WorldWideScience

Sample records for alloying xrd analysis

  1. An XRD technique for quantitative phase analysis of Al-U-Zr alloy

    International Nuclear Information System (INIS)

    Khan, K.B.; Kulkarni, N.K.; Jain, G.C.

    2003-01-01

    In several nuclear research reactors all over the world, Al-U alloy is used as fuel. To stabilise less brittle phase UAl 3 in Al-U alloy, a small amount of Zr (1 to 3 wt% ) is added. A rapid, non destructive and simple x-ray diffraction technique has been developed for quantitative phase analysis Al-U-Zr alloy system containing UAl 4 , UAl 3 and Al. (author)

  2. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  3. Characterising palladium-silver and palladium-nickel alloy membranes using SEM, XRD and PIXE

    International Nuclear Information System (INIS)

    Keuler, J.N.; Lorenzen, L.; Sanderson, R.D.; Prozesky, V.; Przybylowicz, W.J.

    1999-01-01

    Palladium alloy membranes were prepared by successive electroless plating steps on an alumina-zirconia support membrane. Palladium, silver and nickel were deposited in layers and then the metal films were heat treated for 5 h in a hydrogen atmosphere at 650 deg. C. The topography of the metal coatings and cross-sections of the films (before and after heating) were characterised using scanning electron microscopy (SEM). XRD was used to determine the crystal phase of the alloy coatings. Both SEM and XRD provide only surface information and therefore micro-PIXE was used to extract depth information of the alloy coating. Concentration profiles across the thickness of the films were constructed to determine penetration of the coating into the support membrane pores during electroless plating and to investigate diffusion of coated layers during the heating step

  4. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    International Nuclear Information System (INIS)

    Singh, Virendra; Agrawal, H.M.

    2012-01-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil–plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully. - Highlights: ► Qualitative soil minerals analysis by EDXRF, AAS and XRD methods. ► There is a requirement of other means and methods due to inadequacy of XRD. ► Principal component analysis (PCA) provides an idea of minerals present in soil. ► Trace elements complexes can be determined by AAS probe. ► EDXRF, AAS and XRD, in combination, enable

  5. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  6. Polycrystalline oxides formation during transient oxidation of (001) Cu-Ni binary alloys studied by in situ TEM and XRD

    International Nuclear Information System (INIS)

    Yang, J.C.; Li, Z.Q.; Sun, L.; Zhou, G.W.; Eastman, J.A.; Fong, D.D.; Fuoss, P.H.; Baldo, P.M.; Rehn, L.E.; Thompson, L.J.

    2009-01-01

    The nucleation and growth of Cu 2 O and NiO islands due to oxidation of Cu x Ni 1-x (001) films were monitored, at various temperatures, by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) and in situ synchrotron X-ray diffraction (XRD). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands formed with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. In situ XRD experiments revealed that NiO formed first epitaxially, then other orientations appeared, and finally polycrystalline Cu 2 O developed as the oxidation pressure was increased. The segregation of Ni and Cu towards or away, respectively, from the alloy surface during oxidation could disrupt the surface and cause polycrystalline oxide formation.

  7. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    Science.gov (United States)

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mössbauer and XRD study of the Fe65Si35 alloy obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Vélez, G. Y.; Rodríguez, R. R.; Melo, C. A.; Pérez Alcázar, G. A.; Zamora, Ligia E.; Tabares, J. A.

    2011-01-01

    A study was made on the alloy Fe 65 Si 35 using x-ray diffraction and Mössbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100 h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75 h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75 h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.

  9. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  10. Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution

    International Nuclear Information System (INIS)

    Fedi, B.; Gigandet, M.P.; Hihn, J-Y; Mierzejewski, S.

    2016-01-01

    Highlights: • Quantification of zinc-nickel phases between 1,2% and 20%. • Coupling XRD to partial potentiodynamic dissolution. • Deconvolution of anodic stripping curves. • Phase quantification after annealing. - Abstract: Electrodeposited zinc-nickel coatings obtained by electrodeposition reveal the presence of metastable phases in various quantities, thus requiring their identification, a study of their thermal stability, and, finally, determination of their respective proportions. By combining XRD measurement with partial potentiodynamic dissolution, anodic peaks were indexed to allow their quantification. Quantification of electrodeposited zinc-nickel alloys approximately 10 μm thick was thus carried out on nickel content between 1.2% and 20%, and exhibited good accuracy. This method was then extended to the same set of alloys after annealing (250 °C, 2 h), thus bringing the structural organization closer to its thermodynamic equilibrium. The result obtained ensures better understanding of crystallization of metastable phases and of phase proportion evolution in a bi-phasic zinc-nickel coating. Finally, the presence of a monophase γ and its thermal stability in the 12% to 15% range provides important information for coating anti-corrosion behavior.

  11. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    Science.gov (United States)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  12. Evaluation of dislocation density in copper and brass α deformed by XRD peak width analysis

    International Nuclear Information System (INIS)

    Sousa, Talita Gama de

    2014-01-01

    The determination of dislocation density in metallic materials has been available for many years in scientific environment. This is due to the fact that the dislocations are the main responsible for plastic deformation, which, thereafter, markedly influences the mechanical properties. In this work, the dislocation density was analyzed through peak broadening of Xray diffraction (XRD) using Convolutional Multiple Whole Profile (CMWP) program. The measurements obtained by XRD were compared with those obtained from images observed by transmission electronic microscopy (TEM). The materials used in this study were pure copper and brass α as alloy 268 (6 % Cu and 34 % Zn), deformed by rolling and ECA (equal channel angular extrusion) processes. The results indicate that the XRD is a powerful tool for the characterization of the microstructure in relation to the dislocation density, as they were consistent to the TEM measurements, and also showed good relationship with measurements of hardness. Furthermore, through the dislocation density it was possible to verify the influence of stacking fault energy (SFE) in the evolution of the copper samples deformation process and its alloy, and that the presence of texture in rolled samples did not impair the measurements obtained by XRD technique. (author)

  13. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  14. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  15. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  16. XRD and TEM analysis of microstructure in the welding zone of 9Cr ...

    Indian Academy of Sciences (India)

    Unknown

    XRD and TEM analysis of microstructure in the welding zone of. 9Cr–1Mo–V–Nb ... steel, which has highest Cr content in the heat-resisting. Cr–Mo ... This research provides essential ... film samples were observed under TEM and select elec-.

  17. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    Science.gov (United States)

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  18. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  19. XRD analysis and microstructure of milled and sintered V, W, C, and Co powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2011-01-01

    Full Text Available on the starting compositions of pure elements, their lattice coherency according to Hume-Rothery rules on crystal structure and atomic size, and enough milling time that provides adequate kinetics. Keywords ? X-ray analysis; ? (V,W)C; ? Co15W8C6...-1 International Journal of Refractory Metals and Hard Materials Volume 29, Issue 1, January 2011, Pages 108?111 XRD analysis and microstructure of milled and sintered V, W, C, and Co powders ? A.S. Bolokang ? M.J. Phasha ? C. Oliphant ? D. Motaung ? a...

  20. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    Science.gov (United States)

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  1. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  2. Quantitative XRD analysis: tools to investigate link between hydrous strain and clay mineral CEC

    International Nuclear Information System (INIS)

    Oueslati, W.; Ammar, M.; Ben Rhaiem, H.; Ben Haj Amara, A.

    2012-01-01

    Document available in extended abstract form only. This work aims at examining, by quantitative XRD analysis, the effect of an applied hydrous strain in the cationic exchange process of a di-octahedral smectite (Na-rich montmorillonite SWy-2). The hydrous constraint was created by a continuous, in situ, hydration-dehydration cycles using a variation of the %RH rate. Respectively, The starting, the intermediate and the final stressed samples was deposed in contact with saturated Me 2+ (i.e. Cd 2+ , Co 2+ , Zn 2+ and Ni 2+ ) chloride solutions respectively in order to examine the effect of the retained materials stress on the CEC of the host materials. An XRD profile modelling approach is adopted to describe all structural changes created by the environmental evolution of the %RH rate. This investigation allowed us to determine several structural parameters related to the nature, abundance, size, position and organization of exchangeable cation and water molecule in the inter-lamellar space along the c* axis. The obtained qualitative results show a considerable change in the hydration behaviour, versus the number of hydration - dehydration cycle, from homogeneous '2W' to heterogeneous '1W-2W' hydration state indicating an interstratified hydration phases and due probably to a new organization of the inter-lamellar space content. Quantitatively, the theoretical Mixed Layer Structure MLS suggest the coexistence of more one 'crystallite' species. Which are saturated by more than one exchangeable cations, indicating a partial saturation of all exchangeable sites. Using optimum structural parameter values, deduced from XRD modelling profile approach, some equations which described the evolution of exchangeable cation amount versus the applied hydrous strain were derived. (authors)

  3. SEM-EDS and XRD study of a NiCrAlU alloy at temperatures from 800 celsius degree to 1300 celsius degree

    International Nuclear Information System (INIS)

    Al-Badairy, H.; Fox, P.

    2004-01-01

    Full text.The oxidation behaviour of a 74.5wt%Ni, 20wt%Cr, 5wt%Al and 0.5wt%U alloy was examined using Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy (SEM-EDS) and X-ray Diffractometry (XRD). The oxidation temperature ranged from 800 to 1300 celsius degree in laboratory air with oxidation times up to 120h. Analysis showed that during short term oxidation (40h) at the lower temperatures there was evidence of the formation of Cr, Ni and Al oxides. With increasing oxidation time, the Cr-rich oxide became predominant with the presence of islands of Ni-rich oxide, but no uranium was detected at the outermost layer of the scale. The scale was of flat topography with spallation occurring after 40h oxidation at 900 celsius degree and increasing with increasing temperature and time. Cross-sectional investigations indicated the presence of an internal oxidation zone comprising an Al-rich oxide beneath the outer Cr-rich scale with significant amounts of uranium. The depth of this zone varied from 1 micron to 60 microns and increased with increasing the oxidation temperature and time. At higher temperatures (above 1000 celsius degree), the internal oxidation zone ceased to grow due to the formation of a complete layer of alumina which protected the metal substrate from further degradation. The constituents of the scales formed reflect the selective oxidation of Cr and Al as a result of the higher reactivity of aluminium and chromium compared to nickel and the greater stability of Al 2 O 3 and Cr 2 O 3 compared to NiO. This study showed that Al-rich oxide was not the predominant protective oxide and the presence of uranium was restricted to the grain boundaries of the metal substrate and to within the internal oxidation zone. It appeared that the Cr-rich scale formed on this alloy does not to convolute. This may be due to the influence of uranium since Cr-rich scales forming on NiCrAl containing no uranium are often convoluted

  4. Structure and surface morphology studies of cerium oxide system using XRD and SEM analysis

    International Nuclear Information System (INIS)

    Ahmad Jais Alimin; Farid Nasir Ani; Wan Azelee Wan Abu Bakar

    2000-01-01

    Conventional Precious Group Materials (PGM) catalyst systems have been using CeO 2 as an Oxygen Storage Capacity component in the catalyst washcoat. Due to the limitations of the PGM catalyst, researches are now focusing on improving or replacing this conventional system. In a previous work, the potential of a copper-ceria (Cu-Ce) oxide as a catalyst system has been identified. In this paper, the morphology and characterisation of Cu-Ce oxides analysed using XRD and SEM will be described. The Cu-Ce samples were prepared at a fixed ratio under temperatures of 400 o C and 800 o C. XRD diffractograms showed CeO 2 is in a cubic phase at 400 o C and 800 o C. At 800 o C, the CuO particle is visible, presumably has incorporated with the lattice structure of ceria, indicating an absent of solid state condition between copper and ceria. Analysis by SEM revealed significant increase in particle sizes with increasing calcination temperatures. (Author)

  5. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    Science.gov (United States)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The chaotic points and XRD analysis of Hg-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Oe [Anatuerkler Educational Consultancy and Trading Company, Orhan Veli Kanik Cad., 6/1, Kavacik 34810 Beykoz, Istanbul (Turkey); Oezdemir, Z Gueven [Physics Department, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul (Turkey); Keskin, S S [Department of Environmental Eng., University of Marmara, Ziverbey, 34722, Istanbul (Turkey); Onbasli, Ue, E-mail: ozdenaslan@yahoo.co [Physics Department, University of Marmara, Ridvan Pasa Cad. 3. Sok. 85/12 Goztepe, Istanbul (Turkey)

    2009-03-01

    In this article, high T{sub c} mercury based cuprate superconductors with different oxygen doping rates have been examined by means of magnetic susceptibility (magnetization) versus temperature data and X-ray diffraction pattern analysis. The under, optimally and over oxygen doping procedures have been defined from the magnetic susceptibility versus temperature data of the superconducting sample by extracting the Meissner critical transition temperature, T{sub c} and the paramagnetic Meissner temperature, T{sub PME}, so called as the critical quantum chaos points. Moreover, the optimally oxygen doped samples have been investigated under both a.c. and d.c. magnetic fields. The related a.c. data for virgin(uncut) and cut samples with optimal doping have been obtained under a.c. magnetic field of 1 Gauss. For the cut sample with the rectangular shape, the chaotic points have been found to occur at 122 and 140 K, respectively. The Meissner critical temperature of 140 K is the new world record for the high temperature oxide superconductors under normal atmospheric pressure. Moreover, the crystallographic lattice parameters of superconducting samples have a crucial importance in calculating Josephson penetration depth determined by the XRD patterns. From the XRD data obtained for under and optimally doped samples, the crystal symmetries have been found in tetragonal structure.

  7. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Science.gov (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  8. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  9. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    Science.gov (United States)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  10. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    Science.gov (United States)

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  11. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    Science.gov (United States)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  12. Mössbauer, XRD, and Complex Thermal Analysis of the Hydration of Cement with Fly Ash

    Directory of Open Access Journals (Sweden)

    Vili Lilkov

    2013-01-01

    Full Text Available Hydration of cement with and without fly ash is studied with Mössbauer spectroscopy, XRD, and thermal analysis. Iron in cement is present as Fe3+-ions and occupies two octahedral positions, with close isomer shifts and quadrupole splittings. Iron in fly ash is present as Fe2+ and Fe3+, and the Mössbauer spectra display three doublets—two for Fe3+ in octahedral coordination and one for Fe2+. A third doublet was registered in the hydrating plain cement pastes after the 5th day, due to Fe3+ in tetrahedral coordination in the structure of the newly formed monosulphate aluminate. In cement pastes with fly ash, the doublet of tetrahedral iron is formed earlier because the quantity of ettringite and portlandite is low and more monosulphate crystallizes. No Fe(OH3 phase forms during hydration of C4AF. The fly ash displays pozzolanic properties, which lead to lowering of the portlandite quantity in the cement mixtures and increasing of the high temperature products.

  13. In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions.

    Science.gov (United States)

    L Moore, Radhika; Mann, Jason P; Montoya, Alejandro; Haynes, Brian S

    2018-04-25

    The phase transition by thermal activation of natural α-spodumene was followed by in situ synchrotron XRD in the temperature range 896 to 940 °C. We observed both β- and γ-spodumene as primary products in approximately equal proportions. The rate of the α-spodumene inversion is first order and highly sensitive to temperature (apparent activation energy ∼800 kJ mol-1). The γ-spodumene product is itself metastable, forming β-spodumene, with the total product mass fraction ratio fγ/fβ decreasing as the conversion of α-spodumene continues. We found the relationship between the product yields and the degree of conversion of α-spodumene to be the same at all temperatures in the range studied. A model incorporating first order kinetics of the α- and γ-phase inversions with invariant rate constant ratio describes the results accurately. Theoretical phonon analysis of the three phases indicates that the γ phase contains crystallographic instabilities, whilst the α and β phases do not.

  14. Comparative Study by MS and XRD of Fe{sub 50}Al{sub 50} Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Bustos Rodriguez, H.; Oyola Lozano, D., E-mail: doyolalozano@yahoo.com.mx [University of Tolima, Department of Physics (Colombia)

    2005-02-15

    In this work we report a comparative study of the magnetic and structural properties of Fe{sub 50}Al{sub 50} alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe{sub 50}Al{sub 50} sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  15. Using of XRD in Industrial Sample Analysis and TENORM in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Paulus, W.; Nurhaslinda Ee Abdullah; Meor Yusoff Meor Sulaiman

    2011-01-01

    Industrial waste such as aluminium dross and TENORM waste, oil sludge has been used as sample in this research. Determination of main elements by using X-Ray Diffraction (XRD) in Material Technology Group, Malaysian Nuclear Agency. Results shows that main elements in these samples, aluminium hydroxide (gibbsite) and quartz low, respectively. Thereby, this research shows that XRD can be considered as one of the techniques that can be used in waste characterization and furthermore, it can help researchers and engineer in the research related to waste treatment especially radioactive waste. (author)

  16. Mossbauer and XRD characterization of the phase transformations in a Fe-Mn-Al-C-Mo-Si-Cu as cast alloy during tribology test

    Science.gov (United States)

    Ramos, J.; Piamba, J. F.; Sánchez, H.; Alcazar, G. A. Pérez

    2015-06-01

    In present study Fe-29.0Mn-6Al-0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.

  17. Mossbauer and XRD characterization of the phase transformations in a Fe-Mn-Al-C-Mo-Si-Cu as cast alloy during tribology test

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J. [Universidad Autónoma de Occidente (Colombia); Piamba, J. F. [Universidad del Valle, Departamento Física (Colombia); Sánchez, H. [Universidad del Valle, Escuela de Materiales (Colombia); Alcazar, G. A. Pérez, E-mail: gpgeperez@gmail.com [Universidad del Valle, Departamento Física (Colombia)

    2015-06-15

    In present study Fe-29.0Mn-6Al–0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.

  18. XRD and SEM analysis of hydroxyapatite during immersion in stimulated physiological solutions

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Rosmamuhamadani Ramli; Abd Razak Daud

    2000-01-01

    XRD and SEM techniques were used to analyse the apatite layer developed on the synthetic hydroxyapatite surface following immersion in the simulated body fluid (SBF) that mimics the conditions of material experiences after implantation in the human body. Initially, the new layers formed after 7 day's incubation and increased with immersion time as crystallization of apatite phase. The XRD confirmed that the deposited layer was hydroxyapatite and crystallographically. With time, the crystal growth become more random and the intensity of the peaks decreased. During immersion, hydroxyapatite was precipitated from the SBF and coherently scattered with very small crystal. The SEM observation shows that the new precipitates were increased as well as incubation period increased. Therefore, hydroxyapatite ceramics are suggested to have very good biocompatibility. (Author)

  19. The identification of carbide phases by XRD analysis as the method of assess the extent of the steel damage after long time in service

    Directory of Open Access Journals (Sweden)

    I. Pietryka

    2010-07-01

    Full Text Available After long time in service in contact in a superheated steam mechanical properties of materials decrease. Experiments revealed that the XRD analysis of electrocemically separated carbide phase is a rapid and informative method of evaluation the service condition of steel. Mechanical properties of ferritic and bainitic low-alloy steels are caused by many factors like: chemical composition, quantity and the kind of microstructural constituent, the precipitation hardening, substructure of matrix and index of matrix lattice defects. In this paper the results of investigations 13CrMo4-5 steel was shown. The material for research was taken from thermal power plant elements. Material A was after 150.000 hours of work as the pressure chamber in which was the temperature 530-580oC and the pressure was 12 MPa. Material B was after 250000 hours of work as the pipeline of superheated steam. The temperature in this case was 530oC but the pressure was 12 MPa as well. The mechanical properties after long time service and changes in fine structure were tested. Parameters of carbide phase electrochemical separation in electrolytes solutions are presented in this work.The most relevant electrolyte and the far better conditions of extraction process were chosen taking into consideration the time needed to get considerable amount of carbide phase constituents. The identification of carbide phases was the special goal of this work. Identification of electrochemically separated carbide phases by means of the XRD analysis was used.

  20. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    Science.gov (United States)

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  1. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    Science.gov (United States)

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  2. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    Science.gov (United States)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  3. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  4. Aerogel as a Sample Collector and Sample Mount for Transmission XRD Analysis

    Science.gov (United States)

    Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Yen, A. S.; Jones, S. M.

    2001-01-01

    Silica aerogel can be used for dust collection and in situ X-ray analysis. Aerogels can be less absorbing than Be, and it is feasible to obtain X-ray transmission factors >50% using typical aerogels together with a 100-micrometer Be backing foil. Additional information is contained in the original extended abstract.

  5. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  6. Effect of water molecule distribution on the quantitative XRD analysis in the case of Na-montmorillonite exchanged Cu2+

    International Nuclear Information System (INIS)

    Oueslati, W.; Meftah, M.; Ben Rhaiem, H.; Ben Haj Amara, A.

    2010-01-01

    Document available in extended abstract form only. Several theoretical models are proposed to describe hydration process for Wyoming-montmorillonite clay exchanged Na + or Cu 2+ . They propose some theoretical distribution and disposition for water molecule in the inter-lamellar space in the case of homogeneous and inter-stratified hydration states. For example, Ben Brahim et al. (1983a) studied the interlayer structure (atomic positions of interlayer cations) and associated H 2 O molecules of Na-saturated montmorillonite and beidellite samples. Moore and Hower (1986) studied ordered structures composed of mono-hydrated and collapsed interlayers in montmorillonite, and Cuadros (1996) estimated the H 2 O content of smectite as a function of the interlayer cation. Using similar approach, Ferrage et al (2005b) proposed a discreet distribution of water molecule layer in the same z coordinate of the exchangeable cation with inhomogeneous distribution. This heterogeneity was attributed to the surface charge. The main objective of this study is to characterize the structural changes in the theoretical XRD profile, induced by different water molecule distribution, used to simulate experimental XRD patterns in the case of Na-montmorillonite exchanged Cu 2+ . This problem was achieved by quantitative XRD analysis using an indirect method based on the comparison of the experimental 001 reflections obtained from oriented films patterns with those calculated from structural models. The starting materials were Ca-montmorillonite originated from bentonites of Wyoming (USA). The XRD patterns were obtained by reflection setting with a D8 ADVANCE Bruker installation using Cu-Kα radiation and equipped with solid state detector. Intensities were measured at an interval of 2Θ 0.04 deg. and 40-50 s counting time per step. The diffracted intensity was calculated according to the matrix formalism detailed by Drits and Tchoubar, (1990). The fitting strategies was detailed by Ferrage et

  7. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    Science.gov (United States)

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  8. The importance of XRD analysis in provenance and palaeoenvironmental studies of the Piedras de Afilar Formation, Neoproterozoic of Uruguay

    Science.gov (United States)

    Pamoukaghlian, K.; Poiré, D. G.; Gaucher, C.; Uriz, N.; Cingolani, C.; Frigeiro, P.

    2009-04-01

    The Piedras de Afilar Formation crops out in the southeast part of Uruguay, forming part of the Tandilia Terrane (sensu Bossi et al. 2005). Pamoukaghlian et al. (2006) and Gaucher et al. (2008) have published δ13C, δ18O and U/Pb SHRIMP results, which indicate a Neoproterozoic age for this formation. The palaeoenvironment has been defined as a shallow marine platform based on the presence of interference ripples, hummocky and mega-hummocky cross-stratification. X-ray diffraction (XRD) analyses help to better constrain the palaeoenvironment: the presence of chlorite/smectite found in black shales, suggest a reducing environment, and abundant illite indicates a cold to temperate climate. Provenance studies have been undertaken that utilise a combination of detailed palaeocurrent measurements, petrographic descriptions, XRD analyses, and geochemical isotopic analyses, including U/Pb SHRIMP determinations. Mineral compositional diagrams for sandstones suggest a stable cratonic provenance. Palaeocurrents are mainly from the NNE, indicating a provenance from the cratonic areas of the Tandilia Terrane. The illite crystal index indicates diagenetic to low-metamorphic conditions for the sequence; this is important to confirm that the identified minerals are authigenic. Clay minerals identified by XRD analysis of sandstones from the siliciclastic member are illite (80 - 90%), kaolinite (5 - 10%), and chlorite (5 - 10%). This is consistent with a provenance from the cratonic areas (quartz-feldspar dominated rock types). Isotopic analyses have been undertaken to provide better constraints on the tectonic setting. U/Pb SHRIMP ages for the youngest zircons are 990 Ma (Gaucher et al. 2008), and the basal granite (Granito de la Paz) is 2056 ± 11 Ma (Hartmann et al. 2001), suggesting a provenance from the Archaean basement for the Piedras de Afilar Formation, like its counterparts in the Rio de la Plata Craton. References Bossi, J., Piñeyro, D., Cingolani, C. (2005). El l

  9. The Improvement Effect of Dispersant in Fluorite Flotation: Determination by the Analysis of XRD and FESEM-EDX

    Directory of Open Access Journals (Sweden)

    Y. J. Li

    2015-01-01

    Full Text Available Different dispersants were added in the dispersion process to improve the efficiency of fluorite flotation. The types and dosage of dispersant on the improvement of fluorite flotation were investigated; when the sodium polyacrylate (SPA was used as the dispersant and its addition is 0.5%, the concentrate grade of CaF2 increased from 90% to 98% and the fluorite recovery increased from 81% to 85%. Methods of X-ray powder diffraction (XRD, field emission scanning electron microscopy (FESEM, and Energy dispersive X-ray spectrometer (EDX were used to characterize the sample. According to the analysis of results, the optimal sample consisted of CaF2 and very little CaCO3 in the size range of 0–5 μm. It could be concluded that the mechanism of improvement for the concentrate grade and recovery of CaF2 was attributed to the change of potential energy barrier which caused the separation of particles with different charge. All results indicate that SPA has a great potential to be an efficient and cost-effective dispersant for the improvement of fluorite flotation.

  10. Overview - XRF and XRD

    International Nuclear Information System (INIS)

    Jenkins, R.

    1999-01-01

    Full text: While the roots of both X-ray Fluorescence Spectrometry (XRF) and X-ray Powder Diffractometry (XRD) go back 80 years or so, it is only in the last 30 years or so that both techniques have become widely used in the industrial and research environments. It is the experience of the author that all instrumental techniques go through four basic stages: 1. Innovation - someone has a bright idea 2. Application - people start to apply the bright idea 3. Frustration - the bright idea is found to have complications 4. Consolidation - the complications are understood and resolved. XRF went through these four stages by the mid 1980s. This means that, today, if one understands what one is doing, applies the correct (and generally well known) analytical strategy, there is a high probability that one will obtain the correct result. XRD, on the other hand, is still hovering between 3 and 4 on the list. Problems such as the effect of preferred orientation on intensities, difficulties in obtaining accurate data for larger d-spacings, etc., although better understood today, still pose significant challenges to those involved in both routine and research analysis. The development of low-cost computers has made a dramatic impact in both techniques and it is estimated that today, about 90% of all new spectrometer and diffractometer systems sold, are fully automated. There are about 30,000 X-ray spectrometers and about 25,000 diffractometers in use in the world today. Of these about one half are automated. The process of automation has brought its rewards as well as its consequences. In general, the automation of the two techniques has resulted in a poorer understanding of the instrumentation and methodology, on the part of the typical user. Many laboratories employ both techniques, since they are largely complimentary. This workshop will cover the basics of the two methods, highlighting the advantages and shortcomings of both. Copyright (1999) Australian X-ray Analytical

  11. Phase evaluation of YSZ upon doping with Ta"5"+, Ti"4"+ and Ca"2"+ with combined Raman and XRD analysis

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Shklover, V.; Wermelinger, T.

    2012-01-01

    To improve the phase stability of 7YSZ (7 wt%-Y_2O_3-doped ZrO_2), it has been doped with larger (Ca"2"+) and smaller (Ti"4"+ or Ta"5"+) ions. Complementary Raman and XRD studies of these stabilized systems have been performed. The tetragonal symmetry of the Ta"5"+-ion-doped YSZ sample and the Ti"4"+-doped YSZ sample, and the cubic symmetry of Ca"2"+-doped YSZ have been confirmed both by means of XRD and Raman analyses. Raman scattering measurements show shifts of characteristic peaks when the YSZ is doped with Ta"5"+, Ti"4"+ and Ca"2"+ cations. The peak shift increased with increasing dopant concentration in the ZrO_2 lattice. The Ta-doped YSZ sample heat-treated below 1500 C contained some YTaO_4 phase, which was confirmed by means of XRD as well as by Raman spectroscopy. The effect of Ca"2"+ ion doping on the Raman peak shift was much higher than that of Y"3"+ ion doping. In this work it has been highlighted that Raman spectroscopy is a useful tool complementing XRD, for qualitative comparison of the doping effect on the lattice parameters of ZrO_2.

  12. XRD Analysis of Nanocrystalline Anatase Powders Prepared by Various Chemical Routes: Correlations between Micro-structure and Crystal Structure Parameters

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Matějová, Lenka; Kužel, R.

    2013-01-01

    Roč. 28, Suppl. 2 (2013), s. 161-183 ISSN 0885-7156 Grant - others:UK(CZ) UNCE 204023/2012; MŠk(CZ) GAP108/11/1539 Institutional support: RVO:67985858 Keywords : anatase * crystallite size * lattice parameters * XRD * vacancies * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.586, year: 2013

  13. Combined XRD and XAS

    International Nuclear Information System (INIS)

    Ehrlich, S.N.; Hanson, J.C.; Lopez Camara, A.; Barrio, L.; Estrella, M.; Zhou, G.; Si, R.; Khalid, S.; Wang, Q.

    2011-01-01

    X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) are complementary techniques for investigating the structure of materials. XRD probes long range order and XAFS probes short range order. We have combined the two techniques at one synchrotron beamline, X18A at the NSLS, allowing samples to be studied in a single experiment. This beamline will allow for coordinated measurements of local and long range structural changes in chemical transformations and phase transitions using both techniques.

  14. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    Science.gov (United States)

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  15. Application of inverse models and XRD analysis to the determination of Ti-17 {beta}-phase coefficients of thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)]. E-mail: freour@crttsn.univ-nantes.fr; Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Guillen, R. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)

    2006-04-15

    scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 {beta}-phase. A rigorous inverse thermo-elastic self-consistent scale transition micro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied ({alpha} + {beta}) two-phase titanium alloy.

  16. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  17. Growth and XRD analysis of the diluted magnetic semiconductor Zn{sub 1-x}Ni{sub x}O

    Energy Technology Data Exchange (ETDEWEB)

    Syed Ali, K.S. [Department of Science, Estill High School, Post Office Box 754, Estill, South Carolina - 29918 (United States); Saravanan, R. [Department of Physics, The Madura College, Madurai - 625 011 (India); Acikgoez, M. [Bahcesehir University, Faculty of Arts and Sciences, Besiktas - 34349 (Turkey)

    2011-01-15

    Diluted magnetic semiconductor compound Zn{sub 1-x}Ni{sub x} O(x =0.01, 0.02, 0.03, 0.04 and 0.05) was prepared by sol-gel method and characterized using powder XRD for the distribution of electrons and bonding in the unit cell. The electronic structural studies of this material were carried out by maximum entropy method (MEM) for the quantitative and qualitative measurement on the inclusion and the effect induced on bonding by Ni doping. The spatial arrangement of charge and the bonding behavior of this material were analyzed from 3D, 2D and 1D density distributions. The evidence for the addition of Ni in the host lattice of Zn is realized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  19. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  20. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  1. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  2. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  3. Synthesis, XRD single crystal structure analysis, vibrational spectral analysis, molecular dynamics and molecular docking studies of 2-(3-methoxy-4-hydroxyphenyl) benzothiazole

    Science.gov (United States)

    Sarau Devi, A.; Aswathy, V. V.; Sheena Mary, Y.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Ravindran, Reena; Van Alsenoy, C.

