WorldWideScience

Sample records for alloying ni yoru

  1. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  2. Comparison of three Ni-Hard I alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.; Rice, J. (Texaloy Foundry Co., Inc., Floresville, Texas)

    2004-09-01

    This report documents the results of an investigation which was undertaken to reveal the similarities and differences in the mechanical properties and microstructural characteristics of three Ni-Hard I alloys. One alloy (B1) is ASTM A532 class IA Ni-Hard containing 4.2 wt. pct. Ni. The second alloy (B2) is similar to B1 but higher in Cr, Si, and Mo. The third alloy (T1) also falls in the same ASTM specification, but it contains 3.3 wt. pct. Ni. The alloys were evaluated in both as-cast and stress-relieved conditions except for B2, which was evaluated in the stress-relieved condition only. While the matrix of the high Ni alloys is composed of austenite and martensite in both conditions, the matrix of the low Ni alloy consists of a considerable amount of bainite, in addition to the martensite and the retained austenite in as cast condition, and primarily bainite, with some retained austenite, in the stress relieved condition. It was found that the stress relieving treatment does not change the tensile strength of the high Ni alloy. Both the as cast and stress relieved high Ni alloys had a tensile strength of about 350 MPa. On the other hand, the tensile strength of the low Ni alloy increased from 340 MPa to 452 MPa with the stress relieving treatment. There was no significant difference in the wear resistance of these alloys in both as-cast and stressrelieved conditions.

  3. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  4. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  5. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  6. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  7. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  8. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  9. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  10. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  11. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  12. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  13. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  14. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  15. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  16. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  17. Structural features in Ni-Al alloys

    International Nuclear Information System (INIS)

    Abylkalykova, R.B.; Kveglis, L.I.; Rakhimova, U.A.; Nasokhova, Sh.B.; Tazhibaeva, G.B.

    2007-01-01

    Purpose of the work is study of structural transformations under diverse memory effect in Ni-Al alloys. Examination were conducted in following composition samples: Ni -75 at.% and Al - 25 at.%. The work is devoted to clarification reasons both formation atom-ordered structures in inter-grain boundaries of bulk samples under temperature action and static load. Revealed inter-grain inter-boundary layers in Ni-Al alloy both bulk and surface state have complicated structure

  18. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  19. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  20. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  1. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  2. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  3. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  4. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  5. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  6. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levo, E. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Fridlund, C.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland)

    2017-07-15

    Single-phase multicomponent alloys of equal atomic concentrations (“equiatomic”) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  7. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  8. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  9. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  10. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  11. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    Science.gov (United States)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  12. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  13. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  14. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  15. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  16. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunwang [Inner Mongolia University of Technology, College of Science, Hohhot (China); Shanghai Maritime University, College of Arts and Sciences, Shanghai (China); Zhao, Shilei; Jin, Yongjun; Hou, Qingyu [Inner Mongolia University of Technology, College of Science, Hohhot (China); Guo, Shaoqiang [Beihang University, Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beijing (China)

    2017-09-15

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni{sub 50}Ti{sub 50-x}Pr{sub x} (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys. (orig.)

  17. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  18. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  19. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  20. Crystal growth velocity in deeply undercooled Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  1. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  2. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  3. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  4. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  5. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  6. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  7. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  8. Electrodeposition of NiPd alloy from aqueous chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mech, K., E-mail: kmech@agh.edu.pl [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wróbel, M [AGH, University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, Krakow (Poland); Wojnicki, M [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Mech-Piskorz, J. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Żabiński, P.; Kowalik, R. [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-12-01

    Highlights: • Mechanism of electrode reactions resulting in NiPd alloys was described. • Electrolysis conditions enabling alloys synthesis were determined. • Alloys were characterized towards composition, structure and surface properties. - Abstract: Presented results describing properties of alloys deposited at potentiostatic conditions in Ni{sup 2+} – Pd{sup 2+} – Cl{sup −} – H{sub 2}O system. Electrolysis parameters were defined based on results of thermodynamic analysis as well as voltammetry coupled with electrochemical quartz crystal microbalance (EQCM). Influence of electrode potential and electrolyte components concentration on alloy composition, morphology and its structure was investigated. Alloys were deposited at different Ni(II) and Pd(II) complexes concentrations. Results indicated possibilities of electrochemical synthesis of alloys of wide composition range. Deposits structure as well as crystallites size were discussed based on results of XRD measurements. Alloys composition was determined with the use of energy dispersive spectroscopy (EDS). Morphology of alloys was characterized with the use of scanning electron microscopy (SEM).

  9. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  10. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  11. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  12. The martensitic transformation in Ti-rich TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Lin, H.C.; Wu, S.K.; Lin, J.C.

    1994-01-01

    The martensitic (Ms) transformation temperatures and their ΔH values of Ti 51 Ni 49 and Ti 50.5 Ni 49.5 alloys are higher than those of equiatomic or Ni-rich TiNi alloys. The Ti-rich TiNi alloys exhibit good shape recovery in spite of a great deal of second phase Ti 2 Ni or Ti 4 Ni 2 O existing around B2 grain boundaries. The nearly identical transformation temperatures indicate that the absorbed oxygen in Ti-rich TiNi alloys may react with Ti 2 Ni particles, instead of the TiNi matrix, to form Ti 4 Ni 2 O. Martensite stabilization can be induced by cold rolling at room temperature. Thermal cycling can depress the transformation temperatures significantly, especially in the initial 20 cycles. The R-phase transformation can be promoted by both cold rolling and thermal cycling in Ti-rich TiNi alloys due to introduced dislocations depressing the Ms temperature. The strengthening effects of cold rolling and thermal cycling on the Ms temperature of Ti-rich TiNi alloys are found to follow the expression Ms = To - KΔσ y . The K values are affected by different strengthening processes and related to the as-annealed transformation temperatures. The higher the as-annealed Ms (or As), the larger the K value. (orig.)

  13. Structural conditions of achieving maximum ductility of two-phase Ni-NiO alloys

    International Nuclear Information System (INIS)

    Grabin, V.V.; Dabizha, E.V.; Movchan, B.A.

    1984-01-01

    A study was made on possibility of increasing ductility of two-phase Ni-NiO alloys, proJuced by traditional technology: ingot smelting, rolling and corresponding annealing for production of grain with certain size. The correlation of mechanical properties of Ni-NiO alloys and pure nickel shows that completion of the structural conJition D--lambda (where D - the average grain diameter, lambda - the value of free path between particles) in two-phase alloys enables: to increase the ultimate strength 1.5 times and preserve the basic level of pure nickel plasticity - at 20 deg C; to increase plasticity 1.4-1.5 times with preserved basic level of pure nickel plasticity - at 800 deg C. The conclusions testify to possibility of controlling mechanical properties of two-phase alloys using structural D and lambda parameters It is proposed that creation of structures with more unifor m particle distribution with respect to sizes will the accompanied by further increase of plasticity under D=lambda condition

  14. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Science.gov (United States)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  15. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.; Shimomura, Y. [Hiroshima Univ. (Japan). Faculty of Engineering

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT, dislocation lines and voids are discussed. (orig.) 8 refs.

  16. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  17. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  18. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  19. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    Science.gov (United States)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  20. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  1. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  2. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  3. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  4. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  5. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  6. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  7. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  8. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  9. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  10. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  11. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  12. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot

    International Nuclear Information System (INIS)

    Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama

    2013-01-01

    Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phase

  13. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  14. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  15. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  16. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  17. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  18. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  19. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  20. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  1. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  2. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  3. Microstructural characterization of alloys of the quasibinary Cu-NiBe system

    Energy Technology Data Exchange (ETDEWEB)

    Spaic, S.; Markoli, B. [Univ. of Ljubljana, Faculty of Natural Science and Engineering, Ljubljana (Slovenia)

    2003-08-01

    Alloys of the quasibinary section Cu-NiBe were experimentally investigated with differential thermal analysis, optical microscopy, electron microanalysis, transmission electron microscopy and X-ray diffraction. The construction of the quasibinary Cu-NiBe phase diagram was made based on the experimental results. The constitution of alloys of the whole section was studied along with the investigation of the microstructure and crystallographic relationship of the NiBe phase in aged alloys from the Cu-rich corner of the Cu-NiBe system. (orig.)

  4. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  5. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  6. Solidification Rate Dependence of Microstructures and Transformation Behavior of Ti-Ni-Hf Alloys.

    Science.gov (United States)

    Kim, Dong-Jo; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    The microstructures and transformation behavior of Ti-49Ni-20Hf, Ti-49.5Ni-20Hf and Ti-50.3Ni- 20Hf alloys, when prepared by conventional casting, were investigated and compared with the properties of the alloys prepared by melt spinning. The area fraction of (Ti,Hf)2Ni in Ti-Ni-Hf alloys decreased to 3.9% from 9.4% as Ni content rose to 50.3 at% from 49 at%. Several cracks were observed in the hot-rolled Ti-49Ni-20Hf alloy sheet but none were found in the Ti-50.3Ni-20Hf alloy sheet. The B2-B19' transformation start temperature (Ms) decreased to 476 K from 580 K as Ni content increased to 50.3 at% from 49 at%. All the as-spun ribbons were amorphous, and the activation energy for crystallization ranged from 167.8 kJ/mol to 182.7 kJ/mol based on Ni content. When annealing temperature ranged from 810 K to 873 K, crystalline Ti-Ni-Hf alloys without (Ti,Hf)2Ni particles were obtained. At annealing temperatures higher than 873 K, very fine (Ti,Hf)2Ni particles, less than 20 nm in size, were found embedded in a crystalline matrix.

  7. Coarsening of Ni-Ge solid-solution precipitates in 'inverse' Ni{sub 3}Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ardell, Alan J., E-mail: alan.ardell@gmail.com [National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Ma Yong [Aquatic Sensor Network Technology LLC, Storrs, CT 06268 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We report microstructural evolution of disordered Ni-Ge precipitates in Ni{sub 3}Ge alloys. Black-Right-Pointing-Pointer Coarsening kinetics and particle size distributions are presented. Black-Right-Pointing-Pointer Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. Black-Right-Pointing-Pointer The shapes of large precipitates are unusual, with discus or boomerang cross-sections. Black-Right-Pointing-Pointer Results are compared with morphology, kinetics of Ni-Al in inverse Ni{sub 3}Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni-Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni{sub 3}Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 Degree-Sign C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni{sub 3}Ge precipitates in normal Ni-Ge alloys and of Ni-Al precipitates in inverse Ni{sub 3}Al alloys. The activation energy for coarsening, 275.86 {+-} 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni{sub 3}Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  8. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  9. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  10. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  11. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Analysis of phase formation in Ni-rich alloys of the Ni-Ta-W system by calorimetry, DTA, SEM, and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T.; Hecht, U.; Warnken, N.; Fries, S.G. [Access e.V., Aachen (Germany); Hu Weiping [Inst. fuer Metallkunde und Metallphysik der RWTH Aachen (Germany)

    2006-04-15

    The partial enthalpies of dissolution of pure Ni, W and Ta in liquid ternary Ni-Ta-W alloys have been determined at (1773 {+-} 5) K using a high temperature isoperibolic calorimeter. Measurements were performed in Ni-rich alloys (from 80 to 100 at.% Ni) along sections with constant Ta:W atomic ratios 1:0, 2:1, 1:2, and 0:1. The partial enthalpies and thereby the integral enthalpy of mixing of these ternary alloys are calculated from the partial enthalpies of dissolution using SGTE Gibbs energies for pure elements as reference. The obtained thermochemical data confirm that in the investigated Ni-rich alloys the binary interactions between Ta and W as well as the ternary Ni-Ta-W interactions are negligibly small. Due to this the variation of the integral enthalpy of mixing of the ternary alloys is well described as linear combination of the constituent Ni-Ta and Ni-W binaries. Such behaviour of the ternary liquid alloys is related to a very low probability of new ternary stable phases to occur in solid state. This prediction is confirmed by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy of the as-solidified and annealed samples obtained as last alloy compositions in the series of calorimetric dissolution. (orig.)

  13. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  14. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  15. Effect of adding Si on shape memory effect in Co-Ni alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weimin [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liu Yan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Bohong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: bhjiang@sjtu.edu.cn; Zhou Pingnan [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-11-25

    In this paper, the effect of adding Si to Co-31.5 mass% Ni alloys on fcc-hcp martensitic transformation is investigated. The Co-Ni-Si ternary alloys with different amount of Si from 1 to 5 mass% were prepared. The stacking fault probability of Co-Ni-Si polycrystalline alloys were determined by X-ray diffraction profile analysis and compared with the binary Co-Ni alloy. The results show that the stacking fault probability of the fcc phase of alloys increases with increasing Si content. The effect of Si on phase transformation and shape memory behavior is evaluated. The experimental results show that both the critical strength and the shape memory effect of the ternary alloys will increase by the addition of Si. The improvement mechanism of the shape memory effect by adding Si to binary Co-Ni alloys is discussed.

  16. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  17. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  18. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  19. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  20. Density Measurement of Liquid Ni-Ta Alloys by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; Kusuhiro Mukai

    2005-01-01

    The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.

  1. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  2. Hydriding properties of amorphous Ni-B alloy studied by DSC and thermogravimetry

    International Nuclear Information System (INIS)

    Spassov, T.; Rangelova, V.

    1999-01-01

    The hydrogenation behaviour of melt-spun Ni 81.5 B 18.5 amorphous alloy was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG) and compared with the hydriding properties of a Fe-B-Si glass. It was found that the amorphous Ni-B alloy absorbs larger amounts of hydrogen than the Fe-B-Si glass, as the initial kinetics of hydrogen absorption and desorption of both the alloys are comparable. Hydrogen absorption and desorption reactions in Ni-B were observed to proceed with similar rates at ca. 300 K. The hydrogen desorption is revealed in DSC as an endothermic peak in the 350-450 K range, preceding the crystallization peak of the amorphous alloy. The enthalpy of hydrogen desorption (ΔH des =22 kJ/mol H 2 ) for Ni-B was found to be smaller than that for the Fe-B-Si glass, which finding is in contrast to the results on hydrogen diffusion in crystalline αFe and Fe-based alloys and Ni and Ni-based alloys. The hydrogen desorption temperature and enthalpy for Ni 81.5 B 18.5 were found to be independent of the amount of hydrogen absorbed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  4. Martensitic transformation and shape memory effect in polycomponent TiNi-based alloys

    International Nuclear Information System (INIS)

    Khachin, V.N.; Voronin, V.P.; Sivokha, V.P.; Pushin, V.G.

    1995-01-01

    The results of martesitic transformation (MT) and shape memory effect (SME) in quaternary Ti 50 (NiCoCu) 50 , Ti 50 (NiFeCu) 50 and (TiAl) 50 (NiCu) 50 alloys studies are generalized in this paper. On alloying TiNi simultaneously by two elements, their individual effect on MT and SME is conserved. Martensitic transformations B2→R and B2→B19' are almost simultaneously realizing in a binary TiNi. One can selectively control each of two MT channels by selecting property of alloying elements. As a result, the alloys having any sequences of MT and their realizations temperatures, including simultaneous realization of two MTs at low temperatures, which was not observed earlier, can be produced. (orig.)

  5. Diffusion behavior and atomic mobilities for fcc Cu–Cr–Ni alloys

    International Nuclear Information System (INIS)

    Xu, Gaochi; Liu, Yajun; Lei, Fuyue; Sheng, Guang; Kang, Zhitao

    2015-01-01

    In this work, diffusion couples of fcc Cu–Cr–Ni alloys annealed at 1373 K for 80 h are investigated. The interdiffusion coefficients are retrieved from common compositions of two diffusion couples, which are then combined with thermodynamic descriptions to explore atomic mobilities of Cu, Cr and Ni in fcc Cu–Cr–Ni alloys within the CALPHAD framework. In order to confirm the quality of such kinetic characteristics, a comparison between calculated and experimentally measured concentration profiles of diffusion couples and diffusion paths in Gibbs triangle is made, where the agreement is excellent. The results of this study contribute to the establishment of a general Ni-based mobility database for alloy design. - Highlights: • Atomic mobilities of fcc Cu–Cr–Ni phases were determined. • Experimental interdiffusivities were critically evaluated. • Main and cross interdiffusivities show their peculiarities. • The profiles reveal kinetic importance for alloy microstructures

  6. Prospect of Ti-Ni shape memory alloy applied in reactor structures

    International Nuclear Information System (INIS)

    Duan Yuangang

    1995-01-01

    Shape memory effect mechanism, physical property, composition, manufacturing process and application in mechanical structure of Ti-Ni shape memory alloy are introduced. Applications of Ti-Ni shape memory alloy in reactor structure are prospected and some necessary technical conditions of shape memory alloy applied in the reactor structure are put forward initially

  7. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  8. Density of Liquid Ni-Mo Alloys Measured by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Zushu LI; ZaiNan TAO; Feng XIAO

    2004-01-01

    The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) was measured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molar volume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. The partial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18 - 2.65 × 10-3T + (-47.94 + 3.10 × 10-2T) × 10-2XMo] × 10-6m3·mol-1. The molar volume of Ni-Mo alloy determined in the present work shows a negative deviation from the ideal linear mixing molar volume.

