the geomorphology and cryostratigraphy in the Zackenberg Valley in NE Greenland (74°N) containing a geomorphological map and a simplified geocryological map, combined with analyses of 13 permafrost cores and two exposures. Cores from a solifluction sheet, alluvial fans, and an emerged delta were studied with regards to cryostructures, ice and total carbon contents, grain size distribution, and pore water electrical conductivity; and the samples were AMS 14C dated. The near-surface permafrost on slopes and alluvial fans is ice rich, as opposed to the ice-poor epigenetic permafrost in the emerged delta. Ground ice and carbon distribution are closely linked to sediment transport processes, which largely depend on lithology and topography. Holocene alluvial fans on the lowermost hillslopes, covering 12% of the study area, represent paleoenvironmental archives. During the contrasting climates of the Holocene, the alluvial fans continued to aggrade - through the warmer early Holocene Optimum, the colder late Holocene, and the following climate warming - and by 0.45 mm a- 1, on average. This is caused by three factors: sedimentation, ground ice aggradation, and vegetation growth and is reflected by AMS 14C dating and continuously alternating cryostructures. Highly variable sedimentation rates in space and time at the alluvial fans have been detected. This is also reflected by alternating lenticular and microlenticular cryostructures indicating syngenetic permafrost aggradation during sedimentation with suspended and organic-matrix cryostructures indicating quasi-syngenetic permafrost aggradation in response to vegetation growth in periods with reduced or no sedimentation. Over time, this causes organic matter to become buried, indicating that alluvial fans represent effective carbon sinks that have previously been overlooked.

  20. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  1. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  2. Bedrock morphology and structure, upper Santa Cruz Basin, south-central Arizona, with transient electromagnetic survey data

    Science.gov (United States)

    Bultman, Mark W.; Page, William R.

    2016-10-31

    The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic

  3. A modeling study of the effect of depth of burial of depleted uranium and thorium on radon gas flux at a dry desert alluvial soil radioactive waste management site (RWMS)

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.

    1993-08-01

    An integral part of designing low-level waste (LLW) disposal pits and their associated closure covers in very dry desert alluvium is the use of a radon gas transport and fate model. Radon-222 has the potential to be a real heath hazard. The production of radon-222 results from the radioactive decay (a particle emission) of radium-226 in the uranium-235 and 238 Bateman chains. It is also produced in the thorium-230 series. Both long lived radionuclides have been proposed for disposal in the shallow land burial pits in Area 5 RWMS compound of Nevada Test Site (NTS). The constructed physics based model includes diffusion and barometric pressure-induced advection of an M-chain of radionuclides. The usual Bateman decay mechanics are included for each radionuclide. Both linear reversible and linear irreversible first order sorption kinetics are assumed for each radionuclide. This report presents the details of using the noble gas transport model, CASCADR9, in an engineering design study mode. Given data on the low-level waste stream, which constitutes the ultimate source of radon-222 in the RWMS, CASCADR9 is used to generate the surface flux (pCi/cm 2 -sec) of radon-222 under the realistic atmospheric and alluvial soil conditions found in the RWMS at Area 5, of the NTS. Specifically, this study examines the surface flux of radon-222 as a function of the depth of burial below the land surface

  4. Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic, geological and geomorphological approach

    Science.gov (United States)

    Mollaei, Zeinab; Davary, Kamran; Majid Hasheminia, Seyed; Faridhosseini, Alireza; Pourmohamad, Yavar

    2018-04-01

    Due to the uncertainty concerning the location of flow paths on active alluvial fans, alluvial fan floods could be more dangerous than riverine floods. The United States Federal Emergency Management Agency (FEMA) used a simple stochastic model named FAN for this purpose, which has been practiced for many years. In the last decade, this model has been criticized as a consequence of development of more complex computer models. This study was conducted on three alluvial fans located in northeast and southeast Iran using a combination of the FAN model, the hydraulic portion of the FLO-2D model, and geomorphological information. Initial stages included three steps: (a) identifying the alluvial fans' landforms, (b) determining the active and inactive areas of alluvial fans, and (c) delineating 100-year flood within these selected areas. This information was used as an input in the mentioned three approaches of the (i) FLO-2D model, (ii) geomorphological method, and (iii) FAN model. Thereafter, the results of each model were obtained and geographical information system (GIS) layers were created and overlaid. Afterwards, using a scoring system, the results were evaluated and compared. The goal of this research was to introduce a simple but effective solution to estimate the flood hazards. It was concluded that the integrated method proposed in this study is superior at projecting alluvial fan flood hazards with minimum required input data, simplicity, and affordability, which are considered the primary goals of such comprehensive studies. These advantages are more highlighted in underdeveloped and developing countries, which may well lack detailed data and financially cannot support such costly projects. Furthermore, such a highly cost-effective method could be greatly advantageous and pragmatic for developed countries.

  5. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  6. The Miocene Roof Mapping Using Microtremor Recording and Electrical Survey Method in Blida City, Algeria

    Science.gov (United States)

    Bouchelouh, Assia; Bensalem, Rabah; Zaourar, Naima; Machane, Djamel; Moulouel, Hakim; Oubaiche, El Hadi

    2018-01-01

    Bedrock depths in the Mitidja basin in general and in the Blida region in particular are still poorly known despite, the existence of some relatively deep hydraulic boreholes that intersect only superficial alluvial formations. To assess the seismic risk of Blida town, knowledge of soil amplification requires the thickness and properties of sedimentary formations that cover the substratum. For the purposes of our study, the thicknesses obtained by the vertical electric soundings, carried out in the hydrogeological study of the basin, were combined with horizontal-to-vertical spectral ratio (HVSR) microtremor recordings. This combination made it possible to determine an empirical relationship between frequency and thickness specific to the Blida site area, which enabled the roof of the Miocene to be mapped and shows slight undulations with directions compatible with the tectonic constraints of the region. The boundaries between the low and high frequencies obtained by HVSR are well materialized, at south by Sidi El Kebir river, at west by Chiffa river and in the central part by a line of direction SE-NW corresponding to the old passage of Sidi El Kebir river. The presence of low frequencies attributed to the old alluvial deposits with significant thicknesses that originate just after Sidi El Kebir river confirms that the South Mitidjian contact is subvertical.

  7. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively

  8. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  9. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comment on “The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States”: report published in Hydrogeology Journal (2014) 22:807–828, by Stephen T. Nelson and Alan L. Mayo

    Science.gov (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.; Heilweil, Victor M.; Sweetkind, Donald S.

    2015-01-01

    The subject article (Nelson and Mayo 2014) presents an overview of previous reports of interbasin flow in the Great Basin of the western United States. This Comment is presented by authors of a cited study (comprising chapters in one large report) on the Great Basin carbonate and alluvial aquifer system (GBCAAS; Heilweil and Brooks 2011; Masbruch et al. 2011; Sweetkind et al. 2011a, b), who agree that water budget imbalances alone are not enough to accurately quantify interbasin flow; however, it is proposed that statements made in the subject article about the GBCAAS report are inaccurate. The Comment authors appreciate the opportunity to clarify some statements made about the work.

  11. Geomorphology of the Namoi alluvial plain, northwestern New South Wales

    International Nuclear Information System (INIS)

    Young, R.W.; Young, A.R.M.; Price, D.M.; Wray, R.A.L.

    2002-01-01

    The Quaternary history of the extensive alluvial plains of the northern part of the Darling River Basin has received little attention, and has generally been assumed to be an analogue of the very detailed history compiled for the Riverine Plain of southeastern Australia. Our study of the Namoi valley, which is a tributary to the upper Darling, shows that this assumption is unfounded. Thermoluminescence dating demonstrates that the oldest palaeochannels of the Namoi River correspond only to the youngest palaeochannels on the Riverine Plain. The thermoluminescence analyses were carried out on the 90-125 μm quartz fraction thermally stimulated by ionizing radiation using the combined additive/regenerative technique. This technique utilises a second glow normalisation procedure that involves re-irradiating each of the quartz sample aliquots and measuring the thermoluminescence induced in the grains. It has ben demonstrated that unlike the streams on the Riverine Plain, the Namoi River has moved progressively away from its buried Tertiary palaeovalley, probably due to declining sediment input from its southern tributaries. In contrast to the streams of the Riverine Plain, the dimensions of the Namoi palaeochannels are indicative of substantially greater discharges until the mid-Holocene. There is also evidence of significant aeolian input throughout the Late Quaternary. The study indicates that the water resources of this increasingly important irrigated region seem to be considerably constrained by the Quaternary heritage of the Namoi valley. Copyright (2002) Geological Society of Australia

  12. Comparison of soil thickness in a zero-order basin in the Oregon Coast Range using a soil probe and electrical resistivity tomography

    Science.gov (United States)

    Morse, Michael S.; Lu, Ning; Godt, Jonathan W.; Revil, André; Coe, Jeffrey A.