    2017-11-01

    The vibrational spectra and corresponding vibrational assignments of 2-(3-methoxy-4-hydroxyphenyl)benzothiazole is reported. Single crystal XRD data of the title compound is reported and the orientation of methoxy group is cis to nitrogen atom of the thiazole ring. The phenyl ring breathing modes of the title compound are assigned at 1042 and 731 cm-1 theoretically. The charge transfer within the molecule is studied using frontier molecular orbital analysis. The chemical reactivity descriptors are calculated theoretically. The NMR spectral data predicted theoretically are in good agreement with the experimental data. The strong negative region spread over the phenyl rings, nitrogen atom and oxygen atom of the hydroxyl group in the MEP plot is due to the immense conjugative and hyper conjugative resonance charge delocalization of π-electrons. Molecule sites prone to electrophilic attacks have been determined by analysis of ALIE surfaces, while Fukui functions provided further insight into the local reactivity properties of title molecule. Autoxidation properties have been investigated by calculation of bond dissociation energies (BDEs) of hydrogen abstraction, while BDEs of the rest of the single acyclic bonds were valuable for the further investigation of degradation properties. Calculation of radial distribution functions was performed in order to determine which atoms of the title molecule have pronounced interactions with water molecules. The title compound forms a stable complex with aryl hydrocarbon receptor and can be a lead compound for developing new anti-tumor drug. Antimicrobial properties of the title compound was screened against one bacterial culture Escherchia coli and four fungal cultures viz., Aspergillus niger, Pencillum chrysogenum, Saccharomyces cerevisiae and Rhyzopus stolonifer.

  4. ANALYSIS OF DECREASE MACHINABILITY POSSIBLE CAUSES FOR CLAIMED ALLOY

    Directory of Open Access Journals (Sweden)

    Nataša Náprstková

    2016-09-01

    Full Text Available The Faculty of Production Technology and Management is often asked by companies with a request to solve a specific technical task. One of these tasks was the analysis of aluminum alloy worsened machinability when the rods from this alloy exhibited against assumption significantly worse (longer chips during machining. The alloy was complaint and, of course, it created economic damage. Obviously, the company was interested in the causes of this alloy behavior change that could possibly generate future complaints procedures to defend itself better, or to avoid mistakes in the production of the material. At the faculty analysis that could contribute to identifying the cause of the worsened machinability were done.

  5. Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.

    Science.gov (United States)

    Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H

    2018-06-07

    Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

  6. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  7. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  8. High resolution HH-XRF scanning and XRD modelling as a tool in sedimentological analysis - A case study from the Enreca-3 core, Bach Long Vi Island, Vietnam

    Science.gov (United States)

    Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael

    2017-04-01

    To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.

  9. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.

    Science.gov (United States)

    Zohar, Iris; Massey, Michael S; Ippolito, James A; Litaor, M Iggy

    2018-05-01

    We examined P sorption characteristics in Al-based water treatment residuals (Al-WTR) generated from slightly alkaline surface water and in an organic residual composite (WW-Al/O-WTR), produced by using the Al-WTR to treat organic-rich and high P concentration dairy wastewater. Solids from both residuals were examined using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD), and exposed to P additions of 0 to 4000 mg L in a sorption experiment. The Al-WTR removed ∼97% of the added P, whereas WW-Al/O-WTR removed only 78% of the added P in the addition range of 0 to 100 mg P L. With P additions of ≥100 mg L, the removal rate declined to XRD indicated that the major mineral was calcite, with some silica and poorly crystalline Al hydroxides. Analysis by SEM-EDS, which used three-element overlay maps of the residual surfaces, indicated that P was sparsely sorbed on both calcic and Al (hydr)oxide surfaces, along with a few clusters, even at low P concentrations of the treated waters. Ternary clusters of P, Al, and Ca were more abundant on the WW-Al/O-WTR. Carbon distribution suggested that organic substances covered Al surfaces. Sorption of P onto WW-Al/O-WTR may be reversible due to relatively weak Ca-P and Al-P bonds induced by the slight alkaline nature and in the presence of organic moieties, enhancing the WW-Al/O-WTR potential to act as a P source, rather than a P sink, in agricultural applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    International Nuclear Information System (INIS)

    Abdala, M.R.W.S.; Garcia de Blas, J.C.; Barbosa, C.; Acselrad, O.

    2008-01-01

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy

  11. Comparative Investigation on Modal analysis of LM25 Aluminium alloy with other Aluminim alloys using Finite element analysis software

    Science.gov (United States)

    Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.

    2017-03-01

    The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.

  12. S tudies on the phase transitions and properties of tungsten (VI oxide nanoparticles by X - Ray diffraction (XRD and thermal analysis

    Directory of Open Access Journals (Sweden)

    S.F. Abdullah

    2017-11-01

    Full Text Available Tungsten (VI oxide, WO3nanoparticles were synthesized by colloidal gas aphrons(CGAs technique.The resultant WO3nanoparticleswere characterized by thermogravimetric-differential thermal analysis (TG-DTA and X-Ray diffraction (XRD measurements in order to determine the phase transitions, the crystallinity and the size of theWO3nanoparticles. As a comparison, transmission electron microscope (TEM was used to investigate the size of the WO3nanoparticles. The result from XRD and DTA show that the formation of polymorphsWO3nanoparticles have the following sequence: orthorhombic (b-WO3®monoclinic (g-WO3 ®triclinic (d-WO3 ®monoclinic (e-WO3 with respect to the calcination temperature of 400, 500, 600 and 700°C. No diffraction peaks were found in the X-Ray diffraction measurements for the sample heat treated at 300°C (as-prepared, suggesting that an amorphous structure was obtained at this temperature whereas the crystallinity had been obtained by the other samples of theWO3nanoparticles at the calcination temperatures of 400, 500, 600 and 700°C. It is also found that the X-Ray diffraction measurements produced an average diameter of (30 ±5, (50 ±5, (150 ±10 and (200 ±10 nm at calcination temperatures of 400, 500, 600 and 700°C respectively by using Debye-Scherrer formula. The TG curve revealed that the WO3nanoparticles is purely anhydrous since the weight loss is insignificant (0.3 –1.4 % from 30 until 600°C for the WO3nanoparticles calcined at 400°C. Finally, the composition and the purity of the WO3nanoparticleshave been examined by X-Ray photoelectron spectroscopy (XPS. Theresults indicate no significant changes to the composition and the purity of the WO3nanoparticle produced due to the temperature variations

  13. Limestone calcination under calcium-looping conditions for CO2 capture and thermochemical energy storage in the presence of H2O: an in situ XRD analysis.

    Science.gov (United States)

    Valverde, Jose Manuel; Medina, Santiago

    2017-03-15

    This work reports an in situ XRD analysis of whether the calcination/carbonation behavior of natural limestone (CaCO 3 ) is affected by the addition of H 2 O to the calciner at a very low concentration under relevant Calcium-Looping (CaL) conditions for CO 2 capture in coal fired power plants (CFPP) and Thermochemical Energy Storage (TCES) in Concentrated Solar Power plants (CSP). Previous studies have demonstrated that the presence of steam in the calciner at a high concentration yields a significant increase in the reaction rate. However, a further undesired consequence is the serious deterioration of the CaO mechanical strength, which would lead to particle attrition and mass loss in any CaL process based on the use of circulating fluidized beds. The results presented in this manuscript on the time evolution of the wt% and crystallite size of the phases involved in the calcination/carbonation reactions indicate that the calcination rate is still notably increased by the presence of H 2 O at very low concentrations whereas the reactivity toward carbonation and crystal structure of the formed CaO are not essentially affected, which suggests that the CaO mechanical strength is not impaired. Thus, the benefit of using steam for calcination in the CaL process could be still retained while at the same time particle attrition would not be promoted.

  14. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  15. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  16. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Gorlova, M.N.; Feofanova, N.M.; Kornyushkova, Yu.D.

    1977-01-01

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF 4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl 3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  17. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  18. Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test.

    Science.gov (United States)

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-07-01

    Success and acceptability of the bio energy conversion technology to a large extent depend upon management of the inevitable by-products generated during the conversion process. By-products can be considered favourable as organic fertilizer as they retain nutrients with varying composition depending upon input biomass. However, characteristics of these heterogeneous resources with respect to feedstock and processing conditions have to be assessed to state on their agricultural and environmental benefits. Therefore, 3 types of anaerobic digestion by-products (digestate) from surplus biomass viz. cow dung, Ipomoea carnea:cow dung (60:40 dry weight basis) and rice straw:green gram stover:cow dung (30:30:40 dry weight basis) and one gasification by-product (biochar) from rice husk are considered to understand the fertilizer prospects. Considering 3 potential application options, digestate from each feedstock option was further processed as separated solid, separated liquid and ash from solid digestates. Thus, a total of 10 by-products were investigated for understanding their prospects as fertilizer using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X ray Spectroscopy (EDX) and phyto-toxicity test to have a broad insight in terms of their organic, mineral, elemental composition, morphological feature and potential phyto-toxicity. In general, irrespective of origin of feedstock, solid digestate, ash digestate and char showed similarity in terms of composition of functional groups with some degree of variation in relative content as reflected by FTIR analysis. Dominance of organic functional groups in separated solid digestates compared to liquid fraction indicated the former as favourable organic amendments. Quartz was the prevalent mineral phase in all separated solid, ash digestate and rice husk char. Digestates in ash phase represent more concentrated plant nutrient source with

  19. Analysis of weld solidification cracking in cast nickel aluminide alloys

    International Nuclear Information System (INIS)

    Santella, M.L.; Feng, Z.

    1995-01-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results

  20. Mossbauer analysis of the atomic and magnetic structure of alloys

    CERN Document Server

    Ovchinnikov, VV

    2007-01-01

    The monograph indicates the key problems that have to be solved for the further development of the Mössbauer methods for analysis of the nuclear and magnetic structure of alloys, and offer solution variants for some of these problems based on the generalised results of a wide range of theoretical and experimental investigations,including original work by the author of the book and his colleagues. Contents 1. Description of the nature of the Mössbauer effect 2. Interpretation of the ossbauer spectra of alloys 3.Electrical and magnetics hyperfine interactions of resonant nuclei in metals and

  1. Thermodynamic analysis of salt corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Travkin, V.V.; Pshirkov, V.F.; Kolachev, B.A.

    1979-01-01

    About 200 possible chemical reactions of metals, salts and oxides (in a solid state) with water (in a vapour state), and with gases (O 2 , Cl 2 , HCl) were studied by the thermodynamic analysis to elucidate a chemical nature of processes taking place at salt corrosion of titanium alloys (VT22, VT6 and VT16). Temperature dependences of isobaric-isothermic potential were considered to reveal a possibility of spontaneous course and direction of reactions as well as to obtain a comparative estimate of the probability of their pro-cedure. Thermodynamically possible schemes of the chemism of titanium alloy salt corrosion are proposed. Complex che-mical reactions take place in the presence of salt, moisture and oxygen of air on the surface of the alloys. The reactions proceed with the formation of titanium and alloying component chlorides, free chlorine and hydrogen. The free chlorine or HCl are released during pyrohydrolysis and oxidation of chlo-rides. The former ones interact with the alloy with the formation of salts, and hydrogen may be absorbed by the metal and cause embrittlement. Chlorides on the metal surface accelerate the chlorination process. NaCl acts as a cata-lyst. The determination of salt corrosion products has confirmed the process mechanism proposed

  2. PDF analysis of PuAl alloys local structure

    Energy Technology Data Exchange (ETDEWEB)

    Platteau, C. [CEA Valduc, 21120 Is-sur-Tille (France)], E-mail: platteau.cyril@yahoo.fr; Bruckel, P.; Ravat, B.; Delaunay, F. [CEA Valduc, 21120 Is-sur-Tille (France)

    2009-03-15

    For understanding singular properties of plutonium, there is a need in studying the average and local atomic structure in Pu alloys. To study the local structure of the {delta} phase, a pair distribution function (PDF) analysis was done and has shown some significant differences with the average structure.

  3. Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and differential thermal analysis/thermal gravimetric analysis methods

    International Nuclear Information System (INIS)

    Dabiri, R.; Karimi Shahraki, B.; Mollaei, H.; Ghaffari, M.

    2009-01-01

    Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction, In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and differential thermal analysis-thermal gravimetric analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550 d eg C . Dehydration reactions on lizardite started at approximately between 100 to 150 d eg C and dehydroxylation reactions started at approximately 550-690 d eg C . As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600 d eg C . This mineral is stable up to 700 d eg C and then crystallization of enstatite will start at 700 d eg C . During this dehydration and crystallization reaction, amorphous processes will start at 600 d eg C and some amount water and silica will release.

  4. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    Science.gov (United States)

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  5. XRD alignment, calibration and performance

    International Nuclear Information System (INIS)

    Davy, L.

    2002-01-01

    Full text: The quality of any diffractometer system is very much dependent on the alignment, calibration and performance. The three subjects are very much related. Firstly, you must know how to carry out the full diffractometer alignment. XRD alignment is easy once you know how. The presentation will show you step by step to carry out the full alignment. Secondly, you need to know how to calibrate the diffractometer system. The presentation will show you how to calibrate the goniometer, detector etc. Thirdly, to prove the system is working within the manufacturer specification. The presentation will show you how to carry out the resolution, reproducibility and linearity test. Copyright (2002) Australian X-ray Analytical Association Inc

  6. X-ray diffraction analysis of a severely plastically deformed aluminum alloy

    International Nuclear Information System (INIS)

    Ortiz, A.L.; Shaw, L.

    2004-01-01

    The crystallite size, lattice microstrain, lattice parameter, and formation of solid solutions of a nanocrystalline Al 93 Fe 3 Cr 2 Ti 2 alloy prepared via mechanical alloying (MA) starting from elemental powders have been investigated using the Rietveld method of X-ray diffraction (XRD) in conjunction with line-broadening analyses through the variance, Warren-Averbach, and Stokes and Wilson methods. Detailed analyses using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectroscopy (ICP) have also been conducted in order to corroborate the formation of solid solutions and the grain size measurement determined from the XRD analyses. The results from the exhaustive XRD analyses are in excellent agreement with those derived from the investigation of TEM, SEM, and ICP. The lattice microstrains of the nanocrystalline Al solid solution determined from the XRD analyses are isotropic along different crystallographic directions and high, exhibiting the same order of magnitude as the ratio of the tensile strength to the elastic modulus of the Al crystal. Implications resulting from the comparison between the present study and the simplified XRD analyses are discussed

  7. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  8. Analysis of sulphone based organic–inorganic hybrid epoxy nanocomposites for advanced engineering applications—Study of the mechanical, thermomechanical, XRD, EDS and physical properties

    International Nuclear Information System (INIS)

    Shree Meenakshi, K.; Pradeep Jaya Sudhan, E.; Menon, Prathibha G.

    2012-01-01

    Highlights: ► Novel sulphone based tetraglycidyl epoxy nanocomposites were developed for aerospace applications. ► Nano-reinforcements were incorporated and curing was done. ► Excellent results were obtained in the mechanical studies. The nanocomposites developed were flame retardant and hydrophobic. - Abstract: A study was made in the present investigation on sulphone containing tetraglycidyl epoxy nanocomposites to find its suitability for use in high performance applications. The synthesis and characterization of the sulphone tetraglycidyl epoxy resin denoted as ‘B’ was done as reported in our previous study. Nanoclay and POSS-amine nano-reinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as X and Y respectively. In our current research, we continue this research and study the mechanical, thermo-mechanical, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), viscosity, epoxy equivalent weight (EEW) and gel permeation chromatography (GPC) studies.

  9. Activation analysis in zirconium and alloys for nuclear application

    International Nuclear Information System (INIS)

    Cohen, I.M.; Mila, M.I.; Gomez, C.D.

    1981-01-01

    A study has been performed with the purpose to ascertain the possibilities of using neutron activation analysis in non-destructive determination of several elements present in zirconium and its alloys. Those elements must be limited within acceptable top levels, in accordance to standards for nuclear applications. The experimental techniques used are described and the results obtained are discussed, showing that the method is adequate for determining Cl, Co, Hf, Mn, and W, but not Ni and U. (M.E.L.) [es

  10. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Andrew [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)]. E-mail: af@aerodyne.com; Iannarilli, Frank J. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States); Wormhoudt, Joda C. [Center for Sensor Systems and Technologies, Aerodyne Research, Inc., 45 Manning Road Billerica, MA, 01821-3976 (United States)

    2005-08-31

    A laser induced breakdown spectroscopy-based apparatus for the analysis of aluminum alloys which employs a microchip laser and a handheld spectrometer with an ungated, non-intensified CCD array has been built and tested. The microchip laser, which emits low energy pulses (4-15 {mu}J) at high repetition rates (1-10 kHz) at 1064 nm, produces, when focused, an ablation crater with a radius on the order of only 10 {mu}m. The resulting emission is focused onto an optical fiber connected to 0.10 m focal length spectrometer with a spectral range of 275-413 nm. The apparatus was tested using 30 different aluminum alloy reference samples. Two techniques for constructing calibration curves from the data, peak integration and partial least squares regression, were quantitatively evaluated. Results for Fe, Mg, Mn, Ni, Si, and Zn indicated limits of detection (LOD) that ranged from 0.05 to 0.14 wt.% and overall measurement errors which varied from 0.06 to 0.18 wt.%. Higher limits of detection and overall error for Cu (> 0.3 wt.%) were attributed to analysis problems associated with the presence of optically thick lines and a spectral interference from Zn. Improvements in design and component sensitivity should increase overall performance by at least a factor of 2, allowing for dependable aluminum alloy classification.

  11. X-ray diffraction analysis of cold rolled strip from jewelry 585 gold alloy

    Directory of Open Access Journals (Sweden)

    Karastojković Zoran

    2017-01-01

    Full Text Available Here is investigated an golden alloy 585 as one of widely used gold alloy in jewelry production. Insufficient data, even in nowadays, exist about the production schedule of gold alloys, including melting, rolling and heat treatment regimes. The structures of complex alloys, such as used golden alloy, are less known and/or investigated. Principally, the constitutional diagram of Au-Ag-Cu system is known, as a (metastable equilibrium diagram. But, after relatively fast cooling from liquid state during casting will be obtained polycrystalline grains, different from equilibrium conditions. Such polycrystalline material frequently undergoes to rolling for obtaining a desired shape of (semiproduct. Those processes, casting and rolling, will show the influence on the final structure to be obtained, also on properties of such treated alloy. The structural changes and obtained phases in metal working processes of 585 gold alloy still are not well examined, so here is provided an XRD examination after heavy reduction at cold rolling of a strip. The castings were in the flat form in dimension of 4,5x50x50mm, than cold rolled to 1,5mm, intermediate annealed and finally cold rolled to thickness of 0,5mm with height reduction of 66,7%.

  12. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis.

    Science.gov (United States)

    Al-Haj Husain, Nadin; Camilleri, Josette; Özcan, Mutlu

    2016-12-01

    Polishing procedures might alter monolithic zirconia (MZ) surface resulting in phase changes that can be deleterious for clinical performance and antagonist tooth wear. This study investigated the topographical features and phase transformation in MZ after polishing with different regimens simulating the clinical workflow. ​ MZ specimens (Katana Zirconia HT, Kuraray-Noritake) (12×12×1.8 mm(3)) were grinded and polished using one of the five systems assessed: BG: Silicone carbide polishers (Brownie, Greenie, Super Greenie); CG: Diamond impregnated ceramic polisher kit (Ceragloss); EV: Synthetically bonded grinder interspersed with diamond (EVE Kit); SL: Urethane coated paper with aluminium oxide grits (Soflex Finishing and Polishing System Kit) and DB: Diamond bur (8 µm). Polished specimens were initially roughened with 220 µm diamond burs (Grinding Bur-GB) (10 s, 160.000160,000 rpm) and considered for baseline measurements. Polishing regimens were performed for 10 s using a slow-speed hand piece under water-cooling except for SL, in a custom made device (750 g; 5000 and 75,000 rpm). Surface roughnesses, phase changes (XRD) were assessed, surface characterization was performed (SEM, EDS). The highest roughness was obtained with the EV system (1.11 µm) compared to those of other systems (0.13-0.4 µm) (pθ and minor peak at 34.94°2θ. While GB, CG, EV, SL and DB exhibited a peak shift to the left, BG demonstrated a right peak shift on the 2θ scale. Monoclinic phase change was not noted in any of the groups. All polishing methods, except BG, exhibited a peak shift towards the lower angles of the 2-theta scale. Since the peak shifts were in the order of fractions of an angle they are attributed to stress formation rather than a phase change in the material. Thus, all polishing systems tested may not be detrimental for the phase transformation of MZ. EV system resulted in the highest roughness and none of the polishing regimens restored the polishability to the

  13. Corrosion of non-irradiated UAl{sub x}-Al fuel in the presence of clay pore solution. A quantitative XRD secondary phase analysis applying the DDM method

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Andreas [Halle-Wittenberg Univ. (Germany). Dept. of Mineralogy and Geochemistry; RWTH Aachen Univ. (Germany). Inst. of Crystallography; Klinkenberg, Martina; Curtius, Hildegard [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research, IEK-6 Nuclear Waste Management

    2017-04-01

    Corrosion experiments with non-irradiated metallic UAl{sub x}-Al research reactor fuel elements were carried out in autoclaves to identify and quantify the corrosion products. Such compounds, considering the long-term safety assessment of final repositories, can interact with the released inventory and this constitutes a sink for radionuclide migration in formation waters. Therefore, the metallic fuel sample was subjected to clay pore solution to investigate its process of disintegration by analyzing the resulting products and the remnants, i.e. the secondary phases. Due to the fast corrosion rate a full sample disintegration was observed within the experimental period of 1 year at 90 C. The obtained solids were subdivided into different grain size fractions and prepared for analysis. The elemental analysis of the suspension showed that, uranium and aluminum are concentrated in the solids, whereas iron was mainly dissolved. Non-ambient X-ray diffraction (XRD) combined with the derivative difference minimization (DDM) method was applied for the qualitative and quantitative phase analysis (QPA) of the secondary phases. Gypsum and hemihydrate (bassanite), residues of non-corroded nuclear fuel, hematite, and goethite were identified. The quantitative phase analysis showed that goethite is the major crystalline phase. The amorphous content exceeded 80 wt% and hosted the uranium. All other compounds were present to a minor content. The obtained results by XRD were well supported by complementary scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis.

  14. Microstructure analysis of magnesium alloy melted by laser irradiation

    International Nuclear Information System (INIS)

    Liu, S.Y.; Hu, J.D.; Yang, Y.; Guo, Z.X.; Wang, H.Y.

    2005-01-01

    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17 Al 12 and α-Mg as well as some phases unidentified

  15. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  16. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  17. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  18. Thermally stimulated current analysis of Zn{sub 1-x}Cd{sub x}O alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A. Senol, E-mail: saybek@anadolu.edu.tr [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Baysal, Nihal [Kilicoglu Anadolu High School, Eskisehir 26050 (Turkey); Zor, Muhsin; Turan, Evren; Kul, Metin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey)

    2011-02-03

    Research highlights: > We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. > The trap energy, the capture cross-section, the attempt-to-escape frequency and the concentration of the traps in Zn{sub 1-x}Cd{sub x}O films are reported. > The effect of the Cd incorporation into ZnO material on trapping levels was investigated by the TSC measurements. Two overlapped peaks were registered at levels of 0.033 and 0.197 eV in ZnO sample by the curve fitting technique. The observed trap energy levels for ZnO film is thought to originate from zinc interstitials and oxygen vacancies. However, the incorporation of Cd into Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 have resulted in two trapping centers with activation energies of 0.118 and 0.215 eV. The observed trap levels in Zn{sub 0.41}Cd{sub 0.59}O alloy film are related to oxygen adsorption in the sample. - Abstract: We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. XRD measurement indicated that pure ZnO and CdO samples had single phases with hexagonal wurtzite and cubic structures, respectively. However, Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 and 0.78 exhibited mixtures of a hexagonal wurtzite ZnO phase and a cubic CdO phase. Analysis of thermally stimulated current spectra of Zn{sub 1-x}Cd{sub x}O alloy films revealed the existence of a number of overlapped peaks each characterized by different trap energy levels located in the range of 0.033-0.215 eV below the conduction band. We have used curve fitting method for the evaluation of the trap parameters of the alloy films. The values of attempt-to-escape frequency {nu}, capture cross-section S and concentration of the traps N{sub t} have been determined.

  19. The microstructure of mechanically alloyed Al-Mg determined by X-ray diffraction peak profile analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gubicza, J.; Kassem, M.; Ribarik, G.; Ungar, T

    2004-05-15

    The effect of the nominal Mg content and the milling time on the microstructure and the hardness of mechanically alloyed Al-rich Al-Mg solid solutions is studied. The crystallite size distribution and the dislocation structure are characterized by X-ray diffraction (XRD) peak profile analysis and the hardness is obtained from depth-sensing indentation tests. Magnesium gradually goes into solid solution during ball milling and after 3 h an almost complete solid solution is attained. With increasing milling time, the Mg concentration in solid solution, the dislocation density and the hardness increase, whereas the crystallite size decreases. A similar tendency of these parameters is observed at a particular duration of ball milling with increasing nominal Mg content. After 3 h milling there are no changes in both the microstructure and the hardness.

  20. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  1. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  2. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves

    2013-01-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  3. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  4. [Identification of Dens Draconis and Os Draconis by XRD method].

    Science.gov (United States)

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  5. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  6. Proton irradiation studies on Al and Al5083 alloy

    Science.gov (United States)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  7. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    Science.gov (United States)

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  8. First principles analysis of hydrogen chemisorption on Pd-Re alloyed overlayers and alloyed surfaces

    DEFF Research Database (Denmark)

    Pallassana, Venkataraman; Neurock, Matthew; Hansen, Lars Bruno

    2000-01-01

    Gradient corrected periodic density functional theory (DFT-GGA) slab calculations were used to examine the chemisorption of atomic hydrogen on various Pd-Re alloyed overlayers and uniformly alloyed surfaces. Adsorption was examined at 33% surface coverage, where atomic hydrogen preferred the thre...

  9. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    Science.gov (United States)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  10. Analysis of sulphur, phosphorus and silica in metals, alloys, inorganic compounds and solvents

    International Nuclear Information System (INIS)

    Upadhya, J.C.; Naik, S.S.; Khedikar, W.K.; Sudersanan, M.; Mathur, P.K

    1999-10-01

    Procedures for the analysis of sulphur, phosphorus and silica in various metals and alloys like mild steel, carbon steel and stainless steel as well as nickel base alloys are described. Procedures were also developed for the analysis of sulphur in thoria pellets and in other materials like crack check fluids, coal etc. Typical results obtained are summarised. (author)

  11. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  12. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis

    Science.gov (United States)

    Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad

    2018-04-01

    Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.

  13. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  14. Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis.

    Science.gov (United States)

    Toledano, Manuel; Aguilera, Fátima S; López-López, Modesto T; Osorio, Estrella; Toledano-Osorio, Manuel; Osorio, Raquel

    2016-10-01

    The aim of this research was to assess the ability of amalgam restorations to induce amorphous mineral precipitation at the caries-affected dentin substrate. Sound and caries-affected dentin surfaces were subjected to both Zn-free and Zn-containing dental amalgam restorations. Specimens were submitted to thermocycling (100,000 cycles/5°C-55°C, 3 months). Dentin surfaces were studied by atomic force microscopy (nanoroughness), X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive analysis, for physical and morphological surface characterization. Zn-containing amalgam placement reduced crystallinity, crystallite size, and grain size of calcium phosphate crystallites at the dentin surface. Both microstrain and nanoroughness were augmented in caries-affected dentin restored with Zn-containing amalgams. Caries-affected dentin showed the shortest mineral crystallites (11.04 nm), when Zn-containing amalgams were used for restorations, probably leading to a decrease of mechanical properties which might favor crack propagation and deformation. Sound dentin restored with Zn-free amalgams exhibited a substantial increase in length of grain particles (12.44 nm) embedded into dentin crystallites. Zn-containing amalgam placement creates dentin mineralization and the resultant mineral was amorphous in nature. Amorphous calcium phosphate provides a local ion-rich environment, which is considered favorable for in situ generation of prenucleation clusters, promotong further dentin remineralization.

  15. The application of thermal analysis, XRD and SEM to study the hydration behavior of tricalcium silicate in the presence of a polycarboxylate superplasticizer

    International Nuclear Information System (INIS)

    Liu, Ming; Lei, Jiaheng; Guo, Liping; Du, Xiaodi; Li, Junsheng

    2015-01-01

    Highlights: • The initial hydration process of C 3 S is markedly retarded by PC. • The decomposition temperature of Ca(OH) 2 is slightly lower after PC modification. • The adsorption amount of PC on C 3 S increases progressively with the hydration time. • The size of Ca(OH) 2 crystals are changed due to the adsorption of PC. - Abstract: Hydration behavior of tricalcium silicate (C 3 S) in the presence of a polycarboxylate (PC) superplasticizer was investigated by means of isothermal calorimetry, differential thermal analysis and X-ray diffraction. In addition, the adsorption characteristics of PC and morphology change of Ca(OH) 2 crystals were also examined, respectively. The results showed that initial hydration process of C 3 S was markedly retarded by PC and the retardation effect depended on the dosage of PC. The decomposition temperature of the Ca(OH) 2 was slightly lower after PC modification. Moreover, the size of Ca(OH) 2 crystals were found to be changed due to the adsorption of PC. The results obtained in this research allowed us to gain insights into the interactions between PC and cement

  16. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  17. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  18. Characterization of uranium silicide powder using XRD

    International Nuclear Information System (INIS)

    Garcia, Rafael H.L.; Saliba-Silva, Adonis M.; Carvalho, Elita F.U.; Lima, Nelson B.; Ichikawa, Rodrigo U.; Martinez, Luiz G.