  9. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  10. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  11. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  12. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  13. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  14. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    Science.gov (United States)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  15. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  16. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  17. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  18. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  19. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    Science.gov (United States)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  20. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  1. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  2. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  3. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  4. Ductility and fracture behavior of polycrystalline Ni/sub 3/Al alloys

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni/sub 3/Al alloys tested at ambient and elevated temperatures. Polycrystalline Ni/sub 3/Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni/sub 3/Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni/sub 3/Al with <24.5 at.% Al. The tensile ductility of Ni/sub 3/Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength

  5. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motemani, Y. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Nili-Ahmadabadi, M. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of); Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mmjtan@ntu.edu.sg; Bornapour, M.; Rayagan, Sh. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of)

    2009-02-05

    TiNi alloy is a well-known shape memory alloy and has been widely used for bio-medical, mechanical and electrical applications. In this study, a Ni-rich NiTi alloy was prepared by vacuum arc melting in a water-cooled copper crucible. Three samples of this alloy were heated to 1000 deg. C and cooled in three media: furnace, water, and dry-ice bath. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), hardness measurement and tensile test were carried out to investigate the effect of cooling rate on transformation temperature and mechanical properties. The results show that Ni{sub 3}Ti intermetallic compounds have a great influence on martensitic phase transformation temperature. These tests clearly showed the correlation between cooling rate and properties of the alloy.

  6. Zr - based alloys as hydride electrodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Biris, A.R.; Biris, A.S.; Misan, I.; Lupu, D.

    1999-01-01

    Hydrogen storage alloys, MH, are already used in Ni-MH alkaline batteries conquering an important share of the rechargeable nickel-cadmium battery market. This remarkable success is due not only to the replacement of the toxic material, cadmium, by metal hydrides but also to an increased specific energy, which makes them attractive for electric vehicles. Many research groups are concerned in the improvement of the hydride electrode characteristics: hydrogen storage capacity, high-rate discharge ability, increased cycle life. These properties can be modified by substitution of the base components of a given alloy. A comparison of two types of alloys suitable for MH electrodes LaNi 5 able to store 1.36 w/o hydrogen with Zr(Ti)-Ni alloys of the AB 2 Laves phase type structure showed that the latter could absorb higher amounts of hydrogen. We report part of studies on Zr-V-Cr-Ni of the 15 C type Laves phase structure using our original procedure for pasted electrodes. The substitution of Cr for V atoms in ZrV 0.5 Ni 1 . 5 did not increase the discharge capacity. However, it proved to have a remarkable effect on the discharge capacity C at low temperatures. C at - 12 deg. C as compared to 20 deg.C increases up to ∼ 65 % for Cr containing alloys. (authors)

  7. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  8. Irradiation-induced precipitation in Ni--Si alloys

    International Nuclear Information System (INIS)

    Barbu, A.; Ardell, A.J.

    1975-07-01

    The microstructures of Ni + ion-irradiated Ni--Si solid-solution alloys, containing 2, 4, 6 and 8 at. percent Si were investigated as a function of dose, dose-rate, and temperature. Results of transmission electron microscopy and other data show the precipitation of γ' (Ni 3 Si) in all samples irradiated at 500 0 C. Characteristics of the precipitates are described and a mechanism for their formation is suggested. (U.S.)

  9. Linear thermal expansion coefficient of cast Fe-Ni invar and Fe-Ni-Co superinvar alloys

    International Nuclear Information System (INIS)

    Ogorodnikova, O.M.; Chermenskaya, E.V.; Rabinovich, S.V.; Grachev, S.V.

    1999-01-01

    Cast invar alloys Fe-Ni (28-35 wt. % Ni) are investigated using metallography, dilatometry and X-ray methods as soon as the crystallization is completed and again after low-temperature treatment resulting in martensitic transformation in low nickel alloys. Nickel distribution in a cast superinvar Fe-32% Ni-4% Co is studied by means of X-ray spectrum microanalysis. The results obtained permit the correction of model concepts about cast invars and the estimate of a coefficient of linear expansion depending on phase composition and nickel microsegregation [ru

  10. Diffusion dynamics in liquid and undercooled Al-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stueber, Sebastian

    2009-10-05

    This work presents data on Ni self-diffusion in binary Al-Ni alloys with high precision. For this, we combined two techniques: containerless electromagnetic levitation to position the samples, and neutron time-of-flight spectroscopy to measure the decay of the self-correlation. This combination offers new measurement ranges, especially at low temperatures, several hundreds of Kelvin below the liquidus temperature. Because without container, the primary cristallization seeds for the metallic melt are avoided. But it is also possible to measure reactive samples, and at very high temperatures at and above 2000K, as problematic reactions with the containing cask won't occur. Furthermore this technique also enables measurements at higher momentum transfer q, as one does not have to limit the q-range of the measurement to avoid Bragg peaks of the solid container material. By this time-of-flight spectroscopy on levitated metallic melts, it is possible to determine the Ni self-diffusion in these alloys directly and on an absolute scale. The dependence of the Ni self-diffusion coefficient on temperature and concentration was studied in pure Ni and binary Al-Ni alloys. In a temperature range of several hundred degrees, we always found Arrhenius-like temperature dependence of the diffusion, irrespective of possible undercooling. In the context of these measurements, we also studied the interdependence between diffusivity in the metallic melt and its quasielastic structure factor. Time-of-flight spectroscopy made it also possible to derive the dynamic partial structure factors of the binary alloy Al{sub 80}Ni{sub 20}. All this to enable a better understanding of the atomic processes in the metallic melt, especially of the undercooled melt, as an alloy is always formed out of the (undercooled) melt of its stoichiometric compounds. For this, material transport and diffusion are immensely important. The final goal would be materials design from the melt, i.e. the prediction

  11. Diffusion dynamics in liquid and undercooled Al-Ni alloys

    International Nuclear Information System (INIS)

    Stueber, Sebastian

    2009-01-01

    This work presents data on Ni self-diffusion in binary Al-Ni alloys with high precision. For this, we combined two techniques: containerless electromagnetic levitation to position the samples, and neutron time-of-flight spectroscopy to measure the decay of the self-correlation. This combination offers new measurement ranges, especially at low temperatures, several hundreds of Kelvin below the liquidus temperature. Because without container, the primary cristallization seeds for the metallic melt are avoided. But it is also possible to measure reactive samples, and at very high temperatures at and above 2000K, as problematic reactions with the containing cask won't occur. Furthermore this technique also enables measurements at higher momentum transfer q, as one does not have to limit the q-range of the measurement to avoid Bragg peaks of the solid container material. By this time-of-flight spectroscopy on levitated metallic melts, it is possible to determine the Ni self-diffusion in these alloys directly and on an absolute scale. The dependence of the Ni self-diffusion coefficient on temperature and concentration was studied in pure Ni and binary Al-Ni alloys. In a temperature range of several hundred degrees, we always found Arrhenius-like temperature dependence of the diffusion, irrespective of possible undercooling. In the context of these measurements, we also studied the interdependence between diffusivity in the metallic melt and its quasielastic structure factor. Time-of-flight spectroscopy made it also possible to derive the dynamic partial structure factors of the binary alloy Al 80 Ni 20 . All this to enable a better understanding of the atomic processes in the metallic melt, especially of the undercooled melt, as an alloy is always formed out of the (undercooled) melt of its stoichiometric compounds. For this, material transport and diffusion are immensely important. The final goal would be materials design from the melt, i.e. the prediction of alloy

  12. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  13. Failure probability analyses for PWSCC in Ni-based alloy welds

    International Nuclear Information System (INIS)

    Udagawa, Makoto; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng

    2015-01-01

    A number of cracks due to primary water stress corrosion cracking (PWSCC) in pressurized water reactors and Ni-based alloy stress corrosion cracking (NiSCC) in boiling water reactors have been detected around Ni-based alloy welds. The causes of crack initiation and growth due to stress corrosion cracking include weld residual stress, operating stress, the materials, and the environment. We have developed the analysis code PASCAL-NP for calculating the failure probability and assessment of the structural integrity of cracked components on the basis of probabilistic fracture mechanics (PFM) considering PWSCC and NiSCC. This PFM analysis code has functions for calculating the incubation time of PWSCC and NiSCC crack initiation, evaluation of crack growth behavior considering certain crack location and orientation patterns, and evaluation of failure behavior near Ni-based alloy welds due to PWSCC and NiSCC in a probabilistic manner. Herein, actual plants affected by PWSCC have been analyzed using PASCAL-NP. Failure probabilities calculated by PASCAL-NP are in reasonable agreement with the detection data. Furthermore, useful knowledge related to leakage due to PWSCC was obtained through parametric studies using this code

  14. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  15. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    International Nuclear Information System (INIS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe_5_0Co_3_0Ni_2_0 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe_3O_4 crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe_5_0Co_3_0Ni_2_0 composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe_3O_4 as well as FeNi_3 and Co crystalline phases.

  16. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Eskandari, Hossein [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Mohammad-Hosseini, Vahid [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2016-01-15

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe{sub 50}Co{sub 30}Ni{sub 20} composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe{sub 3}O{sub 4} crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe{sub 50}Co{sub 30}Ni{sub 20} composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe{sub 3}O{sub 4} as well as FeNi{sub 3} and Co crystalline phases.

  17. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  18. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  19. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D' Acapito, F

    2001-04-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu{sub 50}Ni{sub 50} nanoparticles are similar to those of the Cu{sub 60}Ni{sub 40} bulk alloy. The crystal structure of Co{sub x}Ni{sub 1-x} (0{<=}x{<=}1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10{sup 16} ions/cm{sup 2} total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy.

  20. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian Fernandez, C.; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D'Acapito, F.

    2001-01-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu 50 Ni 50 nanoparticles are similar to those of the Cu 60 Ni 40 bulk alloy. The crystal structure of Co x Ni 1-x (0≤x≤1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10 16 ions/cm 2 total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy

  1. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  2. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  3. The studies of the martensite transformations in a Ti36.5Ni48.5Hf15 alloy

    International Nuclear Information System (INIS)

    Han, S.; Jin, S.; Chinese Academy of Sciences, Beijing; Zou, W.; Zhang, Z.; Yang, D.

    1995-01-01

    In recent years, high temperature shape memory alloy (SMA) has attracted much interest by many groups of researchers. Many kinds of alloys, such as TiNiPd and NiAL alloys were reported to have shape memory effect in high temperatures. But for different kinds of reasons, these alloys were not put to practical use. TiNi alloys have been considered the best shape memory materials until now. Adding a third element whose characteristics are similar to Ti or Ni in TiNi binary alloys can produce a new style SMA, which has been done in many cases. In most circumstances, Ni was substituted and only a few investigations on the TiNi alloys was Ti replaced. But in recent years, many investigators have given more attention to this subject. In 1976, Eckelmeyer showed that Zr was one of the element that can raise the phase transformation temperatures of TiNi alloys. In 1990, Krupp obtained a patent on TiNiZr SMA with high transformation temperatures for TiNi alloys. J.H. Mulder also published his work on TiNiZr alloys in 1992. In their previous work, a new type of high temperature SMA Ti 36.5 Ni 48.5 Hf 15 alloy were investigated in more detail by DSC measurement, TEM and high-resolution observations

  4. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  5. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  6. Thermodynamic and surface properties of liquid Co–Cr–Ni alloys

    International Nuclear Information System (INIS)

    Costa, C.; Delsante, S.; Borzone, G.; Zivkovic, D.; Novakovic, R.

    2014-01-01

    Highlights: • The liquid phases of Co–Cr, Co–Ni and Cr–Ni were modelled by the Quasi Chemical Approximation for regular solutions. • The excess Gibbs free energy of mixing of the liquid Co–Cr–Ni phase is estimated by the three thermodynamic models. • Prediction of structure can compensate the lack of structural data of Co–Cr, Co–Ni and Cr–Ni melts. • Thermodynamic modelling of the surface properties of Co–Cr–Ni melts. • Weak effects of short range ordering among nearest neighbours in Co–Cr, Co–Ni and Cr–Ni liquid alloys can be deduced. -- Abstract: Direct measurements of bulk and surface properties of liquid alloys at elevated temperatures are often technically difficult or even impossible, and therefore, theoretical models can be used to estimate missing property values. The energetics of mixing in liquid Co–Cr, Cr–Ni and Co–Ni systems has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) by the first or the Quasi-Chemical Approximation (QCA) for regular solutions, developed by Bhatia and Singh, in the framework of statistical mechanical theory in conjunction with the Quasi-Lattice Theory (QLT). The results obtained for these binary systems have been extended to study the thermodynamics and surface properties of ternary Co–Cr–Ni liquid alloys

  7. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  8. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  9. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  10. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  11. Density of liquid NiCrAlMo quarternary alloys measured by a modified sessile drop method

    International Nuclear Information System (INIS)

    Fang, L.; Wang, Y.F.; Xiao, F.; Tao, Z.N.; MuKai, K.

    2006-01-01

    The densities of liquid NiCrAlMo quaternary alloys with a fixed molar ratio of Ni:Cr:Al (approximately as 73:14:13) and molybdenum concentration from 0 to 10 mass% were measured by a modified sessile drop method (MSDM). It was found that the density of the liquid NiCrAlMo quaternary alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration. The molar volume of liquid NiCrAlMo quaternary alloys increases with the increase of temperature and molybdenum concentration. The density of liquid NiCrAlMo quaternary alloys calculated from the partial molar volumes of nickel, chromium, aluminum and molybdenum in the corresponding Ni-based binary alloys are in good agreement with the experimental results, means, within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state

  12. Effect of boron on the properties of ordered Ni-Mo alloys

    International Nuclear Information System (INIS)

    Tawancy, H.M.

    1994-01-01

    Ordered alloys and intermetallic compounds have long been known to possess a number of technologically useful properties, however, their structural applications is limited by relatively poor ductility. Efforts to improve the mechanical strength of these materials have led to the recognition that small additions of B improve the ductility of intermetallic compounds, based upon the L1 2 , superlattice such as Ni 3 Al and Ni 3 Si. Also it has been demonstrated that small additions of B improve the ductility of binary ordered Ni-Ni 4 Mo alloys. The objective of this study is to demonstrate that critical additions of B to selected Ni-Mo alloys could significantly improve their ductility and corrosion properties in the ordered state while maintaining a similar level of other properties, particularly, weldability. The effect of B on the ordered microstructure was emphasized

  13. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  14. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  15. Electron microscopy and diffraction of ordering in Ni-W alloys

    International Nuclear Information System (INIS)

    Mishra, N.S.

    1995-01-01

    Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first 1,398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D 2h 25 -Ni 2 W and D0 22 -Ni 3 W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1,103 and 1,213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1,523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1,093 K. Distinct Ni 4 W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni 4 W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys

  16. Electrochemical hydrogen storage behaviour of as-cast and as-spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Hou, Zhonghui; Hu, Feng [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Qi, Yan; Zhao, Dongliang [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research

    2016-09-15

    La-Mg-Ni-Mn-based AB{sub 2}-type La{sub 1-x}Ce{sub x}MgNi{sub 3.5}Mn{sub 0.5} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning. X-ray diffraction and scanning electron microscopy revealed that the experimental alloys consisted of a major phase LaMgNi{sub 4} and a secondary phase LaNi{sub 5}. The Ce substitution for La and melt spinning refined the grains of the alloys clearly. Electrochemical tests showed that the as-cast and as-spun alloys exhibited excellent activation capability. With the increase in the spinning rate and Ce content, the discharge capacities of the alloys initially increased and then decreased, whereas their cycle stabilities always increased. Moreover, the electrochemical kinetics of the alloys initially increased and then decreased with the growth of Ce content and spinning rate. The major reason leading to the capacity degradation of the alloy electrodes was determined to be the pulverisation of the alloy particles and the corrosion and oxidation of the alloy surface.

  17. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  18. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  20. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  1. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  3. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  4. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  5. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Kosintsev, S.G.; Svystunov, Ye.O.; Garamus, V.M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-01-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T C =195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature Θ D =180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B eff =(0.7-0.9)B ext was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B ext . Nano length scale magnetic inhomogeneities nearby and far above T C were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: → Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. → Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. → Moessbauer data point to mixed interspin interaction and low the Dedye temperature. → The SANS experiments reveal nano length scale magnetic inhomogeneities ≤6 nm. → Anti-Invar behavior of Fe-Ni-C alloy explained by thermally varied magnetic order.

  6. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  7. Crystallization and Martensitic Transformation Behavior of Ti-Ni-Si Alloy Ribbons Prepared via Melt Spinning.

    Science.gov (United States)

    Park, Ju-Wan; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    Ti-(50-x)Ni-xSi (at%) (x = 0.5, 1.0, 3.0, 5.0) alloy ribbons were prepared via melt spinning and their crystallization procedure and transformation behavior were investigated using differential scanning calorimtry, X-ray diffraction, and transmission electron microscopy. Ti-Ni-Si alloy ribbons with Si content less than 1.0 at% were crystalline, whereas those with Si content more than 3.0 at% were amorphous. Crystallization occurred in the sequence of amorphous →B2 → B2 → Ti5Si4 + TiNi3 → B2 + Ti5Si4 + TiNi3 + TiSi in the Ti-47.0Ni-3.0Si alloy and amorphous →R → R + Ti5Si4 + TiNi3 → R + Ti5Si4 + TiNi3 + TiSi in the Ti-45.0Ni-5.0Si alloy. The activation energy for crystallization was 189 ±8.6 kJ/mol for the Ti-47Ni-3Si alloy and 212±8.6 kJ/mol for the Ti-45Ni-5Si alloy. One-stage B2-R transformation behavior was observed in Ti-49.5Ni-0.5Si, Ti-49.0Ni-1.0Si, and Ti-47.0Ni- 3.0Si alloy ribbons after heating to various temperatures in the range of 873 K to 1073 K. In the Ti-45.0Ni-5.0Si alloy, one-stage B2-R transformation occurred after heating to 893 K, two-stage B2-R-B19' occurred after heating to 973 K, and two-stage B2-R-B19' occurred on cooling and one-stage B19'-B2 occurred on heating, after heating to 1073 K.

  8. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  9. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    Science.gov (United States)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  10. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  11. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  12. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  13. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  14. Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys

    Science.gov (United States)

    Narayana, P. L.; Kim, Seong-Woong; Hong, Jae-Keun; Reddy, N. S.; Yeom, Jong-Taek

    2018-03-01

    The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.