    2012-01-01

    Accurate estimation of the soil thickness distribution in steepland drainage basins is essential for understanding ecosystem and subsurface response to infiltration. One important aspect of this characterization is assessing the heavy and antecedent rainfall conditions that lead to shallow landsliding. In this paper, we investigate the direct current (DC) resistivity method as a tool for quickly estimating soil thickness over a steep (33–40°) zero-order basin in the Oregon Coast Range, a landslide prone region. Point measurements throughout the basin showed bedrock depths between 0.55 and 3.2 m. Resistivity of soil and bedrock samples collected from the site was measured for degrees of saturation between 40 and 92%. Resistivity of the soil was typically higher than that of the bedrock for degrees of saturation lower than 70%. Results from the laboratory measurements and point-depth measurements were used in a numerical model to evaluate the resistivity contrast at the soil-bedrock interface. A decreasing-with-depth resistivity contrast was apparent at the interface in the modeling results. At the field site, three transects were surveyed where coincident ground truth measurements of bedrock depth were available, to test the accuracy of the method. The same decreasing-with-depth resistivity trend that was apparent in the model was also present in the survey data. The resistivity contour of between 1,000 and 2,000 Ωm that marked the top of the contrast was our interpreted bedrock depth in the survey data. Kriged depth-to-bedrock maps were created from both the field-measured ground truth obtained with a soil probe and interpreted depths from the resistivity tomography, and these were compared for accuracy graphically. Depths were interpolated as far as 16.5 m laterally from the resistivity survey lines with root mean squared error (RMSE) = 27 cm between the measured and interpreted depth at those locations. Using several transects and analysis of the subsurface

  13. The ocean depths: Elf's target for 1997

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Elf has long since been aware of the potential of sedimentary basins in the ocean depths. For this reason, the group has been preparing to descend to these depths for many years. Today, it is setting itself the target of being ready to optimise as from 1997 a discovery made in the depth between 400 and 1500 m of water in Africa. In the Gulf of Guinea, most of the neighbouring countries have opened up their deep sea offshore areas, in order to try to renew their reserves on the verge of the third millennium. Indeed a great similarity can be seen between the West African and the Brazilian ocean depths. In the African offshore areas, Elf has acquired or renewed eight blocks, four of which are in Nigeria, one in the Congo, one in Gabon and two in Angola. The group is also interested in the ocean depths which are now accessible in the North Sea, whether in the Norwegian (Voring and More) of British (Western Shetlands) areas. (author). 1 fig

  14. Outlook for Mississippi Alluvial Valley forests: a subregional report from the Southern Forest Futures Project

    Science.gov (United States)

    Emile S. Gardiner

    2015-01-01

    The Mississippi Alluvial Valley, which can be broadly subdivided into the Holocene Deposits section and the Deltaic Plain section, is a 24.9-million-acre area generally approximating the alluvial floodplain and delta of the lower Mississippi River. Its robust agricultural economy is maintained by a largely rural population, and recreational resources draw high...

  15. Soil plant transfer coefficient of 14C-carbofuran in brassica sp. vegetable agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Mazleha Maskin; Kubiak, R.

    2006-01-01

    The soil plant transfer coefficient or f factor of 14 C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 ± 0.30, 5.76 ± 1.04, 0.99 ± 0.25 and 2.66 ± 0.71; from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 ± 0.91, 10.40 ± 2.63, 2.34 ± 0.68 and 619 ±1.40, from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14 C-carbofuran as compared to IX recommended application rate, in both Bungor and riverine alluvial soils. (Author)

  16. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    Science.gov (United States)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  17. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    Science.gov (United States)

    Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng; Foster, Andrea L.

    2016-01-01

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO2(CO3)22 − and UO2(CO3)34 − species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO3− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As.

  18. Subsurface temperature maps in French sedimentary basins: new data compilation and interpolation

    International Nuclear Information System (INIS)

    Bonte, D.; Guillou-Frottier, L.; Garibaldi, C.; Bourgine, B.; Lopez, S.; Bouchot, V.; Garibaldi, C.; Lucazeau, F.

    2010-01-01

    Assessment of the underground geothermal potential requires the knowledge of deep temperatures (1-5 km). Here, we present new temperature maps obtained from oil boreholes in the French sedimentary basins. Because of their origin, the data need to be corrected, and their local character necessitates spatial interpolation. Previous maps were obtained in the 1970's using empirical corrections and manual interpolation. In this study, we update the number of measurements by using values collected during the last thirty years, correct the temperatures for transient perturbations and carry out statistical analyses before modelling the 3D distribution of temperatures. This dataset provides 977 temperatures corrected for transient perturbations in 593 boreholes located in the French sedimentary basins. An average temperature gradient of 30.6 deg. C/km is obtained for a representative surface temperature of 10 deg. C. When surface temperature is not accounted for, deep measurements are best fitted with a temperature gradient of 25.7 deg. C/km. We perform a geostatistical analysis on a residual temperature dataset (using a drift of 25.7 deg. C/km) to constrain the 3D interpolation kriging procedure with horizontal and vertical models of variograms. The interpolated residual temperatures are added to the country-scale averaged drift in order to get a three dimensional thermal structure of the French sedimentary basins. The 3D thermal block enables us to extract isothermal surfaces and 2D sections (iso-depth maps and iso-longitude cross-sections). A number of anomalies with a limited depth and spatial extension have been identified, from shallow in the Rhine graben and Aquitanian basin, to deep in the Provence basin. Some of these anomalies (Paris basin, Alsace, south of the Provence basin) may be partly related to thick insulating sediments, while for some others (southwestern Aquitanian basin, part of the Provence basin) large-scale fluid circulation may explain superimposed

  19. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  20. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    Science.gov (United States)

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  1. Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary

    NARCIS (Netherlands)

    Dijk, M. van; Kleinhans, M.G.; Postma, G.; Kraal, E.

    2012-01-01

    Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward

  2. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  3. Ecosystem services of runoff marshes in urban lowland basins: proposals for their management and conservation

    Directory of Open Access Journals (Sweden)

    Armendáriz Laura C.

    2017-01-01

    Full Text Available The city of La Plata, Argentina, is situated in a low alluvial zone, with streams having insufficient drainage into the Río de la Plata estuary. In April 2013, a prodigious storm front caused unprecedented flooding in the city and environs that resulted in extensive loss of life and property, especially in the Del Gato stream basin. Through an analysis of water quality and the conditions of the habitat on the basis of the macroinvertebrates present as bioindicators of environmental quality, this work aims to contribute to a reevaluation of the role of the marshes adjacent to the stream as flood-alleviation elements, and then propose alternatives for flooding management in the basin. Consequently, quantitative seasonal samples of vegetation, sediments, and benthic organic matter were taken and limnologic parameters measured in three sectors of the basin having different land uses: rural, periurban, and urban-industrial. The macroinvertebrate assemblages, as analyzed through the application of ecological indices, exhibited a marked decline in richness and in the Pampean Biotic Index towards the low-lying basin. Principal-components analysis associated Site 1 with the dissolved-oxygen concentration, Site 2 with high nitrate values, and Site 3 with oxygen demands. Redundancy analysis indicated a positive relationship between Baetidae and Aeolosomatidae with the dissolved-oxygen concentration and between Enchytraeidae and Stratiomyidae with the conductivity. These marshes are fundamental in maintaining good environmental conditions and attenuating the effects of the flooding that is predicted to become increasingly catastrophic in this region as the climate changes.

  4. Rome in its setting. Post-glacial aggradation history of the Tiber River alluvial deposits and tectonic origin of the Tiber Island

    Science.gov (United States)

    Motta, Laura; Brock, Andrea L.; Macrì, Patrizia; Florindo, Fabio; Sadori, Laura; Terrenato, Nicola

    2018-01-01

    The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city’s original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6–8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island. PMID:29590208

  5. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  6. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico

    Science.gov (United States)

    Dorsey, Rebecca J.; Umhoefer, Paul J.; Renne, Paul R.

    1995-08-01

    Pliocene nonmarine to marine sedimentary rocks exposed in the Loreto basin, Baja California Sur, provide a record of syntectonic subsidence and sedimentation in a transform-rift basin that developed along the western margin of the Gulf of California. A thick sequence of twelve Gilbert-type fan deltas, having a total measured thickness of about 615 m, accumulated near the fault-bounded southwestern margin of this basin. Based on stratal geometries and lithofacies associations, sedimentary rocks are divided into Gilbert-delta topset, foreset and bottomset strata, shell beds and background shallow-marine shelf deposits. Topset strata of each Gilbert-type delta cycle are capped by laterally persistent molluscan shell beds containing diverse assemblages of bivalves, pectens, oysters, gastropods and echinoids. These shell beds are interpreted to be condensed intervals that record sediment starvation during abandonment of the fan-delta plain. Delta abandonment may have been caused by large episodic faulting events, which submerged each pre-existing fan-delta plain, substantially slowed detrital input by drowning of alluvial feeder channels, and created new accommodation space for each new Gilbert-type fan delta. Alternatively, it is possible that delta-plain abandonment was caused by upstream avulsions and autocyclic lateral switching of fan-delta lobes during relatively uniform rates of slip along the basin-bounding fault. Two contrasting, plausible basin models are proposed for the Loreto basin: (1) asymmetric subsidence along a high-angle oblique-slip normal fault, producing a classic half-graben basin geometry with vertically stacked Gilbert-type fan deltas; or (2) lateral stacking and horizontal displacement of strata away from a relatively fixed depocenter due to fault movement in the releasing bend of a listric strike-slip fault. We favor the first model because field relations and simple geometric constraints suggest that most of the total measured section

  7. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  8. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L{sup −1}) to 4070 μg L{sup −1}, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO{sub 3} inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO{sub 3} application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential

  9. Stratigraphic and structural analysis of the Rio do Peixe Basin, Northeastern Brazil: integration on the pioneer seismic survey 0295{sub R}IO{sub D}O{sub P}EIXE{sub 2}D; Analise estratigrafica e estrutural da Bacia do Rio do Peixe, Nordeste do Brasil: integracao a partir do levantamento sismico pioneiro 0295{sub R}IO{sub D}O{sub P}EIXE{sub 2}D