    2013-01-01

    Uranium silicide (U 3 Si 2 ) is an intermetallic used as nuclear fuel in most modern MTR - Materials Test Reactor. Dispersed in aluminum, this fuel allows high uranium densities, up to 4.8 gU/cm 3 . At IPEN, the fabrication of fuel elements based on U 3 Si 2 for the IEA-R1 reactor is carried out in the Nuclear Fuel Center (CCN), by vacuum induction melting of uranium and silicon, followed by grinding. Before employed in a nuclear reactor, U 3 Si 2 must be submitted to a strict quality control, which includes granulometry, density, X-ray radiography for dispersion homogeneity, chemical and crystallographic characterization. Concerning phase composition for a qualified fuel, the fraction of U 3 Si 2 should be higher than 80wt.%. Aiming at the development of a routine methodology for quantification of phases via analysis of XRD data using the Rietved method, six samples from two production baths of CCN were submitted to X-ray diffraction. The data were analyzed using software GSAS and line profile analysis methods. The results suggest that fusion product have preferred orientation and grinding step is important for a better refinement. (author)

  19. Fast and effective analysis of ferrous and non-ferrous alloys by X-ray fluorescence

    International Nuclear Information System (INIS)

    Gomez Serra, Abelardo

    1987-01-01

    An empirical method for the integral analysis of any kind of alloys, ferrous and non-ferrous, is described. The method is based on the intensities relation of the mixed elements and is independent of the size, shape and presentation of the sample. By this procedure, alloys with iron, copper, aluminium or magnesium base can be fastly classified. (S.M.) [es

  20. Computer aided cooling curve analysis for Al-5Si and Al-11Si alloys ...

    African Journals Online (AJOL)

    The effect of grain refiner, modifier, and combination of grain refiner cum modifier was studied on Al-5Si and Al-11Si alloys using computer aided cooling curve analysis. For combined grain refinement and modification effect, Al-Ti-B-Sr single master alloy was developed that acted as both grain refiner and modifier.

  1. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. luminium alloy - rice husk ash composites production and analysis

    Directory of Open Access Journals (Sweden)

    Abdullahi Mohammed USMAN

    2014-11-01

    Full Text Available This study was carried out to produce and analyse the properties of Aluminium Alloy-Rice Husk Ash composites. Rice husk ash (RHA with high silica content of up to 97.095% was used for the study with the RHA varied from 0vol% – 30vol% at intervals of 5vol% in the aluminium alloy as reinforcement. The density and some mechanical properties of the composites including tensile strength, impact strength, hardness and fatigue strength were investigated. The results showed that the density of the composite decreases with the percentage increase of reinforcement from 2840.242 kgm-3 for the control sample to 2402.899 kgm-3 for 30vol% RHA. The Ultimate Tensile Strength (UTS varies from 164.374 MNm-2 at 0% RHA to 176.837 MNm-2 with maximum value at 10% RHA, impact strength values varies from 84.020kJm-2 at 0% RHA to 155.244 kJm-2 with maximum value at 10% RHA, hardness value varies from 70.467 RHV at 0% RHA to 109.367 RHV with maximum value at 25% RHA and fatigue strength varies from 0.224x106 cycles to 2.582x106 cycles with maximum cycle at 20% RHA. The results of analysis of variance showed that there are significant differences among the means of each property of the composites at different levels of replacement of the ash addition (P<0.05. It was concluded that the produced composites could be used to make engineering components such as automobile body parts, piston and block engine etc.

  3. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  4. Thermodynamic analysis of transition pressure of δ-stabilized binary plutonium alloys

    International Nuclear Information System (INIS)

    Wang Qinghui

    1992-01-01

    The transformation of δ-stabilized binary plutonium alloys to α-Pu was studies by thermodynamic analysis. A transition pressure-composition equation which can characterize the high pressure transformation from δ to α was derived. Values calculated by the equation and values measured by experiments of published references have the same tendency. the following facts can be explained properly by this equation. (1)The transformation pressure increases linearly with the amount of an alloying element. (2) The slope of the plot of transformation pressure versus composition of δ-Pu alloys is inversely proportional to the minimum amount of solute required to retain δ-phase at room temperature and pressure. (3) Curves showing the relationship between transformation pressure and composition of various δ-stabilized binary alloys interact at the same point of zero solute (transformation pressure axis). In addition, some transformation pressures from δ to α of δ-stabilized alloys are predicted by using the modified theoretical equation

  5. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  6. Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy

    National Research Council Canada - National Science Library

    Harrell, James

    2001-01-01

    Recently developed Orientation Imaging Microscopy (OIM) methods have been applied to the analysis of microstructure and microtexture of 5083 aluminum alloy materials that have been processed to enable superplasticity...

  7. Study of archaeological objects by neutron imaging, xrd and xrf

    International Nuclear Information System (INIS)

    Dinca, M.; Dinu, A. D.; Stanciulescu, M. G.; Mandescu, D.

    2015-01-01

    Archaeological objects were borrowed from Arges County History Museum (ACHM) and investigated at the Institute for Nuclear Research (INR). Metallic objects made in iron, copper alloys and silver discovered in southern part of Romania, mostly Dacian and Roman origin, were investigated. For imaging was used the neutron and gamma imaging facility from tangential channel of the TRIGA ACPR to put in evidence the internal structure of the objects. For elemental and chemical composition, concentration levels in objects were performed investigations by X-ray fluorescence (XRF) and X-ray diffraction (XRD). These investigations offer valuable information in archaeological research about composition, structure of the bulk, presence of alteration, inclusions, typology of the location of material extraction, manufacturing techniques etc. This work is an example of application of neutron imaging and other radiation-based analytical methods for cultural heritage research that had the aim to involve some of the non-destructive investigation methods available at INR. (authors)

  8. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Hassan, A.M.; El-Shershaby, A.; Walley El-Dine, N.

    1996-01-01

    Two brazing alloy samples (C P 2 and C P 3 ) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10 1 1 n/cm 2 /s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10 1 2 n/cm 2 /s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  9. Elemental analysis of brazing alloy samples by neutron activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, E A; Rofail, N B; Hassan, A M [Reactor and Neutron physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); El-Shershaby, A; Walley El-Dine, N [Physics Department, Faculty of Girls, Ain Shams Universty, Cairo (Egypt)

    1997-12-31

    Two brazing alloy samples (C P{sup 2} and C P{sup 3}) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10{sup 1}1 n/cm{sup 2}/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10{sup 1}2 n/cm{sup 2}/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab.

  10. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  11. Phase analysis and magnetocaloric properties of Zr substituted Gd-Si-Ge alloys

    International Nuclear Information System (INIS)

    Prabahar, K.; Raj Kumar, D.M.; Manivel Raja, M.; Chandrasekaran, V.

    2011-01-01

    The structure, microstructure, magneto-structural transition and magnetocaloric effect have been investigated in series of (Gd 5-x Zr x )Si 2 Ge 2 alloys with 0≤x≥0.20. X-ray powder diffraction analysis revealed the presence of orthorhombic structure for Zr containing alloys at room temperature in contrast to the monoclinic structure observed in the parent Gd 5 Si 2 Ge 2 alloy. The microstructural studies reveal that, low Zr addition (x≤0.1) resulted in low volume fraction of detrimental Gd 5 Si 3 -type secondary phase compared to that present in the parent alloy. All the Zr containing alloys have shown the presence of only second order magnetic transition unlike the parent alloy showing both first order structural and second order magnetic transition. A moderate (ΔS) M value of -5.5 J/kg K was obtained for the x=0.05 alloy at an enhanced operating temperature of 292 K compared to -7.8 J/kg K at 274 K of the parent alloy for an applied field of 2 T. The interesting feature of Zr (x=0.05) containing alloy is the wide operating temperature range of ∼25 K than that of ∼10-12 K for the parent, which resulted in enhanced net refrigerant capacity of 103 J/kg compared to that of 53 J/kg for the parent alloy. - Research highlights: → Zr addition in Gd 5 Si 2 Ge 2 alloy has been investigated for the first time to reduce the 5:3-type (Gd 5 Si 3 ) secondary phase formed when using commercial grade elements in Gd 5 Si 2 Ge 2 alloy. → It is interesting to observe that Zr addition decrease the volume fraction 5:3. → The refrigerator capacity and transition temperature of Zr added alloy is greater than the pure Gd 5 Si 2 Ge 2 which makes this alloy promising for room temperature application.

  12. Thermal and microstructural analysis of alloys of Al-Mg-Li system

    International Nuclear Information System (INIS)

    Ovsyannikov, B.V.; Zamaytin, V.M.; Smirnov, V.L.; Mushnikov, V.S.

    2008-01-01

    By means of the thermal analysis one investigated into melting and solidification of Al-Mg-Li system 1420, 1421 and 1424 aluminum-lithium alloys. One determined the temperature values of the nonequilibrium and the equilibrium solidus, the initiation of the liquidus linear shrinkage of the listed alloys. Making use of a scanning electron microscope with a microanalyser unit one studied the microstructure of the alloys and determined the local chemical composition of the phases unsoluble under homogenization of ingots along the aluminum matrix grain boundaries [ru

  13. Oxidation kinetics and auger microprobe analysis of some oxidized zirconium alloys

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1989-01-01

    Oxidation kinetics at 300 o C in dry oxygen of 0.5 wt% binary alloys of iron, nickel, and chromium in zirconium were determined for several surface preparations. Further, chemical profiles of the oxides as they existed on the matrix and on the precipitates were obtained by sputtering and Auger electron analysis. The appearance of 'breakaway' oxidation was controlled by the surface finish of the alloy, a variable that could be used to eliminate the phenomenon for all alloys except the Zr/Ni binary, which required β-quenching to accomplish the same purpose. (author)

  14. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  15. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application

    International Nuclear Information System (INIS)

    Arruda, Carlos do Canto

    2002-01-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo Sentalloy F

  16. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Directory of Open Access Journals (Sweden)

    Abdoul-Aziz Bogno

    2015-01-01

    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  17. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  18. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  19. Analysis of local dislocation densities in cold-rolled alloy 690 using transmission electron microscopy

    International Nuclear Information System (INIS)

    Ahn, Tae-Young; Kim, Sung Woo; Hwang, Seong Sik

    2016-01-01

    Service failure of alloy 690 in NPP has not been reported. However, some research groups reported that primary water stress corrosion cracking (PWSCC) occurred in severely cold-rolled alloy 690. Transgranular craking was also reported in coll-rolled alloy 690 with a banded structure. In order to understand the effect of cold rolling on the cracking of alloy 690, many research groups have focused on the local strain and the cracked carbide induced by cold-rolling, by using electron backscatter diffraction (EBSD). Transmission electron microscopy (TEM) has been widely used to characterize structural materials because this technique has superior spatial resolution and allows for the analysis of crystallographic and chemical information. The aim of the present study is to understand the mechanism of the abnormally high crack growth rate (CGR) in cold-rolled alloy 690 with a banded structure. The local dislocation density was measured by TEM to confirm the effects of local strain on the stress corrosion cracking (SCC) of alloy 690 with a banded structure. The effects of intragranular carbides on the SCC were also evaluated in this study. The local dislocation densities were directly measured using TEM to understand the effect of local strain on the SCC of Ni-based alloy 690 with a banded structure. The dislocation densities in the interior of the grains sharply increased in highly cold-rolled specimens due to intragranular carbide, which acted as a dislocation source

  20. Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the aviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application. In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. Multiphysics Finite Element (FE linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of Ultimate Tensile Strength (UTS for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on commercial bases, were analyzed individually to meet the structural requirements. After applying selection criteria, four alloys were finalized from NIMONIC and INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the Multiphysics FE nonlinear stress analysis was then carried out for the selection of the individual alloy by imposing a restriction of Ultimate Factor of Safety (UFOS of 1.33 and yield strength. Final selection is made keeping in view other factors

  1. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  2. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  3. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  4. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    Science.gov (United States)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  5. Structure analysis of 3104 aluminium alloy applied to deep drawing

    Energy Technology Data Exchange (ETDEWEB)

    Klyszewski, A.; Lech-Grega, M.; Zelechowski, J.; Szymanski, W. [Light Metals Div., Skawina (Poland). Inst. of Non-Ferrous Metals

    2000-07-01

    Optical and electron microscopy observations and X-ray investigations of 3104 aluminium alloy ingots and bands after experimental heat treatment were carried out. The influence of ingots homogenisation temperature and parameters of material heat treatment after hot rolling on structure, texture and earing of band 0.3 mm thick was analysed. (orig.)

  6. Numerical analysis of twin thickening process in magnesium alloys

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Stratil, Luděk; Čížek, J.; Ghaderi, A.; Barnett, M.

    2017-01-01

    Roč. 124, FEB (2017), s. 9-16 ISSN 1359-6454 R&D Projects: GA ČR GJ15-21292Y Institutional support: RVO:68081723 Keywords : Magnesium alloy * Twinning * Crystal plastic ity * FEM Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 5.301, year: 2016

  7. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    Science.gov (United States)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  8. Kinetic and morphological differentiation of ettringites in plain and blended Portland cements with metakaolin and the ASTM C 452-68 test. Part II: Morphological differentiation by SEM and XRD analysis

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2009-03-01

    Full Text Available The same cementitious materials (OPCs, SRPCs and matekaolin, MK, the same blended cements and the same ASTM C 452-68 test than in Part I, were used. Other complementary determinations were: chemical analysis of cementing materials, SEM and XRD analysis of ettringites and specific properties of some cement tested and of their pastes.The experimental results have also demonstrated that when 7.0% SO3, equivalent to 15.05% of gypsum, was added to the M pozzolan-containing Portland cement and tested with the ASTM C 452-68 method, it was not found to behave aggressively but rather as “setting regulator ”, because the increase in mechanical strengths over time and setting times in these mixes were, therefore, similar to the pattern observed in any PC. However, when the gypsum content was raised to triple than that amount (21.0% SO3, it behaved aggressively. In both cases, logically, ettringite from both origins were involved in the resulting beneficial or adverse behavior.En esta Parte II se utilizaron los mismos materiales cementíceos (CPO, CPRS, y metakaolín, MK, los mismos cementos de mezcla y el mismo método de ensayo ASTM C 452-68 que en la Parte I. Otras determinaciones complementarias fueron: análisis químico de los materiales cementíceos, análisis por DRX y SEM de ettringitas y propiedades específicas de algunos cementos ensayados y de sus pastas.Los resultados experimentales obtenidos han demostrado también que, el 7.0% de SO3 presente en los 30 cementos de mezcla con MK, ensayados conforme el método ASTM C 452-68, no se comporta como agresivo sino como ”regulador de fraguado”, porque los tiempos de fraguado y el aumento de resistencias mecánicas fueron como los de cualquier CP. De aquí que algunos de esos cementos de mezcla puedan ser considerados “cementos hidráulicos expansivos”, el resto, no. Sin embargo, cuando la cantidad de yeso aportada fue el triple (21,0% SO3, se comportó como agresivo, motivo por el cual

  9. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  10. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    Science.gov (United States)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  11. Microstructural studies of suck cast (Zr-SS)-3 and 5 AI alloys for nuclear metallic waste form

    International Nuclear Information System (INIS)

    Kumar, P.; Das, N.; Sengupta, P.; Arya, A.; Dey, G.K.

    2015-01-01

    Management of radioactive metallic waste using 'alloy melting route' is currently being investigated. For disposal of Zr and SS base nuclear metallic wastes, Zr-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) alloys. In this context Zr-16 wt. %55 has been selected for MWF alloy in our previous study. In present study, to include amorphous phase in this alloy, 3 and 5 wt. % Al has been added in order to improve desirable properties and useful features of MWF and the two alloys have been prepared by suck casting techniques. Microstructure of these alloys have been investigated by optical and electron microscopy which shows occurrence of two different phases, e.g. dark grey and white phases, in (Zr-16 SS)-3 Al and three different phases, e.g. grey, dark grey and white phases in (Zr-16 SS)-5 AI. Electron diffraction and X-ray diffraction (XRD) analyses of these two alloy specimens revealed the occurrence of Zr (Fe, Cr, AI) (dark grey) and Zr 2 (Fe, Cr, AI) (white) phases in (Zr-16 SS)-3 Al whereas, Zr (Fe, Cr, AI) (dark grey), Zr 2 (Fe, Cr, AI) (grey) and Zr 3 (Fe, Cr, AI) (white) phases were found in (Zr-16 SS)-5 AI. In addition, presence of amorphous phase was indicated by XRD analysis that could be confirmed by transmission electron microscopy of these two alloys. (author)

  12. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with Sn, Zn, and Ga were in the higher end and should be considered secondary to elements such as Sr and Ba that had overall better results. The results of this study along with other considerations such as thermodynamics, and chemical reactivity will help down select a preferred lithium ternary alloy.

  13. Electrodeposition of NiPd alloy from aqueous chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mech, K., E-mail: kmech@agh.edu.pl [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wróbel, M [AGH, University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, Krakow (Poland); Wojnicki, M [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Mech-Piskorz, J. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Żabiński, P.; Kowalik, R. [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-12-01

    Highlights: • Mechanism of electrode reactions resulting in NiPd alloys was described. • Electrolysis conditions enabling alloys synthesis were determined. • Alloys were characterized towards composition, structure and surface properties. - Abstract: Presented results describing properties of alloys deposited at potentiostatic conditions in Ni{sup 2+} – Pd{sup 2+} – Cl{sup −} – H{sub 2}O system. Electrolysis parameters were defined based on results of thermodynamic analysis as well as voltammetry coupled with electrochemical quartz crystal microbalance (EQCM). Influence of electrode potential and electrolyte components concentration on alloy composition, morphology and its structure was investigated. Alloys were deposited at different Ni(II) and Pd(II) complexes concentrations. Results indicated possibilities of electrochemical synthesis of alloys of wide composition range. Deposits structure as well as crystallites size were discussed based on results of XRD measurements. Alloys composition was determined with the use of energy dispersive spectroscopy (EDS). Morphology of alloys was characterized with the use of scanning electron microscopy (SEM).

  14. Magnetic shape-memory alloys: thermomechanical modelling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Stefanelli, U.

    2014-01-01

    Roč. 26, č. 6 (2014), s. 783-810 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetic shape- memory alloys * martensitic phase transformation * ferro/paramagnetic phase transformation Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007/s00161-014-0339-8#

  15. Direct-reading spectrochemical analysis of magnesium alloys

    International Nuclear Information System (INIS)

    Roca Adell, M.

    1964-01-01

    A Quantometer has been applied to the determination of aluminum, berylium, calcium, iron, silicon and zinc in magnesium alloys Magnox, after the conversion of the samples to the oxide. For the aluminum, whose concentration is relatively high, the conducting briquets technique with an interrupted discharge is employed, using the magnesium as the internal standard. For the other elements a total burning method with direct current arc is employed, using also the magnesium as the internal standard. (Author) 7 refs

  16. Semiquantitative activation analysis in metallic alloys submitted to irregular irradiation

    International Nuclear Information System (INIS)

    Veissid, N.; Lucki, G.

    1979-01-01

    An analytic semiquantitative method using neutron activation was developed to determine the impurities and verify the composition of metallic alloys. By the radioactive transformation law, the number of atoms of each element present in the sample is determined measuring the activity in a multichannel. Two samples were analysed: a) Sample of nominal compositions FeNiCr (49,95-49,95 - 0,1% at). b) Sample of nominal composition NiCr (80,20% at). (Author) [pt

  17. Theoretical analysis of the alloying element effect on decarburization

    International Nuclear Information System (INIS)

    Elanskij, G.N.; Kudrin, V.A.; Akinfiev, S.I.

    1978-01-01

    On the basis of the laws of physical chemistry the alloying element (Ni, Cr, Mo, W, Co, Mn) effect on the kinetics and degree of decarburizing in iron melt with low carbon concentrations has been determined. The calculation of alloying element effect on the value of carbon diffusion coefficient and on the velocity changes in carbon oxidation rate has been carried out. It is shown that carbon diffusion coefficient and decarburization rate are detemined by two factors: thermodynamic, carbon activity change in the presence of alloying elements being accounted for and structural, dependending on the liquid metal structure and being determined by the viscosity activity of impurity. Experimental data are given, testifying that the introduction in the melt of such elements as Ni, Co, Cu, promotes a decrease in carbon content, as well as accelerates the decarburization process. W and Mo produce a poor effect, and Cr and Mn abruptly increase the value of minimum carbon content. Mo, Cr and W reduce the decarburization rate in the melt

  18. Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique

    Science.gov (United States)

    Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.

    2018-04-01

    Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.

  19. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    Science.gov (United States)

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  20. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    Science.gov (United States)

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor.

  1. XRD and HREM studies of nanocrystalline Cu and Pd

    International Nuclear Information System (INIS)

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  2. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R.

    2017-01-01

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples

  3. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

  4. Analysis of structural properties for AlSi11 alloy with use of thermal derivative gradient analysis TDGA

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2008-08-01

    Full Text Available In this paper a basis of thermal derivative gradient analysis was shown. Authors presented methodology of the studies, results and analysis. Studies of crystallization kinetics were conducted on non-modified AlSi11 eutectic alloy. Analyzing the results authors proposed some parameters for description of crystallization kinetics and their relation to microstructure and mechanical properties.

  5. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  6. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    Science.gov (United States)

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (Pcasting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high

  7. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  8. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  9. Application of the Fundamental Parameter Method for X-ray fluorescence analysis of gold jewellery alloys

    International Nuclear Information System (INIS)

    Le Hong Khiem

    2004-01-01

    The Fundamental Parameter Method has been used for the correction of the matrix effects for determination of the fineness of gold in the ternary Au-Ag-Cu yellow jewellery alloys. A computer code GOLDANA based on this algorithm has been developed for both data taking and on-line determining the fineness of gold jewellery. Only one ternary Au-Ag-Cu standard sample is required. The analysis performance has been tested by measurements conducted on certified gold reference materials, with the use of the fundamental method, could be used for quickly determining the gold concentration in gold jewellery alloys with an acceptable accuracy for the gold jewellery producers. (author)

  10. Influence of thermo-derivative analysis conditions on microstructure of the Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-04-01

    Full Text Available Microstructure change of the metals and alloys as a result of variable crystallisation conditions also by mind of cooling rate changeinfluence the mechanical properties. In this work there are presented the interdependences between the cooling rate, chemical compositionand microstructure of the cast aluminium alloy Al–Si–Cu as a result of the thermo-derivative analysis, using the UMSA (UniversalMetallurgical Simulator and Analyzer device. An important tool for the microstructure evaluation of the Al type AC-AlSi7Cu3Mg alloywas the light and electron scanning microscopy technique.

  11. Composition analysis of Ta-W alloy using NAA and EDXRF techniques

    International Nuclear Information System (INIS)

    Swain, K.K.; Remya Devi, P.S.; Chavan, Trupti A.; Verma, R.; Reddy, A.V.R.

    2015-01-01

    Tantalum-Tungsten (Ta-W) alloy is a high strength alloy and is used in corrosion resistant chemical process equipment's including heat exchangers, condensers, heating and cooling coils and reaction vessels. Ta-W alloy is also used as ion extraction plate during laser Isotope separation of uranium and hence the composition is critical for its optimal application. The composition of the alloy was determined by neutron activation analysis (NAA) and energy dispersive X-ray fluorescence spectrometry (EDXRF) techniques. Ta-W alloy sample was received from Nuclear Fuel Complex (NFC), Hyderabad. For NAA, samples (50 - 500 mg) were sealed in polyethylene. High purity Ta foil (30 - 40 mg) and W foil (10 - 20 mg) were packed and used as comparators. Samples and standards were irradiated in the graphite reflector position of Advanced Heavy Water Reactor Critical Facility (AHWR CF) reactor, BARC, Mumbai for 4 hours. After suitable decay period, radioactivity assay was carried out using a 45% relative efficiency high purity germanium (HPGe) detector coupled to MCA with 8 k conversion gain

  12. Biochemical analysis of the Hormoconis resinae fungal mycelium in the corrosion of aeronautical aluminium alloys

    International Nuclear Information System (INIS)

    Araya, R.; Bobadilla, C.; Vera, R.; Rosales, B. M.

    2007-01-01

    Biochemical analyses of the Hormoconis resinae fungal mycelium would explain behaviour differences of corrosive and non-corrosive strains of Al and its aeronautical alloys. In previous works its aggressiveness had been studied through SEM-EDX surface analysis, electrochemical techniques and immersion testing. In this paper separation of the proteins of the mycelium produced by a non-corrosive strain and its culture along three generations was performed. cultures were prepared in batch in the presence and absence of pure Al and AA 2024, AA 7005 and AA 7075 alloys. The mycelia grown throughout the three generations increasingly recovered usual characteristics at the third replication, included their corrosiveness on Al and its alloys previously shown by all out strains. Among the bio-molecule fractions isolated and analysed during this preliminary study only the proteins revealed changes with the generation grown. When this fungal strain was cultured in the presence of alloy metal sheets electrophoresis of the protean fraction was correlative with the distinct mycelia behaviour observed, including corrosiveness on Al and its alloys. (Author) 30 refs

  13. Investigation on the thermodynamic analysis, preparation and characterization of LaNi5 - hydrogen storage alloy by magnesiothermic reduction diffusion process

    Directory of Open Access Journals (Sweden)

    Giresan G.

    2016-01-01

    Full Text Available The present investigation focuses on the preparation of LaNi5 intermetallic compound by “Metallothermic reduction diffusion process”. Experiments were carried out using oxides and chlorides of La and Ni metal powders as the raw materials with granular Mg powder as the reductant. The thermal reduction process was carried out at 900 ºC for 9 hrs in Ar atmosphere. After the completion of reaction, the contents were purified by treating with dilute acetic acid followed by de-ionized water. Thermodynamic feasibility studies were carried out to determine the probabilistic nature of formation of the desired compound. Thermal analysis was carried out to find the dissociation and decomposition temperature of the reactants. The phase purity and the elemental composition of the alloy were assessed by XRD and EDX analyses. The morphological features of the prepared powders were examined by SEM. From this study, it has been concluded that LaNi5 alloy can be prepared with an appreciable purity by the Metallothermic reduction diffusion process.

  14. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  15. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  16. Computational modeling applied to stress gradient analysis for metallic alloys

    International Nuclear Information System (INIS)

    Iglesias, Susana M.; Assis, Joaquim T. de; Monine, Vladimir I.

    2009-01-01

    Nowadays composite materials including materials reinforced by particles are the center of the researcher's attention. There are problems with the stress measurements in these materials, connected with the superficial stress gradient caused by the difference of the stress state of particles on the surface and in the matrix of the composite material. Computer simulation of diffraction profile formed by superficial layers of material allows simulate the diffraction experiment and gives the possibility to resolve the problem of stress measurements when the stress state is characterized by strong gradient. The aim of this paper is the application of computer simulation technique, initially developed for homogeneous materials, for diffraction line simulation of composite materials and alloys. Specifically we applied this technique for siluminum fabricated by powder metallurgy. (author)

  17. Analysis of precipitation in a Cu-Cr-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Zhao Mei; Lin Guobiao; Wang Zidong; Zhang Maokui

    2008-01-01

    Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  18. Classification of alloys using laser induced breakdown spectroscopy with principle component analysis

    Science.gov (United States)

    Syuhada Mangsor, Aneez; Haider Rizvi, Zuhaib; Chaudhary, Kashif; Safwan Aziz, Muhammad

    2018-05-01

    The study of atomic spectroscopy has contributed to a wide range of scientific applications. In principle, laser induced breakdown spectroscopy (LIBS) method has been used to analyse various types of matter regardless of its physical state, either it is solid, liquid or gas because all elements emit light of characteristic frequencies when it is excited to sufficiently high energy. The aim of this work was to analyse the signature spectrums of each element contained in three different types of samples. Metal alloys of Aluminium, Titanium and Brass with the purities of 75%, 80%, 85%, 90% and 95% were used as the manipulated variable and their LIBS spectra were recorded. The characteristic emission lines of main elements were identified from the spectra as well as its corresponding contents. Principal component analysis (PCA) was carried out using the data from LIBS spectra. Three obvious clusters were observed in 3-dimensional PCA plot which corresponding to the different group of alloys. Findings from this study showed that LIBS technology with the help of principle component analysis could conduct the variety discrimination of alloys demonstrating the capability of LIBS-PCA method in field of spectro-analysis. Thus, LIBS-PCA method is believed to be an effective method for classifying alloys with different percentage of purifications, which was high-cost and time-consuming before.

  19. Mineralogical Composition of the Mexican Ordinary Chondrite Type Meteorite: A Raman, Infrared and XRD Study

    Science.gov (United States)

    Ostrooumov, M.

    2016-08-01

    The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.

  20. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  1. The effect of main alloying elements on the physical properties of Al–Si foundry alloys

    International Nuclear Information System (INIS)

    Stadler, F.; Antrekowitsch, H.; Fragner, W.; Kaufmann, H.; Pinatel, E.R.; Uggowitzer, P.J.

    2013-01-01

    In this study we describe the effect of the main alloying elements Si, Cu and Ni on the thermal properties of hypoeutectic and near-eutectic Al–Si foundry alloys. By means of systematic variations of the chemical composition, the influence of the amount of ‘second phases’ on the thermal conductivity, thermal expansion coefficient, and thermal shock resistance is evaluated. Thermodynamic calculations predicting the phase formation in multi-component Al–Si cast alloys were carried out and verified using SEM, EDX and XRD analysis. The experimentally obtained data are discussed on a systematic basis of thermodynamic calculations and compared to theoretical models for the thermal conductivity and thermal expansion of heterogeneous solids.

  2. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  3. Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy

    Science.gov (United States)

    Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.

    2018-03-01

    By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.

  4. MICROSTRUCTURAL FEATURES EVALUATION OF AGE-HARDENED A 226 CAST ALLOY BY IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Lenka Kuchariková

    2018-01-01

    Full Text Available Age-hardening provides one of the most widely used mechanisms for the strengthening of aluminum alloys. The age-hardening involves three steps: solution treatment, quenching and aging. The temperature of solution treatment and aging is very important in order to reach desired properties of castings. The optimum temperature of solution treatment and aging led to formation microstructural features in form which does not lead to decreasing properties, but increasing ones. The major microstructural features in A 226 cast alloys which are responsible for increasing properties are: eutectic Si particles, Cu-rich phases, Fe-rich phases and porosity. The increase of properties depends on morphology, size and volume of microstructural features. In order to assess age-hardening influence on microstructural features in A226 cast alloys were used as possibilities of evaluation by means of image analysis. Quantitative analysis decelerate changes in microstructure includes the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu further increase in the hardness and tensile strength in the alloy. Changes of mechanical properties were measured in line with STN EN ISO.

  5. Thermal and microstructural analysis of an aluminium A356 alloy solidified by magnetic agitation

    International Nuclear Information System (INIS)

    Bustos, O; Ordonez, S; Jarami, Dario; Colas, R

    2008-01-01

    A magnetic agitation device was designed using a permanently rotating magnetic field, in order to study the effect of applying a variable magnetic field to agitate cast metals during the solidification process. The procedure used to verify the machine's functioning involved smelting and casting a predefined amount of A356 alloy in the device with and without the application of the magnetic field and then characterizing the material obtained with standard procedures of metallographic analysis. The results obtained show that the application of a permanently rotating magnetic field produces a destruction of the cast dendritic structure. This is explained by the fact that a magnetic field that varies over time induces a f.e.m. in a fluid conductor that becomes an increased convective transport through the Lorentz force. This work also studied the kinetics of solidification. The alloy was heated to 680 o C and was cast in molds preheated to 200 o C. Tests were carried out with and without the application of magnetic agitation. The cooling curves were recorded to evaluate the effect of the magnetic agitation on the alloy's form of solidification. The thermal analysis of the cooling curves shows a decrease in the temperatures under which the formation of dendrites from the primary phase as well as from the eutectic Al-Si phase begins when a magnetic field is imposed. A series of intermetallic AlFeSi type compounds appear in these alloys, which display noticeable refining and redistribution from the magnetic agitation (au)

  6. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.