  15. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  16. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  17. A diffuse neutron scattering study of clustering kinetics in Cu-Ni alloys

    International Nuclear Information System (INIS)

    Vrijen, J.; Radelaar, S.; Schwahn, D.

    1977-01-01

    Diffuse scattering of thermal neutrons was used to investigate the kinetics of clustering in Cu-Ni alloys. In order to optimize the experimental conditions the isotopes 65 Cu and 62 Ni were alloyed. The time evolution of the diffuse scattered intensity at 400 0 C has been measured for eight Cu-Ni alloys, varying in composition between 30 and 80 at. pour cent Ni. The relaxation of the so called null matrix, containing 56.5 at. pour cent Ni has also been investigated at 320, 340, 425 and 450 0 C. Using Cook's model from all these measurements information has been deduced about diffusion at low temperatures and about thermodynamic properties of the Cu-Ni system. It turns out that Cook's model is not sufficiently detailed for an accurate description of the initial stages of these relaxations

  18. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  19. On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study

    Science.gov (United States)

    Gruner, S.; Marczinke, J.; Hennet, L.; Hoyer, W.; Cuello, G. J.

    2009-09-01

    The atomic structure of the liquid NiSi and NiSi2 alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.

  20. On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, S; Marczinke, J; Hoyer, W [Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Hennet, L [CNRS-CEMHTI, University of Orleans, F-45071 Orleans (France); Cuello, G J, E-mail: sascha.gruner@physik.tu-chemnitz.d [Institute Laue-Langevin, PO Box 156, F-38042 Grenoble (France)

    2009-09-23

    The atomic structure of the liquid NiSi and NiSi{sub 2} alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.

  1. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  2. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  3. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  4. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enhanced catalytic behavior of Ni alloys in steam methane reforming

    Science.gov (United States)

    Yoon, Yeongpil; Kim, Hanmi; Lee, Jaichan

    2017-08-01

    The dissociation process of methane on Ni and Ni alloys are investigated by density functional theory (DFT) in terms of catalytic efficiency and carbon deposition. Examining the dissociation to CH3, CH2, CH, C, and H is not sufficient to properly predict the catalytic efficiency and carbon deposition, and further investigation of the CO gas-evolving reaction is required to completely understand methane dissociation in steam. The location of alloying element in Ni alloy needed be addressed from the results of ab-inito molecular dynamics (MD). The reaction pathway of methane dissociation associated with CO gas evolution is traced by performing first-principles calculations of the adsorption and activation energies of each dissociation step. During the dissociation process, two alternative reaction steps producing adsorbed C and H or adsorbed CO are critically important in determining coking inhibition as well as H2 gas evolution (i.e., the catalytic efficiency). The theoretical calculations presented here suggest that alloying Ni with Ru is an effective way to reduce carbon deposition and enhance the catalytic efficiency of H2 fueling in solid oxide fuel cells (SOFCs).

  6. Enhanced radiation tolerance of ultrafine grained Fe–Cr–Ni alloy

    International Nuclear Information System (INIS)

    Sun, C.; Yu, K.Y.; Lee, J.H.; Liu, Y.; Wang, H.; Shao, L.; Maloy, S.A.; Hartwig, K.T.; Zhang, X.

    2012-01-01

    Highlights: ► Ultrafine grained Fe-Cr-Ni alloy was processed by equal channel angular pressing technique. ► The overall Helium bubble density and dislocation loop density were reduced by grain refinement. ► The ultrafine grained microstructure alleviated radiation-induced hardening. - Abstract: The evolutions of microstructure and mechanical properties of Fe–14Cr–16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 μm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5–2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe–Cr–Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures.

  7. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  8. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  9. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  10. Effect of minor elements on microstructure evolution in Ni alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Xu, Q.; Yoshiie, T.

    2001-01-01

    The minor elements, Si (-5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) were chosen to investigate the effects of volume size factor as shown in the parentheses on void swelling in neutron irradiated Ni alloys. Neutron irradiation temperature and dose were changed widely from 473 K to 703 K, and 0.001 dpa to 1 dpa, respectively. Voids were observed by transmission electron microscopy (TEM) in Ni even after a very small irradiation dose of 0.026 dpa at 573 K. With increasing dose, the number density of voids was nearly constant while void size increased. The microstructure evolution in Ni-2 at%Cu and Ni-2 at%Ge alloys was similar to that in Ni. However, in Ni-2 at%Si and Ni-2 at%Sn alloys, no voids were observed by TEM even at 703 K to 1 dpa. The minor elements, Si and Sn, play an important role for the suppression of vacancy clusters. Vacancies are annihilated by mutual recombination with interstitials in Si and Sn added alloys. (orig.)

  11. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    International Nuclear Information System (INIS)

    Gómez-Cortés, J.F.; San Juan, J.; López, G.A.; Nó, M.L.

    2013-01-01

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO 2 and Si/Si 3 N 4 , was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiN X 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film

  12. Study on the Ni Mo alloy nano crystals

    International Nuclear Information System (INIS)

    Goncalves, Lidice A. Pereira; Pontes, Luiz Renato de Araujo

    1996-01-01

    Materials with nanocrystalline microstructures are solids that contain such a high density of defects, with the spacings between neighboring defects approaching interatomic distances. As result, nanocrystalline solids exhibit physical and chemical properties different from those usually found in normal crystalline s or amorphous materials with the same chemical composition. In this work, the nanocrystalline Ni Mo alloy was prepared by melt-spinning method. The novelly synthesized nanocrystalline Ni Mo alloy was characterized by X-ray diffraction (XRD), differential scanning calorimetry (D S C) and microscopy. The estimated average crystalline size by the Debye-Scherrer formulas was 20 nm. (author)

  13. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    Science.gov (United States)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  14. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  15. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  16. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-01-01

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  17. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  18. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    International Nuclear Information System (INIS)

    Kirievsky, K.; Gelbstein, Y.; Fuks, D.

    2013-01-01

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi 2 Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi 2 Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi 2 Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi 2 Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced

  19. A study on the shape memory characteristics of Ti-Ni50-x-Pdx alloys

    International Nuclear Information System (INIS)

    Lee, H. W.; Chun, B. S.; Oh, S. J.; Kuk, I.H.

    1991-01-01

    The shape memory characteristics in TiNi alloys are greatly effected by the alloy composition and heat treatment condition. The present work was aimed to investigate the effect of Pd x (x=5,10,15,20) addition on the shape memory chracteristics of TiNi alloys by means of electrical resistance measurement. X-ray diffraction, differential scanning calorimetry and electron dispersive analysis X-ray measurement. The results obtained from this study are as follows; 1. The martensitic transformation start temperature, Ms of Ti-Ni 50-x -Pd x alloys decreased considerably with the increase of Pd content up to 10at%, whereas increased largely with the increase of Pd content in the alloys with Pd content more than 15at%. 2. The Ms temperature of Ti-Ni 50-x -Pd x alloys with cold working was significantly lower than that of the fully annealed alloys because high density dislocation has been introduced by the cold working which suppressed the martensitic transformation. (Author)

  20. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  1. Influence of γ-phase on corrosion resistance of Zn–Ni alloy electrodeposition from acetate electrolytic bath

    Science.gov (United States)

    Selvaraju, V.; Thangaraj, V.

    2018-05-01

    The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.

  2. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  3. Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa

    International Nuclear Information System (INIS)

    Liu, Z.H.; Ma, X.Q.; Zhu, Z.Y.; Luo, H.Z.; Liu, G.D.; Chen, J.L.; Wu, G.H.; Zhang Xiaokai; Xiao, John Q.

    2011-01-01

    The magnetoresistance (MR){=[R(H)-R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C , regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ perpendicular >ρ || ) is also observed in single crystal samples, which may be related to unique features of Heusler alloys. - Highlights: → NiMnFeGa melt-spun ribbon exhibited GMR effect with a large negative MR up to -13%. → GMR behavior is arising from the spin-dependent scattering from magnetic inhomogeneities. → In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C . → Conventional AMR behaviors due to the spin-orbital coupling are observed in NiMnFeGa single crystal and Ni 2 FeGa ribbon samples at low temperatures.

  4. Hydrogen storage performances of LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) alloys prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Haitao [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhai, Tingting; Yang, Tai; Yuan, Zeming; Zhao, Dongliang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-10-05

    Highlights: • Amorphous and nanostructured alloys were prepared by mechanical milling. • The maximum discharge capacity of ball milled alloys reaches to 1053.5 mA h/g. • The addition of Ni significantly increases the discharge capacity. • Increasing milling time reduces the kinetic performances of ball milled alloys. - Abstract: In order to improve the hydrogen storage performances of Mg-based materials, LaMg{sub 11}Ni alloy was prepared by vacuum induction melting. Then the nanocrystalline/amorphous LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) hydrogen storage alloys were synthesized by ball milling technology. The structure characterizations of the alloys were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage characteristics were tested by using programmed control battery testing system. The electrochemical impedance spectra (EIS), potentiodynamic polarization curves and potential-step curves were also plotted by an electrochemical workstation (PARSTAT 2273). The results indicate that the as-milled alloys exhibit a nanocrystalline and amorphous structure, and the amorphization degree of the alloys visibly increases with extending milling time. Prolonging the milling duration markedly enhances the electrochemical discharge capacity and cyclic stability of the alloys. The electrochemical kinetics, including high rate discharge ability (HRD), charge transfer rate, limiting current density (I{sub L}), hydrogen diffusion coefficient (D), monotonously decrease with milling time prolonging.

  5. NiTi Alloys: New Materials that enable Shockproof, Corrosion Immune Bearings

    Science.gov (United States)

    DellaCorte, Christopher

    2017-01-01

    Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, dimensionally stable nickel-rich Ni-Ti alloys, such as Nitinol 60, are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed the science behind NiTi's remarkable properties. In this presentation, the state-of-the-art of nickel-rich NiTi alloys will be introduced along with a discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  6. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  7. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  8. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  9. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si,Ti) alloys

    International Nuclear Information System (INIS)

    Takasugi, T.; Hanada, S.

    1999-01-01

    Some quaternary Ni 3 (Si,Ti) alloyed with transition elements V, Nb, Zr and Hf was prepared beyond their maximum solubility limits to investigate the effect of second-phase dispersion on moisture-induced embrittlement. V-added Ni 3 (Si,Ti) alloy contained ductile fcc-type Ni solid solution as the second-phase, while Nb-, Zr- and Hf-added Ni 3 (Si,Ti) alloys contained hard dispersion compounds as the second-phase. V- and Nb-added Ni 3 (Si,Ti) alloys did not display reduced tensile elongation in air, indicating that their second phases have the effect of suppressing the moisture-induced embrittlement. Possible mechanisms for the beneficial effect by the second phase on the moisture-induced embrittlement of V- and Nb-added Ni 3 (Si,Ti) alloys are discussed in association with hydrogen behavior and deformation property in the constituent phases or at matrix/second-phase interface

  10. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  11. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam

    2018-05-01

    The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.

  12. Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M.

    2013-01-01

    Highlights: ► Phase formation in Al–Si–Ni–Cu–Mg–Fe system have been investigated. ► T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni are formed at different Ni levels. ► Thermally stable Ni-bearing precipitates improved the overaged hardness. ► It was found that Ni:Cu and Ni:Fe ratios control the precipitation. ► δ-Al 3 CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al–7Si–(0–1)Ni–0.5Cu–0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the δ-Al 3 CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  13. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  14. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  15. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  16. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cortés, J.F. [Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); San Juan, J., E-mail: jose.sanjuan@ehu.es [Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); López, G.A.; Nó, M.L. [Dpt. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2013-10-01

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO{sub 2} and Si/Si{sub 3}N{sub 4}, was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiN{sub X} 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film.

  17. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  18. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  19. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  20. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  1. Influence of the Cr and Ni concentration in CoCr and CoNi alloys on the structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, E. [Nipson Technology, 12 Avenue des Trois chênes, Techn’Hom 3, Belfort 90000 (France); Liu, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Billard, A. [IRTES-LERMPS EA 7274, UTBM, Site de Montbéliard, Belfort Cedex 90010 (France); Dekens, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Perry, F. [PVDco, 30 rue de Badménil, Baccarat 54120 (France); Mangin, S.; Hauet, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France)

    2017-01-15

    The crystalline and magnetic properties of micron thick magnetron sputtered Co{sub 1−x}Cr{sub x} and Co{sub 1−x}Ni{sub x} alloy films are analyzed in the view of their implementation as semi-hard magnets. All of the tested films crystallize in an hcp lattice, at least up to 35 at% of alloying elements (Cr or Ni). The structural study shows that the ratio of hcp phase with [0001] axis orientated perpendicular to the film as compared with in-plane orientation increases (resp. decreases), when Ni (resp. Cr) concentration increases independently of the post-annealing temperature. The orientation of the magnetization results from the competition between the demagnetization field which tends to align the magnetization in plane and the crystalline anisotropy which tends to maintain the magnetization along the [0001] axis. Interestingly, we find that, although Co and Ni are very similar atoms, Co{sub 1−x}Ni{sub x} alloys crystalline anisotropy can be strongly increased and reach up to twice the anisotropy of the best Co{sub 1−x}Cr{sub x} alloy, while maintaining a magnetization at saturation above 1200 kA/m. The thermal stability of the structural and magnetic properties of both alloys is demonstrated for an annealing temperature up to 300 °C. - Highlights: • Sputtered CoCr and CoNi films are analyzed for their semi-hard magnetic properties. • CoNi alloys exhibits higher saturation magnetization and crystalline anisotropy. • These evolutions can be directly correlated to the quality of hcp crystal orientation. • Thermal stability of structural and magnetic properties is demonstrated up to 300 °C.

  2. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  3. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Javed, K. [Department of Physics, Forman Christian College, Lahore 5400 (Pakistan); Liu, P. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Ban, S.L. [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-06-15

    Highlights: • Highly ordered CoNiGa alloy nanowires with different compositions were fabricated by DC electrodeposition. • The magnetic properties of CoNiGa nanowires can be easily tailored by varying its components. • Magnetostatic interactions plays an important role in the magnetization reversal process. • A linear dependence of coercivity on temperature was found for Co{sub 55}Ni{sub 28}Ga{sub 17} samples. - Abstract: CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co{sub 55}Ni{sub 28}Ga{sub 17} nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  4. Precipitation of Ni4Ti3-variants in a polycrystalline Ni-rich NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bojda, Ondřej; Eggeler, G.; Dlouhý, Antonín

    2005-01-01

    Roč. 53, č. 1 (2005), s. 99-104 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitation * Transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.228, year: 2005

  5. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  6. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  7. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  8. Alloying process of sputter-deposited Ti/Ni multilayer thin films

    International Nuclear Information System (INIS)

    Cho, H.; Kim, H.Y.; Miyazaki, S.

    2006-01-01

    Alloying process of a Ti/Ni multilayer thin film was investigated in detail by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The Ti/Ni multilayer thin film was prepared by depositing Ti and Ni layers alternately on a SiO 2 /Si substrate. The number of each metal layer was 100, and the total thickness was 3 μm. The alloy composition was determined as Ti-51 at.%Ni by electron probe micro analysis (EPMA). The DSC curve exhibited three exothermic peaks at 621, 680 and 701 K during heating the as-sputtered multilayer thin film. In order to investigate the alloying process, XRD and TEM observation was carried out for the specimens heated up to various temperatures with the heating rate same as the DSC measurement. The XRD profile of the as-sputtered film revealed only diffraction peaks of Ti and Ni. But reaction layers of 3 nm in thickness were observed at the interfaces of Ti and Ni layers in cross-sectional TEM images. The reaction layer was confirmed as an amorphous phase by the nano beam diffraction analysis. The XRD profiles exhibited that the intensity of Ti diffraction peak decreased in the specimen heat-treated above 600 K. The peak from Ni became broad and shifted to lower diffraction angle. The amorphous layer thickened up to 6 nm in the specimen heated up to 640 K. The diffraction peak corresponding to Ti-Ni B2 phase appeared and the peak from Ni disappeared for the specimen heated up to 675 K. The Ti-Ni B2 crystallized from the amorphous reaction layer. After further heating above the third exothermic peak, the intensity of the peak from the Ti-Ni B2 phase increased, the peak from Ti disappeared and the peaks corresponding to Ti 2 Ni appeared. The Ti 2 Ni phase was formed by the reaction of the Ti-Ni B2 and Ti

  9. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys

    International Nuclear Information System (INIS)

    Kimura, A.; Tsuruga, H.; Morimura, T.; Misawa, T.; Miyazaki, S.