    Energy Technology Data Exchange (ETDEWEB)

    Cordoba, Valeria Centurion; Antunes, Alex Francisco; Sa, Emanuel Ferraz Jardim de; Silva, Ajosenildo Nunes da; Sousa, Debora do Carmo; Lins, Fernando Antonio Pessoa Lira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Geologia e Geofisica de Petroleo. Programa de Pos-Graduacao em Geodinamica e Geofisica

    2007-11-15

    The Northeast Brazil Interior Basins are the erosional remnants of a series of basins located south of he Potiguar Basin, overlying the crystalline basement of Precambrian Borborema Province . These basins were originated during the Early Cretaceous rifting that shaped the present continental margin of northeastern Brazil. Besides their exploration potential, the Interior Basins represent terrain analogues for better understanding of the continental margin basins, one of the objectives of the Interior Basins Project (agreement PETROBRAS/UFRN/PPGG), which supported the seismic survey in the Rio do Peixe Basin, subject to this paper. Combined with gravity and field data, the seismic sections allowed an improved view of the three-dimensional architecture of the Rio do Peixe Basin. In this basin, the combination of the current erosion level with the geometry of the main faults highlights the existence of different half-grabens (Pombal, Sousa, Brejo das Freiras), whose sedimentary filing (apart from cenozoic deposits) defines the Rio do Peixe Group, comprising the Antenor Navarro (alluvial fans/braided channels), Sousa (shallow lacustrine/floodplain) and Rio Piranhas (alluvial fans/braided channels). Structural data integration allows characterization of a NW-extension kinematics for the rifting event, responsible for fault nucleation controlled by basement structures, particularly the location and foliation dip of the Late Neoproterozoic, Brasiliano shear zones. Based on the structural style and petrographic-diagenetic features, one can infer larger original dimensions for this basin and similar counterparts in the region, which were reduced (with exposure of the crystalline highs) by the significant erosion that occurred in late to post-rift and subsequent evolutionary stages. (author)

  10. Die muttekopfgosau (Lechtaler Alpen, Tirol/Österreich): Sedimentologie und Beckenentwicklung

    Science.gov (United States)

    Ortner, H.

    1994-03-01

    In the Eastern Alps compression during orogeny in the Upper Cretaceous caused crustal thickening, isostatic uplift and gravitational adjustment of the unstable orogenic wedge. This process triggered extensional basin formation on the back of the orogen (Gosau Basins). The basin fill of the Muttekopf Gosau Basin is arranged in megacycles, the first one comprising alluvial fan sediments and “Inoceramus marls” of the Lower Gosau Complex (Faupl et al. 1987) of Santonian age. Three other cycles follow (Upper Gosau Complex, Campanian to Maastrichtian), consisting of turbiditic fining upward sequences, that are indicative for extensional tectonics during basin formation, as subsidence events prevent formation of autocyclic coarsening upward sequences and therefore prograding of the turbidite system. Deposition of the 1st and 2nd Megacycle occured below the CCD (Carbonate Compensation Depth). The carbonate rich 3rd Megacycle was deposited probably below the CCD after a period of palaeogeographic reorganisation (uplift?) in the source area.

  11. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  12. Seasonal variations in the tritium content of groundwaters of the Vienna Basin, Austria

    International Nuclear Information System (INIS)

    Davis, G.H.; Payne, B.R.; Dincer, T.; Florkowski, T.; Gattinger, T.

    1967-01-01

    Monthly analyses of tritium from 22 sources of groundwater of the Vienna Basin have been made since April 1965 with a view to elucidating the complex groundwater surface water relations and ascertaining the movement of groundwaters. The sources are classified broadly into four groups: (1) Non-thermal springs including karst springs of the bordering mountains; (2) thermal springs rising along faults that border the floor of the Vienna Basin; (3) wells on the floor of the Basin; and (4) large groundwater overflows on the floor of the Basin. The following are among significant findings: All groundwaters sampled showed the effect of local recharge by high tritium precipitation in the exceptionally wet summer of 1965; Groundwater overflows thought to represent discharge from the main groundwater reservoir were generally higher in tritium than other groundwaters indicating rapid shallow circulation from nearby streams. Thermal springs believed representative of deep circulation all showed the effect of mixing with shallow waters recharged from current precipitation. All showed appreciable tritium content, even at the minimum levels. The highest tritium contents in well-waters were from the upper part of the Basin where water levels are very deep and streams lose water in crossing the alluvium. Well-waters in the area of shallow water in the lower Basin were generally lower in tritium than those of the upper Basin, but all showed the effect of recharge in the summer of 1965. Samples taken during drilling of a deep exploratory well show a decrease in tritium with depth, but even at 140 m depth the tritium content was 13 T.U. indicating relatively rapid circulation throughout thc principal aquifer. (author)

  13. 3D depth-to-basement and density contrast estimates using gravity and borehole data

    Science.gov (United States)

    Barbosa, V. C.; Martins, C. M.; Silva, J. B.

    2009-05-01

    We present a gravity inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining the parabolic decay of the density contrast with depth in a sedimentary pack assuming the prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions, x and y, of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To produce stable depth-to-basement estimates we impose smoothness on the basement depths through minimization of the spatial derivatives of the parameters in the x and y directions. To estimate the parameters defining the parabolic decay of the density contrast with depth we mapped a functional containing prior information about the basement depths at a few points. We apply our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density contrast variation with depth. Our method retrieves the true parameters of the parabolic law of density contrast decay with depth and produces good estimates of the basement relief if the number and the distribution of boreholes are sufficient. We also applied our method to real gravity data from the onshore and part of the shallow offshore Almada Basin, on Brazil's northeastern coast. The estimated 3D Almada's basement shows geologic structures that cannot be easily inferred just from the inspection of the gravity anomaly. The estimated Almada relief presents steep borders evidencing the presence of gravity faults. Also, we note the existence of three terraces separating two local subbasins. These geologic features are consistent with Almada's geodynamic origin (the Mesozoic breakup of Gondwana and the opening of the South Atlantic Ocean) and they are important in understanding

  14. An Alluvial Fan at Apollinaris Patera, Mars

    OpenAIRE

    Ghail, RC; Hutchison, JE

    2003-01-01

    Apollinaris Patera, Mars (7?S,173?E), is an intermediate sized volcano (~6 km high, 150 km diameter) with a large (200-km long) fan-like deposit on its southern flank. This fan is deeply incised and originates from a single breach in the rim of the summit caldera. New topographic and multispectral image data reveal that this fan is alluvial, implying a long-lived source of (volcaniclastic) sediment and water (probably from a caldera lake).

  15. Late quaternary evolution of the Meuse fluvial system and its sediment composition : a reconstruction based on bulk sample geochemistry and forward modelling

    NARCIS (Netherlands)

    Tebbens, L.A.

    1999-01-01

    All fluvial systems ultimately drain into alluvial basins, where the weathering products of their upstream drainage areas accumulate over a time-span varying from 10 0to 10 6years. Most silted-up alluvial basins are low-gradient deltas that are

  16. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    Science.gov (United States)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the

  17. The transgressive-regressive cycle of the Romualdo Formation (Araripe Basin): Sedimentary archive of the Early Cretaceous marine ingression in the interior of Northeast Brazil

    Science.gov (United States)

    Custódio, Michele Andriolli; Quaglio, Fernanda; Warren, Lucas Veríssimo; Simões, Marcello Guimarães; Fürsich, Franz Theodor; Perinotto, José Alexandre J.; Assine, Mario Luis

    2017-08-01

    Geologic events related to the opening of the South Atlantic Ocean deeply influenced the sedimentary record of the Araripe Basin. As consequence, upper stratigraphic units of the basin record a marine ingression in northeastern Brazil during the late Aptian. The timing and stratigraphic architecture of these units are crucial to understand the paleogeography of Gondwana and how the proto-Atlantic Ocean reached interior NE Brazil during the early Cretaceous. This marine ingression is recorded in the Araripe Basin as the Romualdo Formation, characterized by a transgressive-regressive cycle bounded by two regional unconformities. In the eastern part of the basin, the Romualdo depositional sequence comprises coastal alluvial and tide-dominated deposits followed by marine transgressive facies characterized by two fossil-rich intervals: a lower interval of black shales with fossil-rich carbonate concretions (Konservat-Lagerstätten) and an upper level with mollusk-dominated shell beds and shelly limestones. Following the marine ingression, an incomplete regressive succession of marginal-marine facies records the return of continental environments to the basin. The stratigraphic framework based on the correlation of several sections defines a transgressive-regressive cycle with depositional dip towards southeast, decreasing in thickness towards northwest, and with source areas located at the northern side of the basin. The facies-cycle wedge-geometry, together with paleocurrent data, indicates a coastal onlap towards NNW. Therefore, contrary to several paleogeographic scenarios previously proposed, the marine ingression would have reached the western parts of the Araripe Basin from the SSE.

  18. Calculating depths to shallow magnetic sources using aeromagnetic data from the Tucson Basin

    Science.gov (United States)

    Casto, Daniel W.