    Science.gov (United States)

    Brown, Ryan N; Sexton, Brent E; Gabriel Chu, Tien-Min; Katona, Thomas R; Stewart, Kelton T; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2014-04-01

    The detailed mechanical and histologic properties of stainless steel miniscrew implants used for temporary orthodontic anchorage have not been assessed. Thus, the purpose of this study was to compare them with identically sized titanium alloy miniscrew implants. Forty-eight stainless steel and 48 titanium alloy miniscrew implants were inserted into the tibias of 12 rabbits. Insertion torque and primary stability were recorded. One hundred grams of tensile force was applied between half of the implants in each group, resulting in 4 subgroups of 24 specimens each. Fluorochrome labeling was administered at weeks 4 and 5. When the rabbits were euthanized at 6 weeks, stability and removal torque were measured in half (ie, 12 specimens) of each of the 4 subgroups. Microdamage burden and bone-to-implant contact ratio were quantified in the other 12 specimens in each subgroup. Mixed model analysis of variance was used for statistical analysis. All implants were stable at insertion and after 6 weeks. The only significant difference was the higher (9%) insertion torque for stainless steel. No significant differences were found between stainless steel and titanium alloy miniscrew implants in microdamage burden and bone-to-implant contact regardless of loading status. Stainless steel and titanium alloy miniscrew implants provide the same mechanical stability and similar histologic responses, suggesting that both are suitable for immediate orthodontic clinical loads. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  8. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  9. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  10. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  11. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy

    International Nuclear Information System (INIS)

    Huang, S.K.; Wen, Y.H.; Li, N.; Teng, J.; Ding, S.; Xu, Y.G.

    2008-01-01

    In this paper, the damping mechanism model of Fe-Mn alloy was analyzed using dislocation theory. Moreover, as an important parameter in Fe-Mn based alloy, the effect of stacking fault probability on the damping capacity of Fe-19.35Mn alloy after deep-cooling or tensile deformation was also studied. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability of γ-austenite and ε-martensite was determined by means of X-ray diffraction (XRD) profile analysis. The microstructure was observed using scanning electronic microscope (SEM). The results indicated that with the strain amplitude increasing above a critical value, the damping capacity of Fe-19.35Mn alloy increased rapidly which could be explained using the breakaway model of Shockley partial dislocations. Deep-cooling and suitable tensile deformation could improve the damping capacity owning to the increasing of stacking fault probability of Fe-19.35Mn alloy

  12. Analysis of incoloy 800ht alloy tested in thermal transient conditions

    International Nuclear Information System (INIS)

    Velciu, L.; Meleg, T.; Nitu, A.; Popa, L.

    2015-01-01

    This paper investigated Incoloy 800 HT alloy after following thermal transient tests: fast heating rates (50° and 90°C/minute) up to 1,000°C, maintaining this temperature level (0 and 60 minutes), furnace-cooling until 220°C, and then air-cooling. This alloy is one of the candidate materials for construction of the steam generators of the future NPP reactors. The analysis consisted in metallographic examination and traction tests. The samples were investigated using the Olympus GX 71 optical microscope, the OPL microdurometer with automatic cycle and WALTER BAI traction device. The average grain size was determined by linear interception method. The micro hardness was calculated by the relationship from the device technical book. On the traction diagrams were obtained: strength resistance (Rm), elongation at rupture (A) and elastic modulus (E). The tested alloy was compared with the ''as received'' material, and the results showed a good behavior of this alloy in the presented conditions. (authors)

  13. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  14. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  15. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  16. Metal/not metal joints: analysis of graphite junction for electric use of titanium by direct brazing with reactive alloy

    International Nuclear Information System (INIS)

    Guimaraes, A.S.; Rebello, J.M.A.

    1988-01-01

    The usual techniques of joining graphite (for electrical use) and titanium by brazing with zirconium alloys are described. The morphological and the chemical aspects obtained by X-ray diffraction analysis are also presented. (C.G.C.) [pt

  17. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  18. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  19. On the quantitative X-ray phase analysis of R-Co alloys

    International Nuclear Information System (INIS)

    Lyubushkin, V.A.; Lyubushkina, L.M.; Vetoshkin, I.D.

    1982-01-01

    Using the method of quantitative X-ray phase analysis two-phase (RCo 5 -R 2 Co 17 ) alloys Sm-Co and Pr-Co have been studied. The investigations are made using the DRON-2.0 dif,ractometer in filtrated FeKα-radiation. Calibration diagrams for model binary mixtures are built, their use is recommended for express-evaluation of the amount of the phase determined. Test of the technique suggested is carried out

  20. Critical Speed Analysis of Fibre Reinforced Composite Rotor Embedded with Shape Memory Alloy Wires

    OpenAIRE

    Gupta, K.

    2000-01-01

    In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA) wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i) increase in Young's modulus of SMA (NITINOL) wires when activated, (ii) tension in w...

  1. Identification of unknown sample using NAA, EDXRF, XRD techniques

    International Nuclear Information System (INIS)

    Dalvi, Aditi A.; Swain, K.K.; Chavan, Trupti; Remya Devi, P.S.; Wagh, D.N.; Verma, R.

    2015-01-01

    Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC) receives samples from law enforcement agencies such as Directorate of Revenue Intelligence, Customs for analysis. Five unknown grey powdered samples were received for identification and were suspected to be Iridium (Ir). Identification of unknown sample is always a challenging task and suitable analytical techniques have to be judiciously utilized for arriving at the conclusion. Qualitative analysis was carried out using Jordan Valley, EX-3600 M Energy dispersive X-ray fluorescence (EDXRF) spectrometer at ACD, BARC. A SLP series LEO Si (Li) detector (active area: 30 mm 2 ; thickness: 3.5 mm; resolution: 140 eV at 5.9 keV of Mn K X-ray) was used during the measurement and only characteristic X-rays of Ir (Lα: 9.17 keV and Lβ: 10.70 keV) was seen in the X-ray spectrum. X-ray diffraction (XRD) measurement results indicated that the Ir was in the form of metal. To confirm the XRD data, neutron activation analysis (NAA) was carried out by irradiating samples and elemental standards (as comparator) in graphite reflector position of Advanced Heavy Water Reactor Critical Facility (AHWR CF) reactor, BARC, Mumbai. After suitable decay period, gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. Characteristic gamma line at 328.4 keV of the activation product 194 Ir was used for quantification of iridium and relative method of NAA was used for concentration calculations. NAA results confirmed that all the samples were Iridium metal. (author)

  2. Study of sintering on Mg-Zn-Ca alloy system

    Science.gov (United States)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  3. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  4. Proxy-based accelerated discovery of Fischer–Tropsch catalysts† †Electronic supplementary information (ESI) available: Details of synthesis, analysis and testing, validation experiments for high-throughput XRD and gas treatment, details of statistical analysis and calculations, tabulation of synthesis parameters and XRD results, alternatives to Fig. 3 highlighting different data points, FTS testing results displayed graphically. See DOI: 10.1039/c4sc02116a Click here for additional data file.

    Science.gov (United States)

    Boldrin, Paul; Gallagher, James R.; Combes, Gary B.; Enache, Dan I.; James, David; Ellis, Peter R.; Kelly, Gordon; Claridge, John B.

    2015-01-01

    Development of heterogeneous catalysts for complex reactions such as Fischer–Tropsch synthesis of fuels is hampered by difficult reaction conditions, slow characterisation techniques such as chemisorption and temperature-programmed reduction and the need for long term stability. High-throughput (HT) methods may help, but their use has until now focused on bespoke micro-reactors for direct measurements of activity and selectivity. These are specific to individual reactions and do not provide more fundamental information on the materials. Here we report using simpler HT characterisation techniques (XRD and TGA) along with ageing under Fischer–Tropsch reaction conditions to provide information analogous to metal surface area, degree of reduction and thousands of hours of stability testing time for hundreds of samples per month. The use of this method allowed the identification of a series of highly stable, high surface area catalysts promoted by Mg and Ru. In an advance over traditional multichannel HT reactors, the chemical and structural information we obtain on the materials allows us to identify the structural effects of the promoters and their effects on the modes of deactivation observed. PMID:29560180

  5. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  6. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  7. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  8. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    International Nuclear Information System (INIS)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de; Falchete do Prado, Renata; Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto; Rodarte Carvalho, Yasmin

    2015-01-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys

  9. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  10. Crystal Plasticity Finite Element Analysis of Loading-Unloading Behaviour in Magnesium Alloy Sheet

    International Nuclear Information System (INIS)

    Hama, Takayuki; Fujimoto, Hitoshi; Takuda, Hirohiko

    2010-01-01

    Magnesium alloy sheets exhibit strong inelastic response during unloading. In this study crystal plasticity finite element analysis of loading-unloading behaviour during uniaxial tension in a rolled magnesium alloy sheet was carried out, and the mechanism of this inelastic response was examined in detail in terms of macroscopic and mesoscopic deformations. The unloading behaviour obtained by the simulation was in good agreement with the experiment in terms of variation with stress of instantaneous tangent modulus during unloading. Variations of activities of each family of slip systems during the deformation showed that the activation of basal slip systems is the largest during unloading, and the slip direction during unloading is opposite from during loading. These results indicated that one of the factors of the inelastic behaviour during unloading is the fact that the basal slip systems are easily activated during unloading because of their low strengths.

  11. Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling

    Science.gov (United States)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.

    2018-05-01

    The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.

  12. Modern quantitative microstructure analysis on the example of aicu5mg1 alloys

    Directory of Open Access Journals (Sweden)

    Zlatičanin Biljana V.

    2002-01-01

    Full Text Available Using an automatic, QUANTIMET 500 MC, device for quantitative picture analysis and applying linear method of measurement on the example of AlCu5Mg1 alloys, the grain size (min, max and medium values, as well as relative standard measuring errors (RSE, dendrite arm spacing (DAS and length eutectic (Le and also distribution by size (histogram and volume participation of -hard solution and eutectic have been determined. We have also studied the influence of grain-refining additives AlTi5B1 for the same chemical composition of the aluminium-capper-magnesium alloy. It has been concluded that with the increase of titanium content, the mean value of grain size decreases. We have also examined hardness and pressure strength.

  13. Structure and grindability of dental Ti-Cr alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Chiang, T.-Y.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure and microhardness of a series of binary Ti-Cr alloys with Cr contents up to 30 wt%. In addition, the grindability was also evaluated using an electric dental handpiece with SiC wheels, with the goal of developing a titanium alloy with better mechanical properties and machinability than commercially pure titanium (c.p. Ti), a metal generally considered to be difficult to machine. This study evaluated the phase and structure of Ti-Cr alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min. Results indicated that the structure of Ti-Cr alloys is sensitive to the Cr content. The cast c.p. Ti has a hexagonal α phase. With 5 wt% Cr, metastable β phase starts to be retained. With Cr contents higher than 10 wt%, the equi-axed β phase is almost entirely retained. In addition, athermal ω phase was found in the Ti-5Cr and Ti-10Cr alloys. The largest quantity of ω phase and highest microhardness were found in Ti-10Cr alloy. The grinding rate of the Ti-Cr alloys showed a similar tendency to the microhardness. The Ti-10Cr alloy exhibited the best grindability, especially at 1000 m/min, which presumably due to the brittle nature of the alloy containing the ω phase in the β matrix.

  14. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  15. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    International Nuclear Information System (INIS)

    Rasool Mohideen, S; Thamizhmanii, S; Muhammed Abdul Fatah, M.M; Saidin, W. Najmuddin W.

    2016-01-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment. (paper)

  16. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  17. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  18. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    CSIR Research Space (South Africa)

    Linganiso, C

    2013-03-01

    Full Text Available Synthesis of nickel disulfide (NiS2) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained...

  19. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  20. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  1. Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    FAN Jianfeng; YANG Changlin; XU Bingshe

    2012-01-01

    Oxidation and ignition of magnesium alloys at elevated temperature were successfully retarded by additions of Y and Ca.which could be melted at 1173 K in air without any protection.Thermogravimetric measurements in dry air revealed that the oxidation dynamics curves of Mg-2.5Ca alloy and Mg-3.5Y-0.79Ca alloy at high temperatures followed the parabolic-line law or the ubic-line law.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the oxide film on the surface of Mg-3.5Y-0.79Ca and Mg-2.5Ca alloys exhibited a duplex structure.which agreed with the results of thermodynamic analysis.By comparison,the ignition-proof effect of the combination addition of Y and Ca was better than that of the single addition of Ca.

  2. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  3. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  4. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Keith J., E-mail: leonardk@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Stevens, Jacqueline N. [AREVA Inc., Lynchburg, VA (United States); Busby, Jeremy T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-11-15

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In the present work, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. The cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  5. Thermal Analysis in the Technological “Step” Test of H282 Nickel Alloy

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2015-03-01

    Full Text Available Superalloys show a good combination of mechanical strength and resistance to surface degradation under the influence of chemically active environments at high temperature. They are characterized by very high heat and creep resistance. Their main application is in gas turbines, chemical industry, and in all those cases where resistance to creep and the aggressive corrosion environment is required. Modern jet engines could never come into use if not for progress in the development of superalloys. Superalloys are based on iron, nickel and cobalt. The most common and the most interesting group includes superalloys based on nickel. They carry loads at temperatures well in excess of the eighty percent of the melting point. This group includes the H282 alloy, whose nominal chemical composition is as follows (wt%: Ni - base, Fe - max. 1.5%, Al - 1.5% Ti - 2.1%, C - 0.06% Co - 10% Cr - 20% Mo - 8.5%. This study shows the results of thermal analysis of the H282 alloy performed on a cast step block with different wall thickness. Using the results of measurements, changes in the temperature of H282 alloy during its solidification were determined, and the relationship dT / dt = f (t was derived. The results of the measurements taken at different points in the cast step block allowed identifying a number of thermal characteristics of the investigated alloy and linking the size of the dendrites formed in a metal matrix (DAS with the thermal effect of solidification. It was found that the time of solidification prolonged from less than ome minute at 10 mm wall thickness to over seven minutes at the wall thickness of 44 mm doubled the value of DAS.

  6. Structural disordering of de-alloyed Pt bimetallic nanocatalysts

    DEFF Research Database (Denmark)

    Spanos, Ioannis; Dideriksen, Knud; Kirkensgaard, Jacob Judas Kain

    2015-01-01

    composition affects their electrocatalytic performance. The results show that upon contact with acid environment the Co leaches out of the particles leading to almost identical compositions, independent of the initial differences. Surprisingly the data show a clear trend in ORR activity, although the PtxCo1-x...... nanoparticles almost completely de-alloy during acid leaching, i.e. under reaction conditions in a fuel cell. To scrutinize the resulting particle structure after de-alloying we used pair distribution function (PDF) analysis and X-ray diffraction (XRD) gaining insight into the structural disorder and its...... dependence on the initial metal composition. Our results suggest that not only the ORR activity, but also the corrosion resistance of the synthesized NPs, are dependent on the structural disorder resulting from the de-alloying process....

  7. Evaluation of non-conformities of hip prostheses made of titanium alloys and stainless steel

    International Nuclear Information System (INIS)

    Bezerra, Ewerton de Oliveira Teotonio; Nascimento, Jose Jeferson da Silva; Luna, Carlos Bruno Barreto; Morais, Crislene Rodrigues da Silva; Campos, Karla Valeria Miranda de

    2017-01-01

    A large number of metallic alloys has satisfactory behavior when used to manufacture implants for hip prostheses. However, they must be in conformity with standards, to ensure their quality for long periods without losing its functionality. Therefore, this paper aims to study the non-conformities in two hip prostheses, one of titanium and other stainless steel according to standards. The implants studied passed by X-ray diffraction (XRD), X-ray fluorescence, tensile test and optical microscopy (OM). Specimens for the tensile test were made according to ASTM E 8M, as well, MO samples passed by metallographic procedure. The results evidenced that some chemical compositions showed in relation to the standards. The XRD analysis showed peaks of austenite and absence of ferrite for the stainless steel, while the titanium alloy presents an alpha phase (HCP) more significant than the beta phase (BCC). The stainless steel alloys and titanium have yield strength and tensile strength that meet the standards. On the other hand, the elastic modulus of the titanium alloy and stainless steel, comes to be ten times greater than the human bone. Therefore, the high modulus of elasticity of the alloys, favors bone resorption problems. The stainless steel microstructure is typical of an austenitic matrix, while the titanium alloy presents α + β microstructure. (author)

  8. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  9. Analysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Rezaei

    2017-12-01

    Full Text Available The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB and aging heat treatment.  To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation, dislocation and solid-solution strengthening to the yield strength of five-cycle ARB samples processed under pre-aged (ARBed and aged (ARBed+Aged conditions were examined and compared. Microstructural characterizations were performed on the samples through the transmission electron microscope (TEM and X-ray diffraction (XRD. Also, the mechanical properties of the samples were investigated through the tensile test. The obtained results showed that an equiaxed ultrafine grain structure with nano-sized precipitates was created in the both ARBed and ARBed+Aged samples. The grain refinement was the predominant strengthening mechanism which was estimated to contribute 151 and 226 MPa to the ARBed and ARBed+Aged samples, respectively, while the dislocation and Orowan strengthening mechanisms were ranked second with regard to their contributions to the ARBed and ARBed+Aged samples, respectively. The overall yield strength, calculated through the root mean square summation method, was found to be in good agreement with the experimentally determined yield strength. It was also found that the presence of non-shearable precipitates, which interfered with the movement of the dislocations, would be effective for the simultaneous improvement of the strength and ductility of the ARBed+Agedsample .

  10. Comparison of results analysis of chemical composition of alloys inside the U-Zr-Nb by XRF and AAS techniques

    International Nuclear Information System (INIS)

    Masrukan; Tri Yulianto; Anwar Muchsin

    2011-01-01

    U-Zr-Nb alloy chemical composition analysis using X Ray Fluorescence (XRF) and Atomic Absorption Spectroscopy (AAS) techniques have been conducted, where U-Zr- Nb alloy was chosen as candidates for new high-density fuel for future research reactors . Composition analysis is necessary because the composition of elements in the fuel will determine the characteristics of fuel during the fabrication process and in the reactor. The use of two kinds of analysis techniques were designed to obtain accurate analysis results. The experiment was conducted to determine the major element composition and impurities in the alloy U-Zr-Nb. First U-Zr-Nb varying alloy composition Nb were respectively 1%, 4%, 7% (U10% Zr1% Nb, U10% Zr4% Nb and U10% 7% Nb) as results of the melting process of measuring the diameter of 120 mm crushed on the surface bottom. Once on the bottom surface is smooth, then analyzed using XRF techniques. To analyze the elements using AAS techniques, alloy U-Zr-Nb cut into 10 mm x 5 mm then dissolved using HF and nitric acid. Solution that occurred were analyzed using AAS technique. From the analysis using the XRF technique is obtained the alloy U-10% Zr-1% Nb, U-10% Zr-4% Nb and Zr-10% U-7% Nb) had a content of each element as follows: U (87.8858%), Zr (2.6097%) and Nb (0.2206%), U (87.8556%), Zr (2.6302%), and Nb (0.6573%); U (84.6334%), Zr (2.5773%), and Nb (1.0940) weight. Results of analysis using AAS techniques on samples obtained third consecutive Zr content of 9.25%, 8.90% and 9.80% while the content of Nb was not detected. Meanwhile, the results of elemental analysis of impurities in all three samples showed that almost all the elements are still qualify as fuel except Zn element. Element Zn at the three samples of each alloys U-10% Zr-1% Nb, U-10% Zr-4% Nb and U-10% Zr-7%Nb is 1.3266%, 3.2756% and 1.0927% weight. It could be concluded that the results of analysis of elemental content and impurities in the alloy U-Nb-Zr using both XRF and AAS visible

  11. Influence of microstructure on the thermal creep behaviour of zirconium alloys: experimental analysis and implementation of homogenization approaches

    International Nuclear Information System (INIS)

    Brenner, R.

    2001-01-01

    Zirconium alloys widely used in the nuclear industry can present thermomechanical variability of their behavior (especially for thermal creep) as a function of their microstructure. To have a better control of the mechanical behavior of these alloys and also to take into account the possible evolution of their fabrication process (chemical composition, thermal treatments,... ), it is important to have a modeling tool which help us to describe the relationship between the microstructure and the macroscopic behavior. This study contributes to establish a predictive modelling, based on an experimental analysis coupled with a homogenization approach of the thermal creep behavior of Zr alloys. The experimental analysis of the crystallographic texture effect for Zircaloy-4 alloys shows how the strain rate and stress exponent of the different glide systems are anisotropic. Transmission Electronic Microscopy analysis have been undertaken in order to determine the link between the texture and the activated slip system considering various mechanical tests (Ioading paths). The experimental analysis for Zr-Nb-1%-O bring to evidence the solid solution effect of Nb on the hardening of this alloy and the weak effect of the precipitates distribution on thermal creep behavior. An elasto-viscoplastic micromechanical modelling has been developed taking into account the microstructure effects on the macroscopic behavior of Zr alloys. The 'quasi-elastic' approximate of the self consistent scheme based on the affine formulation is proposed and compared with others and earlier formulations. The accuracy of this formulation for our study is demonstrated, as well as the from the scale transition point of view and the simple numerical resolution. A good agreement is found for the description of thermal creep behavior of Zircaloy-4 and Zr-Nb-1%-O alloys. The analysis of the results at a local scale (especially slip system secondary activities) gives the current limit for the description of

  12. Oxidation behaviour of U2Ti alloy in dry air

    International Nuclear Information System (INIS)

    Roy, S.P.; Gupta, N.K.; Jat, Ram Avtar; Parida, S.C.; Mukerjee, S.K.

    2016-01-01

    U 2 Ti alloy is being considered as promising storage material for storage of hydrogen isotopes. However, the absorption capacity of this reactive alloy can be affected due to presence of oxygen in the process gas. Hence, it is necessary to know the kinetic of this alloy in presence of oxygen. In this study, U 2 Ti alloy was prepared by arc melting method followed by vacuum annealing. The alloy was characterized by XRD, SEM and EDX methods. The isothermal oxidation behaviour of U 2 Ti alloy was investigated in the temperature range of 548-623 K in dry air for 24 hours by using thermo gravimetric technique. The oxidation curves are shown. The oxidation curves were analysed using the rate equation: (Δm/a) n = kt, where, (Δm/a) is the mass gain per unit area, n is the power exponent, k is the rate constant and t is time in (seconds). Analysis of the results shows that the oxidation reaction follows linear rate law (n ~ 1). Using the linear rate law, the rate constant (k) of oxidation reaction was evaluated at each temperature in the range 548-623 K. The variation of (ln k) with reciprocal temperature is shown. The activation energy of this oxidation reaction in the temperature range 548-623 K was calculated using the Arrhenius equation and found to be 76 kJ/mol. The XRD analysis of the oxidation products was found to be U 3 O 8 and TiO 2 . (author)

  13. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    Science.gov (United States)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  14. Microstructural and thermodynamic evaluation of as-cast U-rich U-Zr alloys

    International Nuclear Information System (INIS)

    Basak, Chandrabhanu; Prasad, G.J.; Kamath, H.S.

    2009-01-01

    The present study involves evaluation of microstructures and some basic properties of as-cast uranium rich U-Zr alloys; i.e. uranium alloys containing 2wt%, 5wt%, 7wt% and 10 wt% zirconium. Microstructural evaluation, both optical and SEM, with hardness values are reported. It was shown that a definite correlation exists between the microstructure and the hardness of the alloy. Lattice parameter and densities are determined with the help of XRD analysis. Also the phase transformation mechanism is proposed based on the microstructures and XRD analysis. Thermodynamic analysis coupled with the experimental observation reveals that the lamellar structure found in the as-cast U-rich U-Zr alloys originates from the monotectoid reaction (γ→β + γ'). As Zr concentration increases in the alloy the gamma phase can remain in the metastable state even at lower T. So, with increasing Zr content the monotectoid reaction takes place at lower temperature causing generation of finer lamellae. (author)

  15. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  16. Analysis of the effect on growth kinetics of gamma prima phase in Inconel 713C alloys

    International Nuclear Information System (INIS)

    Thorp, S.I.; Versaci, R.A.; Ges, A.; Palacio, H.A.

    1993-01-01

    This work shows the analysis of the effect on growth kinetics of gamma prima phase in Inconel 713C alloy of two thermic treatments. In this study, SEM are used and the results are analyzed by means of the theory developed by Lifshitz, Slyozov and Wagner (LSW theory). The findings have revealed that with such theory it is not possible to determine if the process of growth is controlled either through diffusion or through diffusion in the interface as to the time employed in the experiment (2600 hours); the time required is approximately 10000 hours. (Author)

  17. Application of Kaplan-Meier analysis in reliability evaluation of products cast from aluminium alloys

    OpenAIRE

    J. Szymszal; A. Gierek; J. Kliś

    2010-01-01

    The article evaluates the reliability of AlSi17CuNiMg alloys using Kaplan-Meier-based technique, very popular as a survival estimation tool in medical science. The main object of survival analysis is a group (or groups) of units for which the time of occurrence of an event (failure) taking place after some time of waiting is estimated. For example, in medicine, the failure can be patient’s death. In this study, the failure was the specimen fracture during a periodical fatigue test, while the ...

  18. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  19. Geometric Effects of La1+xMg2-xNi9 (x=0.0~1.0) Ternary Alloys on Their Hydrogen Storage Capacities

    Institute of Scientific and Technical Information of China (English)

    Zhiqing YUAN; Guanglie LU; Bin LIAO; Yongquan LEI

    2005-01-01

    Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9(x=0.0~1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.

  20. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    International Nuclear Information System (INIS)

    Patino-Carachure, C.; Tellez-Vazquez, O.; Rosas, G.

    2011-01-01

    Highlights: → Point defects induced during milling leading to an order-disorder quasicrystal transition. → Nanoquasicrystalline regions of 12 nm are obtained. → Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al 64 Cu 24 Fe 12 alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into β-cubic phase.

  1. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Carachure, C.; Tellez-Vazquez, O. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico); Rosas, G., E-mail: grtrejo@umich.mx [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico)

    2011-10-13

    Highlights: > Point defects induced during milling leading to an order-disorder quasicrystal transition. > Nanoquasicrystalline regions of 12 nm are obtained. > Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al{sub 64}Cu{sub 24}Fe{sub 12} alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into {beta}-cubic phase.

  2. Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite

    Science.gov (United States)

    Boles, Austin; Mulch, Andreas; van der Pluijm, Ben

    2018-06-01

    Exhumed fault rock of the central Alpine Fault Zone (South Island, New Zealand) shows extensive clay mineralization, and it has been the focus of recent research that aims to describe the evolution and frictional behavior of the fault. Using Quantitative X-ray powder diffraction, 40Ar/39Ar geochronology, hydrogen isotope (δD) geochemistry, and electron microbeam analysis, we constrain the thermal and fluid conditions of deformation that produced two predominant clay phases ubiquitous to the exposed fault damage zone, illite and chlorite. Illite polytype analysis indicates that most end-member illite and chlorite material formed in equilibrium with meteoric fluid (δD = -55 to -75‰), but two locations preserve a metamorphic origin of chlorite (δD = -36 to -45‰). Chlorite chemical geothermometry constrains crystal growth to T = 210-296 °C. Isotopic analysis also constrains illite growth to T < 100 °C, consistent with the mineralogy, with Ar ages <0.5 Ma. High geothermal gradients in the study area promoted widespread, near-surface mineralization, and limited the window of clay authigenesis in the Alpine Fault Zone to <5 km for chlorite and <2 km for illite. This implies a significant contrast between fault rock exposed at the surface and that at depth, and informs discussions about fault strength, clays and frictional behavior.

  3. Theoretical analysis of experimental tracer and interdiffusion data in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Filipek, R.; Danielewski, M.

    2005-01-01

    In this paper, we present strategies to extract fundamental atomistic information from measured diffusion coefficients in a ternary alloy system. The strategies are exemplified with Cu-Ni-Fe alloys at 1271 K where recent extensive interdiffusion coefficients and tracer diffusion coefficients for all three components have become available. We develop new defining phenomenological expressions for the vacancy-wind factors in terms of the diffusion coefficients. We show that the measured tracer diffusion coefficients can be processed using the Manning and Moleko, Allnatt and Allnatt random alloy diffusion kinetics formalisms (with and without the assumption of the Gibbs-Duhem relation between the thermodynamic activities) to give jump frequencies, tracer correlation factors, vacancy-wind factors and phenomenological coefficients. It is shown for example that Cu is generally the most correlated component in its diffusion behavior and that the off-diagonal phenomenological coefficients can be as high as 64% of the smallest of the diagonal phenomenological coefficients. It is also shown that the Darken formalism (which ignores off-diagonal phenomenological coefficients) is in fact a reasonable approximation for expressing the diagonal phenomenological coefficients in terms of the tracer diffusion coefficients. It is then shown how the measured interdiffusivities can be processed with these formalisms to give tracer diffusivities, vacancy-wind factors and phenomenological coefficients. Finally, we show how a straightforward strategy starting with the Darken analysis that is then followed by the Manning or Moleko, Allnatt and Allnatt analysis can be used to gain access to the vacancy-wind factors and the off-diagonal phenomenological coefficients

  4. Unusual hardening behaviour in heavily cryo-rolled Cu-Al-Zn alloys during annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.L. [Faculty of Science, Kunming University of Science and Technology, Kunming 650500 (China); Ren, S.Y. [Ningbo Powerway Alloy Material Co., Ltd, Ningbo 315135 (China); Zeng, S.D. [Yunnan Institute of Measuring and Testing Technology, Kunming 650228 (China); Zhu, X.K., E-mail: xk_zhu@hotmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China)

    2016-04-06

    Three nanostructured Cu-Al-Zn alloys were produced via rolling at the liquid nitrogen temperature. The deformed Cu alloys were then annealed at 150–300 °C for 1 h. The two alloys with high solute content and thus with low stacking fault energy exhibit unusual annealing hardening, namely, an increase in hardness and strength and a decrease in tensile elongation after annealing at 150 and 200 °C. From X-ray diffraction (XRD) analysis and microstructural observations by transmission electron microscopy (TEM), it is found that microstrain and dislocation density decrease after annealing at 200 °C because of the recovery of dislocations and the lattice parameter decreases due to solute segregation. Meanwhile, the twin density of the two Cu alloys increases and grain size remains basically unchanged. It is shown that the formation of annealing twins and stacking faults and the segregation of solute atoms may be the main causes of unusual annealing hardening.