    1993-01-01

    Recovery processes of martensitic transformation of neutron irradiated Ti-50.0, 50.5 and 51.0 at.%Ni alloys during post-irradiation annealing were investigated by means of differential scanning calorimetry (DSC), tensile tests and transmission electron microscope (TEM) observations. Neutron irradiation up to a fluence of 1.2x10 24 n/cm 2 at 333 K suppressed the martensitic transformation as well as the stress-induced martensitic transformation of these alloys above 150 K. The TEM observations revealed that the disordered zones containing small defect clusters in high density were formed in the neutron irradiated Ti-Ni alloys. The DSC measurements also showed that the post-irradiation annealing caused recovery of the transformation of which the progress depended on the annealing temperature and period. A significant retardation of the recovery was recognized in the Ti-51.0 at.%Ni alloy in comparison with the Ti-50.0 at.%Ni alloy. From the shifts in the transformation temperature upon isothermal annealing at various annealing temperatures, the activation energies of the recovery process of the transformation in the neutron irradiated Ti-50.0 and 51.0 at.%Ni alloys were evaluated by a cross-cut method to be 1.2 eV and 1.5 eV, respectively. The recovery of the transformation was ascribed to the re-ordering resulting from decomposition of vacancy clusters, and those obtained values of the activation energy were considered to be the sum of the migration energy of vacancy and the binding energy of vacancy-vacancy cluster. The retardation of the recovery in the Ti-51.0 at%Ni alloy was interpreted in terms of large binding energy in this alloy due to the off-stoichiometry. (author)

  10. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  11. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Science.gov (United States)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  12. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  13. The effect of alloying elements on the vacancy defect evolution in electron-irradiated austenitic Fe-Ni alloys studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)], E-mail: druzhkov@imp.uran.ru; Perminov, D.A.; Davletshin, A.E. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)

    2009-01-31

    The vacancy defect evolution under electron irradiation in austenitic Fe-34.2 wt% Ni alloys containing oversized (aluminum) and undersized (silicon) alloying elements was investigated by positron annihilation spectroscopy at temperatures between 300 and 573 K. It is found that the accumulation of vacancy defects is considerably suppressed in the silicon-doped alloy. This effect is observed at all the irradiation temperatures. The obtained results provide evidence that the silicon-doped alloy forms stable low-mobility clusters involving several Si and interstitial atoms, which are centers of the enhanced recombination of migrating vacancies. The clusters of Si-interstitial atoms also modify the annealing of vacancy defects in the Fe-Ni-Si alloy. The interaction between small vacancy agglomerates and solute Al atoms is observed in the Fe-Ni-Al alloy under irradiation at 300-423 K.

  14. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    International Nuclear Information System (INIS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-01-01

    Highlights: • The effects of IB metal dopants on the S poisoning features of Ni are analyzed. • IB metal dopants can modify the surface electronic structure of Ni. • IB metal dopants can increase the S tolerance of Ni at an optimized concentration. • Au is a preferred dopant to increase the resistance to sulfur poisoning of Ni. - Abstract: The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  15. High-temperature Au implantation into Ni-Be and Ni-Si alloys

    Science.gov (United States)

    James, M. R.; Lam, N. Q.; Rehn, L. E.; Baldo, P. M.; Funk, L.; Stubbins, J. F.

    1992-12-01

    Effects of implantation temperature and target composition on depth distribution of implanted species were investigated. Au+ ions were implanted at 300 keV into polycrystalline Ni-Be and Ni-Si alloys between 25 and 700C to a dose of 10(exp 16) cm(exp -2). Depth distributions of Au were analyzed with RBS using He+ at both 1.7 and 3.0 MeV, and those of the other alloying elements by SIMS. Theoretical modeling of compositional redistribution during implantation at elevated temperatures was also carried out with the aid of a comprehensive kinetic model. The analysis indicated that below approximately 250C, the primary controlling processes were preferential sputtering and displacement mixing, while between 250 and 600C radiation-induced segregation was dominant. Above 600C, thermal-diffusion effects were most important. Fitting of model calculations to experimental measurements provided values for various defect migration and formation parameters.

  16. Microstructure and transformation behaviour of Ni75−XTiXPd25 high temperature shape memory alloys

    International Nuclear Information System (INIS)

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2013-01-01

    Highlights: ► Partitioning of elements during solidification of cast NiTiPd results in cored microstructure. ► Homogenized alloys consists of NiTiPd matrix with Ti2(Ni,Pd) precipitates. ► Transformation temperatures of NiTiPd alloy is strongly dependent on Ti content. ► Transformation hysteresis was found to be relatively low, in the range 7–12 °C. ► Lower fraction of second phases and twinless/small twin ratio martensite led to low hysteresis. -- Abstract: The effect of composition on microstructure, transformation behaviour and thermal stability of cast and homogenized Ni 75−X Ti X Pd 25 alloys (X = 49.7, 50.0 and 50.3 at.%) were studied. Results showed significant partitioning of the alloying elements during solidification, resulting in cored microstructure in the cast alloys. The interdendritic regions were depleted in Pd and richer in Ni compared to dendritic regions. The interdendritic regions also showed presence of a thread-like Ti-rich second phase. The microstructure of the homogenized alloys consisted of NiTiPd matrix phase interspersed with Ti 2 (Ni,Pd) second phase precipitates. The precipitate phase was found to be rich in Ni and depleted in Pd. EPMA analysis showed that significant redistribution of Ni concentration in the matrix and the precipitate phase takes place during homogenization. X-ray diffraction study confirmed the matrix phase at room temperature to be of orthorhombic B19 structure. Study showed that the transformation temperatures of the alloys were strongly dependent on Ti content. The martensite finish temperature (M f ) of 157 °C for stoichiometric-Ti alloy increased to 179 °C and decreased to 105 °C for Ti-rich and Ti-lean alloys, respectively. Also, the alloys showed relatively low transformation hysteresis in the range 7–12 °C. TEM micrographs showed the presence of twinless/small twin ratio martensite which minimizes the interfacial energy and hence lower hysteresis. The transformation stability upon stress

  17. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  18. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    Science.gov (United States)

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  19. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  20. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  1. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2017-12-13

    An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.

  2. Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt

    Science.gov (United States)

    Wang, H. P.; Cao, C. D.; Wei, B.

    2004-05-01

    The surface tension of superheated and undercooled liquid Ni-5 wt % Si alloy was measured by an electromagnetic oscillating drop method over a wide temperature range from 1417 to 1994 K. The maximum undercooling of 206 K (0.13TL) was achieved. The surface tension of liquid Ni-5 wt % Si alloy is 1.697 N m-1 at the liquidus temperature 1623 K, and its temperature coefficient is -3.97×10-4 N m-1 K-1. On the basis of the experimental data of surface tension, the other thermophysical properties such as the viscosity, the solute diffusion coefficient, and the density of liquid Ni-5 wt % Si alloy were also derived.

  3. Diffusion studies in amorphous NiZr alloys

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hoshino, K.; Rothman, S.J.

    1987-06-01

    Tracer impurity and self diffusion measurements have been made on amorphous (a-) NiZr alloys using radioactive tracer, Secondary Ion Mass Spectrometry and Rutherford backscattering techniques. The temperature dependence of diffusion in a-NiZr can be represented in the form D = D 0 exp(-Q/kT), with no structural relaxation effects being observed. The mobility of an atom in a-NiZr increased dramatically with decreasing atomic radius of the diffusing atom and also with decreasing Ni content for Ni concentrations below ≅40 at. %. These diffusion characteristics in a-NiZr are remarkably similar to those in α-Zr and α-Ti. These mechanisms assume that Zr and Ti provide a close packed structure, either crystalline or amorphous, through which small atoms diffuse by an interstitial mechanism and large atoms diffuse by a vacancy mechanism. 12 refs., 2 figs., 2 tabs

  4. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  5. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Microstructural evidence of presence of beryllium in Ni-Cr alloys for dental prostheses

    International Nuclear Information System (INIS)

    Alkmin, L.B.; Nunes, C.A.; Santos, C.

    2010-01-01

    This study aimed to characterize the microstructure of commercial Ni-Cr alloys for dental prosthesis, with special focus on those containing Be. For this, the materials were characterized in terms of chemical composition, phases and melting point temperature. The following techniques were used: X-ray fluorescence, ICP-OES, scanning electron microscopy, electron probe microanalysis, X-ray diffraction and differential thermal analysis. The results clearly showed the presence of a typical eutectic, formed by the Ni ss and NiBe phases in those alloys containing Be, which can be considered a 'fingerprint' of the presence of this element in these alloys. (author)

  7. Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

  8. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  9. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    Science.gov (United States)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  10. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  11. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  12. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  13. Toughened cyanate ester alloys via reaction-induced phase separation; Hanno yuhatsugataso bunkai ni yoru taishogekisei cyanate ester alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hirohata, T.; Kuroda, M.; Nishimura, A. [Sumitomo Electric Industries, Ltd., Osaka (Japan); Inoue, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-03-15

    For the purpose of toughening the matrices of fiber-reinforced plastics (FRPs), the effect of thermosetting/thermoplastic polymer alloys based on cyanate ester alloys is investigated. In the experiment, materials are heated and then allowed to set, which are mixtures of 87.0-43.5wt% of cyanate ester resin, 0-43.5wt% of epoxy resin, and 13.0wt% of soluble polyimide. FRP properties are examined by measuring the after-shock compressive strength, flexural elasticity and flaxural strength, and by performing morphology observation. It is then found that a cyanate ester/soluble polyimide system forms a polymer alloy with phase separation, that its glass transition temperature does not drop, and that the rupture strength is increased approximately twice. A carbon fiber-reinforced plastic (CFRP) incorporating this system is twice higher in after-shock compression strength than a CFRP incorporating a cyanate ester. The system withstands high temperatures, retaining at 200degC approximately 90% of the elastic modulus it exhibits at room temperature. 15 refs., 16 figs.

  14. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  15. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2014-03-01

    Full Text Available A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH. H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reservedReceived: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 53-59. (doi:10.9767/bcrec.9.1.5529.53-59][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59

  16. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  17. Strong composition-dependence on glass-forming ability in Ni-(Ti,Zr)-Si pseudo-ternary alloys

    International Nuclear Information System (INIS)

    Yang, H.; Wang, J.Q.; Li, Y.

    2006-01-01

    The glass formation in Ni-(Ti,Zr)-Si pseudo-ternary alloys was studied. For suction casting, by carefully adjusting the alloy composition and studying the microstructure changes, the best glass-forming alloy with a 2 mm diameter is pinpointed in a narrow composition region of 57.5-58.5 at.% Ni, 36.5-38.5 at.% (Ti + Zr) and 5-5.5 at.% Si. The main competing crystalline phases, identified by XRD and SEM, were Ni 10 (Zr,Ti) 7 , Ni(Ti,Zr) and an unidentified Si-containing phase. Our results indicate a clear need for monitoring the microstructure change in the cross section of the ingots to locate the best glass-forming alloys

  18. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  19. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  20. The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloys

    International Nuclear Information System (INIS)

    Angst, D.R.; Thoma, P.E.; Kao, M.Y.

    1995-01-01

    Ternary alloys of NiTiHf, having higher transformation temperatures than binary NiTi shape memory alloys, have been produced and analyzed. Beginning with a base composition of Ni 49 Ti 51 , Hf was substituted for Ti up to 30 atomic percent. Differential scanning calorimetry was used to determine the transformation temperatures of the as-cast alloys. The peak martensite temperature of the Ni 49 Ti 51 alloy was 69 C and increased to 525 C for the Ni 49 Ti 21 Hf 30 alloy. The peak austenite temperature of the Ni 49 Ti 51 alloy was 114 C and increased to 622 C for the Ni 49 Ti 21 Hf 30 alloy. An apparent minimum in the peak transformation temperatures occurred between 0 and 3 atomic percent Hf. Preliminary experiments were also conducted to determine the effect of thermomechanical processing on the shape memory properties of the Ni 49 Ti 41 Hf 10 . Data are presented on the effect of cold work and heat treatment on the transformation temperatures of this alloy. (orig.)

  1. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)], E-mail: cywang@gdut.edu.cn; Zhou, Y.M.; Zhang, F.L.; Xu, Z.C. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-05-12

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr{sub 7}C{sub 3} and Cr{sub 3}C{sub 2} formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  2. Tracer diffusion of 60Co and 63Ni in amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of 60 Co and 63 Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641 0 K can be described by: D/sub Co/sup */ = 3.7 x 10 -7 exp[-(135 +- 14) kJ mole -1 /RT] m 2 /sec and D/sub Ni//sup */ = 1.7 x 10 -7 exp[-(140 +- 9) kJ mole -1 /RT] m 2 /sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs

  3. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  4. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  5. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  6. Damping characteristics of a Ti40.5Ni49.5Zr10 shape memory alloy

    International Nuclear Information System (INIS)

    Hsieh, S.F.; Wu, S.K.

    2005-01-01

    Ti 40.5 Ni 49.5 Zr 10 alloy undergoes B2-bar B19' martensitic transformation. Damping capacities of B19' and B2 phases of this alloy are lower than those of Ti 51 Ni 49 alloy due to Zr atoms solid-soluted hardening. Transformation temperatures of this alloy decrease, but transformation peak heights Q max -1 increase with increasing aging time at 300 o C due to the formation of finer (001) M twins for specimens aged longer. The Q max -1 peaks of the slightly cold-rolled Ti 40.5 Ni 49.5 Zr 10 alloy are higher than those of the as-annealed alloy, which may be because the thinner twins are induced by small deformation

  7. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  9. Oxidation behavior of U-2wt%Nb, Ti, and Ni alloys in air

    International Nuclear Information System (INIS)

    Ju, J. S.; Yoo, K. S.; Jo, I. J.; Gug, D. H.; Su, H. S.; Lee, E. P.; Bang, K. S.; Kim, H. D.

    2003-01-01

    For the long term storage safety study of the metallic spent fuel, U-Nb, U-Ti, U-Ni, U-Zr, and U-Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C-300 .deg. C. Simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal considered to suitable as candidate

  10. Unusual morphology of the omega phase in a Zr-1.75 At. pct Ni alloy

    International Nuclear Information System (INIS)

    Srivastava, D.; Mukhopadhyay, P.; Ramadasan, E.; Banerjee, S.

    1993-01-01

    The observations reported in the present communication were made in the course of a microstructural investigation on dilute Zr-Ni alloys. The alloys were prepared from nuclear-grade sponge zirconium and high-purity nickel by nonconsumable arc melting. Repeated melting was carried out to enhance homogeneity. A master alloy was used in the preparation of very dilute alloys. The observations reported here clearly indicate that the formation of the ω phase on β quenching, can occur in the binary Zr-Ni system at very low solute concentrations, suggesting that nickel is a strong ω stabilizer. Such a situation is known to obtain in the binary Zr-Mo system also. However, the unusual ω morphology observed in the present work has not been reported in the context of dilute Zr-Mo alloys. The appearance of sharp ω reflections and the absence of streaking and diffuse distributions in the selected area electron diffraction (SAD) patterns suggest that the Zr-1.75 at. pct Ni composition lies toward the solute lean end of the composition range associated with the formation of the athermal ω phase in the binary Zr-Ni system. In a more dilute Zr-Ni alloy (Zr-1.30 at. pct Ni), no athermal ω could be observed in β quenched specimens. The absence of streaking is also consistent with the fact that the ω phase in the β quenched Zr-1.75 at. pct Ni alloy did not occur in the form of very fine precipitates. The unusual ω morphology encountered in this work merits further investigation

  11. Deposition of Chitosan Layers on NiTi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kowalski P.

    2015-04-01

    Full Text Available The NiTi shape memory alloys have been known from their application in medicine for implants as well as parts of medical devices. However, nickel belongs to the family of elements, which are toxic. Apart from the fact that nickel ions are bonded with titanium into intermetallic phase, their presence may cause allergy. In order to protect human body against release of nickel ions a surface of NiTi alloy can be modified with use of titanium nitrides, oxides or diamond-like layers. On the one hand the layers can play protective role but on the other hand they may influence shape memory behavior. Too stiff or too brittle layer can lead to limiting or completely blocking of the shape recovery. It was the reason to find more elastic covers for NiTi surface protection. This feature is characteristic for polymers, especially, biocompatible ones, which originate in nature. In the reported paper, the chitosan was applied as a deposited layer on surface of the NiTi shape memory alloy. Due to the fact that nature of shape memory effect is sensitive to thermo and/or mechanical treatments, the chitosan layer was deposited with use of electrophoresis carried out at room temperature. Various deposition parameters were checked and optimized. In result of that thin chitosan layer (0.45µm was received on the NiTi alloy surface. The obtained layers were characterized by means of chemical and phase composition, as well as surface quality. It was found that smooth, elastic surface without cracks and/or inclusions can be produced applying 10V and relatively short deposition time - 30 seconds.

  12. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  13. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  14. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  15. NiTi Alloys for Tribological Applications: The Role of In-Situ Nanotechnology

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Beginning in 2004, NASA initiated the investigation and development of, Nitinol 60, a nickel-rich and dimensionally stable version of shape memory alloy Nitinol 55, as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but the fundamental reasons for these properties were unknown. Shape memory alloys made from equiatomic Ni-Ti are widely known for their unique dimensional instability behavior that can be triggered by thermal and mechanical stress. The nickel-rich alloys exhibit no such dimension change property and have high hardness but have largely been overlooked by industry and the engineering community. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, Ni-Ti alloys are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed that in-situ nano-scale phases that form during processing are largely responsible for NiTis remarkable properties. In this presentation, the state-of-art of nickel-rich NiTi alloys will be introduced and the nanotechnology behind their intriguing behavior will be addressed. The presentation will include discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  16. Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling

    International Nuclear Information System (INIS)

    Zhang, Yanghuan; Jia, Zhichao; Central Iron and Steel Research Institute, Beijing; Yuan, Zeming; Qi, Yan; Zhao, Dongliang; Hou, Zhonghui

    2016-01-01

    LaMg 11 Ni + x wt.% Ni (x = 100, 200) composite hydrogen storage alloys with a nanocrystalline/amorphous structure were synthesized using ball milling technology. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were investigated systematically. The hydrogen desorption properties were assessed using a Sieverts apparatus and differential scanning calorimetry. The thermodynamic parameters for the hydrogen absorption and desorption were calculated using the Van't Hoff equation. The hydrogen desorption activation energies of the hydrogenated alloys were also estimated by Arrhenius and Kissinger methods. Results indicate that the amount of Ni added has no effect on the thermodynamics of the alloys, but it significantly improves their absorption and desorption kinetics. Furthermore, the milling time has a great influence on the hydrogen storage properties. To be specific, the hydrogen absorption capacities reach the maximum values with the variation of milling time, and the hydrogen desorption activation energy obviously decreases with increasing milling time.