    2001-01-01

    Using gridded high-resolution aeromagnetic data, the performance of several automated 3-D depth-to-source methods was evaluated over shallow control sources based on how close their depth estimates came to the actual depths to the tops of the sources. For all three control sources, only the simple analytic signal method, the local wavenumber method applied to the vertical integral of the magnetic field, and the horizontal gradient method applied to the pseudo-gravity field provided median depth estimates that were close (-11% to +14% error) to the actual depths. Careful attention to data processing was required in order to calculate a sufficient number of depth estimates and to reduce the occurrence of false depth estimates. For example, to eliminate sampling bias, high-frequency noise and interference from deeper sources, it was necessary to filter the data before calculating derivative grids and subsequent depth estimates. To obtain smooth spatial derivative grids using finite differences, the data had to be gridded at intervals less than one percent of the anomaly wavelength. Before finding peak values in the derived signal grids, it was necessary to remove calculation noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval that enabled the search window to encompass only the peaks of interest. Using the methods that worked best over the control sources, depth estimates over geologic sites of interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city landfill. Also, a throw of around 2 kilometers was determined for a detachment fault that has a displacement of roughly 6 kilometers.

  19. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  20. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    Science.gov (United States)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  1. Natural Gas Hydrates in the Offshore Beaufort-Mackenzie Basin-Study of a Feasible Energy Source II

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    In the offshore part of Beaufort-Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the -1 o C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort-Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk-Kugmallit sequence. Hydrate-gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene)

  2. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  3. Soils and late-Quaternary landscape evolution in the Cottonwood River basin, east-central Kansas: Implications for archaeological research

    Science.gov (United States)

    Beeton, J.M.; Mandel, R.D.

    2011-01-01

    Temporal and spatial patterns of landscape evolution strongly influence the temporal and spatial patterns of the archaeological record in drainage systems. In this geoarchaeological investigation we took a basin-wide approach in assessing the soil stratigraphy, lithostratigraphy, and geochronology of alluvial deposits and associated buried soils in the Cottonwood River basin of east-central Kansas. Patterns of landscape evolution emerge when stratigraphic sequences and radiocarbon chronologies are compared by stream size and landform type. In the valleys of high-order streams (???4th order) the Younger Dryas Chronozone (ca. 11,000-10,000 14C yr B.P.) was characterized by slow aggradation accompanied by pedogenesis, resulting in the development of organic-rich cumulic soils. Between ca. 10,000 and 4900 14C yr B.P., aggradation punctuated by soil formation was the dominant process in those valleys. Alluvial fans formed on the margins of high-order stream valleys during the early and middle Holocene (ca. 9000-5000 14C yr B.P.) and continued to develop slowly until ca. 3000-2000 14C yr B.P. The late-Holocene record of high-order streams is characterized by episodes of entrenchment, rapid aggradation, and slow aggradation punctuated by soil development. By contrast, the early and middle Holocene (ca. 10,000-5000 14C yr B.P.) was a period of net erosion in the valleys of low-order streams. However, during the late Holocene small valleys became zones of net sediment storage. Consideration of the effects of these patterns of landscape evolution on the archaeological record is crucial for accurately interpreting that record and searching for buried archaeological deposits dating to specific cultural periods. ?? 2011 Wiley Periodicals, Inc. ?? 2011 Wiley Periodicals, Inc..

  4. Hydrogeological study in the catalonian potassic tertiary basin. Sallent-Barcelona, Spain; Estudio hidrogeologico de la cuenca potasica catalana en el entorno de Sallent y la antigua Mina Enrique. Provincia de Barcelona (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Ribera, F.; Dorca, H.; Martinez, P.; Pina, J.; Otero, N.; Palau, J.; Solar, A.

    2009-07-01

    The Catalonian Potassic Basin is described as a thick regressive-sedimentary Tertiary basin that includes marine, evaporitic-transitional and continental facies, overlying by no-consolidated quaternary alluvial sediments. The intense underground mining activity used in the exploitation of salts with rich K contents in the CPC during the last century, has provoked some problems related to surface and groundwater contamination and the existence of subsidence areas. The objective of the hydrogeological studies in the CPC area are focused in the characterization of the Tertiary aquifer and the definition of their conceptual model of behaviour. The last challenge of the project is to determine the relationship between subsidence and hydrogeology in these salt bodies. (Author) 14 refs.

  5. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  6. The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Alluvial fans in arid and semi-arid regions can provide important evidence of geomorphic and climatic changes, which reveal the evolution of the regional tectonic activity and environment. Synthetic aperture radar (SAR remote sensing technology, which is sensitive to geomorphic features, plays an important role in quickly mapping alluvial fan units of different ages. In this paper, RADARSAT-2 (Canada’s C-band new-generation radar satellite and ALOS-PALSAR (Japan’s advanced land observing satellite, phased array type L-band SAR sensor data, acquired over the Shule River Alluvial Fan (SRAF, are used to extract backscattering coefficients, scattering mechanism-related information, and polarimetric characteristic parameters. The correlation between these SAR characteristic parameters and fan units of the SRAF of different ages was studied, and the spatial distribution of fan units, since the Late Pleistocene, was extracted based on the Maximum Likelihood classification method. The results prove that (1 some C-band SAR parameters can describe the geomorphic characteristics of alluvial fan units of different ages in the SRAF; (2 SAR data can be used to map the SRAF’s surface between the Late Pleistocene and the Holocene and to extract the spatial distribution of fan units; and (3 the time-spatial distribution of the SRAF can provide valuable information for tectonic and paleoenvironmental research of the study area.

  7. Ephemeral-stream channel and basin-floor infiltration and recharge in the Sierra Vista subwatershed of the Upper San Pedro Basin, Southeastern Arizona: Chapter J in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Coes, A.L.; Pool, D.R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed.Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole.Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites

  8. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  9. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  10. Application of geoecological concept of the alluvial landscape in the creation of nature reserve (case study from Czech Republic

    Directory of Open Access Journals (Sweden)

    Ivo Machar

    2011-01-01

    Full Text Available The geoecological concept of the alluvial landscape describes the variability and consecutive character of alluvial ecotopes and biocenoses, which are interrelated in terms of their homeorhetic development, in their dynamic ecological stability. This article deals with application of this landscape concept in the frame of creation of nature reserve as core zone of the Litovelské Pomoraví Protected Landscape Area (Czech Republic. Complex protection of the whole floodplain ecosystem, which comprised all components of the fluvial succession series of alluvial habitats, was proposed on the basis of determination of geomorphological type of the river system. Analyses of the floodplain forest stands status within the study area were performed using methods that are normally used in the elaboration of management plans of protected areas within forest land on the basis of data from Forest Management Plan. The area of the proposed NNR was created by the overlay of the special map layers using method gap-analysis in the frame of GIS.

  11. Structural interpretation of the Ifal Basin in north-western Saudi Arabia from aeromagnetic data: hydrogeological and environmental implications

    Science.gov (United States)

    Elawadi, Eslam; Zaman, Haider; Batayneh, Awni; Mogren, Saad; Laboun, Abdalaziz; Ghrefat, Habes; Zumlot, Taisser

    2013-09-01

    The Ifal (Midyan) Basin is one of the well defined basins along the Red Sea coast, north-western Saudi Arabia. Location, geometry, thick sedimentary cover and structural framework qualify this basin for groundwater, oil and mineral occurrences. In spite of being studied by two airborne magnetic surveys during 1962 and 1983, structural interpretation of the area from a magnetic perspective, and its uses for hydrogeological and environmental investigations, has not been attempted. This work thus presents interpretation of the aeromagnetic data for basement depth estimation and tectonic framework delineation, which both have a role in controlling groundwater flow and accumulation in the Ifal Basin. A maximum depth of 3.5km is estimated for the basement surface by this study. In addition, several faulted and tilted blocks, perpendicularly dissected by NE-trending faults, are delineated within the structural framework of the study area. It is also observed that the studied basin is bounded by NW- and NE-trending faults. All these multi-directional faults/fracture systems in the Ifal Basin could be considered as conduits for groundwater accumulation, but with a possibility of environmental contamination from the surrounding soils and rock bodies.

  12. Underground Hydrosphere of the Sedimentary Basins as Naphtides-Generating System (on the Example of the South Caspian Basin

    Directory of Open Access Journals (Sweden)

    A.A. Feyzullayev

    2017-11-01

    Full Text Available The analysis of organic matter (OM content dissolved in the formation waters and waters of mud volcanoes (water dissolved organic matter – DOM of the oil and gas bearing South Caspian Basin and its distribution in stratigraphic and hypsometrical depth is given in the article. The stratigraphic interval of research covers the period from the Lower Pliocene to the Jurassic, and the depth interval: from 73 to 6043 m. In these intervals, the values ​​of the DOM in reservoir waters vary from 4.1 mg/l to 271.2 mg /l, averaging (by 219 analyzes 48.9 mg/l. A good correlation of the values ​​of DOM and OM in rocks has been established. In both cases, Paleogene and Jurassic rocks have the highest values. In the change of the DOM with depth, an increase in its values ​​from a depth of about 3.3 km is noted, which is possibly due to the onset of catagenetic transformation of OM into hydrocarbons in the rock-water system. The dependence of the DOM content on the mineralization of water has been established: its highest values ​​are characteristic for waters with mineralization not higher than 50 g/l. The waters of mud volcanoes are characterized by low levels of DOM and low mineralization, which is most likely due to their condensation nature. The conducted studies confirm the idea of ​​the DOM participation, along with the OM of rocks, in the processes of oil and gas generation. The process of OM transformation into oil and gas in aqueous solution should be taken into account in basin modeling and in estimating the predicted resources of hydrocarbons in the sedimentary basin.