  5. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  6. Investigation of corrosion and analysis of passive films concerning some nickel alloys and stainless steels in reconstructed geological environments

    International Nuclear Information System (INIS)

    Jallerat, Nelly

    1984-01-01

    This research thesis addresses the corrosion behaviour of materials which might be used for the fabrication of radioactive waste containers. After a bibliographical study on films formed on Fe-Cr-Ni alloys, this research concentrates on passivation and de-passivation phenomena of three nickel-base alloys among the most resistant to corrosion and which also meet processing and economic criteria: Hastelloy C4, Inconel 625 and ZICNDU 25-20. Titanium and Ti-Pd alloy are also studied. Parameters governing pitting corrosion are notably studied. After a recall of knowledge on passive films formed on Fe-Cr-Ni alloys, and a presentation of experimental and technical conditions, the author reports and discussed the results obtained by electrochemical studies, reports the determination of factors governing alloy passivation in geological waters. The influence of some soluble impurities is notably studied. The author reports the analysis by glow discharge optical emission spectrometry to determine the composition of passive films with respect to geological water nature, the immersion duration and the electrode potential. Additional surface analyses are performed by X-ray photoelectron spectrometry (XPS or ESCA) and secondary ion mass spectrometry (SIMS). Finally, the author uses a dosing method by neutron radio-activation of alloy elements to determine dissolution mechanisms [fr

  7. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  8. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    Science.gov (United States)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  9. Microstructural investigation of as-cast uranium rich U–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuting, E-mail: zhangyuting@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Wang, Xin [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Zeng, Gang [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China); Jia, Jianping [Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan (China); Sheng, Liusi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China); Zhang, Pengcheng, E-mail: zpc113@sohu.com [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, Sichuan (China)

    2016-04-01

    The present study evaluates the microstructure in as-cast uranium rich U–Zr alloys, an important subsystem of U–Pu–Zr ternary metallic nuclear reactor fuel, as a function of the Zr content, from 2wt.% to 15wt.%Zr. It has been previously suggested that the unique intermetallic compound δ phase in U–Zr alloys is only present in as-cast U–Zr alloys with a Zr content exceeding 10wt.%Zr. However, our analysis of transmission electron microscopy (TEM) data shows that the δ phase is common to all as-cast alloys studied in this work. Furthermore, specific coherent orientation relationship is found between the α and δ phases, consistent with previous findings, and a third variant is discovered in this paper. - Highlights: • Initially, lattice parameter of as-cast U–Zr alloys decrease with the increasing Zr content, and then increase. • XRD data show the presence of δ-UZr{sub 2} phase in as-cast U–Zr alloys with a Zr content of more than 8wt.% Zr. • Finding δ-UZr{sub 2} phase exists in all as-cast uranium rich U–Zr alloys, even for alloys with a lean Zr content. • Three kinds of preferential orientations of the δ phase grow.

  10. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy.

    Science.gov (United States)

    Banerjee, P Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R K Singh

    2014-08-22

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  11. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    International Nuclear Information System (INIS)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-01-01

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained

  12. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  13. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  14. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  15. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type

  16. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun

    2014-01-01

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type

  17. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.

    Science.gov (United States)

    Kowalski, Wolfgang; Dammer, Markus; Bakczewitz, Frank; Schmitz, Klaus-Peter; Grabow, Niels; Kessler, Olaf

    2015-09-01

    Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316 L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available. In this work, the X-ray diffraction (XRD) sin(2)ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA. XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Determination of Stress Profiles in Expanded Austenite by Combining Successive Layer Removal and GI-XRD

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2014-01-01

    The present work deals with the evaluation of the residual-stress profile in expanded-austenite by successive removal steps using GI-XRD. Preliminary results indicate stresses of several GPa's from 111 and 200 diffraction lines. These stresses appear largest for the 200 reflection. The strain......-free lattice parameter decayed smoothly with depth, while for the compressive stress a maximum value is observed at some depth below the surface. Additionally a good agreement was found between the nitrogen profile determined with GDOES analysis and the strain-free lattice parameter from XRD....

  19. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J.H. [Centre for HRTEM, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth ZA6031 (South Africa); Lee, M.E., E-mail: Michael.lee@nmmu.ac.za [Centre for HRTEM, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth ZA6031 (South Africa); Yagoub, M.Y.A.; Swart, H.C.; Coetsee, E. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    Crystallite morphology for Eu-doped and undoped SrF{sub 2} nanophosphors have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The values for average crystallite size obtained by the application of the Scherrer equation and the full width at half maximum (FWHM) values for XRD peaks are compared to the results obtained using the hollow cone dark field (HCDF) TEM imaging technique. In the case of the TEM analysis, a bimodal crystallite size distribution was revealed with one of the distributions having a measured range of crystallite sizes which was in good agreement with the XRD data. HCDF in combination with FIB specimen preparation was found to be a promising technique for the determination of crystallite size distributions in nanophosphors which might facilitate a better understanding of their scintillation properties.

  20. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD

    International Nuclear Information System (INIS)

    O'Connell, J.H.; Lee, M.E.; Yagoub, M.Y.A.; Swart, H.C.; Coetsee, E.

    2016-01-01

    Crystallite morphology for Eu-doped and undoped SrF_2 nanophosphors have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The values for average crystallite size obtained by the application of the Scherrer equation and the full width at half maximum (FWHM) values for XRD peaks are compared to the results obtained using the hollow cone dark field (HCDF) TEM imaging technique. In the case of the TEM analysis, a bimodal crystallite size distribution was revealed with one of the distributions having a measured range of crystallite sizes which was in good agreement with the XRD data. HCDF in combination with FIB specimen preparation was found to be a promising technique for the determination of crystallite size distributions in nanophosphors which might facilitate a better understanding of their scintillation properties.

  1. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  2. Determination of the penetration hardness and analysis of stainless steel alloys by means of Laser Induced Breakdown Spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    mohamad Vahid Dastjerdi

    2017-11-01

    Full Text Available A significant feature of alloys is the surfaces hardness that is always accompanied by challenges when it’s measured by common mechanical techniques. In this investigation, we used Laser Induced Breakdown Spectroscopy (LIBS as a replacement method for common mechanical techniques to measure the surfaces hardness of different alloys. After recording the spectrum of alloy samples in order to identify the surface hardness of analyzed sample, K-Nearest Neighbors method (KNN was used and obtained results showed that the LIBS-KNN method can separate and identify the surfaces hardness of samples with precision of 93.3%. In addition, in order to identify the percentage of constituent elements of alloys and their hardness, calibration approach was investigated that showed there is an appropriate linear relation between recorded emission lines from the LIB spectra of sample alloys and the percentage of their constituent elements and also their Vickers hardness numbers. Therefore, According to exclusive advantages of LIBS technique i.e. high speed analysis, non-destructive analysis and being portable, some of available difficulties in conventional mechanical techniques can be removed.

  3. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Bottaini, C. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Mirão, J. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Geophysics Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal); Figuereido, M. [Archaeologist — Monte da Capelinha, Apartado 54, 7005, São Miguel de Machede, Évora (Portugal); Candeias, A. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Chemistry Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal); Brunetti, A. [Department of Political Science and Communication, University of Sassari, Via Piandanna 2, 07100 Sassari (Italy); Schiavon, N., E-mail: schiavon@uevora.pt [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Geophysics Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal)

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample. - Highlights: • EDXRF/Monte Carlo simulation is used to characterize an archeological alloy. • EDXRF analysis was performed on cleaned and patina coated areas of the artifact. • EDXRF/Montes Carlo protocol is well suited when a two-layered model is considered. • When the patina is too thick, X-rays from substrate are unable to exit the sample.

  4. Theoretical Influence Coefficients For X-Ray Fluorescence Analysis Of Alloys

    International Nuclear Information System (INIS)

    Okunade, I.O.

    2004-01-01

    The problem of quantifications in X-ray fluorescence analysis has over the years been narrowed down to matrix effects arising from the presence of other elements in the sample, which may either lead to the reduction or enhancement in the measured intensities of the analytic element. This paper describes a mathematical matrix correction method, which yield certain fundamental coefficients that account for the inter-element effects. The application of these influence coefficients in quantitative analysis however relies on the knowledge of pure element intensities of the analyse element, its mass absorption coefficients (for exciting and fluorescent radiation) of other elements in the sample that are responsible for the matrix effects. The quantification method using these coefficients are thereafter established for binary systems and further extended to multi-component systems such as ternary and quaternary alloys

  5. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    Science.gov (United States)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  6. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  7. Crystallographic Investigation of Ag (4 mol%) Doped ZnO (SZO) Thin Films by XRD

    International Nuclear Information System (INIS)

    Lwin Lwin Nwe; Sandar Dwe; Khant Khant Lin; Khin Thuzar; Than Than Win; Ko Ko Kyaw Soe

    2008-03-01

    Silver doped ZnO(SZO) thin films are prepared by sol-based method. The silver dopant concentration is 4 mol % in this case. XRD analysis carried out to determine, crystallographic properties such as lattice parameters and crystallite size of SZO thin films.

  8. Site specific SEM/FIB/TEM for analysis of lubricated sliding wear of aluminium alloy composites

    International Nuclear Information System (INIS)

    Walker, J C; Jones, H; Rainforth, W M

    2006-01-01

    Although extensive research has been undertaken into the dry sliding wear of aluminium alloys, only limited work has been reported on lubricated wear. In this paper, the lubricated sliding wear of some powder derived aluminium alloy composites is reported. Stereo pairs of the worn surface were obtained in the SEM and digitally reconstructed to give an accurate projection of the surface topography. Analysis of the average surface roughness (R a ) along chosen sections provided quantitative information about the wear mechanism. Following this, dual beam focused ion beam (FIB) was undertaken to further explore the features revealed by the SEM surface reconstructions, with TEM sections removed from selected regions. Surface deformation was confined to a narrow layer, typically 1μm thick. Subgrain size within the subsurface layer was comparable to that found in dry sliding wear tests. Reinforcement fracture occurred in the surface particles only. The resultant fragments were often incorporated back into the surface following detachment, such that the total volume fraction reinforcement at the surface was greater than in the bulk. Thus, the dynamic surface topography was a result of three factors: surface deformation, local detachment of reinforcement and re-incorporation of the fragments back into the surface

  9. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    Science.gov (United States)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  10. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.; Shack, W.J.

    1994-08-01

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves for carbon and low-alloy steels presented in NUREG/CR-5999 is discussed

  11. Study of the oxidation of Fe-Cr alloys at high temperatures; Estudo da oxidacao de ligas Fe-Cr a altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.F.; Sabioni, A.C.S. [Universidade Federal de Ouro Preto (LDM/DF/UFOP), MG (Brazil). Dept. de Fisica. Lab. de Difusao em Materiais; Trindade, V.B. [Universidade Federal de Ouro Preto (DEMM/UFOP), MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Ji, V. [Laboratoire d' Etude des Materiaux Hors-Equilibre (LEMHE), Orsay (France)

    2010-07-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1{mu}g. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10{sup -9}g{sup 2}.cm{sup -4}.s{sup -1}, for the alloy Fe-1.5% Cr, to 1.18 x 10-14g{sup 2}.cm{sup -4}.s{sup -1} for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  12. Thermal treatment of the Fe78 Si9 B13 alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation

    International Nuclear Information System (INIS)

    Lopez M, A.

    2005-01-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe 78 Si 9 B 13 like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe 78 Si 9 B 13 in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  13. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  14. Sign reversal of transformation entropy change in Co2Cr(Ga,Si) shape memory alloys

    International Nuclear Information System (INIS)

    Xu, Xiao; Omori, Toshihiro; Kainuma, Ryosuke; Nagasako, Makoto; Kanomata, Takeshi

    2015-01-01

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co 2 Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy change can be expected on the same alloy

  15. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  16. RBS and XRD analysis of silicon doped titanium diboride films

    International Nuclear Information System (INIS)

    Mollica, S.; Sood, D.K.; Ghantasala, M.K.; Kothari, R.

    1999-01-01

    Titanium diboride is a newly developed material suitable for protective coatings. Its high temperature oxidation resistance at temperatures of 700 deg C and beyond is limited due to its poor oxidative behaviour. This paper presents a novel approach to improving the coatings' oxidative characteristics at temperatures of 700 deg C by doping with silicon. Titanium diboride films were deposited onto Si(100) wafer substrates using a DC magnetron sputtering system. Films were deposited in two different compositions, one at pure TiB 2 and the other with 20 % Si doping. These samples were vacuum annealed at 700 deg C at 1x10 -6 Torr to investigate the anaerobic behaviour of the material at elevated temperatures and to ensure that they were crystalline. Samples were then oxidised in air at 700 deg C to investigate their oxidation resistance. Annealing the films at 700 deg C in air results in the oxidation of the film as titanium and boron form TiO 2 and B 2 O 3 . Annealing is seen to produce only minor changes in the films. There is some silicon diffusion from the substrate at elevated temperatures, which is related to the porous nature of the deposited film and the high temperature heat treatments. However, silicon doped films showed relatively less oxidation characteristics after annealing in air compared with the pure TiB 2 samples

  17. stainless steel by SEM-XRD and image analysis

    Directory of Open Access Journals (Sweden)

    Robinson Constanzo-R.

    2014-01-01

    Full Text Available El objetivo de este trabajo fue realizar un análisis cualitativ o de la distribución de un electrodepósito de cobre en el inter ior de electrodos porosos (EP de acero inoxidable y carbono grafito. Para ello, se reali zaron pruebas de electrodepositación de cobre a nivel de labora torio, con un posterior análisis de cortes de muestras de acero y grafito vía Microscopía Estereoscópica, Microscopía SEM-DRX y Análisis de Imagen, los cuales mostraron que el cobre no se deposita en forma uniforme al interior del electrodo. En el electrodo de acero, la penetra ción del depósito en el espesor fue alrededor de 50%, mientras que para el grafito a lrededor de 90%. En forma general, se observó un aumento de la cantidad de depósito hacia el extremo frente al ánodo y con sitios de difer ente crecimiento en depósito de cobre. Esto demuestra una distr ibución de corriente y potencial, función de parámetros físicos de electrodo y de la s características fisicoquímicas e hidrodinámicos del electroli to.

  18. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  19. Study on hydrogen storage alloy for NiMH EV battery; EV yo NiMH denchi no suiso kyuzogokin ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, M.; Tanaka, T.; Furukawa, K.; Watada, M.; Oshitani, M. [Yuasa Corp., Osaka (Japan)

    1998-10-30

    We have developed a high performance hydrogen storage alloy (MH alloy) suited to NiMH batteries for EV use. During the course of the development, the effects of alloy composition and structure (B/A ratio in AB{sub 5}) on cycle life and high-rate discharge of MH electrodes were investigated using mainly SEM, XRD, TEM analysis. It was found that Co content and B/A ratio (5.1/5) of MH alloy have significant effects on corrosion resistance and high-rate discharge at low temperature. Further, the surface treatments of MH alloy with weak acids and hydrophobic agents were effective for improving the initial activation and for depressing the cell internal pressure build-up. (author)

  20. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  1. Decagonal quasicrystalline phase in as-cast and mechanically alloyed Al–Cu–Cr alloys

    International Nuclear Information System (INIS)

    Shevchukov, A.P.; Sviridova, T.A.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Churyukanova, M.N.; Zhang, D.; Li, Z.

    2014-01-01

    Highlights: ► Microstructure of as-cast Al–Cu–Cr alloys was investigated. ► Composition of decagonal quasicrystalline phase was determined. ► Single-phase decagonal quasicrystalline powder was obtained. ► Phase composition changes during heating were controlled using DSC and X-ray diffraction. -- Abstract: Microstructure and phase composition of three Al-rich as-cast alloys of Al–Cu–Cr system were investigated by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The decagonal quasicrystalline phase is contained in all alloys under study and has grains with faceted shape, its composition lies in the range of 71–73 at.% Al, 11–12 at.% Cu and 15–18 at.% Cr. The heating in calorimeter of the mechanically alloyed Al 73 Cu 11 Cr 16 powder up to 600 °C leads to the formation of the pure decagonal phase. Total thermal effect in the temperature range 250–600 °C corresponding to the quasicrystalline phase formation is about 15 kJ/mol

  2. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  3. SIMS and thermal evolution analysis of oxygen in Zr-1%Nb alloy after high-temperature transitions

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Klouček, V.; Negyesi, M.; Kabátová, J.; Novotný, L.; Vrtílková, V.

    2011-01-01

    Roč. 43, 1-2 (2011), s. 618-620 ISSN 0142-2421 Institutional research plan: CEZ:AV0Z20670512 Keywords : SIMS * Thermal evolution analysis * Zirconium alloy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.180, year: 2011

  4. Observation and Schmid factor analysis of multiple twins in a warm-rolled Mg–3Al–1Zn alloy

    DEFF Research Database (Denmark)

    Xin, Renlong; Wang, Maoyin; Huang, Xiaoxu

    2014-01-01

    This study aims to understand the features of twinning that occurred during warm-rolling of Mg–3Al–1Zn alloys. The rolling was performed at 150 °C with the c-axis of most grains nearly parallel to the transverse direction. Electron backscatter diffraction analysis was conducted to examine...

  5. XRD characterisation of nanoparticle size and shape distributions

    International Nuclear Information System (INIS)

    Armstrong, N.; Kalceff, W.; Cline, J.P.; Bonevich, J.

    2004-01-01

    Full text: The form of XRD lines and the extent of their broadening provide useful structural information about the shape, size distribution, and modal characteristics of the nanoparticles comprising the specimen. Also, the defect content of the nanoparticles can be determined, including the type, dislocation density, and stacking faults/twinning. This information is convoluted together and can be grouped into 'size' and 'defect' broadening contributions. Modern X-ray diffraction analysis techniques have concentrated on quantifying the broadening arising from the size and defect contributions, while accounting for overlapping of profiles, instrumental broadening, background scattering and noise components. We report on a combined Bayesian/Maximum Entropy (MaxEnt) technique developed for use in the certification of a NIST Standard Reference Material (SRM) for size-broadened line profiles. The approach used was chosen because of its generality in removing instrumental broadening from the observed line profiles, and its ability to determine not only the average crystallite size, but also the distribution of sizes and the average shape of crystallites. Moverover, this Bayesian/MaxEnt technique is fully quantitative, in that it also determines uncertainties in the crystallite-size distribution and other parameters. Both experimental and numerical simulations of size broadened line-profiles modelled on a range of specimens with spherical and non-spherical morphologies are presented to demonstrate how this information can be retrieved from the line profile data. The sensitivity of the Bayesian/MaxEnt method to determining the size distribution using varying a priori information are emphasised and discussed

  6. The metal alloys from the XIX century and weathering action in the Mercado do Ver-o-Peso building, northern Brazil: Identification with the usage of laboratory analysis

    International Nuclear Information System (INIS)

    Palácios, Flávia Olegário; Angélica, Rômulo Simões; Sanjad, Thais Alessandra Bastos Caminha

    2014-01-01

    The fabrication of metallic buildings started in Europe after the Industrial Revolution in the 18th century. Metallic constructions became very popular, and started being imported by several countries, due to the facility of constructing or assembling. Belém, a northern Brazilian city, holds a great number of buildings entirely made of iron, including the Ver-o-Peso, a fish market which structures were imported from England by the end of the 19th century. This building represents a unique type of architecture and it's an important part of the city's heritage. However, research so far did not focus on its construction materials. Ver-o-Peso building's metal alloys haven't been thoroughly studied concerning physical, chemical and mineralogical characterizations. This paper aims to identify the types of metal alloys used in the building, and also corrosion products' result from weathering actions. The methods used to characterize the materials were scanning electron microscopy and X-ray diffraction. Through this research it was possible to identify four types of iron alloys used in the different parts of the building, characterize the paint coats, and determine types of corrosion. The characterization of the materials in the building allows enrolling basis for restoration processes, documenting the types of metal alloy used in architectural heritage from the 19th century, as well as understanding the advances of corrosion. - Highlights: • Ver-o-peso is a heritage building from the 19th century with unidentified alloys. • Alloy and weathering product characterization was done using SEM/EDS and XRD. • Four metal alloy types were described, indicating different types of foundries. • Weathering products showed distinct mineral phases and physical characteristics. • Original paint coats were found among corrosion products

  7. The metal alloys from the XIX century and weathering action in the Mercado do Ver-o-Peso building, northern Brazil: Identification with the usage of laboratory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Palácios, Flávia Olegário, E-mail: flavia.op@gmail.com [Universidade Federal do Pará, LCM (Laboratório de Caracterização Mineral), Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) (Brazil); Angélica, Rômulo Simões [Universidade Federal do Pará, LCM (Laboratório de Caracterização Mineral), Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) (Brazil); Sanjad, Thais Alessandra Bastos Caminha [Universidade Federal do Pará (UFPA), LACORE (Laboratório de Restauração, Conservação e Reabilitação), Programa de Pós-Graduação em Arquitetura e Urbanismo - PPGAU (Brazil)

    2014-10-15

    The fabrication of metallic buildings started in Europe after the Industrial Revolution in the 18th century. Metallic constructions became very popular, and started being imported by several countries, due to the facility of constructing or assembling. Belém, a northern Brazilian city, holds a great number of buildings entirely made of iron, including the Ver-o-Peso, a fish market which structures were imported from England by the end of the 19th century. This building represents a unique type of architecture and it's an important part of the city's heritage. However, research so far did not focus on its construction materials. Ver-o-Peso building's metal alloys haven't been thoroughly studied concerning physical, chemical and mineralogical characterizations. This paper aims to identify the types of metal alloys used in the building, and also corrosion products' result from weathering actions. The methods used to characterize the materials were scanning electron microscopy and X-ray diffraction. Through this research it was possible to identify four types of iron alloys used in the different parts of the building, characterize the paint coats, and determine types of corrosion. The characterization of the materials in the building allows enrolling basis for restoration processes, documenting the types of metal alloy used in architectural heritage from the 19th century, as well as understanding the advances of corrosion. - Highlights: • Ver-o-peso is a heritage building from the 19th century with unidentified alloys. • Alloy and weathering product characterization was done using SEM/EDS and XRD. • Four metal alloy types were described, indicating different types of foundries. • Weathering products showed distinct mineral phases and physical characteristics. • Original paint coats were found among corrosion products.

  8. Fatigue life analysis of unexpected failure in a lamellar TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.S.

    1999-07-01

    Unexpected catastrophic failure occurred in specimens of a lamellar TiAl alloy tested by axial fatigue. The failure initiated at locations away from artificial defects introduced to the specimens as crack starters. Fractographic examination of the fracture surface revealed the presence of featureless, low-energy facets that suggested the catastrophic crack may have initiated in one or more large grains that cleaved on a cleavage plane or an interface. A crack growth analysis of fatigue life of the test specimens suggested that the catastrophic crack propagated at stress intensity levels below the large crack threshold. Furthermore, the catastrophic crack propagated at rates that were higher than the average rates exhibited by small cracks, as well as by the large crack under equivalent stress intensity ranges. Because of this, the conventional life prediction approach based on the large crack growth data grossly overpredicted the fatigue life.

  9. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.

    1995-03-01

    The existing fatigue strain vs life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model

  10. Structural analysis and martensitic transformation in equiatomic HfPd alloy

    Science.gov (United States)

    Hisada, S.; Matsuda, M.; Takashima, K.; Yamabe-Mitarai, Y.

    2018-02-01

    We investigated the crystal structure and the martensitic transformation in equiatomic HfPd alloy. The analysis of the crystal structure by electron diffraction and Rietveld refinement using X-ray diffraction data indicates that the space group of the martensitic phase is Cmcm, and the lattice parameters are a = 0.329 nm, b = 1.021 nm, and c = 0.438 nm. Martensitic variants are composed of the plate-like morphology of several hundred nm, and the boundaries between the variants have (021)Cmcm twin relations. This (021)Cmcm twin boundary seems to be sharp without ledge and steps. Differential scanning calorimetry measurement indicates that each martensitic transformation temperature is determined to be Ms = 819 K, Mf = 794 K, As = 928 K, and Af = 954 K. Based on the dimension change using a thermo-mechanical analyzer, the expansion and shrinkage of the sample occurred with the forward and reverse martensitic transformation, respectively.

  11. Finite Element Analysis of Warpage in Laminated Aluminium Alloy Plates for Machining of Primary Aeronautic Parts

    International Nuclear Information System (INIS)

    Reis, A. C.; Moreira Filho, L. A.; Menezes, M. A.

    2007-01-01

    The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price

  12. Spectrochemical analysis of aluminum and its alloys, and S. A. P

    International Nuclear Information System (INIS)

    Roca, M.

    1966-01-01

    Three different techniques have been employed for the spectrochemical analysis of aluminum, aluminum alloys, and S.A.P. :1) Point to plane with condensed spark and direct reading spectrometry; from the study on the instantaneous spectral-line intensities a long pre integration time has been established. 1) Powdered samples technique with direct current arc and also direct reading spectrometry; samples are transformed into Al 2 O 3 and mixed with graphite powder (1:1). A complete study on the different elements in aluminium oxide, aluminium sulfate and their mixtures with graphite, has been carried out. 3) Carrier distillation method with photographic recording for very low concentrations of boron and cadmium in S. A.P. (Author) 10 refs

  13. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  14. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  15. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  16. Analysis of hydrogen content and distribution in hydrogen storage alloys using neutron radiography

    International Nuclear Information System (INIS)

    Sakaguchi, Hiroki; Hatakeyama, Keisuke; Satake, Yuichi; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    2000-01-01

    Small amounts of hydrogen in hydrogen storage alloys, such as Mg 2 Ni, were detected using neutron radiography (NRG). Hydrogen concentrations in a hydrogenated solid solution were determined by this technique. Furthermore, we were able to obtain NRG images for an initial stage of hydrogen absorption in the hydrogen storage alloys. NRG would be a new measurement method to clarify the behavior of hydrogen in hydrogen storage alloys. (author)

  17. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  18. Comparison between the X-ray fluorescence technique and inductive coupling plasma for the analysis of high alloys in solid state

    International Nuclear Information System (INIS)

    Lombardi Neto, A.; Casteletti, L.C.

    1989-01-01

    The benefits of the Solid Sampling ICP (55 ICP) technique for the analysis of high alloys are presented and some facts of this new technique are discussed. The global calibration of nickel base alloys is used to illustrate the powerful capability of this method in fast chemical analyses. (author) [pt

  19. XRD spectra of new YBaCuO superconductors

    Indian Academy of Sciences (India)

    superconductors of YBaCuO materials by solid state reac- tion. They used the ... The XRD spectra and critical temperatures are shown to be the same as that of ... samples were synthesized by solid state reaction using raw materials Y2O3 ...

  20. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  1. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  2. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  3. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  4. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    Science.gov (United States)

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  5. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  6. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  7. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  8. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  9. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  10. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    International Nuclear Information System (INIS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately

  11. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    Science.gov (United States)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  12. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  13. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    Science.gov (United States)

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  14. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  15. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  16. Oxide layer characteristics and interfacial analysis of porcelain fused to high-gold alloy using multitechnique analysis methods

    Directory of Open Access Journals (Sweden)

    Hao-Sheng Chang

    2017-12-01

    Full Text Available Background/purpose: In a previous fractural study, high-gold crowns possessed the second highest fracture force. The objective of this study is to analyze the interface of porcelain fused to high-gold alloy using different observation devices. Materials and methods: High-gold crowns specimens with the morphology of a maxillary second premolar were compressed vertically in the center of the occlusal surface until fracture using a universal testing machine. The fractured surfaces were examined using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM/EDX to determine the failure mode. The ceramic–metal interface of the crown was examined with electron probe microanalysis (EPMA. In addition, sheet specimens with dimensions of 10×9×4 mm3 were prepared to examine the surface morphology and composition of high-gold alloy after oxidation using X-ray photoelectron spectrometer (XPS. Results: The average fracture force was 1368±312 N. Photograph of fractured crown and SEM/EDX analyses reveal that the crown initially suffered from cohesive failure in the upper and middle regions, with the fracture occurring mostly within the ceramic. XPS results and both EPMA color photomicrographs of crown and sheet specimens show that indium was observed along the porcelain–metal interface with a 1- to 2-μm disrupted zone of oxide layer. Conclusion: In2O3 and Au were found along the interface from the multitechnique analysis methods; the presence of this oxide at the boundary promotes ceramic–metal adhesion. In2O3 is suggested to be beneficial for the second highest fracture resistance in a previous fractural study of implant-supported crowns. Keywords: electron probe microanalysis, gold–platinum alloy, scanning electron microscopy combined with energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy

  17. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Hashemi Beni, Batoul; Vashaee, Daryoosh; Tayebi, Lobat

    2014-05-01

    Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications. Published by Elsevier B.V.

  18. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  20. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  1. XRD Investigation of Some Thermal Degraded Starch Based Materials

    Directory of Open Access Journals (Sweden)

    Mihai Todica

    2016-01-01

    Full Text Available The thermal degradation of some starch based materials was investigated using XRD method. The samples were obtained by thermal extrusion of mixtures of different proportions of starch, glycerol, and water. Such materials are suitable for the manufacturing of low pollutant packaging. Thermal degradation is one of the simplest ways to destroy such materials and this process is followed by structural modification of the local ordering of samples, water evaporation, crystallization, oxidation, or destruction of the chemical bonds. These modifications need to be studied in order to reduce to the minimum production of pollutant residues by burning process. XRD measurements show modification of the local ordering of the starch molecules depending on the temperature and initial composition of the samples. The molecular ordering perturbation is more pronounced in samples with low content of starch.

  2. [Pretreatment of Aluminum-Lithium Alloy Sample and Determination of Argentum and Lithium by Spectral Analysis].

    Science.gov (United States)

    Zhou, Hui; Tan, Qian; Gao, Ya-ling; Sang, Shi-hua; Chen, Wen

    2015-10-01

    Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Flame Atomic Absorption Spectrometry (FAAS) and Visible Spectrometry (VS) was applied for determination of Ag and Li in lithium-aluminium alloy standard sample and test sample, their respective advantages and disadvantages were compared, the excellent selectivity of ICP-OES was confirmed by analyses of certified standard sample. Three different sample digestion methods were compared and discussed in this study. It was found that the better accuracy would be obtained by digesting sample with chloroazotic acid while the content of Li was measured by FAAS, and it was better to digest sample with hydrochloric acid and hydrogen peroxide while determining Ag and Li by ICP-OES simultaneously and determining Ag by FAAS and VS. The interference of co-existing elements and elimination methods was detailedly discussed. Ammonium hydroxide was added to adjust the sample solution into alkalescent and Al, Ti, Zr was precipitated by forming hydroxide precipitation, Mg and Cu was formed complex precipitation with 8-hydroxyquinoline in this condition, then the interference from matrix element to determinate Ag by FAAS was eliminated. In addition, phosphate was used to precipitate Ti to eliminate its interference for determination of Li by FAAS. The same treatment of determination for Ag by FAAS was used to eliminate the interference of matrix element for determination of Ag by VS, the excess of nitrate was added into sample and heated to release Ag+ from silver chloride complex, and the color of 8-hydroxyquinoline was eliminated because of decomposed by heating. The accuracy of analysis result for standard sample was conspicuously improved which confirms the efficient of the method to eliminate interference in this study. The optimal digestion method and eliminate interference method was applied to lithium-aluminium alloy samples. The recovery of samples was from 100.39% to 103.01% by ICP-OES determination for Ag

  3. XRD is the main key to the mechanochemical processing

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.