  17. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  18. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  19. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  20. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  1. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  2. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-01-01

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co 55 Cr 40 Ni 5 and Co 60 Cr 30 Ni 10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  3. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    Soukieh, Mohamad; Al-Mohamad, Ali

    1993-12-01

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe 3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  4. Thermodynamic properties of liquid alloys systems Fe - Ni - O - Me - Si

    Directory of Open Access Journals (Sweden)

    Н.О. Шаркіна

    2008-01-01

    Full Text Available  In the isoperabelic calorimeter at 1870 are determined partial and integral enthalpies of mixture of liquid alloys of systems Fe – Ni – O - Me and Fe – Ni – O – Me – Si, where Me – IVb-, Vb-, VIb-metals. The basis of alloy was served invars with the contents of oxygen by 0,06 %. Established, that the melts of systems Fe – Ni – O – IVb- (Vb--metals are characterized by strong interparticle interplay. The components of the maiden portions IVb- (Vb--metals in Fe – Ni – O melts are accompanied by very large exothermal effects (from – 400 up to – 1000 kJ/mol, which one considerably surpass those in double melts Fe(Ni – Me. The subsequent portions IVb- (Vb--metals caused smaller allocation of a heat (in limits from – 100 up to – 30 kJ/mol, that is conditioned by a decrease of the contents of dissolved oxygen. The partial enthalpies of mixture of molybdenum and tungsten in melts Fe – Ni – O are close to those in a nickel, and for a chromium exceed them. Is rotined, that D` HSi in liquid alloys Fe – Ni – O – Mo (– 450 kJ/mol considerably surpass that are characteristic for a nickel (– 50 kJ/mol. It is explained by interplay of silicon with the stayed dissolved oxygen in initial melts of a system Fe – Ni – O – Mo.

  5. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.O.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  6. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  7. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  8. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  9. Behaviour of human endothelial cells on surface modified NiTi alloy.

    Science.gov (United States)

    Plant, Stuart D; Grant, David M; Leach, Lopa

    2005-09-01

    Intravascular stents are being designed which utilise the shape memory properties of NiTi alloy. Despite the clinical advantages afforded by these stents their application has been limited by concerns about the large nickel ion content of the alloy. In this study, the surface chemistry of NiTi alloy was modified by mechanical polishing and oxidising heat treatments and subsequently characterised using X-ray photon spectroscopy (XPS). The effect of these surfaces on monolayer formation and barrier integrity of human umbilical vein endothelial cells (HUVEC) was then assessed by confocal imaging of the adherens junctional molecule VE-cadherin, perijunctional actin and permeability to 42kDa dextrans. Dichlorofluoroscein assays were used to measure oxidative stress in the cells. XPS analysis of NiTi revealed its surface to be dominated by TiO(2). However, where oxidation had occurred after mechanical polishing or post polishing heat treatments at 300 and 400 degrees C in air, a significant amount of metallic nickel or nickel oxide species (10.5 and 18.5 at%) remained on the surface. Exposure of HUVECs to these surfaces resulted in increased oxidative stress within the cells, loss of VE-cadherin and F-actin and significantly increased paracellular permeability. These pathological phenomena were not found in cells grown on NiTi which had undergone heat treatment at 600 degrees C. At this temperature thickening of the TiO(2) layer had occurred due to diffusion of titanium ions from the bulk of the alloy, displacing nickel ions to sub-surface areas. This resulted in a significant reduction in nickel ions detectable on the sample surface (4.8 at%). This study proposes that the integrity of human endothelial monolayers on NiTi is dependent upon the surface chemistry of the alloy and that this can be manipulated, using simple oxidising heat treatments.

  10. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    Science.gov (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  11. Electrodeposition of Ni-W Alloy and Characterization of Microstructure and Properties of the Deposits

    DEFF Research Database (Denmark)

    Mizushima, Io

    2007-01-01

    of the electrolyte. Simultaneously, the presence of carbon is observed with GDOES in layers deposited from the aged electrolyte. The carbon dissolution in the Ni-W alloy deposit is associated with the formation of a new phase in the electrodeposit, giving rise to the anomalous Bragg peak. In Chapter 8 hardness....... The experimental results of the present work are given in the chapters 4-9. In Chapter 4 development of a new electrolyte for Ni-W alloys is described. In the chapters 5-9 the properties of the Ni-W alloys such as residual stress, microstructure, hardness and thermal stability are investigated. Furthermore......, grain size and thermal stability of nickel and Ni-W alloy layers deposited from electrolytes containing equal amounts of citrate, glycine and triethanolamine are investigated. The hardness of the deposits was investigated in the as-deposited layer as well as after annealing for 1 hour at temperatures up...

  12. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    Science.gov (United States)

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p alloy. This could affect health on long

  13. Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Ranjana; Lal, Shree P.; Misra, Ashok

    2015-01-01

    This paper presents experimental results on intermittent electromagnetic radiation during plastic deformation of Cu-Ni alloys under tension and compression modes of deformation. On the basis of the nature of electromagnetic radiation signals, oscillatory or exponential, results show that the compression increases the viscous coefficient of Cu-Ni alloys during plastic deformation. Increasing the percentage of solute atoms in Cu-Ni alloys makes electromagnetic radiation strength higher under tension. The electromagnetic radiation emission occurs at smaller strains under compression showing early onset of plastic deformation. This is attributed to the role of high core region tensile residual stresses in the rolled Cu-Ni alloy specimens in accordance with the Bauschinger effect. The distance between the apexes of the dead metal cones during compression plays a significant role in electromagnetic radiation parameters. The dissociation of edge dislocations into partials and increase in internal stresses with increase in solute percentage in Cu-Ni alloys under compression considerably influences the electromagnetic radiation frequency.

  14. Synthesis of PtNi Alloy Nanoparticles on Graphene-Based Polymer Nanohybrids for Electrocatalytic Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Tung-Yuan Yung

    2016-12-01

    Full Text Available We have successfully produced bimetallic PtNi alloy nanoparticles on poly(diallyldimethylammonium chloride (PDDA-modified graphene nanosheets (PtNi/PDDA-G by the “one-pot” hydrothermal method. The size of PtNi alloy nanoparticles is approximately 2–5 nm. The PDDA-modified graphene nanosheets (PDDA-G provides an anchored site for metal precursors; hence, the PtNi nanoparticles could be easily bond on the PDDA-G substrate. PtNi alloy nanoparticles (2–5 nm display a homogenous alloy phase embedded on the PDDA-G substrate, evaluated by Raman, X-ray diffractometer (XRD, thermal gravity analysis (TGA, electron surface chemical analysis (ESCA, and electron energy loss spectroscopy (EELS. The Pt/Ni ratio of PtNi alloy nanoparticles is ~1.7, examined by the energy dispersive spectroscopy (EDS spectra of transmitting electron microscopy (EDS/TEM spectra and mapping technique. The methanol electro-oxidation of PtNi/PDDA-G was evaluated by cyclic voltammetry (CV in 0.5 M of H2SO4 and 0.5 M of CH3OH. Compared to Pt on carbon nanoparticles (Pt/C and Pt on Graphene (Pt/G, the PtNi/PDDA-G exhibits the optimal electrochemical surface area (ECSA, methanol oxidation reaction (MOR activity, and durability by chrono amperometry (CA test, which can be a candidate for MOR in the electro-catalysis of direct methanol fuel cells (DMFC.

  15. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  16. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah, Sahar A., E-mail: sahar.fadlallah@yahoo.com [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt); El-Bagoury, Nader [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Casting Technology Lab., Manufacturing Technology Dept., CMRDI, P.O. Box 87, Helwan, Cairo (Egypt); Gad El-Rab, Sanaa M.F. [Biotechnology Department, Faculty of Science, Taif University, Taif (Saudi Arabia); Botany Department, Faculty of Science, Asuit University, Asuit (Egypt); Ahmed, Rasha A. [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Forensic Chemistry Laboratories, Medico Legal Department, Ministry of Justice, Cairo (Egypt); El-Ousamii, Ghaida [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia)

    2014-01-15

    Highlights: • Evaluate the corrosion resistance of NiTi alloy by using electrochemical techniques. • Estimate the Antibacterial inhibition rate of NiTi alloy. • Assessment the mechanical properties of NiTi from the hardness measurements. • Comparsion the microstructures of cast NiTi with Ti, this indicate the role of Ni to change the behavior of alloy in oral environment. • Advise drinking green tea in small quantities in small quantities in the event of present NiTi alloy in the oral cavity. • Recommendation to use NiTi for dental application. -- Abstract: Nowadays, Nickel–titanium nearly equiatomic is considered as one of the best biomaterials. The aim of the present work deals with the evolution of the electrochemical behavior of NiTi in simulated oral environment. The hardness, microstructures corrosion resistance and antibacterial performance of NiTi alloy were compared with pure titanium. The hardness of NiTi is twice the hardness of pure titanium. Electrochemical techniques were used to detect the corrosion resistance of both biomaterials in Hank’s solution containing (−)-epigallocatechin gallate (EGCG) which used to simulate the oral environment. In the physiological solution selected for the present study, the impedance spectroscopy (EIS) results showed that EGCG sharply increase the corrosion resistance of NiTi from 129 kΩ cm{sup 2} to 1.10 T Ω cm{sup 2} while slowly increase the corrosion resistance of pure titanium from 9.4 kΩ cm{sup 2} to 11.3 kΩ cm{sup 2} during the duration time of immersion at 37 °C. The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC 6538). Among the two specimens of biomaterials studied, the antibacterial performance results revealed that the NiTi alloy is better than the pure titanium. The morphology and chemical structure of NiTi and Ti samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X

  17. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    International Nuclear Information System (INIS)

    Fadlallah, Sahar A.; El-Bagoury, Nader; Gad El-Rab, Sanaa M.F.; Ahmed, Rasha A.; El-Ousamii, Ghaida

    2014-01-01

    Highlights: • Evaluate the corrosion resistance of NiTi alloy by using electrochemical techniques. • Estimate the Antibacterial inhibition rate of NiTi alloy. • Assessment the mechanical properties of NiTi from the hardness measurements. • Comparsion the microstructures of cast NiTi with Ti, this indicate the role of Ni to change the behavior of alloy in oral environment. • Advise drinking green tea in small quantities in small quantities in the event of present NiTi alloy in the oral cavity. • Recommendation to use NiTi for dental application. -- Abstract: Nowadays, Nickel–titanium nearly equiatomic is considered as one of the best biomaterials. The aim of the present work deals with the evolution of the electrochemical behavior of NiTi in simulated oral environment. The hardness, microstructures corrosion resistance and antibacterial performance of NiTi alloy were compared with pure titanium. The hardness of NiTi is twice the hardness of pure titanium. Electrochemical techniques were used to detect the corrosion resistance of both biomaterials in Hank’s solution containing (−)-epigallocatechin gallate (EGCG) which used to simulate the oral environment. In the physiological solution selected for the present study, the impedance spectroscopy (EIS) results showed that EGCG sharply increase the corrosion resistance of NiTi from 129 kΩ cm 2 to 1.10 T Ω cm 2 while slowly increase the corrosion resistance of pure titanium from 9.4 kΩ cm 2 to 11.3 kΩ cm 2 during the duration time of immersion at 37 °C. The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC 6538). Among the two specimens of biomaterials studied, the antibacterial performance results revealed that the NiTi alloy is better than the pure titanium. The morphology and chemical structure of NiTi and Ti samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The

  18. Order-disorder transformation in the Ni-4.49 at.% Al alloy

    International Nuclear Information System (INIS)

    Adorno, A.T.; Garlipp, W.; Cilense, M.; Silva, R.A.G.

    2006-01-01

    The order-disorder transformation in the Ni-4.49 at.% Al alloy was studied using electrical resistivity measurements, microhardness measurements, differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results confirmed the ordering behavior expected for Ni-Al dilute alloys and the suggested relation between resistivity changes and microhardness changes with anti-ferromagnetic spin ordering. The higher value obtained for the activation energy of vacancy migration was associated with a decrease in the Al concentration gradient near solute-depleted regions

  19. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  20. Lattice thermal conductivity of disordered NiPd and NiPt alloys

    International Nuclear Information System (INIS)

    Alam, Aftab; Mookerjee, Abhijit

    2006-01-01

    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us (Alam and Mookerjee 2005 Phys. Rev. B 72 214207), which developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 L205) combined with a scattering diagram technique. In this paper we shall show the dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of κ(T) and its relation to the measured thermal conductivity is discussed. The concentration dependence of κ appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others (Kittel 1948 Phys. Rev. 75 972, Brich and Clark 1940 Am. J. Sci. 238 613; Slack 1979 Solid State Physics vol 34, ed H Ehrenreich, F Seitz and D Turnbull (New York: Academic) p 1). We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of the mobility edge and the fraction of states in the frequency spectrum which is delocalized

  1. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  2. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  3. Semiempirical quantum model approach for hydrogen adsorption in ZrNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin-Hao, E-mail: binhao17@gmail.com [Department of Energy Application Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Huang, Chien-Chung [Department of Hydrogen Energy and Fuel Cells, Green Energy and Eco-Technology Center, ITRI, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Yeh, Yen-Lian; Jang, Ming-Jyi [Department of Automation and Control Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China)

    2013-12-15

    Highlights: •The hydrogen diffusion behavior in solid ZrNi alloy performs clearly by MD. •Shear and Young’s modulus agree with the experiment study very well. •Current model can apply to hydrogen-tech material development. -- Abstract: Hydrogen storage is an important topic because of its relevance to the future energy economy. Hydrogen diffusivity in materials plays an important role in hydrogen technology both for hydrogen separation and hydrogen storage. To clarify the mechanism of the rate-controlling step, diffusion mechanism of hydrogen in metallic materials is studied by molecular dynamics method. This study performs semi-empirical-quantum molecular dynamic simulations in order to clarify hydrogen atom diffusion behavior in ZrNi alloys materials. We investigate the mechanical properties change associated with temperature variation for ZrNi base alloys and also consider the influence of materials micro-structure change of hydrogen diffusion. Finally, current work presents a theoretically prediction of dynamical diffusion coefficient to compare diffusion kinetics of crystalline and amorphous structure.

  4. Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2016-03-01

    Full Text Available In order to improve the properties of Ni-rich (2.5wt.% Al-Si piston alloy, electric pulse modification was applied in fabricating the Ni-rich Al-Si piston alloy in this study. The effect of electric pulse modification on the mechanical properties of the Ni-rich Al-Si piston alloy was studied using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, microhardness measurement and tensile strength testing. The results showed that the microstructures of Ni-rich Al-Si piston alloy treated by electric pulse modification were refined, the solid solubility of Cu, Ni, Si, etc. in α-Al matrix was improved, and furthermore, the microhardness and high-temperature tensile strength were increased by 9.41% and 17.5%, respectively. The distribution of second phases was also more uniform compared with that of a non-modified sample.

  5. Electrochemical hydrogen storage in ZrCrNiPd{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, F.C. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Peretti, H.A. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, C. P. 8400, S. C. de Bariloche (RN) (Argentina); Visintin, A. [CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Instituto de Investigaciones Fisicoquimicas, Teoricas y Aplicadas, Universidad Nacional de La Plata, Suc. 4, C.C.: 16/Comision de Investigaciones Cientificas Provincia de Buenos Aires (C.I.C.), CP: 1900, La Plata (Argentina)

    2010-06-15

    The consumption of rechargeable batteries at worldwide level has increased constantly in the last years, mainly due to the use of portable devices such as cellular phones, digital cameras, computers, music and video reproducers, etc. Nickel Metal Hydride (NiMH) is a rechargeable battery system widely used in these devices, also including the most of electrical and hybrid vehicles (EV and HEV). The study of hydride forming alloys is fundamental for its use as negative electrode component in NiMH batteries. In previous works, the electrocatalytic effect of Pd element addition to the electrode, in powder form and by means of electroless technique, has been studied. In this work, AB{sub 2}-type alloys are studied, in which Pd is incorporated to the structure by re-melting inside an arc furnace. The base alloy composition is ZrCrNi, and the composition of the elaborated compounds is ZrCrNiPd{sub x} (x = 0.095 and 0.19). The effect of the composition modification on these materials on properties such as electrochemical discharge capacity, activation and high rate dischargeability (HRD) is analyzed. (author)

  6. Structures and Electrochemical Hydrogen Storage Properties of the As-Spun RE-Mg-Ni-Co-Al-Based AB2-Type Alloys Applied to Ni-MH Battery

    Science.gov (United States)

    Zhang, Yanghuan; Yuan, Zeming; Shang, Hongwei; Li, Yaqin; Qi, Yan; Zhao, Dongliang

    2017-05-01

    In this paper, the La0.8- x Ce0.2Y x MgNi3.5Co0.4Al0.1 ( x = 0, 0.05, 0.1, 0.15, 0.2) alloys were synthesized via smelting and melt spinning. The effect of Y content on the structure and electrochemical hydrogen storage characteristics of the as-cast and spun alloys was investigated. The identifications of XRD and SEM demonstrate that the experimental alloys possess a major phase LaMgNi4 and a minor phase LaNi5. The variation of Y content results in an obvious transformation of the phase abundance rather than phase composition in the alloys, namely LaMgNi4 phase increases while LaNi5 phase decreases with Y content growing. Furthermore, the replacement of Y for La causes the lattice constants and cell volume to clearly decrease and markedly refines the alloy grains. The electrochemical tests reveal that these alloys can obtain the maximum values of discharge capacity at the first cycling without any activation needed. With Y content growing, the discharge capacity of the alloys obviously declines, but its cycle stability remarkably improves. Moreover, the electrochemical dynamics of the alloys, involving the high-rate discharge ability, hydrogen diffusion coefficient ( D), limiting current density ( I L), and charge transfer rate, initially augment and then decrease with rising Y content.