  13. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  14. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  15. Sedimentology and paleoenvironments of a new fossiliferous late Miocene-Pliocene sedimentary succession in the Rukwa Rift Basin, Tanzania

    Science.gov (United States)

    Mtelela, Cassy; Roberts, Eric M.; Hilbert-Wolf, Hannah L.; Downie, Robert; Hendrix, Marc S.; O'Connor, Patrick M.; Stevens, Nancy J.

    2017-05-01

    This paper presents a detailed sedimentologic investigation of a newly identified, fossiliferous Late Neogene sedimentary succession in the Rukwa Rift Basin, southwestern Tanzania. This synrift deposit is a rare and significant new example of a fossiliferous succession of this age in the Western Branch of East Africa Rift System. The unit, informally termed the lower Lake Beds succession, is late Miocene to Pliocene in age based on cross-cutting relationships, preliminary biostratigraphy, and U-Pb geochronology. An angular unconformity separates the lower Lake Beds from underlying Cretaceous and Oligocene strata. Deposition was controlled by rapid generation of accommodation space and increased sediment supply associated with late Cenozoic tectonic reactivation of the Rukwa Rift and synchronous initiation of the Rungwe Volcanic Centre. The lower Lake Beds, which have thus far only been identified in three localities throughout the Rukwa Rift Basin, are characterized by two discrete lithologic members (herein A and B). The lower Member A is a volcanic-rich succession composed mostly of devitrified volcanic tuffs, and volcaniclastic mudstones and sandstones with minor conglomerates. The upper Member B is a siliciclastic-dominated succession of conglomerates, sandstones, mudstones and minor volcanic tuffs. Detailed facies analysis of the lower Lake Beds reveals various distinctive depositional environments that can be grouped into three categories: 1) alluvial fan; 2) fluvial channel; and 3) flood basin environments, characterized by volcanoclastic-filled lakes and ponds, abandoned channel-fills and pedogenically modified floodplains. Member A represents a shallow lacustrine setting filled by tuffaceous sediments, which grade up into a system of alluvial fans and high-energy, proximal gravel-bed braided rivers. An unconformity marks the contact between the two members. Member B shows an upward transition from a high-energy, gravel-bed braided river system to a sandy

  16. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  17. Potentiometric Surface of the Alluvial Aquifer and Hydrologic Conditions in the Juana Diaz area, Puerto Rico, June 29 - July 1, 2005

    Science.gov (United States)

    Rodriguez, Jose M.; Santigo-Rivera, Luis; Gómez-Gómez, Fernando

    2006-01-01

    A synoptic survey of the hydrologic conditions in the Juana Diaz area, Puerto Rico, was conducted between June 29 and July 1, 2005, to define the spatial distribution of the potentiometric surface of the alluvial aquifer. The study area encompasses 21 square miles of the more extensive South Coastal Plain Alluvial Aquifer system and is bounded along the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, the east by the Rio Descalabrado and to the west by the Rio Inabon. Ground water in the Juana Diaz area is in the Quaternary-age alluvial deposits and the middle-Tertiary age Ponce Limestone and Juana Diaz Formation (Giusti, 1968). The hydraulic properties of the Ponce Limestone in the Juana Diaz area are unknown, and the Juana Diaz Formation is a unit of poor permeability due to its high clay content. Consequently, the Ponce Limestone and the Juana Diaz Formation are generally considered to be the base of the alluvial aquifer in the Juana Diaz area with ground-water flow occurring primarily within the alluvial deposits. The potentiometric-surface map of the alluvial aquifer was delineated using ground-water level measurements taken at existing wells. The water-level measurements were taken at wells that were either not pumping during the survey or were shut down for a brief period. In the latter case, a recovery period of 30 minutes was allowed for the drawdown in the wellbore to achieve a near static level position representative of the aquifer at the measurement point. Land-surface altitude from U.S. Geological Survey (USGS) 1:20,000 scale topographic maps (Playa de Ponce, Ponce, Rio Descalabrado, and Santa Isabel) were used to refer ground-water levels to mean sea level datum (National Geodetic Vertical Datum of 1929). In addition to the ground-water level measurements, the potentiometricsurface contours were delineated using hydrologic features, such as drainage ditches and saturated intermittent streams that were

  18. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    Science.gov (United States)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested

  19. Details of microearthquake swarms in the Columbia basin, Washington

    International Nuclear Information System (INIS)

    Malone, S.D.; Rothe, G.H.; Smith, S.W.

    1975-01-01

    Three microearthquake swarms in the Columbia River basin of eastern Washington were studied by means of a small portable seismic network. Earthquakes in this area typically occur in swarms, concentrated both temporally and spatially. One unusual characteristic of the three swarms studied was the shallow focal depths of all events. Most events located had depths less than 1 km; none were deeper than 2 km. Composite focal mechanism solutions indicate that more than one fault surface is active in any one swarm. All events had some thrust component with the axis of maximum compression oriented roughly in a north-south direction. (auth)

  20. Carbon sequestration resulting from bottomland hardwood afforestation in the Lower Mississippi Alluvial Valley

    Science.gov (United States)

    Bertrand F. Nero; Richard P. Maiers; Janet C. Dewey; Andrew J. Londo

    2010-01-01

    Increasing abandonment of marginal agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) and rising global atmospheric carbon dioxide (CO2) levels create a need for better options of achieving rapid afforestation and enhancing both below and aboveground carbon sequestration. This study examines the responses of six mixtures of bottomland hardwood species...

  1. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model

    Science.gov (United States)

    As alluvial plains support intensive agricultural activities, they often suffer from groundwater nitrate pollution. Denitrification is recognized as an important process in nitrate pollution control in riparian zones. In shallow aquifer zones influenced by recharged surface water, denitrification ...

  2. Thermometric carottage measurement and thermic flow in Cheb basin (West Czech)

    International Nuclear Information System (INIS)

    Irovska, J.; Kobr, M.; Cermak, V.

    2002-01-01

    The basic method applied for carottage measurement in Cheb basin was the measurement of natural gamma activity and resistance measurement. In selected drillings for search of coal deposits the neutron-neutron profiling, density gamma-gamma carottage and inclinometry were applied. This standard method was refill with measurements of hydrogeology conditions in a drill (resistivimetry, thermometry, photometry, flowmeter). In the Cheb basin 36 drills have stable thermometric measurements of 850 drills with the depth more than 45 m. From these measurements the map of thermal flow density was plotted. On the map 4 anomalies are manifested

  3. Structure and dynamics of basin forested wetlands in North America

    International Nuclear Information System (INIS)

    Brown, S.

    1990-01-01

    Freshwater basin wetlands are found in depressions of various depths, generally in areas where precipitation exceeds evapotranspiration or where the depression intersects the water table creating groundwater seeps or springs. Forested basins are those that contain woody vegetation with the potential for reaching tree stature; they do not include woody shrub wetlands. In North America these areas are mainly in the central and eastern region. Pertinent information and reviews on the distribution, floristic composition, structure and dynamics of basin forested wetlands are summarized. The major emphasis is on freshwater wetlands, but data for saltwater wetlands mainly from Florida and tropical America are included. The external factors affecting basin wetlands or the important components of a wetlands energy signature are described as well as the distribution and floristic composition of representative basin wetlands. Sections on structural characteristics, organic matter dynamics, and nutrient cycling comprise the bulk of quantitative information. The effects of disturbances, both natural and human induced, with varying degrees of impact depending upon the intensity and on the part of the ecosystem to which the stressor is applied are evaluated. Examples of stressors in basin wetlands include water impoundment, water diversion, thermal stress from hot water, sedimentation, addition of toxic substances, addition of wastewater, oil spills, and harvesting. 86 refs., 5 figs., 11 tabs

  4. Horizontally viscous effects in a tidal basin: extending Taylor's problem

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2009-01-01

    The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model

  5. Assessment of volcanic and geothermal activity in the Pasco Basin and vicinity

    International Nuclear Information System (INIS)

    Davis, J.D.

    1980-01-01

    Event network analyses indicate the most likely volcanic hazard to the Pasco Basin is influx of ash fall tephra from source areas in the Cascade Range. Less likely, but still notable, is the possibility of water flooding the Pasco Basin as a result of volcanic damming of one or more major drainages in the region. The least probable hazards include (1) influx of ash flows from eruptions in the Cascade Range or the Basin and Range Province, (2) renewed flood basalt volcanism, and (3) breaching of a repository by a dike or fissure. It is highly unlikely that volcanism will pose a direct threat to the integrity of any nuclear waste repositories in the Pasco Basin. Low-temperature geothermal water (20 degrees--90 degrees C) is present at random locations within the Pasco Basin and vicinity. This water may represent a potential resource only for direct heating purposes. Available data indicate no geothermal reservoirs with temperatures high enough and depths shallow enough for economical production of electricity are present within the Pasco Basin. 70 refs., 16 figs., 7 tabs

  6. Hydrogeology, geochemistry, and quality of water of The Basin and Oak Spring areas of the Chisos Mountains, Big Bend National Park, Texas

    Science.gov (United States)

    Baker, E.T.; Buszka, P.M.

    1993-01-01

    Test drilling near two sewage lagoons in The Basin area of the Chisos Mountains, Big Bend National Park, Texas, has shown that the alluvium and colluvium on which the lagoons are located is not saturated in the immediate vicinity of the lagoons. A shallow aquifer, therefore, does not exist in this critical area at and near the lagoons. Should seepage outflow from the lagoons occur, the effluent from the lagoons might eventually be incorporated into shallow ground water moving westward in the direction of Oak Spring. Under these conditions such water could reach the spring. Test borings that bottomed in bedrock below the alluvial and colluvial fill material are dry, indicating that no substantial leakage from the lagoons was detected. Therefore, no contaminant plume was identified. Fill material in The Basin does not contain water everywhere in its extensive outcropping area and supplies only a small quantity of ground water to Window Pouroff, which is the only natural surface outlet of The Basin.