    2000-01-01

    Mechanochemical processing is a process that makes use of chemical reactions mechanically activated by high-energy ball milling (HEBM). This technique has been the subject of great interest in recent years due to its promise for producing improved novel materials. Ultra fine powders in the range 10-100 nm can be obtained by mixing the right ratio of the components, appropriate for a desired phase. These raw materials together with several hardened-steel vial and milled for an optimum time using Spex or Planetary mills. In this process 2 factors, milling time and the ball to powder mass ratio, should carefully be optimized. These will be checked by successive XRD patterns. To see the ability of XRD in this technique, some single phase Ni-Al and Mn ferrites were prepared. The main key to the formation of different phases at any stage of processing was XRD patterns. Also by using Scherrer formula it was possible to measure the particle size of the milled powders. (Author)

  4. Martensite decomposition in Cu–Al–Mn–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Maria Andrade dos, E-mail: camilaandr@gmail.com [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, Antonio Tallarico [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Galdino da Silva, Ricardo Alexandre [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Carvalho, Thaisa Mary [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Martensite decomposition in Cu–Al–Mn–Ag alloys is mainly influenced by Mn. • Interaction between Cu–Mn atomic pairs increases activation energy. • Cu diffusion is disturbed by the interaction between Cu–Mn atomic pairs. - Abstract: The influence of Mn and Ag additions on the isothermal kinetics of martensite decomposition in the Cu–9wt.%Al alloy was studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXS) and microhardness changes measurements with temperature and time. The results indicated that the reaction is disturbed by the increase of Mn, an effect associated with the increase in the Al–Mn and Cu–Mn atomic pairs, which disturbs Cu diffusion and increases the activation energy for the martensite decomposition reaction.

  5. Dimensional analysis of the transition from columnar to equiaxial structure in aluminium-copper and lead-tin alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos E

    2004-01-01

    The importance of directional solidification studies is well known from systematic scientific research undertaken to understand the characteristics of the solidification of alloys. Such studies offer much information about the morphology of the interphase and the distribution of solute during solidification. Most alloys grow while attaining dendritic interphases. So considerable effort has been expended to understand the dendritic growth characteristics under controlled solidification conditions. A treatment that can quantitatively explain all the available test data and that correctly includes the physics of the problem is not yet available. This work carries out a theoretical analysis of columnar and equiaxial growth and of dendritic spacing under different conditions of solidification of the test pieces. The basic parameters that are used characterize a given alloy system. Next, we define non-dimensional parameters, that are used to formulate the final result of our problem regardless of the specific alloy being studied. We present the important functional relationships of our study, including the physical interpretation of the results obtained in the first work (CW)

  6. Elemental investigation of (Al-Cu) alloys and some geological samples using neutron activation and XRF analysis techniques

    International Nuclear Information System (INIS)

    Hammad, E.A.M.

    2012-01-01

    Neutron activation analysis (NAA) using k 0 - standardization (k 0 -NAA) is well known method for multi-elemental analysis. The method is used to analyze different samples belonging to different fields. In addition, X- ray fluorescence (XRF) is also used for multi-elemental analysis. XRF complements NAA methods. Both methods were used for investigation of some iron ores and aluminum- cupper alloy (Al-Cu) samples. Elemental concentration of Iron ores and Al-Cu alloy samples were determined by k 0 - NAA and XRF methods. The iron ore samples were collected from Wadi Kareim and Umm Nar sites (the Eastern desert of Egypt). Six and two samples representing the ores of Wadi Kareim and Umm Nar, respectively altogether with the standard samples consisting of Fe, Au , Zr and W and the certified reference sample IAEA Soil-7 were irradiated in one of the irradiated boxes at the Second Egyptian Research Reactor (ETRR- 2). The induced activities were counted using an efficiency calibrated HPGe detector systems. The neutron spectrum parameters α and f characterizing the neutron irradiation position that are needed in applying k 0 -NAA method were determined using the activation product of Zr , Au, Fe and W and found α≅ - 0.048 ±0.002 and f ≅ 38± k 0 -NAA method was applied to determine the elemental concentrations in the two iron ore samples. The concentrations determined were found to vary erratically form one sample to another. The results were discussed and compared with similar results in literature. The accuracy of the k 0 - NAA method was checked by determining the elemental concentration in the IAEA-Soil 7 reference sample. The obtained results are compared with the recommended values. Good agreements were found within 10 %. Short time neutron activation analysis (STNAA) was carried out to determine concentration of major elements in Al-Cu alloy samples. Three (Al-Cu) alloys samples with different concentrations of Cu (2, 3.5 and 5 %) altogether. Au standard sample

  7. A scaling analysis of alloy solidification in presence of electromagnetic stirring

    International Nuclear Information System (INIS)

    Kumar, Arvind; Dutta, Pradip

    2006-01-01

    Application of electromagnetic stirring (EMS) during continuous casting shears off the dendrites from the solidification front to produce billets with a non-dendritic microstructure. In the present study, a systematic approach to the scaling analysis of momentum, energy and species conservation equations pertaining to the case of the solidification of a binary alloy in the presence of EMS is outlined. With suitable choices of non-dimensionalizing parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and then the relative significance of various terms appearing in them are analysed. In the physical domain two regions are identified, one where the electromagnetic forces play a dominant role in the momentum equations, and the other where the inertia and viscous effects play major roles. Using the scaling predictions, the influence of various processing parameters on the system variables can be utilized for the selection of appropriate electromagnetic forces to shear off the dendrites from the solidification area. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results

  8. Application of slip-band visualization technique to tensile analysis of laser-welded aluminum alloy

    Science.gov (United States)

    Muchiar, -; Yoshida, Sanichiro J.; Widiastuti, Rini; Kusnowo, A.; Takahashi, Kunimitsu; Sato, Shunichi

    1997-03-01

    Recently we have developed a new optical interferometric technique capable of visualizing slip band occurring in a deforming solid-state object. In this work we applied this technique to a tensile analysis of laser-welded aluminum plate samples, and successfully revealed stress concentration that shows strong relationships with the tensile strength and the fracture mechanism. We believe that this method is a new, convenient way to analyze the deformation characteristics of welded objects and evaluate the quality of welding. The analysis has been made for several types of aluminum alloys under various welding conditions, and has shown the following general results. When the penetration is deep, a slip band starts appearing at the fusion zone in an early stage of the elastic region of the strain-stress curve and stays there till the sample fractures at that point. When the penetration is shallow, a slip band appears only after the yield point and moves vigorously over the whole surface of the sample till a late stage of plastic deformation when the slip band stays at the fusion zone where the sample eventually fractures. When the penetration depth is medium, some intermediate situation of the above two extreme cases is observed.

  9. Finite element analysis and modeling of temperature distribution in turning of titanium alloys

    Directory of Open Access Journals (Sweden)

    Moola Mohan Reddy

    2018-04-01

    Full Text Available The titanium alloys (Ti-6Al-4V have been widely used in aerospace, and medical applications and the demand is ever-growing due to its outstanding properties. In this paper, the finite element modeling on machinability of Ti-6Al-4V using cubic boron nitride and polycrystalline diamond tool in dry turning environment was investigated. This research was carried out to generate mathematical models at 95% confidence level for cutting force and temperature distribution regarding cutting speed, feed rate and depth of cut. The Box-Behnken design of experiment was used as Response Surface Model to generate combinations of cutting variables for modeling. Then, finite element simulation was performed using AdvantEdge®. The influence of each cutting parameters on the cutting responses was investigated using Analysis of Variance. The analysis shows that depth of cut is the most influential parameter on resultant cutting force whereas feed rate is the most influential parameter on cutting temperature. Also, the effect of the cutting-edge radius was investigated for both tools. This research would help to maximize the tool life and to improve surface finish.

  10. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  11. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  12. Structural analysis of surface film on alloy 600 formed under environment of PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Terachi, Takumi; Totsuka, Nobuo; Yamada, Takuyo; Nakagawa, Tomokazu [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Deguchi, Hiroshi [Kansai Electric Power Co., Inc., Osaka (Japan); Horiuchi, Masaki; Oshitani, Masato [Kanden Kako Co., Ltd., Osaka (Japan)

    2002-09-01

    It has been shown by one of the present authors and so forth that PWSCC of alloy 600 relates to dissolved hydrogen concentration (DH) in water and oxide film structure. However, the mechanism of PWSCC has not been clear yet. Therefore, in order to investigate relationship between them, structural analysis of the oxide film formed under the environment of PWR primary water was carried out by using X-ray diffraction, the scanning electron microscope and the transmission electron microscope. Especially, to perform accurate analysis, the synchrotron orbital radiation with SPring-8 was tried to use for thin film X-ray diffraction measurement. From the results, observed are as follows: 1. the oxide film is mainly composed of NiO, under the condition without hydrogen. 2. In the environment of DH 2.75ppm, the oxide film forms thin spinel structures. 3. On the other hand, needlelike oxides are formed at DH 1ppm. For this reason, around 1ppm of DH there would be the boundary that stable NiO and spinel oxide generate, and it agrees with the peak range of the PWSCC susceptibility on hydrogen. From this, it is suggested that the boundary of NiO/spinel oxide affects the SCC susceptibility. (author)

  13. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  14. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  15. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  16. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  17. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  18. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sahu

    2015-03-01

    Full Text Available The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis (GRA. The considered process parameters are welding speed, tool rotation speed, shoulder diameter and plunging depth. The experiments were carried out by using Taguchi's L18 factorial design of experiment. The processes parameters were optimized and ranked the parameters based on the GRA. The percentage influence of each process parameter on the weld quality was also quantified. A validation experimental run was conducted using optimal process condition, which was obtained from the analysis, to show the improvement in mechanical properties of the joint. This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.

  19. Quantum chemical analysis of binary and ternary ferromagnetic alloys; Quantenchemische Untersuchungen binaerer und ternaerer ferromagnetischer Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Yasemin Erika Charlotte

    2007-02-23

    In this work the electronic structures, densities of states, chemical bonding, magnetic exchange Parameters and Curie temperatures of binary and ternary ferromagnetic alloys are analyzed. The electronic structure of ferromagnetic MnAl has been calculated using density-functional techniques (TB-LMTO-ASA, FPLAPW) and quantum chemically analyzed by means of the crystal orbital Hamilton population analysis. The crystal structure of the ferromagnetic tetragonal MnAl may be understood to originate from the structure of nonmagnetic cubic MnAl with a CsCl motif through a two-step process. While the nonmagnetic cubic structure is stable against a structural deformation, antibonding Mn-Mn interactions at the Fermi level lead to spin polarization and the onset of magnetism, i.e., a symmetry reduction taking place solely in the electronic degrees of freedom, by that emptying antibonding Mn-Mn states. Residual antibonding Al--Al states can only be removed by a subsequent, energetically smaller structural deformation towards the tetragonal system. As a final result, homonuclear bonding is strengthened and heteronuclear bonding is weakened. Corresponding DFT calculations of the electronic structure as well as the calculation of the chemical bonding and the magnetic exchange interactions have been performed on the basis of LDA and GGA for a series of ferromagnetic full Heusler alloys of general formula Co2MnZ (Z=Ga,Si,Ge,Sn), Rh2MnZ (Z=Ge,Sn,Pb), Ni2MnZ (Z=Ga,In,Sn), Pd2MnZ (Z=Sn,Sb) and Cu2MnZ (Z=Al,In,Sn). The connection between the electronic spectra and the magnetic interactions have been studied. Correlations between the chemical bondings in Heusler alloys derived from COHP analysis and magnetic phenomena are obvious, and different mechanisms leading to spin polarization and ferromagnetism are derived. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique

  20. Microstructural and mechanical properties analysis of an aluminium matrix composite reinforced with the amorphous alloy Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidated by hot extrusion; Propriedades mecanicas e microestruturais de um composito com matrix de aluminio e reforco amorfo de Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidado por extrusao a quente por extrusao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Peres, M.M., E-mail: peresmm@yahoo.com.b [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil)

    2010-07-01

    The aim of this work is the microstructure and the mechanical properties analysis of an aluminium matrix composite reinforced with the Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} amorphous alloy. The amorphous alloy was produced by melt-spinning and fragmented in powder particles by milling. Pure aluminium power was moistured with amorphous powder in a proportion of 80:20 (% weight) and processed by milling using 350 rpm during 30 minutes for the generation of a homogeneous composite powder. This product was consolidated by extrusion at 235 deg C, ram speed of 2mm/min and extrusion ratio of 7/1, generating a compact and cylindrical bar with 3 mm of width. The result sample was characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and by X-Ray Diffraction (XRD). Microhardness and compression tests show an improvement on the mechanical properties. (author)

  1. Microstructure Evolution and Chemical Analysis on Carbon Steels and Fe-Cr-Mo Alloys after FAC Simulation Tests

    International Nuclear Information System (INIS)

    Kim, Seunghyun; Kim, Taeho; Lee, Yun Ju; Kim, Ji Hyun

    2017-01-01

    Flow-accelerated corrosion (FAC) is an environment assisted degradation of structural materials, which usually occurs in pipelines of power plants. There have been many studies to investigate the fundamental mechanism and corresponding countermeasures against FAC, and recently the carbon steels have been replaced by ASTM A 335 P22, which contains approximately 2.2 wt.% of Cr and 1 wt.% of Mo. By enhancing passivity of P22 by Cr, it is reported that FAC rate has been greatly reduced. However, while corrosion behavior of Fe-based alloys is relatively well known, their behavior under high-temperature flowing water is not well investigated. In other words, effects of Cr and its corrosion and oxidation behavior is not clearly revealed. Furthermore, it is known that Mo enhances the pitting corrosion resistance of alloys however its mechanism is not clearly investigated. Recently, replacement of Mo in alloy contents has been widely studied because of the cost of Mo. Carbon steels undergo severe environmental-assisted degradation behavior so called FAC, and as its countermeasure the carbon steel has been replaced by P22 which contains Cr and Mo. It is generally known that Cr and Mo enhances passivity of Fe-based alloys however their corrosion and oxidation behavior has not been fully investigated especially in high-temperature flowing water environments. In this study, we employed HRTEM and synchrotron XAS techniques in order to investigate detailed microstructure evolution and chemical bonding of the commercialized carbon steel and the Fe-Cr-Mo alloys. From the analysis, it is found that while carbon steels exhibit porous oxide P22 exhibit oxide structures with thin Cr-rich oxide and spinel. Therefore, carbon steel undergoes severe FAC compared to P22 however effects of Cr and Mo and their behavior in high-temperature flowing water will be investigated.

  2. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2006-01-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  3. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  4. In-situ high temperature XRD of calcium phosphate biomaterial using DEHPA as the starting material

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslim

    2009-01-01

    A process to produce calcium phosphate biomaterial was done using an organic based phosphoric acid (DEHPA) as its starting material. The gel obtained from this reaction was used to study calcium phosphate transformation using in-situ XRD with temperature ranges from room temperature to 1300 degree C. The results obtained from this analysis show the following phase transformation: Gel β-Ca 2 P 2 O 7 β-TCP + HA α-TCP + HA, β-Ca 2 P 2 O 7 forms at 400 degree C and as we heat the sample at 1000 degree C peaks belonging to β- TCP and HA appears showing the transformation of the β-Ca 2 P 2 O 7 phase. When the sample is heated up further to 1200 degree C, β-TCP is transform into α-TCP. In the cold in-situ study, XRD analysis was performed on the sample from room temperature to -140 degree C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H 2 PO 4 ) 2 ) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100 degree C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature. (Author)

  5. Analysis of polarized photoluminescence emission of ordered III–V semiconductor quaternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, Tatiana, E-mail: tatiana.prutskij@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Makarov, Nykolay, E-mail: nykolay.makarov@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Attolini, Giovanni, E-mail: giovanni@imem.cnr.it [IMEM/CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy)

    2016-04-15

    Ternary and quaternary III–V alloys obtained by metal-organic vapor-phase epitaxy (MOVPE) grow very often with some degree of atomic ordering. Atomic ordering reduces the symmetry of the crystal lattice and thus drastically changes optical properties of the alloy. Moreover, the photoluminescence (PL) emission becomes polarized and its study helps to understand the atomic arrangement within the crystal lattice. In this work we experimentally studied the polarization of the PL emission from different crystallographic planes of several quaternary III–V semiconductor alloys grown on GaAs substrates by MOVPE. We compare the measured PL emission polarization angular patterns with those calculated with a model made for ternary alloys and discuss the limits of application of this model for quaternaries. It is found that the experimentally obtained polarization patterns are consistent with the existence of different ordering crystallographic planes for III- and for V-group atoms.

  6. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  7. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  8. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  9. Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam

    Directory of Open Access Journals (Sweden)

    Kamal M. Bajoria

    2010-07-01

    Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.

  10. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  11. Investigation of shape memory alloy honeycombs by means of a micromechanical analysis

    International Nuclear Information System (INIS)

    Freed, Yuval; Aboudi, Jacob; Gilat, Rivka

    2008-01-01

    Shape memory alloy (SMA) honeycombs are promising new smart materials which may be used for light-weight structures, biomedical implants, actuators and active structures. In this study, the behavior of several SMA honeycomb structures is investigated by means of a continuum-based thermomechanically coupled micromechanical analysis. To this end, macroscopic inelastic stress–strain responses of several topologies are investigated, both for pseudoelasticity and for shape memory effect. It was found that the triangular topology exhibits the best performance. In addition, the initial transformation surfaces are presented for all possible combinations of applied in-plane stresses. A special two-phase microstructure that is capable of producing an overall negative coefficient of thermal expansion is suggested and studied. In this configuration, in which one of the phases is a SMA, residual strains are being generated upon recovery. Here, the negative coefficient of thermal expansion appears to be associated with a larger amount of residual strain upon recovery. Furthermore, a two-dimensional SMA re-entrant topology that generates a negative in-plane Poisson's ratio is analyzed, and the effect of the full thermomechanical coupling is examined. Finally, the response of a particular three-dimensional microstructure is studied

  12. Sensitivity analysis of the Expansion Process for Alloy UNS N08028

    Directory of Open Access Journals (Sweden)

    Navarro Aitor

    2016-01-01

    Full Text Available Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.

  13. Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

    International Nuclear Information System (INIS)

    Sakairi, M.; Shimoyama, Y.; Nagasawa, D.

    2008-01-01

    A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in 0.5 kmol/m 3 H 3 BO 4 /0.05 kmol/m 3 Na 2 B 4 O 7 with 0.01 kmol/m 3 NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion

  14. Structural, transport, magnetic, magnetocaloric properties and critical analysis of Ni-Co-Mn-Ga Heusler alloys

    Science.gov (United States)

    Arumugam, S.; Devarajan, U.; Esakki Muthu, S.; Singh, Sanjay; Thiyagarajan, R.; Raja, M. Manivel; Rama Rao, N. V.; Banerjee, Alok

    2017-11-01

    In this work, we have investigated structural, transport, magnetic, magnetocaloric (MC) properties and critical exponents analysis of the (Ni2.1-xCox)Mn0.9 Ga (x = 0, 0.04, 0.12 and 0.2) Heusler alloys. For all compositions, cubic austenite (A) phase with metallic character is observed at room temperature (RT). With increasing of Co content, magnitude of resistivity decreases, whereas residual resistivity (ρ0) and electron scattering factor (A) increases linearly. Magnetic measurements exhibit that ferromagnetic (FM) Curie temperature (TCA) increases towards RT by increasing Co concentration. All samples show conventional MC and maximum magnetic entropy change (ΔSMpeak) of -2.8 Jkg-1 K-1 is observed for x = 0.12 at 147 K under 5 T. Further, hysteresis is observed between cooling and warming cycles around FM-PM (TCA) transition in x = 0, 0.04 samples, which suggests that first order nature of transition. However, there is no hysteresis across TCA for x = 0.12 and 0.2 samples suggesting second-order nature of the transition. The critical exponents are calculated for x = 0.12 sample around TCA using Arrott plot and Kouvel-Fisher method, the estimated critical exponents are found closer to the mean-field model reveals the long range ferromagnetic ordering in this composition.

  15. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  16. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  17. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  18. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  19. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  20. Microstructural analysis of cracks generated during welding of 2195 aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1994-01-01

    This research summarizes a series of studies conducted at Marshall Space Flight Center to characterize the properties of 2195 Al-Li alloy. 2195 Al-Li alloy, developed by Martin Marietta laboratories, is designated as a replacement of 2219 Al-Cu alloy for the External Tank (E.T.) of the space shuttle. 2195 Al-Li alloy with its advantage of increased strength per weight over its predecessor, 2219 Al-Cu alloy, also challenges current technology. 2195 Al-Li has a greater tendency to crack than its predecessor. The present study began with the observation of pore formation in 2195 Al-Li alloy in a thermal aging process. In preliminary studies, Talia and Nunes found that most of the two pass welds studied exhibited round and crack-like porosity at the weld roots. Furthermore, the porosity observed was associated with the grain boundaries. The porosity level can be increased by thermal treatment in the air. A solid state reaction proceeding from dendritic boundaries in the weld fusion zone was observed to correlate with the generation of the porosity.

  1. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  2. Preparation, microstructure and thermal properties of Mg−Bi alloys as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang, Dong; Sun, Zheng; Li, Yuanyuan; Cheng, Xiaomin

    2016-01-01

    Highlights: • The microstructure and thermal properties of Mg−Bi alloys are determined. • The relationship between melting enthalpies and phase composition are studied. • The activation energy of Mg−54%Bi alloy is calculated by multiple DSC technology. • Mg−54%Bi alloy is proposed as a phase change material at high (>420 °C) temperature. - Abstract: Comparing with Al-based phase change material, Mg-based phase change material is getting more and more attention due to its high corrosion resistance with encapsulation materials based on iron. This study focuses on the characterization of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi (wt. %) alloys as phase change materials for thermal energy storage at high temperature. The phase compositions, microstructure and phase change temperatures were investigated by X-ray diffusion (XRD), electron probe micro-analysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results indicates that the microstructure of Mg−36%Bi and Mg−54%Bi alloys are mainly composed of α-Mg matrix and α-Mg + Mg_3Bi_2 eutectic phases, Mg−60%Bi alloy are mainly composed of the Mg_3Bi_2 phase and α-MgMg_3Bi_2 eutectic phases. The melting enthalpies of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi alloys are 138.2, 180.5 and 48.7 J/g, with the phase change temperatures of 547.6, 546.3 and 548.1 °C, respectively. The Mg−54%Bi alloy has the highest melting enthalpy in three alloys. The main reason may be that it has more proportion of α-Mg + Mg_3Bi_2 eutectic phases. The thermal expansion of three alloys increases with increasing temperature. The values of the thermal conductivity decrease with increasing Bi content. Besides, the activation energy of Mg−54%Bi was calculated by multiple DSC technology.

  3. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  4. XRD and SEM study of alumina silicate porcelain insulator

    Science.gov (United States)

    Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.

    2018-05-01

    Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.

  5. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  7. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy

    International Nuclear Information System (INIS)

    Wang, Minqing; Du, Jinhui; Deng, Qun; Tian, Zhiling; Zhu, Jing

    2015-01-01

    Since the discovery in the 1990s of the abnormal improvement produced by phosphorus in the stress rupture and creep life of Inconel 718 (hereafter referred to as 718), a great deal of additional research followed. However, the mechanism of the action of phosphorous in 718 is still in question. This paper details an experimental study that was intended to determine how phosphorus acts upon the microstructure and mechanical properties of Ni–Fe based alloy 718Plus. The results show that phosphorus has little effect on the strength and ductility of alloy 718Plus, but can significantly improve the stress rupture life. Phase constituents such as the δ and γ′ phases were quantitatively analyzed using electrolytic phase isolation and micro-chemical and XRD analysis as the phosphorous content of the alloy was increased. A full atom mapping of the distribution of phosphorus in the 718Plus alloy was quantitatively determined using APT (Atom Probe Tomography) technique. The results showed that there is no significant segregation of phosphorus at the γ′/γ and γ′/γ′ interface, but it significantly segregates at the grain boundaries and δ/γ interface. It was found that phosphorus is extremely depleted in the δ phase, which is believed to inhibit δ-phase precipitation by preventing δ phase nucleation and growth in the 718Plus alloy. Finally, the influence of phosphorus on the microstructure and mechanical properties of the 718Plus alloy was discussed

  8. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minqing, E-mail: minqingw@yahoo.com [Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Advanced High Temperature Materials, Beijing 100081 (China); Du, Jinhui; Deng, Qun [Central Iron and Steel Research Institute, Beijing 100081 (China); Beijing Key Laboratory of Advanced High Temperature Materials, Beijing 100081 (China); Tian, Zhiling [Central Iron and Steel Research Institute, Beijing 100081 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-25

    Since the discovery in the 1990s of the abnormal improvement produced by phosphorus in the stress rupture and creep life of Inconel 718 (hereafter referred to as 718), a great deal of additional research followed. However, the mechanism of the action of phosphorous in 718 is still in question. This paper details an experimental study that was intended to determine how phosphorus acts upon the microstructure and mechanical properties of Ni–Fe based alloy 718Plus. The results show that phosphorus has little effect on the strength and ductility of alloy 718Plus, but can significantly improve the stress rupture life. Phase constituents such as the δ and γ′ phases were quantitatively analyzed using electrolytic phase isolation and micro-chemical and XRD analysis as the phosphorous content of the alloy was increased. A full atom mapping of the distribution of phosphorus in the 718Plus alloy was quantitatively determined using APT (Atom Probe Tomography) technique. The results showed that there is no significant segregation of phosphorus at the γ′/γ and γ′/γ′ interface, but it significantly segregates at the grain boundaries and δ/γ interface. It was found that phosphorus is extremely depleted in the δ phase, which is believed to inhibit δ-phase precipitation by preventing δ phase nucleation and growth in the 718Plus alloy. Finally, the influence of phosphorus on the microstructure and mechanical properties of the 718Plus alloy was discussed.

  9. Structural Characteristics and Corrosion Behavior of Bio-Degradable Zn-Li Alloys in Stent Application

    Science.gov (United States)

    Zhao, Shan

    Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn's intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic. In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted into the artery of Sprague-Dawley rats. The completed work includes: Manufactured Zn-Li alloy ingots and sheets via induction vacuum casting, melt spinning, hot rolling deformation, and wire electro discharge machining (wire EDM) technique; processed alloy samples using cross sectioning, mounting, etching and polishing technique; • Characterized alloy ingots, sheets and wires using hardness and tensile test, XRD, BEI imaging, SEM, ESEM, FTIR, ICP-OES and electrochemical test; then selected the optimum composition for in vitro and in vivo experiments; • Mimicked the degradation behavior of the Zn-Li alloy in vitro using simulated body fluid (SBF) and explored the relations between corrosion rate, corrosion products and surface morphology with changing compositions; • Explanted the Zn-Li alloy wire in abdominal aorta of rat over 12 months and studied its degradation mechanism, rate of bioabsorption, cytotoxicity and corrosion product migration from histological analysis.

  10. Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kai Kerber

    2012-12-01

    Full Text Available In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys’ mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

  11. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  12. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  13. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  14. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  15. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  16. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  17. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  18. Analysis of hot rolling and hot forging effects on mechanical properties and microstructure of ZrNbMoGe alloy

    International Nuclear Information System (INIS)

    AH Ismoyo; Parikin; Bandriyana

    2014-01-01

    Research on formation technique by a combined method of rolling and forging has been carried out in order to improve the mechanical properties of ZrNbMoGe alloy to be used as fuel cladding in NPP (Nuclear Power Plant) application. The effects of rolling and forging were analyzed several tests. The tests were conducted for zirconium alloy specimen with a composition of (in % wt.) 97% Zr, 0,5% Mo, 2% Nb and 0,5% Ge, where the specimen was melted with an arc-furnace. The hot rolling and forging were conducted at 900 °C and 950 °C respectively. Hardness test was carried out by using a microhardness testing machine, while microstructure examination and crystal structure analysis were conducted with an optical microscope and an X-ray diffractometer. The results show that the hardness of the alloy increase from 141.21 HV (starting material) to 210.47 HV (hot rolled material) and 365.75 HV (hot forged material). Texturing phenomenon is clearly figured on the microstructure due to hot rolling and forging process. Analysis by diffractogram also indicates that the hot rolling and forging process has influence on the crystal orientation of dominant preferred direction in the reflection plane of (10ī1), recorded from the rise of intensity counting from about 2500 to 3000. In summary, hot forging and rolling process can change the mechanical properties (hardness and texture) and microstructure of materials. (author)

  19. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    International Nuclear Information System (INIS)

    Pan, Mingxiang; Zhang, Pengyue; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-01-01

    Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo 5 and Nd 2 Fe 14 B powders. The influence of Nd 2 Fe 14 B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH) max =2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo 5 single-phase magnet and SmCo 5 /Nd 2 Fe 14 B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo 5 /Nd 2 Fe 14 B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet

  20. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mingxiang; Zhang, Pengyue, E-mail: Zhang_pengyue@cjlu.edu.cn; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-06-01

    Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B powders. The influence of Nd{sub 2}Fe{sub 14}B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH){sub max}=2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo{sub 5} single-phase magnet and SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet.

  1. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Marcio W.D., E-mail: mwdmendes@ipen.com; Ágreda, Carola G.; Bressiani, Ana H.A.; Bressiani, José C.

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti–27Nb–13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for > 3 days in the SBF solution. - Highlights: • The alloy is classified as α + β and the milling time influences the formation of these phases. • Dissolution of Nb is related to the mechanical properties of the alloy. • It's possible to form apatite on all samples immersed in SBF from 3 days. • The alloy can be used in orthopedic applications or in dental applications.

  2. Automated Method for Fractographic Analysis of Shape and Size of Dimples on Fracture Surface of High-Strength Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Ihor Konovalenko

    2018-03-01

    Full Text Available An automated method for analyzing the shape and size of dimples of ductile tearing formed during static and impact fracture of titanium alloys VT23 and VT23M is proposed. The method is based on the analysis of the image topology. The method contains the operations of smoothing the initial fractographic image; its convolution with a filter to identify the topological ridges; thresholding with subsequent skeletonization to identify boundaries between dimples; clustering to isolate the connected areas that represent the sought objects—dimples. For each dimple, the following quantitative characteristics were calculated: area, coefficient of roundness and visual depth in units of image intensity. The surface of ductile tearing was studied by analyzing the peculiarities of parameter distribution of the found dimples. The proposed method is applied to fractograms of fracture surfaces of titanium alloys VT23 and VT23M.

  3. Mechanical characterization and structural of Mg_7_0Zn_2_8Ca_2 alloy for use as bioabsorbable implants

    International Nuclear Information System (INIS)

    Asato, G.H.; Matias, T.B.; Kiminami, C.S.; Botta, W.J.; Bolfarini, C.

    2014-01-01

    A ternary magnesium-based alloy was studied for your biocompatibility, high mechanical properties, elastic modulus close to the bone and corrosion rate less than pure magnesium. The experimental conditions enabled to process a Mg70Zn28Ca2 ternary amorphous alloy by the fusion of eutectic binary alloys (Mg-Zn and Mg-Ca), which were obtained from pure elements in a induction furnace in an argon atmosphere. The characterization of alloy involved quantitative chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results indicated that the actual composition was very close to the nominal, with the presence of amorphous up to 1.3 mm thick. The mechanical compression test was performed in the conventional cylindrical samples with a diameter of 3 mm on an Instron type machine, obtaining the compressive strength above 400 MPa. (author)

  4. Cessation of environmentally-assisted cracking in a low-alloy steel: Theoretical analysis

    International Nuclear Information System (INIS)

    Wire, G.L.