  7. Investigation on the Structure and Electrochemical Properties of La-Ce-Mg-Al-Ni Hydrogen Storage Alloy

    Directory of Open Access Journals (Sweden)

    Yuqing Qiao

    2013-01-01

    Full Text Available Structure and electrochemical characteristics of La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy have been investigated. X-ray diffraction analyses reveal that the La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy consisted of a (La, MgNi3 phase with the rhombohedral PuNi3-type structure and a LaNi5 phase with the hexagonal CaCu5-type structure. TEM shows that the alloy is multicrystal with a lattice space 0.187 nm. EDS analyse shows that the content of Mg is 3.48% (atom which coincide well with the designed composition of the electrode alloy. Electrochemical investigations show that the maximum discharge capacity of the alloy electrode is 325 mAh g−1. The alloy electrode has higher discharge capacity within the discharge current density span from 60 mA g−1 to 300 mA g−1. Electrochemical impedance spectroscopy measurements indicate that the charge transfer resistance RT on the alloy electrode surface and the calculated exchange current density I0 are 0.135 Ω and 1298 mA g−1, respectively; the better eletrochemical reaction kinetic of the alloy electrode may be responsible for the better high-rate dischargeability.

  8. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    Science.gov (United States)

    Shi, Shi; He, Mo-Rigen; Jin, Ke; Bei, Hongbin; Robertson, Ian M.

    2018-04-01

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size and fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. These dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.

  9. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  10. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  11. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  12. Modification of anomalous deposition of Zn-Ni alloy by using tin additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zeyang; O`Keefe, T.J. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering

    1997-11-25

    One of the common examples of anomalous deposition in electrolytic processing is the Zn-Ni alloy coating system. These alloys, in the range 10-15% Ni, are also of commercial interest in electrogalvanizing for protecting steel from corrosion while retaining good formability, weldability and paintability. The primary objective of this research was to obtain a better fundamental understanding of anomalous deposition and to identify ways to modify its influence. Specifically, the effects of tin additions on the composition, structure and surface morphology of Zn-Ni alloy deposits from electrolyte containing 80 g l{sup -1} Zn and 10 g l{sup -1} Ni were studied. Previous work had shown that low concentrations (parts per million) of cations such as antimony and arsenic were very effective in countering the anomalous deposition and increasing the relative nickel content of the deposits. Unfortunately, the morphology and current efficiency were adversely affected by use of these additives. It was found that the addition of tin also appreciably increased the nickel content of the alloy deposit, as well as giving smooth, dense deposits with a current efficiency of about 90%. The surface morphology of the deposits was correlated with the amount of tin added. The limited electrochemical impedance spectroscopy tests conducted showed that the low concentrations of tin did lower the charge transfer resistance of the reaction. Overall, the results were promising but considerably more research is needed to elucidate the basic factors that influence zinc alloy electrocrystallization mechanisms. (orig.) 27 refs.

  13. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  14. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  15. Electrochemical Properties of Ni 47 Ti 49 Co 4 Shape Memory Alloy in Artificial Urine for Urological Implant

    KAUST Repository

    Ahmed, Rasha A.

    2015-09-02

    © 2015 American Chemical Society. The corrosion performance of Ni47Ti49Co4 shape memory alloys (SMA) in artificial urine solution was evaluated in comparison with Ni51Ti49 alloy as reference, at 37°C and pH 5.6-6.4. SEM results revealed less pitting attack for Ni47Ti49Co4 SMA surface after immersion in artificial urine solution. The XRD analysis demonstrated the formation of passive film on Ni47Ti49Co4 SMA. The XPS analysis indicated that the film mainly consisted of O, Ti, Co, P, and a small amount of Ni, and the concentration of Ni ions release was greatly reduced compared to that of the Ni51Ti49 SMA. Linear polarization results illustrated that corrosion potential (Ecorr), corrosion current density (icorr), and ac polarization resistance (Rp) were affected greatly by alloying Co to Nitinol alloy. Our observations indicated that the corrosion resistance of the ternary alloy, Ni47Ti49Co4 SMA, offers superior corrosion resistance in artificial urine when compared to Ni51Ti49 SMA, which was suitable for medical applications.

  16. Electrochemical Properties of Ni 47 Ti 49 Co 4 Shape Memory Alloy in Artificial Urine for Urological Implant

    KAUST Repository

    Ahmed, Rasha A.

    2015-01-01

    © 2015 American Chemical Society. The corrosion performance of Ni47Ti49Co4 shape memory alloys (SMA) in artificial urine solution was evaluated in comparison with Ni51Ti49 alloy as reference, at 37°C and pH 5.6-6.4. SEM results revealed less pitting attack for Ni47Ti49Co4 SMA surface after immersion in artificial urine solution. The XRD analysis demonstrated the formation of passive film on Ni47Ti49Co4 SMA. The XPS analysis indicated that the film mainly consisted of O, Ti, Co, P, and a small amount of Ni, and the concentration of Ni ions release was greatly reduced compared to that of the Ni51Ti49 SMA. Linear polarization results illustrated that corrosion potential (Ecorr), corrosion current density (icorr), and ac polarization resistance (Rp) were affected greatly by alloying Co to Nitinol alloy. Our observations indicated that the corrosion resistance of the ternary alloy, Ni47Ti49Co4 SMA, offers superior corrosion resistance in artificial urine when compared to Ni51Ti49 SMA, which was suitable for medical applications.

  17. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    International Nuclear Information System (INIS)

    He Zhirong; Liu Manqian

    2011-01-01

    Highlights: → New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. → The effect laws of annealing on transformation temperature and hysteresis of the alloy. → The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A → R/R → A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A → R → M/M → R → A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A → R → M/M → A type transformation occurs in 550 deg. C annealed alloy, and A → M/M → A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A → R/R → A, and that of 500 deg. C aged alloy is A → R → M/M → A, while that of 400 deg. C aged alloy changes from A → R/R → A to A → R → M/M → R → A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  18. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.

  19. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  20. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  1. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    Science.gov (United States)

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  2. The irradiation induced microstructural development and the role of γ' on void formation in Ni-based alloys

    International Nuclear Information System (INIS)

    Kato, T.; Nakata, K.; Masaoka, I.; Takahashi, H.; Takeyama, T.; Ohnuki, S.; Osanai, H.

    1984-01-01

    The microstructural development for Inconel X-750, Ni-13 at% Al, and Ni-11.5 at% Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope in the temperature range 627-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces. (orig.)

  3. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  4. Lattice misfits in four binary Ni-Base γ/γ1 alloys at ambient and elevated temperatures

    Science.gov (United States)

    Kamara, A. B.; Ardell, A. J.; Wagner, C. N. J.

    1996-10-01

    High-temperature X-ray diffractometry was used to determine the in situlattice parameters, a γ and a γ', and lattice misfits, δ = ( a γ', - a γ)/ a γ, of the matrix (γ) and dispersed γ'-type (Ni3X) phases in polycrystalline binary Ni-Al, Ni-Ga, Ni-Ge, and Ni-Si alloys as functions of temperature, up to about 680 °C. Concentrated alloys containing large volume fractions of the γ' phase (˜0.40 to 0.50) were aged at 700 °C to produce large, elastically unconstrained precipitates. The room-temperature misfits are 0.00474 (Ni-Al), 0.01005 (Ni-Ga), 0.00626 (Ni-Ge), and -0.00226 (Ni-Si), with an estimated error of ± 4 pct. The absolute values of the lattice constants of the γ and γ' phases, at compositions corresponding to thermodynamic equilibrium at about 700 °C, are in excellent agreement with data from the literature, with the exception of Ni3Ga, the lattice constant of which is much larger than expected. In Ni-Ge alloys, δ decreases to 0.00612 at 679 °C, and in Ni-Ga alloys, the decrease is to 0.0097. In Ni-Si and Ni-Al alloys, δ exhibits a stronger temperature dependence, changing to-0.00285 at 683 °C (Ni-Si) and to 0.00424 at 680 °C (Ni-Al). Since the times required to complete the high-temperature X-ray diffraction (XRD) scans were relatively short (2.5 hours at most), we believe that the changes in δ observed are attributable to differences between the thermal expansion coefficients of the γ and γ' phases, because the compositions of the phases in question reflect the equilibrium compositions at 700 δC. Empirical equations are presented that accurately describe the temperature dependences of a γ, a γ', and δ over the range of temperatures of this investigation.

  5. Magnetic regimes in amorphous Ni--Fe--P--B alloys

    International Nuclear Information System (INIS)

    Durand, J.

    1976-10-01

    A complete substitution of iron for nickel was obtained by splat-cooling in amorphous alloys of composition (Ni/sub 100-y/Fe/sub y/) 79 P 13 B 8 . Results of high-field magnetization (up to 70 kOe), ac and dc low-field susceptibility, Curie temperature, and resistivity measurements over a temperature range of 1.7 to 300 0 K are reported. The Ni 79 P 13 B 8 alloy is not ferromagnetic, but the magnetization behavior as a function of field and temperature is typically that of alloys in the critical concentration range for ferromagnetism. The Fe 79 P 13 B 8 alloy is ferromagnetic with a Curie temperature T/sub c/ of 616 0 K. For y = 1 at. percent, the Fe atoms are magnetic. The variation of the moment per Fe atom as a function of y is discussed. When y is increased, the Ni atoms are likely to be polarized progressively and the moment per Ni atom would be roughly constant for y equal to or greater than 30 at. percent. Various magnetic behaviors were defined as a function of the Fe content. The value of T/sub c/ reaches a maximum for y similarly ordered 90 at. percent and extrapolates to zero for y similarly ordered 7 at. percent. Alloys within the range 1 equal to or less than y equal to or less than 10 at. percent did not exhibit well-defined Curie transition, but sharp maxima in low-field susceptibility measurements were observed at T/sub M/. The value of T/sub M/ is proportional to y for 1 equal to or less than y equal to or less than 4 at. percent, as in classical spin-glass regimes. For 4 less than y equal to or less than 10 at. percent, the variation of T/sub M/ as a function of y implies a more complicated type of magnetic ordering (micromagnetism or superparamagnetism). Homogeneous ferromagnetic ordering emerges only for y greater than 10 at. percent. Results of resistivity measurements are discussed in relation to the magnetic properties of different regimes in the magnetic phase diagram. 6 figures, 2 tables

  6. Synthesis of FeNi Alloy Nanomaterials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Cássio Morilla dos Santos

    2016-01-01

    Full Text Available Proteic Sol-Gel method was used for the synthesis of FeNi alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H2-TPR, SEM, TEM, Mössbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure FeNi alloy in the samples reduced at 600°C (40 mL/min H2 flow and 700°C (25 mL/min H2 flow. The FeNi alloy presented stability against the oxidizing atmosphere up to 250°C. The morphology exhibited agglomerates relatively spherical and particles in the range of 10–40 nm. Mössbauer spectroscopy showed the presence of disordered ferromagnetic FeNi alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  7. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  8. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  9. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  10. Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys

    International Nuclear Information System (INIS)

    Ivanova, A I; Gasanov, O V; Kaplunova, E I; Grechishkin, R M; Kalimullina, E T; Zalyotov, A B

    2015-01-01

    A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials

  11. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses

    International Nuclear Information System (INIS)

    Silva, Luis Carlos Elias da

    2006-01-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  12. Cermet Ni-ZrO2 by mechanical alloying

    International Nuclear Information System (INIS)

    Leite, Douglas Will

    2010-01-01

    The ZrO 2 and metallic Ni Cermet obtained by Mechanical Alloying - MA is studied in the present work with the objective to prepare solid oxide fuel cells anodes (SOFC). Metallic Ni is added under three different concentrations: 30, 40 and 50% volume. The millings were conducted in SPEX vibratory mill where the influence of milling time, process control additives efficiency, type and geometry of milling vessels were studied. The study of the influence of these variables was made under particle size analysis, surface area determination and resulting material morphology. The use of teflon vessel causes contamination by carbon. On the other side, steel vessel increases the contamination by metallic impurities. The several geometries projected and analyzed for the vessels showed that vessels with larger bottom radius (R.15) showed the best results. After conformation and sintering at 1300 degree C in argon atmosphere the samples reached densities between 60 and 80% of the theoretical density. Microstructures observed by scanning electron microscopy reveal good homogeneity in the Cermet phases distribution. The mechanical alloying technique was considered a good option to obtain Ni- ZrO 2 Cermet. (author)

  13. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  14. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  15. Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites

    Science.gov (United States)

    Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.

    2017-10-01

    A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.

  16. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    Science.gov (United States)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  17. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys

    Science.gov (United States)

    Kim, Hyung Giun; Lee, Taeg Woo; Kim, Sang Min; Han, Seung Zeon; Euh, Kwangjun; Kim, Won Yong; Lim, Sung Hwan

    2013-01-01

    The mechanical and electrical properties of Cu-5.98Ni-1.43Si and Cu-5.98Ni-1.29Si-0.24Ti alloys under heat treatment at 400 and 500 °C after hot- and cold-rolling were investigated, and a microstructural analysis using transmission electron microscopy was performed. Cu-5.98Ni-1.29Si-0.24Ti alloy displayed the combined Vickers hardness/electrical conductivity value of 315.9 Hv/57.1%IACS. This was attributed to a decrease of the solution solubility of Ni and Si in the Cu matrix by the formation of smaller and denser δ-Ni2Si precipitates. Meanwhile, the alloyed Ti was detected in the coarse Ni-Si-Ti phase particles, along with other large Ni-Si phase particles, in Cu-5.98Ni-1.29Si-0.24Ti.

  18. Comparative study on structure, corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, M. [Department of Metallurgy and Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahkaram, S.R., E-mail: akaram@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Zn and Zn-Ni alloy coatings were electrodeposited from sulfate based electrolytes. The effect of alloys Ni content on morphology, microstructure, corrosion properties, microhardness and tribological behavior of these coatings were investigated and the results were compared with Zn film. According to X-ray diffraction patterns, different intermediate phases (η-Ni{sub 3}Zn{sub 22}, γ-Ni{sub 5}Zn{sub 21}, β-Zn-Ni) were formed by increasing the coatings Ni content from 11 to 17 wt%. Polarization and EIS results revealed that all the alloy coatings had better corrosion resistance than the Zn film. Zn-14 wt%Ni coating had the least corrosion current density and maximum polarization resistance between all the samples. Microhardness of the coatings was improved by increasing their Ni percentage to 17%. However, Zn-14 wt%Ni coating had the lowest wear loss and friction coefficient, while Zn film had the worst wear resistance between all the coatings. - Highlights: • Effect of Ni alloying element on morphology and structure of Zn electrodeposits. • Comparing corrosion behavior of Zn and Zn-Ni coatings. • Influence of Ni content on hardness of Zn-Ni films. • A comparison of tribological behavior of Zn and different Zn-Ni electrodeposits.

  19. Severe plastic deformation of melt-spun shape memory Ti2NiCu and Ni2MnGa alloys

    International Nuclear Information System (INIS)

    Pushin, Vladimir G.; Korolev, Alexander V.; Kourov, Nikolai I.; Kuntsevich, Tatiana E.; Valiev, Eduard Z.; Yurchenko, Lyudmila I.; Valiev, Ruslan Z.; Gunderov, Dmitrii V.; Zhu, Yuntian T.

    2006-01-01

    This paper describes the influence of severe plastic deformation (SPD) on the structure, phase transformations, and physical properties of melt-spun Ti 2 NiCu-based and Ni 2 MnGa-based shape memory intermetallic alloys. It was found that the SPD by high pressure torsion (HPT) at room temperature can be effectively used for the synthesis of bulk nanostructured states in these initially submicro-grained or amorphized alloys obtained by melt-spinning method in the form of a ribbon. The subsequent low-temperature annealing of HPT-processed alloys leads to formation of homogeneous ultrafine nano-grained structure. This is connected with a very high degree and high homogeneity of deformation at SPD in the whole volume of deformed samples. (author)

  20. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    International Nuclear Information System (INIS)

    Smith, H.D.; Mackey, D.B.; Pool, K.H.; Schwenk, E.B.

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction

  1. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  2. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.

    2003-01-01

    alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...

  3. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    International Nuclear Information System (INIS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; Araújo Figueiredo, C. de

    2016-01-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H 2 /kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was approached

  4. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, R. [CAPES Foundation, Ministry of Education, Brasilia (Brazil); Bosch, R.-W., E-mail: rbosch@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van Renterghem, W.; Vankeerberghen, M. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Araújo Figueiredo, C. de [CDTN/CNEN, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG (Brazil)

    2016-08-15

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H{sub 2}/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was

  5. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  6. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  7. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  8. X-ray diffraction studies of NiTi shape memory alloys

    OpenAIRE

    E. Łągiewka; Z. Lekston

    2007-01-01

    Purpose: The purpose of this paper is to present the results of the investigations of phase transitions of TiNiCo and Ni-rich NiTi shape memory alloys designed for medical applications.Design/methodology/approach: Temperature X-ray diffraction (TXRD), differential scanning calorimetry (DSC), electrical resistivity (ER) and the temperature shape recovery measurements in three-point bending ASTM 2082-01 tests were used.Findings: It has been found in this work that ageing after solution treatme...

  9. Formation of nano sized ODS clusters in mechanically alloyed NiAl-(Y,Ti,O) alloys

    International Nuclear Information System (INIS)

    Kim, Yong Deog; Bae Seong Man; Wirth, Brian D.