  7. Evaluation of carbaryl sorption in alluvial soil

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2013-12-01

    Full Text Available This study investigated the adsorption potential of carbaryl onto alluvial soil. Parameters that influence the adsorption process such as pH, adsorbent dose, initial carbaryl concentration, stirring rate, particle size, contact time and temperature were studied in a batch process. The carbaryl adsorption capacity was at maximum at pH 6 for an initial concentration of 20 ppm. Adsorption equilibirium time was observed in 180 min. Equilibrium adsorption data was best fitted with Freundlich isotherm and pseudo-first order kinetic model, respectively. The adsorbent was characterized by X-ray diffraction spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The experiment performed indicated that the adsorption capacity of carbaryl was significantly correlated with particle size, organic matter and pH of the soil. Therefore, the possibility for carbaryl to contaminate underground water may be greater in the presence of low organic matter content.

  8. Soil moisture monitoring in Candelaro basin, Southern Italy

    Science.gov (United States)

    Campana, C.; Gigante, V.; Iacobellis, V.

    2012-04-01

    The signature of the hydrologic regime can be investigated, in principle, by recognizing the main mechanisms of runoff generation that take place in the basin and affect the seasonal behavior or the rainfall-driven events. In this framework, besides the implementation of hydrological models, a crucial role should be played by direct observation of key state variables such as soil moisture at different depths and different distances from the river network. In fact, understanding hydrological systems is often limited by the frequency and spatial distribution of observations. Experimental catchments, which are field laboratories with long-term measurements of hydrological variables, are not only sources of data but also sources of knowledge. Wireless distributed sensing platforms are a key technology to address the need for overcoming field limitations such as conflicts between soil use and cable connections. A stand-alone wireless network system has been installed for continuous monitoring of soil water contents at multiple depths along a transect located in Celone basin (sub-basin of Candelaro basin in Puglia, Southern Italy). The transect consists of five verticals, each one having three soil water content sensors at multiple depths: 0,05 m, 0,6 m and 1,2 m below the ground level. The total length of the transect is 307 m and the average distance between the verticals is 77 m. The main elements of the instrumental system installed are: fifteen Decagon 10HS Soil Moisture Sensors, five Decagon Em50R Wireless Radio Data Loggers, one Rain gauge, one Decagon Data Station and one Campbell CR1000 Data Logger. Main advantages of the system as described and presented in this work are that installation of the wireless network system is fast and easy to use, data retrieval and monitoring information over large spatial scales can be obtained in (near) real-time mode and finally other type of sensors can be connected to the system, also offering wide potentials for future

  9. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  10. Geology and undiscovered resource assessment of the potash-bearing Pripyat and Dnieper-Donets Basins, Belarus and Ukraine

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao

    2017-08-03

    six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the

  11. A review of current and possible future human-water dynamics in Myanmar's river basins

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-12-01

    river flows, the sediment loads and also the still rich biodiversity in the river basins, to an unknown extent. Probably, these natural and anthropogenically induced developments will also impact a special type of farming; we call it alluvial farming in the river floodplains and on sandbars in the Ayeyarwady River basin in Myanmar, which is called Kaing and Kyun, respectively. Relevant aspects for future development of Myanmar's river basins combine environment-water-related factors, climate, economic and social development, water management and land use changes. Research on these interplays needs to capture the spatial and temporal dynamics of these drivers. However, it is only possible to gain a full understanding of all these complex interrelationships if multi-scale spatiotemporal information is analysed in an inter- and trans-disciplinary approach. This paper gives a structured overview of the current scientific knowledge available and reveals the relevance of this information with regard to human-environment and particularly to human-water interactions in Myanmar's river basins. By applying the eDPSIR framework, it identifies key indicators in the Myanmar human-water system, which has been shown to be exemplary by giving an example of use related to alluvial farming in the central dry zone.

  12. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  13. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  14. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    Science.gov (United States)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  15. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  16. Fracture patterns of the drainage basin of Wadi Dahab in relation to tectonic-landscape evolution of the Gulf of Aqaba - Dead Sea transform fault

    Science.gov (United States)

    Shalaby, Ahmed

    2017-10-01

    Crustal rifting of the Arabian-Nubian Shield and formation of the Afro-Arabian rifts since the Miocene resulted in uplifting and subsequent terrain evolution of Sinai landscapes; including drainage systems and fault scarps. Geomorphic evolution of these landscapes in relation to tectonic evolution of the Afro-Arabian rifts is the prime target of this study. The fracture patterns and landscape evolution of the Wadi Dahab drainage basin (WDDB), in which its landscape is modeled by the tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault, are investigated as a case study of landscape modifications of tectonically-controlled drainage systems. The early developed drainage system of the WDDB was achieved when the Sinai terrain subaerially emerged in post Eocene and initiation of the Afro-Arabian rifts in the Oligo-Miocene. Conjugate shear fractures, parallel to trends of the Afro-Arabian rifts, are synthesized with tensional fracture arrays to adapt some of inland basins, which represent the early destination of the Sinai drainage systems as paleolakes trapping alluvial sediments. Once the Gulf of Aqaba rift basin attains its deeps through sinistral movements on the Gulf of Aqaba-Dead Sea transform fault in the Pleistocene and the consequent rise of the Southern Sinai mountainous peaks, relief potential energy is significantly maintained through time so that it forced the Pleistocene runoffs to flow via drainage systems externally into the Gulf of Aqaba. Hence the older alluvial sediments are (1) carved within the paleolakes by a new generation of drainage systems; followed up through an erosional surface by sandy- to silty-based younger alluvium; and (2) brought on footslopes of fault scarps reviving the early developed scarps and inselbergs. These features argue for crustal uplifting of Sinai landscapes syn-rifting of the Gulf of Aqaba rift basin. Oblique orientation of the Red Sea-Gulf of Suez rift relative to the WNW-trending Precambrian Najd faults; and

  17. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  18. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  19. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  20. Provenance of Miocene Hinterland Basins in Ecuador: Implications for the Growth of Topographic Barriers in the Northern Andes

    Science.gov (United States)

    George, S. W. M.; Horton, B. K.; Vallejo, C.; Nogales, V.

    2017-12-01

    the Nabón and Loja basins reflects rapid exhumation of crystalline sources, and an eastward shift of the drainage divide, associated with exhumation of the Eastern Cordillera, which is supported by rapid cooling observed in thermochronological datasets and a switch to alluvial fan facies in the hinterland basins.

  1. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    Science.gov (United States)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt

  2. MORPHOMETRIC ASPECTS IN THE BÂRLAD BASIN

    Directory of Open Access Journals (Sweden)

    BĂLAN OANA

    2015-03-01

    Full Text Available Bârlad valley morphometry is strongly influenced by lithology, geological structure and climatic conditions. Between its springs and the outflow we noticed notable deviations from valley monocline structure and from the consecvent overall direction of the river system. Morphometric analysis of the Bârlad valley cumulates and summarizes the sequence of events that occurred in its hydrographic basin, which in turn has been actively reflected in indices such as generated the altimetry, the relief depth fragmentation.

  3. Hydrology of the alluvial, buried channel, basal Pleistocene and Dakota aquifers in west-central Iowa

    Science.gov (United States)

    Runkle, D.L.

    1985-01-01

    A ground-water resources investigation in west-central Iowa indicates that water is available from alluvial, buried channel, basal Pleistocene, and Dakota aquifers. The west-central Iowa area includes Audubon, Carrol1, Crawford, Greene, Guthrie, Harrison, Monona, and Shelby Counties.

  4. Reference conditions for old-growth redwood restoration on alluvial flats

    Science.gov (United States)

    Christa M. Dagley; John-Pascal. Berrill

    2012-01-01

    We quantified structural attributes in three alluvial flat old-growth coast redwood stands. Tree size parameters and occurrences of distinctive features (e.g., burls, goose pens) were similar between stands. Occurrence of distinctive features was greater among larger trees. Tree sizefrequency distributions conformed to a reverse-J diameter distribution. The range of...

  5. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  6. (Plio-)Pleistocene alluvial-lacustrine basin infill evolution in a strike-slip active zone (Northern Andes, Western-Central Cordilleras, Colombia)

    OpenAIRE

    SUTER, F.; NEUWERTH, R.; GORIN, G.; GUZMÁN, C.

    2009-01-01

    The (Plio)-Pleistocene Zarzal Formation was deposited in the Cauca Depression and Quindío-Risaralda Basin between the Western and Central Cordilleras (Northern Andes). This area is structurally located on the transcurrent Romeral Fault System (RFS). Because of the interaction between the Nazca plate and the Chocó-Panamá block (an active indenter), the RFS strike-slip component changes direction around the study zone (dextral in the south, senestral in the north). Zarzal sediments are the olde...

  7. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    Science.gov (United States)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  8. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  9. Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands

    NARCIS (Netherlands)

    Wegge, P.; Shrestha, A.K.; Moe, S.R.