    1997-01-01

    Environmentally Assisted Cracking (EAC) can cause increases in fatigue crack growth rates of 40 to 100 times the rate in air for low alloy steels. The increased rates can lead to very large predicted crack growth. EAC is activated by a critical level of dissolved sulfides at the crack tip. Sulfide inclusions (MnS) in the steel produce corrosive sulfides in solution following exposure by a growing crack. In stagnant, low oxygen water conditions considered here, diffusion is the dominant mass transport mechanism acting to change the sulfide concentration within the crack. The average crack tip velocity is below the level required to produce the critical crack tip sulfide ion concentration required for EAC. Crack extension analyses also consider the breakthrough of large, hypothetical embedded defects with the attendant large freshly exposed sulfide inventory. Combrade et al. noted that a large inventory of undissolved metallurgical sulfides on crack flanks could trigger EAC, but did not quantify the effects. Diffusion analysis is extended herein to cover breakthrough of embedded defects with large sulfide inventories. The mass transport via diffusion is limited by the sulfide solubility. As a result, deep cracks in high sulfur steels are predicted to retain undissolved sulfides for extended but finite periods of time t diss which increase with the crack length and the metallurgical sulfide content in the steel. The analysis shows that the duration of EAC is limited to t diss providing V eac , the crack tip velocity associated with EAC is less than V In , the crack tip velocity below which EAC will not occur in an initially sulfide free crack. This condition on V eac need only be met for a short time following crack cleanup to turn off EAC. The predicted crack extension due to limited duration of EAC is a small fraction of the initial embedded defect size and would not greatly change calculated crack depths

  5. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  6. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  7. Structural and transport properties of Sn-Mg alloys

    International Nuclear Information System (INIS)

    Meydaneri, F.; Saatci, E.; Oezdemir, M.; Ari, M.; Durmus, S.

    2010-01-01

    The structural and temperature dependence transport of Sn-Mg alloys have been investigated for five different samples (Pure Sn, Sn-1.0 wt % Mg , Sn-2.0 wt % Mg , Sn-6.0 wt.% Mg and Pure Mg). Scanning Electron Microscopy (SEM), x-ray diffraction (XRD) and Energy Dispersive x-ray Analysis (EDX) measurements were carried out in order to clarify the structural properties of the samples. It has been found that, the samples have tetragonal crystal symmetry except the pure Mg which has hexagonal crystal symmetry. The cell parameters decrease slightly with addition of Mg element. The SEM micrographs of the samples show that, the samples have smooth surfaces with clear grain boundary. There is no crack, porosity or defects on the surfaces. The electrical resistivity of the samples increases almost linearly with the increasing temperature, which were measured by four-point probe technique. The thermal conductivity values are in between 0.60-1.00 W/Km, which are decrease slightly with temperature and increase with composition of Mg. The thermal conductivity values of the alloys are in between the values of the pure samples. Thermal conductivity results of the alloys have been compared with available other studies and a good agreement has been seen between the results. In addition, the temperature coefficients of electrical resistivity and thermal conductivity have been determined, which are independent with the compositions of alloying elements

  8. The structure and mechanical properties of as-cast Zr-Ti alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F.

    2009-01-01

    This study has investigated the structure and mechanical properties of pure Zr and a series of binary Zr-Ti alloys in order to determine their potential application as dental implant materials. The titanium contents of these alloys range from 10 to 40 wt.% and were prepared by arc melting in inert gas. This study evaluated the phase and structure of these Zr-Ti alloys using an X-ray diffraction (XRD) for phase analysis, and an optical microscope for microstructure analysis of the etched alloys. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that the pure Zr and Zr-10Ti comprised entirely of an acicular hexagonal structure of α' phase. When the Ti content increased to 20 wt.%, a significant amount of β phase was retained. However, when the Ti content increased to 40 wt.%, only the equi-axed, retained β phase was observed in the cast alloy. Moreover, the hardness values and bending strengths of the Zr-Ti alloys decreased with an increasing Ti content. Among pure Zr and Zr-Ti alloys, the α'-phase Zr-10Ti alloy has the greatest hardness and bending strength. The pure Zr and Zr-Ti alloys exhibit a similar elastic modulus ranging from 68 GPa (Zr-30Ti) to 78 GPa (Zr-40Ti). Based on the results of elastic moduli, pure Zr and Zr-Ti alloys are found to be suitable for implant materials due to lower modulus. Like bending strength, the elastically recoverable angle of Zr-Ti alloys decreased as the concentration of Ti increased. In the current search for a better implant material, the Zr-10Ti alloy exhibited the highest bending strength/modulus ratios as large as 25.3, which are higher than that of pure Zr (14.9) by 70%, and commercially pure Ti (8.7) by 191%. Thus, Zr-Ti alloy's low modulus, ductile property, excellent elastic recovery capability and impressive strength confirm that it is a promising candidate for dental implant materials.

  9. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  10. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  11. Study of the evolution of the microstructure and hardness of Cu-Al and Cu-Al-Ti alloys during their production by reactive milling and extrusion

    International Nuclear Information System (INIS)

    Figueroa, F; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    The microstructure and hardness of two alloys produced by reactive milling of elementary powders for 10, 20 and 30 hours and later hot extrusion were studied: a Cu-5 vol.% Al 2 O 3 binary and another Cu-2.5 vol.%TiC-2.5 vol.% Al 2 O 3 ternary. The microstructure of the alloys was characterized with a transmission electron microscope (TEM), X-ray diffraction (XRD) and different methods of chemical analysis. Then their hardness was evaluated before and after annealing at 873 K. The extruded binary alloy showed a micrometric grain structure, with nanometric subgrains (100 nm), together with the formation of nanometric dispersoids of semi-coherent Al 2 0 3 with the Cu matrix. The ternary alloy showed a microstructure very similar to the binary alloy, except that it also showed the formation of nanometric TiC dispersoids. The nanoparticles acted effectively as anchoring points for the movement of dislocations and grain growth. The microstructure was observed to be stable after annealing treatments for all the alloys. The milled ternary alloy was 32% harder (290 HV) than the hardest binary alloy (milled for 30 hours) (au)

  12. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    Science.gov (United States)

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  14. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  15. Phase transition and hydrogen storage properties of Mg–Ga alloy

    International Nuclear Information System (INIS)

    Wu, Daifeng; Ouyang, Liuzhang; Wu, Cong; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • A fully reversible transformation in Mg–Ga–H system with reduced dehydrogenation enthalpy is realized. • The mechanism of phase transformation in the de/hydrogenation of Mg–Ga alloy is revealed. • The de/hydrogenation process of Mg 5 Ga 2 compound is expressed as: Mg 5 Ga 2 + H 2 ↔ 2Mg 2 Ga + MgH 2 . - Abstract: Mg-based alloys are viewed as one of the most promising candidates for hydrogen storage; however, high desorption temperature and the sluggish kinetics of MgH 2 hinder their practical application. Alloying and changing the reaction pathway are effective methods to solve these issues. As the solid solubility of Ga in Mg is 5 wt% at 573 K, the preparation of a Mg(Ga) solid solution at relatively high temperatures was designed in this paper. The phase transition and hydrogen storage properties of the MgH 2 and Mg 5 Ga 2 composite (hereafter referred to as Mg–Ga alloy) were investigated by X-ray diffraction (XRD), pressure–composition-isotherm (PCI) measurements, and differential scanning calorimetry (DSC). The reversible hydrogen storage capacity of Mg–Ga alloy is 5.7 wt% H 2 . During the dehydrogenation process of Mg–Ga alloy, Mg 2 Ga reacts with MgH 2 , initially releasing H 2 and forming Mg 5 Ga 2 ; subsequently, MgH 2 decomposes into Mg with further release of H 2 . The phase transition mechanism of the Mg 5 Ga 2 compound during the dehydrogenation process was also investigated by using in situ XRD analysis. In addition, the dehydrogenation enthalpy and entropy changes, and the apparent activation energy were also calculated

  16. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    Science.gov (United States)

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. XRF, XRD and SEM facilities in the School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia

    International Nuclear Information System (INIS)

    Azmi Rahmat

    1996-01-01

    The School has acquired excellent facilities for elemental analysis by XRF and EDX and phase analysis by XRD. The type of research work carried out in the School is described. The school also assists the local industries in trying to solve their problems fully utilizing these facilities along with other testing units

  18. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    Science.gov (United States)

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Analysis of phase formation in Ni-rich alloys of the Ni-Ta-W system by calorimetry, DTA, SEM, and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T.; Hecht, U.; Warnken, N.; Fries, S.G. [Access e.V., Aachen (Germany); Hu Weiping [Inst. fuer Metallkunde und Metallphysik der RWTH Aachen (Germany)

    2006-04-15

    The partial enthalpies of dissolution of pure Ni, W and Ta in liquid ternary Ni-Ta-W alloys have been determined at (1773 {+-} 5) K using a high temperature isoperibolic calorimeter. Measurements were performed in Ni-rich alloys (from 80 to 100 at.% Ni) along sections with constant Ta:W atomic ratios 1:0, 2:1, 1:2, and 0:1. The partial enthalpies and thereby the integral enthalpy of mixing of these ternary alloys are calculated from the partial enthalpies of dissolution using SGTE Gibbs energies for pure elements as reference. The obtained thermochemical data confirm that in the investigated Ni-rich alloys the binary interactions between Ta and W as well as the ternary Ni-Ta-W interactions are negligibly small. Due to this the variation of the integral enthalpy of mixing of the ternary alloys is well described as linear combination of the constituent Ni-Ta and Ni-W binaries. Such behaviour of the ternary liquid alloys is related to a very low probability of new ternary stable phases to occur in solid state. This prediction is confirmed by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy of the as-solidified and annealed samples obtained as last alloy compositions in the series of calorimetric dissolution. (orig.)

  20. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  1. Influence of 'third' elements and structure on the results of spectral analysis of high alloyed steels and cast iron with glow discharge

    International Nuclear Information System (INIS)

    Buravlev, Yu.M.; Zamarajev, V.P.; Chernyavskaya, N.V.

    1989-01-01

    The experimental technique consists in estimation of mutual arrangement of the calibration curves obtained using standard reference materials of low-alloyed and high-alloyed (high-chrome, stainless, high-speed) steels as well as of the curves for carbon steels and cast iron differing in their structure. ARL-31000 and Polyvac E-1000 quantometers with U=1300 V, I=0.12 A and argon pressure ∼1 kPa are used. The influence of third elements is shown in shift and slope changes of the curves for abovementioned high-alloyed steels in comparison to ones for low-alloyed steels accepted as basic. The influence magnitude runs up to 10-30 relative percents and more in the case of analysis of carbon, phosphorus, sulfur, silicon and other elements and depends on the type of the element and on the alloy composition. It is shown that the contribution of structure factor caused by different alloy thermal treatment makes up 10 to 20 relative percents. The experiments showed that the increase of influence of these factors caused by their imposing as well as the weakening of this influence caused by their counteraction is possible. When analyzed alloys differ in their composition and manufacturing technology it is necessary to take into consideration the influence of these effects. (author)

  2. Aluminium and copper analysis in metallic alloys by neutron activation analysis from an 241 Am-Be source

    International Nuclear Information System (INIS)

    Carvalho, J. de.

    1980-01-01

    Aluminium and copper have been determined in aluminium alloys by the method of activation with neutrons from an 241 Am-Be source of intensity 9,8 x 10 6 n/s. The activity induced due to reactions 27 Al (n, γ) 28 Al and 63 Cu (n, γ) 64 Cu have been measured with a NaI (Tl) detector coupled to a single channel system. In order to obtain the samples and standards of about the same composition, the material to be irradiated was powdered. In view of low intensity of neutron source it was necessary to use samples of up to 50 g. A series of preliminary irradiations were carried out to ensure that the geometry for the irradiation and for the counting are reproducible. The results have been compared with those obtained by chemical methods. Assuming that the results obtained by chemical method is exact, a maximum relative error of 3,6% is obtained by this method. The method has a good reproducibility. The time needed for analysis of aluminium and copper are 18 min and 2 hours 40 minutes respectively. Four different samples were analysed. The average of five measurements for one of the samples was: 88.0% for aluminium and 10.0% for copper. The standard deviation and coefficient of variation were 0,8 and 1.0% for aluminium and 0,2 and 2.0% for copper. (author)

  3. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    Science.gov (United States)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  4. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  5. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  6. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Science.gov (United States)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  7. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Bolarín-Miró, A.M.; Betancourt, I.; Torres-Villaseñor, G.

    2014-01-01

    In this paper, a systematic study on the structural and magnetic properties of Co 100−x Cr x alloys (0 1−x Cr x (0 2 /kg) for the Co 90 Cr 10 , which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co 40 Cr 60 . For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co 10 Cr 90, it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system

  8. High temperature XRD of Cu2GeSe3

    International Nuclear Information System (INIS)

    Premkumar, D. S.; Malar, P.; Chetty, Raju; Mallik, Ramesh Chandra

    2015-01-01

    The Cu 2 GeSe 3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu 2 GeSe 3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature

  9. Critical assessment of finite element analysis applied to metal–oxide interface roughness in oxidising zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2015-09-15

    As a nuclear fuel cladding material, zirconium alloys act as a barrier between the fuel and pressurised steam or lithiated water environment. Controlling degradation mechanisms such as oxidation is essential to extending the in-service lifetime of the fuel. At temperatures of ∼360 °C zirconium alloys are known to exhibit cyclical, approximately cubic corrosion kinetics. With acceleration in the oxidation kinetics occurring every ∼2 μm of oxide growth, and being associated with the formation of a network of lateral cracks. Finite element analysis has been used previously to explain the lateral crack formation by the development of localised out-of-plane tensile stresses at the metal–oxide interface. This work uses the Abaqus finite element code to assess critically current approaches to representing the oxidation of zirconium alloys, with relation to undulations at the metal–oxide interface and localised stress generation. This includes comparison of axisymmetric and 3D quartered modelling approaches, and investigates the effect of interface geometry and plasticity in the metal substrate. Particular focus is placed on the application of the anisotropic strain tensor used to represent the oxidation mechanism, which is typically applied with a fixed coordinate system. Assessment of the impact of the tensor showed that 99% of the localised tensile stresses originated from the out-of-plane component of the strain tensor, rather than the in-plane expansion as was previously thought. Discussion is given to the difficulties associated with this modelling approach and the requirements for future simulations of the oxidation of zirconium alloys.

  10. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    structures in Finland; (b) manufacture of Al-Mg-Si-based alloy 181 FSW-joined bullet- train cabins in Japan; (c) fabrication of 182 Al-Cu-based alloy...Simonsen, Visualisation of Material 857Flow in an Autogenous Friction Stir Weld, Proc. 1st International 858Symp. FSW, Thousand Oaks, CA, 1999 85928...A.P. Reynolds, Visualization of Material Flow in an Autogenous 860Friction Stir Weld, Sci. Technol. Weld. Join., 2000, 5, p 120–124 86129. T.U. Seidel

  11. Analysis of uranium and of some of its compounds and alloys. Copper spectrophotometric determination

    International Nuclear Information System (INIS)

    Copper determination in uranium, uranium oxides (UO 2 , UO 3 , U 3 O 8 ), ammonium diuranate, U-Al-Fe alloy (700 ppm Al and 300 ppm Fe) and U-Mo alloy (1.1 percent Mo) by acid dissolution reduction of copper by hydroxylamine hydrochloride and formation of a complex with diquinolyle-2,2' amyl alcohol (pH value 6 to 7) and spectrophotometry at 550 nm. The method is applicable for copper content between 5 to 40 ppm in respect of uranium contained in the material [fr

  12. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    OpenAIRE

    Cui S.; Mishra R.; Jung I.-H.

    2018-01-01

    Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed...

  13. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-09-01

    Full Text Available Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic NiTi and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to assess the type of fracture and the capability of achieving bonding and involved mechanisms are discussed.

  14. Smart materials activation analysis on example of nickel and titanium alloys

    Directory of Open Access Journals (Sweden)

    Wieczorek Bartosz

    2018-01-01

    Full Text Available This paper is focused on research concerning activation time of elements made of Ni-Ti alloy (55/45% vol. The activation time is a period of time required for alloy to reach it’s austenitic transformation (Af temperature. For examined wire it reached values up to 60 °C. Heating of NiTi wire was conducted by retaining heat. In this paper the influence of wire length and electric current power on heating time is presented. This research allows to determine the correlation between the increase of temperature and time. For given electric current values. This data is useful for effective design of SMA actuators‥

  15. Optimization of phase analysis of refractory alloys in the gas-ion-reaction chamber

    International Nuclear Information System (INIS)

    Blumenkamp, H.J.; Hoven, H.; Koizlik, K.; Nickel, H.

    1980-04-01

    Reactor components outside the core which are under high thermal and mechanical stresses are made from refractory alloys. For basic research and for quality control, these materials are investigated by metallography, which is an independent group of characterization procedures as well as basis for many other methods. An important way of increasing the information about a material yielded by metallography is the expansions of phase contrast, in particular the phase contrasting in the gas-ion-reaction chamber. In this paper, the experimental procedure is described and the process of optimizing the procedure with respect to the Ni- and Fe-based refractory alloys examined in the IRW is discussed. (orig.) [de

  16. Analysis of alloys and salt solutions by 'beta'-ray back-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A; Maji, K D; Kumar, R [National Metallurgical Lab., Jamshedpur (India)

    1975-07-01

    This investigation reports the results of a study undertaken to assess the suitability of using the GM counter for measuring the intensity of ..beta..-backscattered radiation to determine the chemical composition of binary solid alloys, and aqueous salt solutions containing a metallic radical. The results indicate that the technique is not suitable for the determination of the composition of binary alloys since the error is in the range of 1.2 to 2.3 wt-% metal. The technique can be conveniently adapted for aqueous salt solutions where the maximum error is approximately 0.2 wt-% metal for metallic elements with atomic number greater than 20.

  17. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quintino, L., E-mail: lquirino@ist.utl.pt [Universidade Tecnica de Lisboa (IST/UTL) (Portugal). Instituto Superior Tecnico. Dept. de Engenharia Mecanica; Liu, L., E-mail: ray.plasma@gmail.com [Tsinghua Univ., Beijing (China). Dept. of Mechanical Engineering; Hu, A.; Zhou, Y., E-mail: anming.hu@uwaterloo.ca, E-mail: nzhou@uwaterloo.ca [University of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering; Miranda, R.M., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa (UNIDEMI), Caparica (Portugal). Dept. de Engenharia Mecanica e Industrial

    2013-07-15

    Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic Ni Ti and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to asses the type of fracture and the capability of achieving bonding and involved mechanisms are discussed. (author)

  18. SCC analysis of Alloy 600 tubes from a retired steam generator

    Science.gov (United States)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  19. Real time observation of phase formations by XRD during Ga-rich or In-rich Cu(In, Ga)Se{sub 2} growth by co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, Paul; Zahedi-Azad, Setareh; Hartnauer, Stefan; Waegele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland [Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany)

    2015-09-15

    Solar cells with Cu(In, Ga)Se{sub 2} absorbers rely on the three-stage co-evaporation process with Cu-poor/Cu-rich/Cu-poor absorber deposition conditions for highest efficiency devices. During the three-stage process, the formation and evolution of different selenide phases with changing compositions throughout the process crucially determine the final absorber quality. In this contribution, we monitor the evolution of crystalline phases in real-time with an X-ray diffraction (XRD) line detector setup implemented into an evaporation setup. Using the common three-stage process, we prepare and compare samples covering the full alloying range from CuInSe{sub 2} to CuGaSe{sub 2}. The in situ XRD allows the detection of the crystalline phases present at all times of the process as well as an advanced analysis of the phase evolution through a closer look at peak shifts and the full width at half maximum. For samples with a Ga/(Ga + In) ratio (GGI) < 0.5, distinct phase transitions associated with the transition to the reported vacancy compounds Cu(In,Ga){sub 5}Se{sub 8} and Cu(In, Ga){sub 3}Se{sub 5} are observed. No such indication was found for samples with a GGI > 0.5. For Ga-rich Cu(In, Ga)Se{sub 2} phases with a GGI of 0.55, the XRD analysis evidenced a Ga-rich phase segregation before the stoichiometric point was reached. The above findings are discussed in view of their implication on wide gap solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  1. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue

  2. Analysis of intermetallic particles in Mg-12 wt.%Zn binyry alloy using transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Martin; Gärtnerová, Viera; Klementová, Mariana; Jäger, Aleš

    2015-01-01

    Roč. 106, Aug (2015), s. 428-436 ISSN 1044-5803 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : biomedical alloy s * heat treatment * microstructure * transmission electron microscopy * electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.383, year: 2015

  3. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  4. Magnetic properties analysis of intermetallic alloys Rni5 (R = Rare Earths)

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1988-01-01

    SmNi 5 and TmNi 5 alloys were analysed by magnetization measures, susceptibility, resistivity and only for TmNi 5 by magnetostriction and thermal expansion. The results are distinguished by powerful magnetic anisotropy of these materials. (C.G.C.) [pt

  5. Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation

    Czech Academy of Sciences Publication Activity Database

    Bočan, Jiří; Maňák, Jan; Jäger, Aleš

    2015-01-01

    Roč. 644, Sep (2015), s. 114-120 ISSN 0921-5093 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : EBSD * electron microscopy * hardness measurement * magnesium alloys * mechanical characterization * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  6. Application of spectral analysis of the electrochemical noise to the investigation of aluminium alloy pitting corrosion

    International Nuclear Information System (INIS)

    Bataillon, Christian

    1987-01-01

    The objective of this research is to decode (at least partially) the nature of the information contained in the electrochemical noise associated with the pitting corrosion phenomenon in aluminium alloys. After a general presentation of aluminium and its alloys and a report of a bibliographical study on the electrochemical noise, the author gives an overview of a theoretical approach of stochastic phenomena, and of an experimental approach. Then, the experimental investigation of the electrochemical noise in the case of pitting corrosion leads to a noise control law, to a study of the structure of pitting growth, and to the elaboration of a procedure of assessment of spectral characteristics of this noise. The author reports a systematic study of the electrochemical noise with respect to the parameters of the control law. Results allow a quantitative characterization of pitting corrosion resistance of the studied alloys, notably by using the kinetic aspect of pitting growth and the structure of pitting corrosion. The author discusses the physicochemical nature of random fluctuations which build up the noise. He proposes a more precise explanation of phenomena related to initiation and propagation of pitting corrosion on aluminium alloys in marine environment [fr

  7. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy

    International Nuclear Information System (INIS)

    Ma Jingling; Wen Jiuba; Zhai Wenxia; Li Quanan

    2012-01-01

    The corrosion behaviour of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt.%) alloy has been investigated by immersion test, scanning electron microscopy, energy dispersive X-ray detector, electrochemical impedance spectroscopy and electrochemical noise. The results show that there exist different corrosion types of the alloy in 3.5% NaCl solution with the immersion time. At the initial stage of immersion, pitting due to the precipitates predominates the corrosion with a typical inductive loop at low frequencies in electrochemical impedance spectroscopy. The major precipitates of the alloy are MgZn 2 and Al 2 CeZn 2 particles. The corrosion potentials of the bulk MgZn 2 and Al 2 CeZn 2 alloys are negative with respect to that of α-Al, so the MgZn 2 and Al 2 CeZn 2 precipitates can act as activation centre and cause the pitting. In the late corrosion, a relative uniform corrosion predominates the corrosion process controlled by the dissolution/precipitation of the In ions and characterized by a capacitive loop at medium-high frequencies in electrochemical impedance spectroscopy. The potential noise of the pitting shows larger amplitude fluctuation and lower frequency, but the potential noise of the uniform corrosion occurs with smaller amplitude fluctuation and higher frequency.

  8. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  9. Enhanced Mechanical Properties of Laser Treated Al-Cu Alloys : A Microstructural Analysis

    NARCIS (Netherlands)

    Mol van Otterloo, J.L.de; Bagnoli, D.; de Hosson, J.T.M.

    Both mechanical Vickers hardness and electron microscopic studies have been carried out on laser treated aluminium copper alloys with a copper concentration in the range 0-40 wt%. It is found that a Vickers hardness of 470 kgf/mm(2) can be attained, which is high compared to a value of 120 kgf/mm(2)

  10. Sc-45 nuclear magnetic resonance analysis of precipitation in dilute Al-Sc alloys

    NARCIS (Netherlands)

    Celotto, S; Bastow, TJ

    Nuclear magnetic resonance (NMR) with Sc-45 is used to determine the solid solubility of scandium in aluminium and to follow the precipitation of Al3Sc during the ageing of an Al-0.06 at.% Sc alloy via the two fully resolved peaks, corresponding to Sc in the solid solution Al matrix and to Sc in the

  11. Spectral analysis of creep recovery process in finemet type amorphous alloy

    NARCIS (Netherlands)

    Jurikova, A; Csach, K; Miskuf, J; Bengus, VZ; Ocelik, Vaclav

    2002-01-01

    The creep recovery process in Finemet type amorphous alloy leas been analyzed using the method for calculating the relaxation tithe spectra. The influence of structural relaxation and temperature on the spectra shape lags been studied. The creep recovery spectrum of the anelastic deformation of the

  12. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  13. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  14. Structural evolution of Cu{sub (1−X)}Y{sub X} alloys prepared by mechanical alloying: Their thermal stability and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: smulafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Setman, Daria [Physics of Nanostructured Materials, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Youssef, Khaled [Department of Materials Science and Technology, Qatar University, P.O. Box 2713, Doha (Qatar); Scattergood, R.O.; Koch, Carl C [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2015-04-05

    Highlights: • Metastable solid solutions were prepared from Cu–Y nonequilibrium compositions by mechanical alloying. • Gibbs free energy change as per Miedema’s model confirms the formation of metastable alloys. • High Y content alloys showed high thermal stability during extensive annealing at high temperatures. • Stabilized alloys showed very high hardness and improved yield strength. • Mechanisms of high thermal stability and improved mechanical properties were discussed. - Abstract: In the present study, an attempt has been made to synthesize copper based disordered solid solutions by mechanical alloying (MA) of non-equilibrium compositions. The blended compositions of Cu–1% Y, Cu–3% Y, Cu–5% Y and Cu–7.5% Y (at.%) (all the compositions will be addressed as % only hereafter until unless it is mentioned) were ball-milled for 8 h, and then annealed at different temperatures (200–800 °C) for different length of duration (1–5 h) under high purity argon + 2 vol.% H{sub 2} atmosphere. X-ray diffraction (XRD) analysis and Gibbs free energy change calculation confirm the formation of disordered solid solution (up to 7.5%) of Y in Cu after milling at a room temperature for 8 h. The XRD grain size was calculated to be as low as 7 nm for 7.5% Y and 22 nm for 1% Y alloy. The grain size was retained within 35 nm even after annealing for 1 h at 800 °C. Transmission electron microscopy (TEM) analysis substantiates the formation of ultra-fine grained nanostructures after milling. Microhardness value of the as-milled samples was quite high (3.0–4.75 GPa) compared to that of pure Cu. The hardness value increased with increasing annealing temperatures up to 400 °C for the alloys containing 3–7.5% Y, and thereafter it showed a decreasing trend. The increase in the hardness after annealing is attributed to the formation of uniformly distributed ultrafine intermetallic phases in the nanocrystalline grains. The stabilization effect is achieved due to

  15. Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2010-01-01

    Full Text Available Abstract CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production.

  16. Understanding corrosion behavior of Mg–Zn–Ca alloys from subcutaneous mouse model: Effect of Zn element concentration and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Tan, Zongqing [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Xu, Zhigang [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Dong, Zhongyun [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2015-03-01

    Mg–Zn–Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg–xZn–0.3Ca (x = 1, 3 and 5 wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg–xZn–0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca{sub 2}Mg{sub 6}Zn{sub 3} formed along grain boundaries, 2) the corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH){sub 2}), hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), and magnesite (MgCO{sub 3}·3H{sub 2}O). - Highlights: • Effects of PEO and Zn concentration in Mg–xZn–0.3Ca alloys on biodegradation • Corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing Zn concentration. • Plasma electrolytic oxidation retards the biodegradation of Mg–xZn–0.3Ca alloys.

  17. Evaluation of non-conformities of hip prostheses made of titanium alloys and stainless steel; Avaliacao de nao conformidades de proteses de quadril fabricadas com ligas de titanio e aco inox

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Ewerton de Oliveira Teotonio; Nascimento, Jose Jeferson da Silva; Luna, Carlos Bruno Barreto; Morais, Crislene Rodrigues da Silva; Campos, Karla Valeria Miranda de, E-mail: ewerton.teotonio@hotmail.com, E-mail: brunobarretodemaufcg@hotmail.com [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academinca de Engenharia de Materiais

    2017-01-15

    A large number of metallic alloys has satisfactory behavior when used to manufacture implants for hip prostheses. However, they must be in conformity with standards, to ensure their quality for long periods without losing its functionality. Therefore, this paper aims to study the non-conformities in two hip prostheses, one of titanium and other stainless steel according to standards. The implants studied passed by X-ray diffraction (XRD), X-ray fluorescence, tensile test and optical microscopy (OM). Specimens for the tensile test were made according to ASTM E 8M, as well, MO samples passed by metallographic procedure. The results evidenced that some chemical compositions showed in relation to the standards. The XRD analysis showed peaks of austenite and absence of ferrite for the stainless steel, while the titanium alloy presents an alpha phase (HCP) more significant than the beta phase (BCC). The stainless steel alloys and titanium have yield strength and tensile strength that meet the standards. On the other hand, the elastic modulus of the titanium alloy and stainless steel, comes to be ten times greater than the human bone. Therefore, the high modulus of elasticity of the alloys, favors bone resorption problems. The stainless steel microstructure is typical of an austenitic matrix, while the titanium alloy presents α + β microstructure. (author)

  18. Interaction of alumina with liquid Pb{sub 83}Li{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Uttam, E-mail: uttamj@barc.gov.in [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Abhishek; Sonak, Sagar; Kumar, Sanjay [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, Ratikant [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Krishnamurthy, Nagaiyar [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    Highlights: • The role of oxygen in the interaction of alumina with Pb{sub 83}Li{sub 17} alloy was studied. • Li of Pb{sub 83}Li{sub 17} alloy undergoes oxidation even in flowing high pure argon atmosphere. • It was seen that alumina reacts with Pb{sub 83}Li{sub 17} alloy at 550 °C to form LiAlO{sub 2} compound. • The reaction is rapid in the presence of oxygen and happens more slowly in the presence of flowing argon. - Abstract: Eutectic lead lithium (Pb{sub 83}Li{sub 17}) alloy is being considered a coolant, neutron multiplier and tritium breeder for International Thermonuclear Experimental Reactor (ITER) and Fusion Power Reactors (FPR). In order to reduce the magneto-hydrodynamic drag (MHD) and to prevent corrosion of structural materials due to the flow of lead lithium (Pb{sub 83}Li{sub 17}) alloy, alumina (Al{sub 2}O{sub 3}) is proposed as a candidate ceramic coating material. Interaction of liquid Pb{sub 83}Li{sub 17} alloy with Al{sub 2}O{sub 3} at the operating temperature of these reactors is therefore an important issue. The present paper deals with the characterization of Pb{sub 83}Li{sub 17} alloy and its interaction with Al{sub 2}O{sub 3} at the reactor operating temperature. The interaction was studied using EPMA, XRD and thermal analysis technique. The result indicates that alumina can interact with Pb{sub 83}Li{sub 17} alloy at 550 °C even in high purity argon atmosphere. The role of oxygen in the interaction process has also been discussed.