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn-Mo-Ni low alloy steel were also evaluated

  10. Thermodynamic investigations of the Mn-Ni-C-N quarternary alloys by solid-state galvanic cell technique

    International Nuclear Information System (INIS)

    Teng Lidong; Aune, Ragnhild; Seetharaman, Seshadri

    2005-01-01

    In view of the important applications of carbides and nitrides of transition metals in the hard materials industries, the thermodynamic activities of manganese in Mn-Ni-C-N alloys have been studied by solid-state galvanic cell technique with CaF 2 as the solid electrolyte. The phase compositions and microstructure of various alloys have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Nitrogen was introduced into the alloy by equilibrating with N 2 gas. It was established during the experiments that the solubility of nitrogen in the alloys was affected by the carbon content. A (Mn,Ni) 4 (N,C) nitride was formed during the nitriding procedure in the alloys. The electromotive force (EMF) measurements were carried out in the temperature range 940-1127 K in order to determine the activities of Mn in the alloys. The activities of manganese were calculated and compared with those of the corresponding Mn-Ni-C ternary alloys

  11. Ni3Al intermetallide-based alloy: a promising material for turbine blades

    International Nuclear Information System (INIS)

    Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskij, E.R.; Muboyadzhyan, S.A.

    2002-01-01

    A consideration is given to properties and structure of a cast intermetallic alloy grade VKNA-4U-mono- with monocrystalline structure in the temperature range of 20-1250 deg C. The influence of long-term heating at 1200 deg C on the stability of alloy mechanical properties is investigated. The advantages of a cast alloy on the basis of alloyed intermetallic compound Ni 3 Al are demonstrated, the processing and physical properties of the alloy are presented [ru

  12. Synthesis of Fe Ni Alloy Nano materials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    International Nuclear Information System (INIS)

    Santos, C.M.D.; Martins, A.F.N.; Sasaki, J.M.; Costa, B. C.; Ribeiro, T.S.; Braga, T.P.; Soares, J.M.

    2016-01-01

    Proteic Sol-Gel method was used for the synthesis of Fe Ni alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H_2-TPR, SEM, TEM, Moessbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure Fe Ni alloy in the samples reduced at 600 degree (40 ml/min H_2 flow) and 700 degree (25 ml/min H_2 flow). The Fe Ni alloy presented stability against the oxidizing atmosphere up to 250 degree. The morphology exhibited agglomerates relatively spherical and particles in the range of 10-40 nm. Moessbauer spectroscopy showed the presence of disordered ferromagnetic Fe Ni alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  13. The effect of applied stress on the shape memory behavior of TiNi-based alloys with different consequences of martensitic transformations

    International Nuclear Information System (INIS)

    Meisner, L.L.; Sivokha, V.P.

    2004-01-01

    The development of plastic deformation and shape memory behavior of the Ti 49.5 Ni 50.5 , Ti 50 Ni 34 Pt 16 , Ti 50 Ni 39,25 Cu 10 Fe 0,75 alloys are studied. The alloys differ by consequences of martensitic transformations (MT). It is found that the behavior of both accumulated and returned strain components exhibit some features in the alloys under consideration. The strain-temperature diagrams of the Ti 49.5 Ni 50.5 alloy with the B2↔B19' MT are of the one-step form. There are three stages on the strain-stress curves of this alloy depending on value of the applied mechanical torque. The regularity of plastic behavior of the Ti 50 Ni 34 Pt 16 alloy with the B2↔B19 transformation is similar to that of the Ti 49.5 Ni 50.5 alloy. The strain-stress diagram has three stages. However, there is a significant difference in the shape memory behavior of this alloy. The shape-memory behavior of the Ti 50 Ni 39,25 Cu 10 Fe 0,75 alloy corresponds to the two-stage nature of its B2↔B19↔B19' MT. The deformation mechanisms for these stages have their features in contrast to those of the foregoing alloys. The strain and temperature parameters of the shape memory effect and plastic behavior of the TiNi-based alloys are also examined

  14. The effect of silicon content on high temperature oxidation of 80Ni-20Cr alloys

    International Nuclear Information System (INIS)

    Takei, Atsushi; Nii, Kazuyoshi

    1981-01-01

    The effect of Si content on the oxidation behavior of 80Ni-20Cr alloys has been studied in the cyclic oxidation in an air stream at 1373K. The addition of 1% and 5%Si to the alloy lowered the mass gain in oxidation, whereas the amount of spalling of oxide scale was increased with the addition of Si. The structure of oxide layers observed by microphotography, X-ray diffraction and electron probe microanalysis (EPMA) were different with the Si content of alloys. The oxide layer of the alloy with 1%Si consists of multi-layers, that is Ni oxide, Cr 2 O 3 and SiO 2 as the external oxide layer. The oxide layer remaining on the alloy with 5%Si, however, was made of a single oxide layer of Cr 2 O 3 containing small amounts of Si and Ni. In spite of the fact that the amount of Si in this alloy is larger than that of the alloy with 1%Si, the SiO 2 oxide layer was not observed at the oxide-alloy interface. It was found by EPMA that the concentration of Si in the oxidized 5%Si alloy substrate was increased in the vicinity of the surface, although Si in the 1%Si alloy was depleted. From the above results the internal oxidation of Si is assumed in the near-surface region of the 5%Si alloy. The internal oxidation of the 5%Si alloy was confirmed by an increase in hardness in the near-surface region. The difference in oxidation behavior between the 1%Si and 5%Si alloys can be understood under the assumption that the oxide layer formed of the 5%Si alloy contained much larger amounts of Ni and Si than that on the 1%Si alloy, and that this oxide layer tends to crack more easily, thus being less protective for the penetration of oxygen. (author)

  15. Electron energy-loss spectroscopy study of NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Schryvers, D.

    2008-01-01

    Electron energy loss spectroscopy (EELS) investigations were carried out on NiTi shape memory alloys. The composition of lens-shaped precipitates is determined to be Ni 4 Ti 3 by model-based EELS quantification, and the Ni-depleted zone in the B2 matrix surrounding the Ni 4 Ti 3 precipitates was quantified. The Young's modulus Y m of the B2 matrix with 51 at.% Ni and the Ni 4 Ti 3 precipitates was evaluated to be about 124 and 175 GPa, respectively. The intensity of the Ni L 3 edge for the precipitate is slightly higher than that for the B2 phase

  16. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Liu, Ruxia; Wei, Qinqin; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng [Wuhan Univ. of Technology (China). The State Key Lab. of Advanced Technology for Materials Synthesis and Processing

    2017-11-01

    The combination of W and Ta is expected to be highly beneficial for many applications from aerospace, weapons, military and nuclear industry. In this paper, W and Ta alloys were successfully diffusion bonded with Ni interlayer. The process of the formation of W/Ni/Ta diffusion bonded joints was investigated by means of scanning electron microscopy, X-ray diffraction system, electron probe micro-analyzer, energy dispersive spectrometry and shear strength measurement. The results show that the shear strength increases when the bonding temperature increases and exhibits a maximum value of 244 MPa at 930 C. The bonding of W/Ni can be attributed to the bonding of Ni to tungsten grains and the bonding of Ni to a Ni-Fe-binder mainly by elemental diffusion. The fracture takes place in the Ni/Ta interface and Ni{sub 3}Ta and Ni{sub 2}Ta intermetallic compounds are formed on the fracture surfaces.

  17. Effect of Ta substitution method on the mechanical properties of Ni3(Si,Ti) intermetallic alloy

    International Nuclear Information System (INIS)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki

    2013-01-01

    In this study, Ta was added to an L1 2 -type Ni 3 (Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1 2 phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1 2 phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1 2 single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si

  18. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  19. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Paulikas, A.P.; Veal, B.W. [Materials Science Div., Argonne National Lab., Argonne, IL (United States)

    2007-12-15

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys. (orig.)

  20. Magnetic and frequency properties for nanocrystalline Fe-Ni alloys prepared by high-energy milling method

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Jincang; Yu, Liming; Jia Guangqiang; Jing Chao; Cao Shixun

    2005-01-01

    Fe-based nano-crystalline soft magnetic alloy with Ni-doping was fabricated successfully by high-energy milling. It was proved that a Fe-Ni solid solution is formed and the evaluated average grain size is about 20 nm. The effect of doping Ni on the frequency properties was systematically investigated. From the magnetic measurement results, it can be concluded that, the nickel doped decreases the resonance frequency of Fe-Ni alloy, but Ni doping enhances the frequency stability. The corresponding value of initial permeability as a function of Ni doping concentration was given at 10 kHz and the result indicates that the peak value of initial permeability shifts to the region of low Ni concentration for the samples milled for 72 h

  1. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  2. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Ju, X; Dong, H

    2007-01-01

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed

  3. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X; Dong, H [Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-21

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed.

  4. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  5. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  6. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  7. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  8. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  9. Upgrade Fe-50%Ni alloys for open-loop DC current sensor: Design and alloy-potential characteristics

    International Nuclear Information System (INIS)

    Waeckerle, Thierry; Fraisse, Herve; Furnemont, Quentin; Bloch, Frederic

    2006-01-01

    This paper deals with the DC current sensor with open loop and high accuracy, and describes the relationship between the latter and the core-material magnetic properties in the case of Fe-50%Ni alloys. It is pointed out that air-gap precision, nonlinearity B-H and hysteresis are the main sources of accuracy; the influences of mechanical stress and temperature on coercive field are quantified and have to be taken into account in the design of the sensor. It is shown by dedicated choice of grades and annealing that Fe-50%Ni alloys may vary their coercive field from 4-6 A/m down to 1.5-4 A/m depending on the final annealing treatment used

  10. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  11. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  12. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  13. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  14. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition

    International Nuclear Information System (INIS)

    Aal, A. Abdel; Shaaban, A.; Hamid, Z. Abdel

    2008-01-01

    Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys

  15. Study on hydrogen storage alloy for NiMH EV battery; EV yo NiMH denchi no suiso kyuzogokin ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, M.; Tanaka, T.; Furukawa, K.; Watada, M.; Oshitani, M. [Yuasa Corp., Osaka (Japan)

    1998-10-30

    We have developed a high performance hydrogen storage alloy (MH alloy) suited to NiMH batteries for EV use. During the course of the development, the effects of alloy composition and structure (B/A ratio in AB{sub 5}) on cycle life and high-rate discharge of MH electrodes were investigated using mainly SEM, XRD, TEM analysis. It was found that Co content and B/A ratio (5.1/5) of MH alloy have significant effects on corrosion resistance and high-rate discharge at low temperature. Further, the surface treatments of MH alloy with weak acids and hydrophobic agents were effective for improving the initial activation and for depressing the cell internal pressure build-up. (author)

  16. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  17. Study the microstructure of three and four component phases in Al-Ni-Fe-La alloys

    KAUST Repository

    Kolobylina, Natalia

    2016-12-21

    Aluminium alloys play a key role in modern engineering since they are the most used non-ferrous material. They have been widely used in automotive, aerospace, and construction engineering due to their good corrosion resistance, superior mechanical properties along with good machinability, weldability, and relatively low cost. The progress in practical application has been determined by intensive research and development works on the Al alloys. A new class of Al–REM–TM aluminum alloys (REM indicates rare earth metal and TM is transition metal) was revealed in the end of the last century. These alloys differ from conventional ones by their extraordinary ability to form metal glasses and nanoscale composites in a wide range of compositions. Having low density, these alloys possess unique mechanical characteristics and corrosion resistance. Two as received alloys, namely Al85Ni9Fe2La4 and Al85Ni7Fe4La4 were obtained in the form of ingots from melts of corresponding compositions upon cooling in air were studied by scanning/transmission electron microscopy (STEM), energy dispersive X-ray (EDX) microanalysis and X-ray diffraction (XRD). The microstructural analyses were performed in a aberration corrected TITAN 80-300 TEM/STEM (FEI, USA) attached with EDX spectrometer with ultrathin window (EDAX, USA). The specimens for transmission electron microscopy (TEM) were prepared by an electrochemical or ion etching. It was found that the received alloys exhibits along with fcc Al and Al4La (Al11La3) particles, these alloys contain a ternary phase Al3Ni1 Fe isostructural to the Al3Ni phase and a quaternary phase Al8Fe2 NiLa isostructural to the Al8Fe2Eu phase and monoclinic phase Al9(Fe,Ni)2 isostructural to the Al9Co2. The study by HRSTEM together with a new atomic resolution energy dispersive X-ray microanalysis method demonstrated that Fe and Ni atoms substituted one another in the Al8Fe2–NiLa quaternary compound. Besides, several types of defects were determined: first

  18. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  19. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    Directory of Open Access Journals (Sweden)

    Hui-Ping Ren

    2011-01-01

    Full Text Available Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4 alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1 alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s to 30 m/s, the hydrogen absorption saturation ratio ( of the (x = 0.4 alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio ( from 54.5 to 70.2%, the hydrogen diffusion coefficient (D from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g.

  20. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    Science.gov (United States)

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  1. Comparison of the irradiation effects on swelling and microstructure in commercial alloy A-286 and a simple Fe--25 Ni--15Cr gamma prime hardened alloy

    International Nuclear Information System (INIS)

    Chickering, R.W.; Bajaj, R.; Lally, J.S.

    1977-01-01

    The irradiation behaviors of alloy A-286 as well as experimental gamma prime hardened alloys are being studied in the National Alloy Development Program for application of gamma prime hardened alloys in the liquid metal fast breeder reactor. The principal direction of the studies concerns the high temperature strength and swelling resistance of the alloys. Minor element compositions may affect the phase stability and void swelling. A high Ti to Al ratio indicates a tendency for the gamma prime Ni 3 (Ti,Al) to transform into eta phase (Ni 3 Ti) after long term thermal aging and irradiation enhances the tendency for transformation. Another minor element, Si, as a constituent of G-phase, and irradiation may enhance G-phase formation. The Ti, Al, and Si contents affect the swelling of Fe-Cr-Ni alloys. The swelling resistance generally increases with increasing amounts of these three elements in the matrix. In the study the effects of Ti to Al ratio, Ti content, Al content, and Si content on swelling and phase stability were analyzed after Ni-ion irradiation

  2. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  3. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  4. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  5. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  6. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  7. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  8. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    International Nuclear Information System (INIS)

    Ye, Weichun; Fu, Jiajia; Wang, Qin; Wang, Chunming; Xue, Desheng

    2015-01-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni 2+ , Co 2+ and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property

  9. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Weichun, E-mail: yewch@lzu.edu.cn [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Fu, Jiajia; Wang, Qin; Wang, Chunming [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Xue, Desheng, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni{sup 2+}, Co{sup 2+} and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property.

  10. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  11. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  12. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  13. Nickel-metal hydride (Ni-MH) battery using Mg{sub 2}Ni-type hydrogen storage alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luo, J.L.; Chuang, K.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-04-28

    The performance of a sealed prismatic prototype Ni-MH battery having a Mg-Ni-Y-Al alloy anode was investigated. The materials were characterized using X-ray diffraction (XRD). The laboratory tests run on this prototype battery as well as the single electrode was compared. The electrochemical behavior was determined using electrochemical impedance spectroscopy (EIS). The battery has a good dischargeability but a high self-discharge rate during storage at open-circuit state. (orig.)

  14. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  15. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Lu, H.; Li, D.Y., E-mail: dongyang.li@ualberta.ca

    2016-04-15

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  16. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    International Nuclear Information System (INIS)

    Huang, X.C.; Lu, H.; Li, D.Y.

    2016-01-01

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  17. Nickel recovery from electronic waste II Electrodeposition of Ni and Ni–Fe alloys from diluted sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Robotin, B. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Ispas, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Coman, V. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Bund, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Ilea, P., E-mail: pilea@chem.ubbcluj.ro [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania)

    2013-11-15

    Highlights: • Ni can be recovered from EG wastes as pure Ni or as Ni–Fe alloys. • The control of the experimental conditions gives a certain alloy composition. • Unusual deposits morphology shows different nucleation mechanisms for Ni vs Fe. • The nucleation mechanism was progressive for Ni and instantaneous for Fe and Ni–Fe. - Abstract: This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni{sup 2+}/Fe{sup 2+} ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  18. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    Science.gov (United States)

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  20. Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rák, Zs., E-mail: zrak@ncsu.edu; Brenner, D.W.

    2017-04-30

    Highlights: • The trend in the surface energies of austenitic stainless steels is: (111) < (100) < (110). • On the (111) orientation Ni segregates to the surface and Cr segregates into the bulk. • The surface stability of the alloys in contact with water decrease with temperature and pH. - Abstract: The surface energetics of two austenitic stainless steel alloys (Type 304 and 316) and three Ni-based alloys (Alloy 600, 690, and 800) are investigated using theoretical methods within the density functional theory. The relative stability of the low index surfaces display the same trend for all alloys; the most closely packed orientation and the most stable is the (111), followed by the (100) and the (110) surfaces. Calculations on the (111) surfaces using various surface chemical and magnetic configurations reveal that Ni has the tendency to segregate toward the surface and Cr has the tendency to segregate toward the bulk. The magnetic frustration present on the (111) surfaces plays an important role in the observed segregation tendencies of Ni and Cr. The stability of the (111) surfaces in contact with aqueous solution are evaluated as a function of temperature, pH, and concentration of aqueous species. The results indicate that the surface stability of the alloys decrease with temperature and pH, and increase slightly with concentration. Under conditions characteristic to an operating pressurized water reactor, the Ni-based alloy series appears to be of better quality than the stainless steel series with respect to corrosion resistance and release of aqueous species when in contact with aqueous solutions.