    2006-01-01

    Based on microhistological analyses of faecal material, we compared the early dry season diets of greater one-horned rhinoceros Rhinoceros unicornis, swamp deer Cervus duvauceli and hog deer Axis porcinus, which inhabit the same alluvial grassland habitat complex in lowland Nepal. Their diets were

  10. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is

  11. Diagenesis of the Mucuri Member sandstones, lower cretaceous in the Espirito Santo and Mucuri Basins; Diagenese dos arenitos do Membro Mucuri, cretaceo inferior das Bacias do Espirito Santo e de Mucuri

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Manuel de Assis; Anjos, Sylvia Maria Couto dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Dib. de Geologia e Engenharia de Reservatorios

    1996-01-01

    The diagenetic evolution of the sandy conglomerate sediments belonging to the Mucuri Member was regionally defined in the basins of Espirito Santo and Mucuri from samples collected in 24 wells at depths varying from 500 m to 3,000 m. Nine hundred meters of core samples were described, and 600 thin sections were prepared to be studied at the petrographic microscope and later at the scanning electron microscope (SEM). Samples were also analyze using X-ray diffraction in order to determine the clay minerals content as well as carbon and oxygen isotopic determination of the carbonate cements. The Mucuri Member consists of Alagoas and pre-Alagoas age sediments from alluvial-fluvial-deltaic environments, of arid climate, deposited during the rift phase of the Espirito Santo and Mucuri basins. The Aptian portion (Alagoas age) presents intercalations of typically marine shales. Thus, the Alagoas age sediments present formation water with a distinctive composition from the pre-Alagoas age sediments (continental) responsible for different diagenetic changes in both packages. Moreover, the pre-Alagoas sediments had a burial history characterized by a longer residence time at greater depths than the Alagoas package, and thereby being more susceptible to mesodiagnetic processes. Most reservoirs of the Mucuri Member are of the Alagoas age, and because of better sampling a more detailed description is given. These reservoirs were also deeply affected by eodiagenesis, with particular emphasis in calcite precipitation in zones of sulfate reduction and methagenesis and authigenesis of smectites, which is the main agent responsible for the large amounts of clay minerals present in these reservoirs. several other diagenetic processes were identified in the Mucuri Member being however less efficient in reducing the pore space. The progressive utilization of the clay minerals, the albitization of the feldspar and the precipitation of quartz overgrowth were the mesodiagenetic features

  12. Assessment of the chemical status of the alluvial aquifer in the Aosta Plain: an example of the implementation of the Water Framework Directive in Italy

    Science.gov (United States)

    Rotiroti, Marco; Fumagalli, Letizia; Stefania, Gennaro A.; Frigerio, Maria C.; Simonetto, Fulvio; Capodaglio, Pietro; Bonomi, Tullia

    2015-04-01

    The Italian Legislative Decree 30/09 (D.Lgs. 30/09) implements the EU Water Framework Directive (WFD) providing some technical guidelines to assess the chemical status of groundwater bodies. This work presents the estimation of the chemical status of the shallow aquifer in the Aosta Plain (Aosta Valley Region, NW Alpine sector, Italy) on the basis of the D.Lgs. 30/09. The study area covers ~40 km2 along the Dora Baltea River basin. The Aosta Plain hosts an alluvial aquifer formed of lacustrine, glacial, fluvio-glacial and fan deposits of Pleistocene and Holocene ages. The unconfined aquifer features a depth of ~80 m in the western part of the plain and ~20 in the eastern part due to the intercalation of a silty lacustrine layer. The aquifer is mainly recharged by precipitation, surface water and ice and snow melt. Previous studies revealed that SO4, Fe, Mn, Ni, Cr(VI) and PCE represent potential threats for groundwater quality in the Aosta Plain. The chemical status was calculated using the data collected during the 2012 by the Regional Environmental Protection Agency of the Aosta Valley Region from its groundwater quality monitoring network that includes 38 points. Each point was sampled up to four times. Since the D.Lgs. 30/09 excludes Fe and Mn from the assessment of the groundwater chemical status, the present work deals with SO4, Ni, Cr(VI) and PCE. Threshold values (TVs) were estimated on the basis of natural background levels (NBLs) for SO4, Ni and Cr(VI) whereas, for PCE, the reference value (REF) reported by the D.Lgs. 30/09 (i.e., 1.1 µg/L) was used as TV. The NBLs were calculated using the two approaches suggested by the EU research project BRIDGE, that are the pre-selection and the component separation. The TVs were evaluated using the following criteria: (a) if NBL pollution in the Aosta Plain in order to achieve the good chemical status as required by the WFD.

  13. Piracicaba River Basin: evaluation of chemical elements in deep sediment profile by INAA

    Energy Technology Data Exchange (ETDEWEB)

    França, Elvis J. de; Santos, Robson A.; Santos, Katarine M. Barbosa; Silva, Gleyce K. A. [Centro Regional de Ciencias Nucleares do Nordeste (DIAMB/CRCN-NE/CNEN-PE), Recife, PE (Brazil). Div, de Monitoração Ambiental; Fernandes, Elisabete A. de Nadai; Rodrigues, Vanessa S.; Cavalca, Isabel P.O., E-mail: ejfranca@cnen.gov.br, E-mail: lis@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-07-01

    Many hydrographic basins have been impacted by anthropogenic sources, the Piracicaba River Basin of the State of São Paulo, is one of that. The total concentrations of chemical elements in deep sediments of basin may be indicate those available in ecosystem. Therefore, in this research concentration of chemical elements on deep sediment profile sampled of Piracicaba River Basin was determined by k0-Instrumental Neutron Activation Analysis. After collecting the 60 cm depth profile, samples were obtained by sectioning the sediment profile in 5 cm layers, totalizing 12 samples. Analytical portions were transferred to polyethylene vials for neutron irradiation at the Nuclear Research Reactor IEA-R1 from the Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN. After waiting for radiation safe levels, irradiated samples were transported to the Radioisotopes Laboratory from the Centro de Energia Nuclear na Agricultura CENA/USP. High Resolution Gamma-Ray Spectrometry using HPGe detectors was applied to measure the induced radioactivity. The chemical element mass fractions and their respective expanded analytical uncertainties (95% confidence level) were determined by k0-INAA using the in-house software Quantu. Geological reference materials were analyzed with samples to evaluate the quality of the analytical procedure. Results indicated the presence of enriched surface sediments (0-10 cm depth) for As, Ba, Ca, Co, Cs, Fe, Sb, Sc, Sr, Yb and Zn, despite no alteration was observed for Eu, Ta and Tb. Therefore, the evaluation of deep sediment profile afford the chemical element dynamics for the Piracicaba Basin. (author)

  14. Piracicaba River Basin: evaluation of chemical elements in deep sediment profile by INAA

    International Nuclear Information System (INIS)

    França, Elvis J. de; Santos, Robson A.; Santos, Katarine M. Barbosa; Silva, Gleyce K. A.

    2017-01-01

    Many hydrographic basins have been impacted by anthropogenic sources, the Piracicaba River Basin of the State of São Paulo, is one of that. The total concentrations of chemical elements in deep sediments of basin may be indicate those available in ecosystem. Therefore, in this research concentration of chemical elements on deep sediment profile sampled of Piracicaba River Basin was determined by k0-Instrumental Neutron Activation Analysis. After collecting the 60 cm depth profile, samples were obtained by sectioning the sediment profile in 5 cm layers, totalizing 12 samples. Analytical portions were transferred to polyethylene vials for neutron irradiation at the Nuclear Research Reactor IEA-R1 from the Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN. After waiting for radiation safe levels, irradiated samples were transported to the Radioisotopes Laboratory from the Centro de Energia Nuclear na Agricultura CENA/USP. High Resolution Gamma-Ray Spectrometry using HPGe detectors was applied to measure the induced radioactivity. The chemical element mass fractions and their respective expanded analytical uncertainties (95% confidence level) were determined by k0-INAA using the in-house software Quantu. Geological reference materials were analyzed with samples to evaluate the quality of the analytical procedure. Results indicated the presence of enriched surface sediments (0-10 cm depth) for As, Ba, Ca, Co, Cs, Fe, Sb, Sc, Sr, Yb and Zn, despite no alteration was observed for Eu, Ta and Tb. Therefore, the evaluation of deep sediment profile afford the chemical element dynamics for the Piracicaba Basin. (author)

  15. Design of alluvial Egyptian irrigation canals using artificial neural networks method

    Directory of Open Access Journals (Sweden)

    Hassan Ibrahim Mohamed

    2013-06-01

    Full Text Available In the present study, artificial neural networks method (ANNs is used to estimate the main parameters which used in design of stable alluvial channels. The capability of ANN models to predict the stable alluvial channels dimensions is investigated, where the flow rate and sediment mean grain size were considered as input variables and wetted perimeter, hydraulic radius, and water surface slope were considered as output variables. The used ANN models are based on a back propagation algorithm to train a multi-layer feed-forward network (Levenberg Marquardt algorithm. The proposed models were verified using 311 data sets of field data collected from 61 manmade canals and drains. Several statistical measures and graphical representation are used to check the accuracy of the models in comparison with previous empirical equations. The results of the developed ANN model proved that this technique is reliable in such field compared with previously developed methods.

  16. Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert

    2014-01-01

    In the alluvial valley of the lower Mississippi River, floodplain lakes form isolated aquatic fragments that retain differing degrees of connectivity to neighbouring rivers. Within these floodplain lakes it was hypothesized that fish species composition, relative abundance, and biodiversity metrics would be shaped largely by aquatic connectivity within a catchment.

  17. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    International Nuclear Information System (INIS)

    Zabala, M.E.; Manzano, M.; Vives, L.