  19. Biochemical analysis of the Hormoconis resinae fungal mycelium in the corrosion of aeronautical aluminium alloys

    Directory of Open Access Journals (Sweden)

    Araya, R.

    2007-06-01

    Full Text Available Biochemical analyses of the Hormoconis resinae fungal mycelium would explain behaviour differences of corrosive and non-corrosive strains on Al and its aeronautical alloys. In previous works its aggressiveness had been studied through SEM-EDX surface analysis, electrochemical techniques and immersion testing. In this paper separation of the proteins of the mycelium produced by a non-corrosive strain and its culture along three generations was performed. Cultures were prepared in batch in the presence and absence of pure Al and AA 2024, AA 7005 and AA 7075 alloys. The mycelia grown throughout the three generations increasingly
    recovered usual characteristics at the third replication, included their corrosiveness on Al and its alloys previously shown by all our strains. Amongst the bio-molecule fractions isolated and analysed during this preliminary study only the proteins revealed changes with the generation grown. When this fungal strain was cultured in the presence of alloy metal sheets electrophoresis of the protean fraction was correlative with the distinct mycelia behaviour observed, including corrosiveness on Al and its alloys.

    Las diferencias entre el comportamiento corrosivo y no corrosivo de una cepa del hongo Hormoconis resinae sobre aluminio y sus aleaciones aeronáuticas se explicarían a través de análisis bioquímicos del micelio. En trabajos previos, el comportamiento corrosivo se estudió mediante análisis de superficie SEM-EDX, técnicas electroquímicas y ensayos de inmersión. En este trabajo, se llevó a cabo la separación de proteínas del micelio producido por una cepa que perdió su corrosividad y su cultivo a través de tres generaciones. Cultivos en batch, en presencia y ausencia de aluminio y sus aleaciones AA 2024, AA 7005 y AA 7075, a través de tres generaciones del micelio crecido, fueron recuperando sus características, incluida su habitual corrosividad, en la tercera replicaci

  20. Stress analysis of martensitic transformation in Cu-Al-Be polycrystalline and single-crystalline shape memory alloy

    International Nuclear Information System (INIS)

    Kaouache, B.; Berveiller, S.; Inal, K.; Eberhardt, A.; Patoor, E.

    2003-01-01

    The aim of this study is to analyze the martensitic transformation in a shape memory alloy during a superelastic loading, focusing on internal strains, stresses and phases fractions. The behavior of the austenite phase is studied by X-ray diffraction stress analysis during in situ tensile test at room temperature. Both single-crystal and polycrystal samples have been investigated. The results are discussed with the aim to correlate the microstructural variations with the local stress state evolution in the austenitic phase while variants of martensite form and develop during a superelastic loading

  1. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    Science.gov (United States)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  2. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  3. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  4. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  5. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2017-12-01

    Full Text Available The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF. The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction, SEM (Scanning Electron Microscopy, and TEM (Transmission Electron Microscope. The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy. The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO42 compound (precursor of hydroxyapatite deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.

  6. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    Science.gov (United States)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  7. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  8. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    Science.gov (United States)

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  9. Morphological Analysis (SEM) of the Surface of a Non-Noble Dental Alloy Subjected to Electrocorrosion

    Science.gov (United States)

    Baciu, E. R.; Grădinaru, I.; Baciu, M.; Vasluianu, R. I.; Cimpoesu, R.; Baciu, C.; Bejinariu, C.

    2017-06-01

    Corrosion consists in the degradation of a material under the chemical or electrochemical action of the environment where it is placed. The investigations carried out aimed to show the structural modifications produced in Co-Cr-Mo alloy, Robur 400 (Eisenbacher Dental - Waren ED GmbH, Germany) subjected to electrocorrosion in Fusayama-Mayer artificial saliva. The specimens prepared by mechanical polishing were analysed structurally by using a scanning electron microscope. During the tests run we could notice a general corrosion of the surfaces of the specimens made from Robur alloy. Through 2D and 3D microscopy and qualitative determinations of the luminous variation we could notice the effects of electrocorrosion tests on the surface of the metal material.

  10. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  11. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  12. Mechanical Properties Analysis of an Al-Mg Alloy Connecting Rod with Submicrometric Structure

    Directory of Open Access Journals (Sweden)

    Javier León

    2015-07-01

    Full Text Available Over these last few years, there has been a growing interest in developing mechanical components from submicrometric materials due to the significant improvement that these materials present compared to their original state. This present research work deals with the study of the mechanical properties of a connecting rod isothermally forged from different starting materials. These materials are as follows: annealed aluminum alloy (AA 5754, the same alloy previously deformed through equal channel angular pressing (ECAP and a third case where the previously ECAP-processed material is subjected to a recovery heat treatment. A comparison is made between finite volume (FV simulations and experimental tests with respect to hardness, plastic strain and forging force. Furthermore, the improvement in the mechanical properties of the connecting rod forged from predeformed material is evaluated in comparison to the connecting rod forged with annealed material. The microstructure of both cases is also compared at the end of the manufacturing process.

  13. Fundamental flow and fracture analysis of prime candidate alloy (PCA) for path a (austenitics)

    International Nuclear Information System (INIS)

    Lucas, G.E.; Jayakumar, M.; Maziasz, P.J.

    1982-01-01

    Room temperature microhardness tests have been performed on samples of Prime Candidate Alloy (PCA) for the austenitics (Path A) subjected to various thermomechanical treatments (TMT). The TMTs have effected various microstructures, which have been well characterized by optical metallography and TEM. For comparison, microhardness tests have been performed on samples of N-lot, DO heat and MFE 316 stainless steel with similar TMTs. The results indicate that the TMTs investigated can significantly alter the microhardness of the PCA in a manner which is consistent with microstructural changes. Moreover, while PCA had the lowest microhardness of the four alloys types after cold working, its microhardness increased while the others decreased to comparable values after aging for 2 h at 750 0 C

  14. Application of single pan thermal analysis to Cu-Sn peritectic alloys

    International Nuclear Information System (INIS)

    Kohler, F.; Campanella, T.; Nakanishi, S.; Rappaz, M.

    2008-01-01

    Single pan thermal analyses (SPTA) have been performed on Cu-14.5 wt.% Sn, Cu-21.3 wt.% Sn and Cu-26.8 wt.% Sn peritectic alloys. For this purpose, a SPTA assembly has been built and calibrated. As the latent heat is a function of temperature and composition during solidification of alloys, a new heat flow model coupled to a Cu-Sn thermodynamic database has been defined for the calculation of the corresponding evolutions of the solid mass fraction, f s (T). To verify the accuracy of this model, a close comparison with a microsegregation model that includes back-diffusion in the primary α-solid phase has also been conducted successfully. The thermal analyses have finally shown that the Cu-Sn phase diagram recently assessed in the review of Liu et al. is the most reliable

  15. Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: shiyh@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Jin, H. [Novelis Global Technology Center, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9 (Canada); Wu, P.D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Lloyd, D.J. [Aluminum Materials Consultants, 106 Nicholsons Point Road, Bath, Ontario, Canada K0H 1G0 (Canada); Embury, D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-07-29

    An ingot of AA6xxx Al–Si–Mg–Cu alloy clad with AA3003 Al–Mn alloy was co-cast by Fusion technology. Bending tests and numerical modeling were performed to investigate the potential for sub-surface cracking for this laminate system. To simulate particle-induced crack initiation and growth, both random and stringer particles have been selected to mimic the particle distribution in the tested samples. The morphology of cracking in the model was similar to that observed in clad sheet tested in the Cantilever bend test. The crack initiated in the core close to the clad-core interface where the strain in the core is highest, between particles or near particles and propagates along local shear bands in the core, while the clad layer experiences extreme thinning before failure.

  16. Dislocation analysis of die-cast Mg-Al-Ca alloy after creep deformation

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Itoh, Daigo; Sato, Tatsuo

    2009-01-01

    Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the dislocation movements during creep and to explain the creep properties of the Mg-Al-Ca AX52 die-cast alloy at 473 K and stresses from 15 to 70 MPa. TEM observations indicate that dislocations are generated within the primary α-Mg grain in the die-casting process, which consist of both the basal and non-basal segments. The basal segments of dislocations are able to bow out and glide on the basal planes under the influence of a stress, and the jogs follow the basal segments with the help of climb during creep. The creep mechanism for the alloy is deduced as dislocation climb due to the formation of sub-boundaries during creep, while the easy glide of the basal segments of dislocations is controlling the creep rates immediately after the stress application of creep tests.

  17. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    Directory of Open Access Journals (Sweden)

    Yongseok Jang

    2014-08-01

    Full Text Available The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3− and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD. Electrochemical impedance spectroscopy (EIS was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  18. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    Science.gov (United States)

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  19. Effect of impurities on microstructure and structural propertiesof the as-cast and treated Al-Zn alloys

    Directory of Open Access Journals (Sweden)

    Douniazed Lamrous

    2014-03-01

    Full Text Available The microstructure of two Al-Zn alloys (with 10 and 30 wt.%Zn content produced by melting in the high frequency induction furnace were investigated by means of scanning electron microscopy (SEM, energy dispersive X-ray (EDX spectroscopy, X-ray diffraction (XRD analysis and the microhardness tests. The results indicate that the presence of iron impurity causes the formation of eutectic (Al,Zn3Fe in both alloys. The presence of the silicon impurity results in the formation of the phase separation in the Al-10%Zn as-cast alloy. The columnar to equiaxed transition was produced only in the Al-30%Zn as-cast alloy. The Vickers microhardness is higher in the equiaxed zone than in the columnar to equiaxed transition (CET zone. The presence of iron causes intermetallic phase formation (Al, Fe, Si3,6Zn in the Al-30%Zn as-cast alloy enabling an increase in the lattice parameter. After a homogenization treatment, the microstructure of Al-Zn treated alloys consists only of α dendrites and stable eutectic phase.

  20. The synergistic effect of Li addition on microstructure, texture and mechanical properties of extruded Al–Mg–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ud Din, Shamas; Kamran, J. [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Tariq, N.H., E-mail: naeem421@hotmail.com [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Hasan, B.A. [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Petrov, R.H.; Bliznuk, V. [Ghent University, Department of Materials Science and Engineering, Technologiepark 903, Gent (Belgium); Uz Zuha, Shamas [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan)

    2016-05-01

    In the present work, 0, 1, 2 and 3 wt.% Li was added to conventional Al-0.9Mg-0.5Si alloy. The samples were extruded and aged to investigate the effect of Li addition on microstructure, texture and mechanical properties. The density of conventional alloy was reduced up to 7.8% while the ultimate tensile strength (UTS) increased by 62% with 3% Li addition. Electron backscatter diffraction (EBSD) revealed that Li addition effectively refined the grain size of the modified alloys. TEM/EDX and XRD analysis revealed the synergistic effect of Li addition which promoted the formation of nano-sized δ′(Al{sub 3}Li) precipitates when Li content is higher then 1%. The ageing trend first decreased for 1 wt.% Li addition and then increased with increasing Li content from 2 to 3 wt.% at the expense of ductility. The intensity of texture increased with the gradual increase in Li content from alloy-1 to 4. - Highlights: • Study of 0, 1, 2 and 3 wt.% Li on Al–Mg–Si alloys in extruded and T6 condition. • Density reduced to 7.8% with UTS increased by 62% for 3% Li addition. • Texture intensity increased with increase in Li content from alloy-1 to 4. • Property enhancement attributed to a refinement of δ′ (Al{sub 3}Li) precipitates.

  1. The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloys

    International Nuclear Information System (INIS)

    Zhang, Yu; Huang, Xiaofeng; Ma, Zhenduo; Li, Ya; Guo, Feng; Yang, Jianchang; Ma, Ying; Hao, Yuan

    2017-01-01

    Mg-6Zn magnesium alloys microalloyed with varying Al content (0, 1, 3, 5 and 7 wt%) were prepared by permanent mould casting. The effects of Al on the microstructure and mechanical properties of as-cast Mg-6Zn alloy were characterized with an optical microscope (OM), a scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS), an X-ray diffractometer (XRD) and mechanical tests at room temperature, respectively. The experimental results indicate that the grain sizes do not decline obviously while the amount of eutectic phase and the secondary dendrite arm spacing (SDAS) of the alloys gradually increase when the Al content exceeds 3%. The main phases α-Mg, MgZn 2 , Mg 2 Zn 3 , Mg 7 Zn 3 , MgZn, Mg 32 (Al, Zn) 49 and Mg 17 Al 12 are found in these alloys. A higher addition of Al (≥5 wt%) causes the formation of the Mg 17 Al 12 , meanwhile, the partial morphology of some eutectic phases is modified into lamellar formation, which has an adverse effect on mechanical properties of the Al-containing alloys. The mechanical testing reveals that, the tensile properties are gradually improved within the range of 0 ~ 3%Al, and the maximum values of ultimate tensile strength (UTS, 214 MPa) and elongation (EL, 8.7%) are simultaneously obtained from the alloy with 3% Al, which increases by 21 MPa and 16.0% compared with that of the ZA60 alloy, respectively. Fracture analysis demonstrates that quasi-cleavage fracture, inter-granular and trans-granular fracture are dominant modes in the alloy with additions of 0, 1, 3 wt% Al. In contrast, the rupture mechanisms of the other investigated alloys belong to cleavage and inter-granular fracture modes.

  2. The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Huang, Xiaofeng, E-mail: huangxf_lut@163.com; Ma, Zhenduo; Li, Ya; Guo, Feng; Yang, Jianchang; Ma, Ying; Hao, Yuan

    2017-02-16

    Mg-6Zn magnesium alloys microalloyed with varying Al content (0, 1, 3, 5 and 7 wt%) were prepared by permanent mould casting. The effects of Al on the microstructure and mechanical properties of as-cast Mg-6Zn alloy were characterized with an optical microscope (OM), a scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS), an X-ray diffractometer (XRD) and mechanical tests at room temperature, respectively. The experimental results indicate that the grain sizes do not decline obviously while the amount of eutectic phase and the secondary dendrite arm spacing (SDAS) of the alloys gradually increase when the Al content exceeds 3%. The main phases α-Mg, MgZn{sub 2}, Mg{sub 2}Zn{sub 3}, Mg{sub 7}Zn{sub 3}, MgZn, Mg{sub 32}(Al, Zn){sub 49} and Mg{sub 17}Al{sub 12} are found in these alloys. A higher addition of Al (≥5 wt%) causes the formation of the Mg{sub 17}Al{sub 12}, meanwhile, the partial morphology of some eutectic phases is modified into lamellar formation, which has an adverse effect on mechanical properties of the Al-containing alloys. The mechanical testing reveals that, the tensile properties are gradually improved within the range of 0 ~ 3%Al, and the maximum values of ultimate tensile strength (UTS, 214 MPa) and elongation (EL, 8.7%) are simultaneously obtained from the alloy with 3% Al, which increases by 21 MPa and 16.0% compared with that of the ZA60 alloy, respectively. Fracture analysis demonstrates that quasi-cleavage fracture, inter-granular and trans-granular fracture are dominant modes in the alloy with additions of 0, 1, 3 wt% Al. In contrast, the rupture mechanisms of the other investigated alloys belong to cleavage and inter-granular fracture modes.

  3. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  4. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  5. Effect of Electrolyte Composition on Corrosion Behavior of PEO Treated AZ91 Mg Alloy

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Lee, Jae Ho

    2009-01-01

    Mg and Mg alloys have been used for lots of applications, including automobile industry, aerospace, mobile phone and computer parts owing to low density. However, Mg and Mg alloys have a restricted application because of poor corrosion properties. Thus, improved surface treatments are required to produce protective films that protect the substrate from corrosion environments. Environmental friendly Plasma Electrolytic Oxidation (PEO) has been widely investigated on magnesium alloys. PEO process combines electrochemical oxidation with plasma treatment in the aqueous solution. In this study, AZ91 Mg alloys were treated by PEO process in controlling the current with PC condition and treated time, concentration of NaF, NaOH, and Na 2 SiO 3 . The surface morphology and phase composition were analyzed using SEM, EDS and XRD. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimen. Additionally, salt spray tests were carried out to examine and compare the corrosion properties of the PEO treated Mg alloys

  6. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling

    International Nuclear Information System (INIS)

    Espinoza, Rodrigo A.; Palma, Rodrigo H.; Sepulveda, Aquiles O.; Fuenzalida, Victor; Solorzano, Guillermo; Craievich, Aldo; Smith, David J.; Fujita, Takeshi; Lopez, Marta

    2007-01-01

    The microstructure, electrical conductivity and hot softening resistance of two alloys (G-10 and H-20), projected to attain Cu-2.5 vol.% TiC-2.5 vol.% Al 2 O 3 nominal composition, and prepared by reaction milling and hot extrusion, were studied. The alloys were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several chemical analysis techniques. The first alloy, G-10, showed the formation of Al 2 O 3 nanodispersoids and the presence of particles from non-reacted raw materials (graphite, Ti and Al). A second alloy, H-20, was prepared employing different fabrication conditions. This alloy exhibited a homogeneous distribution of Al 2 O 3 and Ti-Al-Fe nanoparticles, with the microstructure being stable after annealing and hot compression tests. These nanoparticles acted as effective pinning sites for dislocation slip and grain growth. The room-temperature hardness of the H-20 consolidated material (330 HV) was approximately maintained after annealing for 1 h at 1173 K; the electrical conductivity was 60% IACS (International Annealing Copper Standard)

  7. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  8. Effect Of Cooling Rate On Thermal And Mechanical Properties Of Cu-%24.2Mn Alloy

    International Nuclear Information System (INIS)

    Celik, H.

    2010-01-01

    In this research, different heat and mechanical treatments have been applied to the Cu-%24.2Mn and some samples have been obtained from this alloy. On these samples, phase transformations have been formed by thermal and mechanical effect. Morphological, mechanical and crystallographic properties of the phase transformations have been examined by using different physical methods. Austenite phase has been obtained in the samples which have been applied slow and rapid cooling according to the SEM analysis. It has been observed that the grain size obtained by the rapid cooling is smaller than the grain size obtained by the slow cooling. Therefore, it has been concluded that the cooling process differences, changes the grain size of the alloy. Compression stress has been applied to the alloy in order to search the deformation effect on the austenite phase transformation. The structural features of the phase transformations have been examined. Slip lines and martensite structural were observed on the surface of the alloys after the deformation. Changes in phase structure of the alloy are also examined by means of XRD technique.

  9. A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Benešová, B.; Sedlák, P.

    2016-01-01

    Roč. 21, č. 3 (2016), s. 358-382 ISSN 1081-2865 R&D Projects: GA ČR GA13-13616S; GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : shape memory alloys * constitutive model * generalized standard materials * dissipation * energetic solution Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://mms.sagepub.com/content/21/3/358

  10. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    Science.gov (United States)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  11. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  12. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    International Nuclear Information System (INIS)

    Zhu, S.M.; Easton, M.A.; Gibson, M.A.; Dargusch, M.S.; Nie, J.F.

    2013-01-01

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism

  13. Analysis of the Chip Geometry in Dry Machining of Aeronautical Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Francisco Javier Trujillo Vilches

    2017-01-01

    Full Text Available Aluminum alloys are widely used in the manufacturing of structural parts for aircraft, frequently in combination with other materials such as CFRP (Carbon Fiber Reinforced Polymer, to form FML (Fiber Metal Laminates structures (CFRP/Al. The dry machining of these structures presents several problems, some of which are related to chip evacuation, either when machining aluminum alloys as an isotropic material, or during hybridization with composites. In this work, a study of the way in which cutting parameters influence the chip morphology in the dry machining of UNS A97075-T6 (Al-Zn and UNS A92024-T3 (Al-Cu alloys, is performed. Thus, different geometric parameters of the chip morphology have been obtained, and their evolution with feed has been analysed. Finally, the different relationships which occur between these geometric parameters and feed, have been obtained. These relationships allow a prediction of the evolution of some of the geometric parameters of the chip, as a function of feed.

  14. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy

    International Nuclear Information System (INIS)

    Hasani, S.; Shamanian, M.; Shafyei, A.; Behjati, P.; Szpunar, J.A.

    2014-01-01

    Highlights: • We investigated, occurrence of different phase transformations in a FeCo- 7.15%wt V alloy upon heating to 1200 °C. • We investigated, the determination of the activation energy for these phase transformations by using five isoconversional methods. • We investigated, the calculation of the empirical kinetic triplets by using the invariant kinetic parameters method and fitting model. - Abstract: In this study, occurrence of different phase transformations was investigated in a FeCo-7 wt% V alloy upon heating to 1200 °C by the dilatometry method at different heating rates (5, 10, and 15 °C min −1 ). It was found that four phase transformations (including B2-type atomic ordering in α phase, first stage of polymorphic transformation (α → α r + γ), ordering to disordering, and second stage of polymorphic transformation (α r → γ) occur in this alloy up to 1200 °C. Two isoconversional methods, as Starink and Friedman, were used to determine variation of the activation energy with temperature, E(T). Moreover, the empirical kinetic triplets (E, A, and g(α)) were calculated by the invariant kinetic parameters (IKP) method and fitting model

  15. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  16. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@monash.edu [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M.A. [CAST Cooperative Research Centre, CSIRO Process Science and Engineering, Clayton, Victoria 3169 (Australia); Dargusch, M.S. [Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4075 (Australia); Defence Materials Technology Centre, The University of Queensland, Queensland 4075 (Australia); Nie, J.F. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2013-08-20

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism.

  17. The fractography analysis of IN718 alloy after three-point flexure fatigue test

    Directory of Open Access Journals (Sweden)

    Belan Juraj

    2018-01-01

    Full Text Available In this study, the high cycle fatigue (HCF properties of IN718 superalloy with given chemical composition were investigated at three-point flexure fatigue test at room temperature. INCONEL alloy 718 is nickel-chromium-iron hardenable alloy and due to its unique combination of mechanical properties (high-strength; corrosion-resistant and so on used for production of heat resistant parts of aero jet engine mostly. Mechanical properties of this alloy are strongly dependent on microstructure and on presence of structural features such are principal strengthening phase gamma double prime, gamma prime and due to its morphology less desired delta phases. The mentioned phases precipitate at various temperature ranges and Nb content as well. The three-point flexure fatigue test was performed on ZWICK/ROELL Amsler 150 HFP 5100 test equipment with approximate loading frequency f=150 Hz. The S – N (Stress – Number of cycles curve was obtained after testing. With the help of scanning electron microscope (SEM, fractography analyses were performed to disclose the fracture features of specimens in different life ranges. The brief comparison of three-point flexure and push-pull fatigue loading modes and its influence on fatigue life is discussed as well.

  18. EBSD-assisted fractographic analysis of crack paths in magnesium alloy

    Directory of Open Access Journals (Sweden)

    S. Takaya

    2015-10-01

    Full Text Available Magnesium (Mg alloys are attractive as structural materials due to their light weight and high specific strength. It is well known that Mg alloy has hexagonal close-packed (HCP structure and only basal slip or twinning can operate during plastic deformation because critical resolved shear stresses of the other slip systems such as pyramidal or prismatic slips are much higher than the basal slip. Thus sometimes characteristic fracture surfaces are formed during stress corrosion cracking (SCC or fatigue crack propagation (FCP in Mg alloys, where many parallel lines are formed. These lines are different from so-called fatigue striations, because they are formed even under sustained load condition of SCC. Consequently, electron back scattered diffraction (EBSD technique was applied on the fracture surface, and the formation mechanism of parallel lines was investigated. EBSD-assisted fractography had revealed that the characteristic parallel lines were formed due to the operation of basal slips, not twining. It is considered that hydrogen-enhanced localized plasticity (HELP mechanism had been activated under corrosive environment

  19. Method and analysis for determining yielding of titanium alloy with nonlinear Rayleigh surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shifeng; Zhang, Lei; Mirshekarloo, Meysam Sharifzadeh; Chen, Shuting; Chen, Yi Fan; Wong, Zheng Zheng; Shen, Zhiyuan; Liu, Huajun; Yao, Kui, E-mail: k-yao@imre.a-star.edu.sg

    2016-07-04

    Methods for determining yielding of titanium (Ti) alloy material with second harmonic Rayleigh ultrasonic wave are investigated. Both piezoelectric angle beam transducers and high frequency laser scanning vibrometer (LSV) are used to detect ultrasonic signals in the Ti alloy specimens with different plastic strain levels. Technical features and outcomes with use of piezoelectric transducers and LSV are compared. The method using piezoelectric transducers, with much higher signal-to-noise ratio than LSV, has been further improved by deploying two transducers with central frequencies corresponding to the fundamental and second order harmonic signals respectively to improve the testing reliability and accuracy. Both the techniques using piezoelectric transducer and LSV demonstrate consistently that the acoustic nonlinearity increases with plastic strain, and the second harmonic Rayleigh ultrasonic wave can be utilized for effective determination of yielding in Ti alloy. Our experiments further show that the acoustic nonlinearity increases gradually with plastic strain at small plastic strain level, and there is a more significant increase of acoustic nonlinearity when the plastic strain reaches a higher level. Microscopic investigations using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) are conducted for clarifying the relationship between the observed acoustic nonlinearity and micro-structural changes.

  20. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  1. Design risk analysis comparison between low-activation composite and aluminum alloy target chamber for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schleicher, R.W.

    1997-01-01

    The baseline design for the target chamber for the National Ignition Facility (NIF) consists of an aluminum alloy spherical shell. A low-activation composite chamber (e.g., carbon fiber/epoxy) has important advantages such as enhanced environmental and safety characteristics, improved chamber accessibility due to reduced neutron-induced radioactivity, and elimination of the concrete shield. However, it is critical to determine the design and manufacturing risk for the first application. The replacement of such a critical component requires a detailed development risk assessment. A semiquantitative approach to risk assessment has been applied to this problem based on failure modes, effects, and criticality analysis. This analysis consists of a systematic method for organizing the collective judgment of the designers to identify failure modes, estimate probabilities, judge the severity of the consequence, and illustrate risk in a matrix representation. The results of the analyses indicate that the composite chamber has a reasonably high probability of success in the NIF application. The aluminum alloy chamber, however, represents a lower risk, partially based on a more mature technology. 8 refs., 4 figs., 5 tabs

  2. Thermal Analysis of Pure Uranium Metal, UMo and UMoSi Alloys Using a Differential Thermal Analyzer

    International Nuclear Information System (INIS)

    Yanlinastuti; Sutri Indaryati; Rahmiati

    2010-01-01

    Thermal analysis of pure uranium metal, U-7%Mo and U-7%Mo-1%Si alloys have been done using a Differential Thermal Analyzer (DTA). The experiments are conducted in order to measure the thermal stability, thermochemical properties of elevated temperature and enthalpy of the specimens. From the analysis results it is showed that uranium metal will transform from α to β phases at temperature of 667.16°C and enthalpy of 2.3034 cal/g and from β to γ phases at temperature of 773.05 °C and enthalpy of 2.8725 cal/g and start melting at temperature of 1125.26 °C and enthalpy of 2.1316 cal/g. The U-7%Mo shows its thermal stability up to temperature of 650 °C and its thermal changes at temperature of 673.75 °C indicated by the formation of an endothermic peak and enthalpy of 0.0257 cal/g. The U-7%Mo-1%Si alloys shows its thermal stability up to temperature of 550 °C and its thermal changes at temperature of 574.18 °C indicated by the formation of an endothermic peak and enthalpy of 0.613 cal/g. From the three specimens it is showed that they have a good thermal stability at temperature up to 550 °C. (author)

  3. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  4. Influence of Si concentration on the precipitation in Al-1 at.% Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Gaber, A.; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2008-08-25

    The aging processes in Al-Mg-Si alloys have been studied by using differential scanning calorimetry (DSC), microhardness measurements (HV) and X-ray diffraction (XRD). Five processes have been detected by the DSC curves and HV behaviour. In the DSC curves, four exothermic and one endothermic reactions are developed. The sequence of processes are Guinier-Preston (G.P.) zones, dissolution of the G.P. zones, intermediate precipitation of {beta}''-phase, precipitation of {beta}'-phase and precipitation of the stable {beta}-phase + Si particles. The activation energies associated with the processes have been determined by using Kissinger method. Consequently, the nucleation mechanism of the precipitates can be explained. These phases are confirmed by XRD analysis.

  5. Dynamics of data flows on the low-activated vanadium alloy for thermonuclear power engineering (analysis of four international data bases)

    International Nuclear Information System (INIS)

    Shepelev, A.G.; Kurilo, Yu.P.; Krivchenko, O.V.

    2015-01-01

    The paper presents the results of scientometric analysis of data flows in the International Data Bases SCOPUS, INSPEC, INIS, MSCI over a period since 1971 to 2014 on low-activated vanadium alloys suitable for operation as structural materials under extremely hard conditions in the future fusion reactors. The data on the dynamics of publications and contributions in them from the scientists of different countries have been obtained. The types and languages of publications have been identified. The analysis shows that investigations on the low-activated vanadium alloys are of current importance

  6. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    Science.gov (United States)

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy

    Science.gov (United States)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2017-12-01

    Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen's heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg's law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.

  8. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Schricker, Scott R; Nusstein, John M; Li, Uei-Ming; Svec, Timothy A

    2009-10-01

    Employ Micro-X-ray diffraction and temperature-modulated differential scanning calorimetry to investigate microstructural phases, phase transformations, and effects of heat treatment for rotary nickel-titanium instruments. Representative as-received and clinically used ProFile GT and ProTaper instruments were principally studied. Micro-XRD analyses (Cu Kalpha X-rays) were performed at 25 degrees C on areas of approximately 50 microm diameter near the tip and up to 9 mm from the tip. TMDSC analyses were performed from -80 to 100 degrees C and back to -80 degrees C on segments cut from instruments, using a linear heating and cooling rate of 2 degrees C/min, sinusoidal oscillation of 0.318 degrees C, and period of 60s. Instruments were also heat treated 15 min in a nitrogen atmosphere at 400, 500, 600 and 850 degrees C, and analyzed. At all Micro-XRD analysis regions the strongest peak occurred near 42 degrees , indicating that instruments were mostly austenite, with perhaps some R-phase and martensite. Tip and adjacent regions had smallest peak intensities, indicative of greater work hardening, and the intensity at other sites depended on the instrument. TMDSC heating and cooling curves had single peaks for transformations between martensite and austenite. Austenite-finish (A(f)) temperatures and enthalpy changes were similar for as-received and used instruments. Heat treatments at 400, 500 and 600 degrees C raised the A(f) temperature to 45-50 degrees C, and