    2015-01-01

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO 3 -Ca type, in the middle basin it is HCO 3 -Na, and in the lower basin it is ClSO 4 –NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO 2 , calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The work studies the

  18. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  19. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2010-11-01

    Full Text Available Tsunami wave generation by submarine landslides of a variable volume in a basin of variable depth is studied within the shallow-water theory. The problem of landslide induced tsunami wave generation and propagation is studied analytically for two specific convex bottom profiles (h ~ x4/3 and h ~ x4. In these cases the basic equations can be reduced to the constant-coefficient wave equation with the forcing determined by the landslide motion. For certain conditions on the landslide characteristics (speed and volume per unit cross-section the wave field can be described explicitly. It is represented by one forced wave propagating with the speed of the landslide and following its offshore direction, and two free waves propagating in opposite directions with the wave celerity. For the case of a near-resonant motion of the landslide along the power bottom profile h ~ xγ the dynamics of the waves propagating offshore is studied using the asymptotic approach. If the landslide is moving in the fully resonant regime the explicit formula for the amplitude of the wave can be derived. It is demonstrated that generally tsunami wave amplitude varies non-monotonically with distance.

  20. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    Science.gov (United States)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic

  1. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain

    NARCIS (Netherlands)

    Oort, van P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; Werf, van der W.

    2016-01-01

    Groundwater levels in the North China Plain (NCP), the bread basket of China, have dropped more than one meter per year over the last 40 years, putting at risk the long term productivity of this region. Groundwater decline is most severe in the Alluvial Fans where our study site is located.

  2. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    Science.gov (United States)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  3. The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution

    Science.gov (United States)

    Feng, Ye; Steinberg, Josh; Reshef, Moshe

    2017-04-01

    The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin

  4. Transport of Escherichia Coli and solutes during waste water infiltration in an urban alluvial aquifer

    NARCIS (Netherlands)

    Foppen, J.W.A.; van Herwerden, M.; Kebtie, M.; Noman, A.; Schrijven, J.F.; Stuijfzand, P.J.; Uhlenbrook, S.

    2008-01-01

    Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing

  5. Determination of gold in auriferous alluvial sands and rocks by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Ene, A.; Nat, A.; Lupu, R.; Popescu, I.V.

    2004-01-01

    In this work a complex study of the interferences which appear in gold determination by 14 MeV neutron activation analysis of some Romanian auriferous alluvial sands and rocks has been carried out. The contribution of the nuclear interfering elements - Hg and Pt - to the concentration of gold in the samples is minimum in the case of the nuclear reactions 197 Au (n, 2n) 196 Au, 197 Au (n, 2n) 196m Au and 197 Au (n, n') 197m Au. As regards the spectral interferences, these are minimum in the case of using the reactions 197 Au (n, n') 197m Au and 197 Au (n, 2n) 196 Au and are due to Rb, Ti and V for short irradiation and to Se for long irradiation. We propose two methods of gold determination in auriferous alluvial sands and rocks in the range 20-2500 ppm - the minimum value of 20 ppm being at the level of an economic extraction - in the optimum conditions established by us so that the systematic errors of analysis due to the gold accompanying elements should be considerably diminished: a method using short irradiation (25s) and NaI(Tl) spectrometry for measuring the induced gamma radioactivity in the samples and a method using long irradiation (3000s) and Ge(Li) spectrometry. The data presented in this paper can be adapted by other analysts to the rapid determination of gold in a variety of alluvial sands and rocks. (authors)

  6. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    Science.gov (United States)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  7. Horizontally viscous effects in a tidal basin : Extending Taylor’s problem

    NARCIS (Netherlands)

    Roos, P.C.; Schuttelaars, H.M.

    2009-01-01

    The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model

  8. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study

    International Nuclear Information System (INIS)

    Ju, X.T.; Gao, Q.; Christie, P.; Zhang, F.S.

    2007-01-01

    15 N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO 3 - N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of 15 N-labeled nitrate from K 15 NO 3 injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment. - Deep-rooted crops have a greater capacity than shallow-rooted crops to intercept residual nitrate from the subsoil and restrict its movement down to the shallow groundwater

  9. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular grid slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected structures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumptions required to be made in developing the mathematical model are briefly discussed in the paper. Transfer matrix technique has been used to determine the frequencies and mode shapes. The deformations due to bending, shear and effect of the rotary inertia have been included. Various alternatives of laterally interconnecting the internals and the shells have been examined and the best alternative from earthquake considerations has been obtained. In the study, the effect of internal structure flexibility and Calandria vault flexibility on the whole building have been studied. The resulting base raft motion and the structural timewise response of all floors have been determined for the design basis (safe shutdown) earthquake by mode superposition

  10. Acid/Caustic Basins: Environmental information document

    International Nuclear Information System (INIS)

    Ward, J.W.; Johnson, W.F.; Marine, I.W.

    1986-12-01

    There are six Acid/Caustic Basins at SRP, all of which are located in the reactor and separations areas. These basins are unlined earthen depressions with nominal dimensions of 15.2 m in length x 15.2 m in width x 2.1 m in depth. They were used to provide mixing and partial neutralization of dilute sulfuric acid and sodium hydroxide solutions from water treatment facilities before these solutions were discharged to tributaries of local streams. Closure options considered for the Acid/Caustic Basins are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via general pathways for the three postulated closure options. A cost estimate for each closure was also made

  11. The Evaluation of Groundwater Suitability for Irrigation and Changes in Agricultural Land of Garmsar basin

    Directory of Open Access Journals (Sweden)

    Leila Bakhshandehmehr

    2017-03-01

    Full Text Available Introduction: In recent years, due to the reduction in surface water, utilization of groundwater has been increased to meet the growing demand of irrigation water. The quality of these water resources is continually changing, due to the geological formations, the amount of utilization, and climatic parameters. In many developing countries, the irrigation water is obtained from poor quality groundwater resources, which in turn, creates unfavorable circumstances for plant growth and reduces the agricultural yield. Providing adequate water resources for agricultural utilization is one of the most important steps needed to achieve the developmental targets of sustainable agriculture. Thus, this necessitates the assessment and evaluation of the quality of irrigation water. There are many proposed methods to determine the suitability of water for different applications, such as Piper, Wilcox, and Schoeller diagrams. Zoning of quality and suitability of irrigation water could represent the prone and critical areas to groundwater exploitation. Garmsar alluvial fan is one of the most sensitive areas in the country where traditional agriculture practices had turned into modern techniques and excessive exploitation of groundwater has caused an intensepressure on aquifers and increased water salinity. The aim of this study is to evaluate the suitability of groundwater for irrigation in a 10-year period (2002-2012 and its changes in this basin. Materials and Methods: Garmsar alluvial fan is located in the North-West of Semnan Province. Semnan is situated in the Southern hillside of the Alborz Mountains, in North of Iran. The study area includes the agricultural land on this alluvial fan and covers over 3750 hectares of this basin. In order to evaluate the quality of groundwater in this area, the electrical conductivity and sodium absorption ratio of 42 sample wells were calculated. The raster maps of these indicators were obtained using Geo

  12. Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013

    Science.gov (United States)

    Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.

    2014-01-01

    The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.

  13. Gene expression programming for prediction of scour depth downstream of sills

    Science.gov (United States)

    Azamathulla, H. Md.

    2012-08-01

    SummaryLocal scour is crucial in the degradation of river bed and the stability of grade control structures, stilling basins, aprons, ski-jump bucket spillways, bed sills, weirs, check dams, etc. This short communication presents gene-expression programming (GEP), which is an extension to genetic programming (GP), as an alternative approach to predict scour depth downstream of sills. Published data were compiled from the literature for the scour depth downstream of sills. The proposed GEP approach gives satisfactory results (R2 = 0.967 and RMSE = 0.088) compared to the existing predictors (Chinnarasri and Kositgittiwong, 2008) with R2 = 0.87 and RMSE = 2.452 for relative scour depth.

  14. Crustal Structure Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania from Teleseismic Receiver Functions

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2013-05-01

    We present new measurements of receiver functions at 4 broadband stations temporarily deployed in the Transylvanian Basin within the Carpathian Arc, Romania. Receiver functions can reveal depths to sharp crustal seismic velocity boundaries, which in complex tectonic environments such as the study area provide a good diagnostic for the regional tectonics. As a result of Africa (Adria) collision with Europe and subduction of a part of Tethys Ocean, Tisza-Dacia and Alcapa blocks escaped the collision and were emplaced in an embayment of this ocean, and form today the basement of the Transylvanian Basin. The collision of these terranes with the European continent culminated in the formation, in the Romanian part, of the Eastern Carpathians at the contact between the Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture zone, and of Southern Carpathians at the contact with Moesian Platform. In the foreland of the Carpathian Bend Zone, connecting the two mountain chains, in a very constrained area, a high velocity seismic body was contoured by hypocenters between 70 and 200 km depth. We constructed receiver functions using teleseismic P waves generated by events located between 30 and 95 degrees epicentral angle using the method of Ligorria and Ammon (1999) for individual measurements. We used the H-K method of Zhu and Kanamori (2000) to derive boundary interfaces depths and receiver function complexity from binned stacks. Preliminary results show a relatively shallow Moho depth beneath the Transylvanian Basin.

  15. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    Science.gov (United States)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  16. Heat flow in Indian Gondwana basins and heat production of their basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.V.; Rao, R.U.M.

    1983-01-01

    Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m exp(2). The value from the Sonhat basin (107 mW/m exp(2)) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regio