  1. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  2. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  3. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  4. Coarsening of Ni–Ge solid-solution precipitates in “inverse” Ni3Ge alloys

    International Nuclear Information System (INIS)

    Ardell, Alan J.; Ma Yong

    2012-01-01

    Highlights: ► We report microstructural evolution of disordered Ni–Ge precipitates in Ni 3 Ge alloys. ► Coarsening kinetics and particle size distributions are presented. ► Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. ► The shapes of large precipitates are unusual, with discus or boomerang cross-sections. ► Results are compared with morphology, kinetics of Ni–Al in inverse Ni 3 Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni–Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni 3 Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 °C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni 3 Ge precipitates in normal Ni–Ge alloys and of Ni–Al precipitates in inverse Ni 3 Al alloys. The activation energy for coarsening, 275.86 ± 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni 3 Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  5. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    Science.gov (United States)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  6. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  7. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Shariat, Bashir S; Liu, Yinong; Rio, Gerard

    2013-01-01

    To improve actuation controllability of a NiTi shape memory alloy component in applications, it is desirable to create a wide stress window for the stress-induced martensitic transformation in the alloy. One approach is to create functionally graded NiTi with a geometric gradient in the actuation direction. This geometric gradient leads to transformation load and displacement gradients in the structure. This paper reports a study of the pseudoelastic behaviour of geometrically graded NiTi by means of mechanical model analysis and experimentation using three types of sample geometry. Closed-form solutions are obtained for nominal stress–strain variation of such components under cyclic tensile loading and the predictions are validated with experimental data. The geometrically graded NiTi samples exhibit a distinctive positive stress gradient for the stress-induced martensitic transformation and the slope of the stress gradient can be adjusted by sample geometry design. (paper)

  8. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  9. Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Rahim, M.; Frenzel, J.; Frotscher, M.; Pfetzing-Micklich, J.; Steegmüller, R.; Wohlschlögel, M.; Mughrabi, H.; Eggeler, G.

    2013-01-01

    In the present work we show how different oxygen (O) and carbon (C) levels affect fatigue lives of pseudoelastic NiTi shape memory alloys. We compare three alloys, one with an ultrahigh purity and two which contain the maximum accepted levels of C and O. We use bending rotation fatigue (up to cycle numbers >10 8 ) and scanning electron microscopy (for investigating microstructural details of crack initiation and growth) to study fatigue behavior. High cycle fatigue (HCF) life is governed by the number of cycles required for crack initiation. In the low cycle fatigue (LCF) regime, the high-purity alloy outperforms the materials with higher number densities of carbides and oxides. In the HCF regime, on the other hand, the high-purity and C-containing alloys show higher fatigue lives than the alloy with oxide particles. There is high experimental scatter in the HCF regime where fatigue cracks preferentially nucleate at particle/void assemblies (PVAs) which form during processing. Cyclic crack growth follows the Paris law and does not depend on impurity levels. The results presented in the present work contribute to a better understanding of structural fatigue of pseudoelastic NiTi shape memory alloys

  10. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  11. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  12. Forming a structure of the CoNiFe alloys by X-ray irradiation

    Science.gov (United States)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  13. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  14. Novel surface treatment for hydrogen storage alloy in Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiangyu; Ma, Liqun; Ding, Yi; Yang, Meng; Shen, Xiaodong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2009-05-15

    A novel surface treatment for the MlNi{sub 3.8}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.2} (La-rich mischmetal) hydrogen storage alloy has been carried out by using an aqueous solution of HF and KF with a little addition of KBH{sub 4}. The results of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that rough surface was formed and Al was partly dissolved into the solution after the treatment. The result of XPS indicated the formation of Ni{sub 3}B and LaF{sub 3} compounds on the alloy surface by the treatment. The probable chemical reaction mechanism for the surface treatment was introduced. The treatment resulted in significant improvements in the activation property, discharge capacity and cycle life of the alloy, especially the high rate dischargeability (HRD). The HRD of the treated alloy still remained 54.9% while that of the untreated one was only 15.1% at a discharge current density of 1200 mA/g. (author)

  15. Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys

    International Nuclear Information System (INIS)

    Kulkarni, U.D.

    2004-01-01

    The quenched in state of short range order (SRO) in binary Ni-Mo alloys is characterized by intensity maxima at {1 (1/2) 0} and equivalent positions in the reciprocal space. Ternary addition of a small amount of Al to the binary alloy, on the other hand, leads to a state of SRO that gives rise to intensity maxima at {1 0 0} and equivalent, in addition to {1 (1/2) 0} and equivalent, positions in the selected area electron diffraction patterns. Different geometric patterns of streaks of diffuse intensity, joining the SRO maxima with the superlattice positions of the emerging long range ordered (LRO) structures or in some cases between the superlattice positions of different LRO structures, are observed during the SRO-to-LRO transitions in the Ni-Mo-based and other 1 (1/2) 0 alloys. Monte Carlo simulations have been carried out here in order to shed some light on the atomic structures of the SRO and the SRO-to-LRO transition states in these alloys

  16. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  17. The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Jun; Jung, So Yi; Park, Choong Nyeon [Dept. of Metallurgical Engineering, Chonnam National University, Kwangju (Korea)

    1999-12-01

    Effects of alloy modification for the Zr{sub 0.7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.4} alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the Zaire.{sub 7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.3}Cr{sub 0.1} alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage. 11 refs., 5 figs., 2 tabs.

  18. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni-Mn-In and Ni-Mn-Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni{sub 50}Mn{sub 50-x}In{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 35}In{sub 15}, Ni{sub 50}Mn{sub 35-x}Co{sub x}In{sub 15}, Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge), Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 25+y}Ga{sub 25-y}, and Ni{sub 50-x}Co{sub x}Mn{sub 32-y}FeyGa{sub 18}. It was found that the magnetic entropy change, {Delta}S, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change {Delta}H=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni{sub 50}Mn{sub 50-x}In{sub x} (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition {Delta}S=24 J/(kg K) was detected for {Delta}H=5 T at T=350 K. The variation in composition of Ni{sub 2}MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni{sub 42}Co{sub 8}Mn{sub 32-y}FeyGa{sub 18} system. The adiabatic change of temperature ({Delta}T{sub ad}) in the vicinity of TC and TM of Ni{sub 50}Mn{sub 35}In{sub 15} and Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge) was found to be {Delta}T{sub ad}=-2 K and 2 K for {Delta}H=1.8 T, respectively. It was observed that |{Delta}T{sub ad}| Almost-Equal-To 1 K for {Delta}H=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall

  19. Effect of Ta substitution method on the mechanical properties of Ni{sub 3}(Si,Ti) intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki, E-mail: takasugi@mtr.osakafu-u.ac.jp

    2013-12-20

    In this study, Ta was added to an L1{sub 2}-type Ni{sub 3}(Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1{sub 2} phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1{sub 2} phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1{sub 2} single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si.

  20. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  1. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    Science.gov (United States)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  2. Characterization of thin Zn-Ni alloy coatings electrodeposited on low carbon steel

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Pommier, N.; Starck, B.; Remy, P.

    2007-01-01

    The characteristics of initial layer formation in alkaline bath for Zn-Ni (12-15%) alloy electrodeposition on low carbon steel plates are detected in a nanometric thickness range by electron probe microanalysis (EPMA), with both bulk sample and thin film on substrate correction procedure, glow discharge optical emission spectroscopy (GDOES) and gracing incidence X-ray diffraction (GIXRD). The Zn-Ni coatings were elaborated using either intensiostatic or potentiostatic mode. A preferential deposition of Ni, in the initial thin layer, is detected by these analyses; according to EPMA and GDOES measurements, a layer rich in nickel at the interface substrate/deposit is observed (90 wt.% Ni) and approved by GIXRD; the thin layer of Ni formed in the first moments of electrolysis greatly inhibits the Zn deposition. The initial layer depends upon the relative ease of hydrogen and metal discharge and on the different substrate surfaces involved. The electrodeposition of zinc-nickel alloys in the first stage is a normal phenomenon of codeposition, whereby nickel - the more noble metal - is deposited preferentially

  3. Effect of nanocrystalline phase on the electrochemical behavior of the alloy Ti{sub 60}Ni{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Shubhra, E-mail: shubhramathur3@gmail.com [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Jain, Rohit [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Kumar, Praveen [Surface Physics and Nanostructure Group, National Physical Laboratory, New Delhi 110012 (India); Sachdev, K.; Sharma, S.K. [Department of Physics, Malaviya National Institute of Technology, JLN-Marg, Jaipur 302017 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Polarization studies carried out on different structural states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer Nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer XPS results show that nanocrystalline specimen contains only TiO{sub 2} species. Black-Right-Pointing-Pointer It leads to the formation of adherent and stable film and improves the corrosion resistance. - Abstract: Polarization studies were carried out on crystalline, amorphous and nanocrystalline states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium at room temperature. It was observed that nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Cyclic voltammetry studies and weight loss data corroborates the polarization studies. X-ray photoelectron spectroscopy (XPS) technique was used in order to decipher the nature of the oxide film formed after corrosion test on the specimens of the alloy Ti{sub 60}Ni{sub 40}. The crystalline specimen of the alloy Ti{sub 60}Ni{sub 40} shows the presence of Ti{sup 2+}, Ti{sup 3+} and Ti{sup 4+} species along with some unoxidized Ti in metallic form (Ti{sup 0}) whereas the amorphous specimen consists of Ti{sup 3+} and Ti{sup 4+} species. On the other hand nanocrystalline specimen contains only Ti{sup 4+} species. Thus it is likely that the presence of fewer species and the absence of Ti{sup 3+} in the oxide film formed on nanocrystalline specimen of Ti{sub 60}Ni{sub 40} lead to the formation of a film with greater homogeneity and protective quality in comparison to the films formed on crystalline and amorphous states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium.

  4. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  6. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  7. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  8. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  9. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  10. Electronic structures and relevant physical properties of Ni2MnGa alloy films

    International Nuclear Information System (INIS)

    Kim, K. W.; Kim, J. B.; Huang, M. D.; Lee, N. N.; Lee, Y. P.; Kudryavtsev, Y. V.; Rhee, J. Y.

    2004-01-01

    The electronic structures and physical properties of the ordered and disordered Ni 2 MnGa alloy films were investigated in this study. Ordered and disordered Ni 2 MnGa alloy films were prepared by flash evaporation onto substrates maintained at 720 K and 150 K, respectively. The results show that the ordered films behave in nearly the same way as the bulk Ni 2 MnGa ferromagnetic shape-memory alloy, including the martensitic transformation at 200 K. It was also revealed that the film deposition onto substrates cooled by liquid nitrogen leads to the formation of a substantially-disordered or an amorphous phase which is not ferromagnetically ordered at room temperature. An annealing of such an amorphous film restores its crystallinity and also recovers the ferromagnetic order. It was also clarified how the structural disordering in the films influences the physical properties, including the loss of ferromagnetism in the disordered films, by performing electronic-structure calculations and a photoemission study.

  11. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kondo, Toshiki [Graduate School of Engineering, Osaka University (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (Japan); SOKEN-DAI (Graduate University for Advanced Studies) (Japan); Okada, Junpei T. [Institute for Materials Research, Tohoku University (Japan); Watanabe, Yuki [Advanced Engineering Services Co. Ltd. (Japan); Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-03-15

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 0.77}Cr{sub 0.23}) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr{sub 1-x}Ni{sub x} (x = 0.12 and 0.24) and Zr{sub 77}Cr{sub 23}. • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  12. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    International Nuclear Information System (INIS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-01-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 0.77 Cr 0.23 ) using the electrostatic levitation technique. - Highlights: • The physical properties of Zr-Ni and Zr-Cr liquid alloys have been measured Zr 1-x Ni x (x = 0.12 and 0.24) and Zr 77 Cr 23 . • The measurement was conducted using the electrostatic levitation technique. • The density, viscosity, and surface tension of each liquid alloy were measured.

  13. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain); Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Zambrano, J.C. [Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Afonso, C.R.M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (UFSCar), São Carlos, SP (Brazil); Amigó, V. [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain)

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  14. The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Zheng, Y.F.; Cai, W.; Zhao, L.C.

    1999-01-01

    Recently, ternary Ti-Ni-Hf alloys have attracted great interest in the field of high temperature shape memory materials research and development. Extensive studies have been made on its manufacture process, constitutional phases, phase transformation behavior, the structure, substructure and interface structure of martensite and the precipitation behavior during ageing. Yet up to date there is no report about the fundamental mechanical properties of Ti-Ni-Hf alloys, such as the stress-strain data, the variation laws of the yield strength and elongation with the temperature. In the present study, tensile tests at various temperatures are employed to investigate the mechanical behavior of Ti-Ni-Hf alloy with different matrix structures, from full martensite to full parent phase structure, with the corresponding deformation mechanism discussed

  15. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  16. Investigation of route to martensitic transition in Ni-Mn-In shape memory alloys

    Science.gov (United States)

    Nevgi, R.; Priolkar, K. R.; Righi, L.

    2018-04-01

    The temperature dependent x-ray diffraction and magnetization measurements on the off stoichiometric Ni2Mn1+xIn1-x alloys have confirmed the appearance of martensite at critical Mn concentration of x=0.35. The high temperature phase of all the alloys have cubic L21 structure with the lattice constant steadily decreasing with increase in Mn concentration. Martensitic transition begins to appear in Ni2Mn1.35In0.65 at about 197K and the structure seems to adopt two phases including the major cubic along with the modulated monoclinic phase. This has been explained on the basis of number of Mn-Ni-Mn hybridized pairs that are responsible for inducing martensitic transition.

  17. Cellular microstructure of chill block melt spun Ni-Mo alloys

    Science.gov (United States)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient. Microsegregation across cells and its variation with distance from the quench surface and alloy composition have been examined and compared with theoretical predictions.

  18. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  19. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  20. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.X.; Xu, Z.D. [Zhejiang University, Hangzhou (China). Dept. of Chemistry; Tu, J.P. [Zhejiang University, Hangzhou (China). Dept. of Materials Science and Engineering

    2002-04-01

    The M1Ni{sub 0.4}Co{sub 0.6}Al{sub 0.4} alloy was treated with hot alkaline solution containing a small amount of KBH{sub 4} and its effect on the activation and degradation behaviors of the hydrogen storage alloy electrodes in sealed Ni/MH batteries was investigated. It was found that the treated alloy electrode exhibited a better activation property than the untreated one in the sealed battery as well as in open cell. For the treated alloy electrode activating, the polarization resistance in the sealed battery was almost equal to that in the open cell. But in the case of the untreated alloy electrode activating, the polarization resistance in the sealed battery was larger than that in the open cell. The reason is that the oxide film on the untreated alloy surface suppressed the combination of the oxygen evolved on the positive electrode with hydrogen on the negative alloy surface. In addition, the decaying of capacity of the untreated alloy electrode was much faster than that of the treated one. The reasons were, that after surface treatment, the Ni-rich and Al-poor layer on the alloy surface not only had a high electrocatalytic activity for hydrogen electrode reaction, but also facilitated the combination of the oxygen with hydrogen and hydrogen adsorption on the alloy surface. (author)

  1. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  2. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    Science.gov (United States)

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  3. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  4. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    Science.gov (United States)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  5. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth

    Science.gov (United States)

    2016-02-01

    of each sample after annealing . Transene brand APS-100 etchant is used to completely wet etch away the unmasked portion of the Cu-Ni alloy, and...morphological changes in the metal surfaces such as roughness, grain size, and crystal orientation due to the effects of annealing temperature, hydrogen...post- annealed at 1000 °C for 30 min, 40% H2, 15 Torr.............5 Fig. 6 AFM imaging of Cu:Ni alloyed films with ratios of a) 6:1 , b) 4:1, and c) 3

  6. Influence of structural transition on the electronic structures and physical properties of Ni2MnGa alloy films

    International Nuclear Information System (INIS)

    Kim, K. W.; Kudryavtsev, Y. V.; Rhee, J. Y.; Lee, N. N.; Lee, Y. P.

    2004-01-01

    Ordered and disordered Ni 2 MnGa alloy films were prepared by flash evaporation onto substrates maintained at 720 K and 150 K, respectively. The results show that the ordered films behave in nearly the same way as the bulk Ni 2 MnGa ferromagnetic shape-memory alloy, including the martensitic transformation at 200 K, while the disordered films exhibit characteristics of amorphous alloys. It was also found that the disordering in Ni 2 MnGa alloy films did not change to any appreciable magnetic ordering down to 4 K. Annealing of the disordered films restores the ordered structure with an almost full recovery of the magnetic, magneto-optical and transport properties of the ordered Ni 2 MnGa alloy films. It was also understood, for the first time, how the structural ordering in the films influences the physical properties, including the surprising loss of ferromagnetism in the disordered films, as a result of performing electronic-structure calculations.

  7. GRAIN-REFINEMENT AND THE RELATED PHENOMENA IN QUATERNARY Cu-Al-Ni-Ti SHAPE MEMORY ALLOYS

    OpenAIRE

    Sugimoto , K.; Kamei , K.; Matsumoto , H.; Komatsu , S.; Akamatsu , K.; Sugimoto , T.

    1982-01-01

    It was reported that the addition of a small amount of titanium (0.5 - 3.99%) to a Cu-13.93%Al-3.36%Ni ternary alloy resulted in a remarkable grain-refining. The original grain-size of about 750 microns under hot-rolled and quenched conditions of the ternary alloy was reduced to that of the order of about 100 microns by addition of tiatanium. It was suggested that several technical improvements of the mechanical properties of Cu-Al-Ni shape memory alloys, such as better formability, less crac...

  8. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  9. Hydrogen uptake characteristics of mechanically alloyed Ti-V-Ni

    International Nuclear Information System (INIS)

    Cauceglia, Dorian; Hampton, Michael D.; Lomness, Janice K.; Slattery, Darlene K.; Resan, Mirna

    2006-01-01

    It has been well established that hydrogen will react directly and reversibly with a large number of metals and alloys to form metallic hydrides. Extensive research has been done over the years to improve properties of these hydrogen purification and recovery media and in developing new compounds for this purpose. In the present study, the hydrogen uptake characteristics of mechanically alloyed titanium-vanadium-nickel have been studied. Thermal and composition data were obtained for the Ti-V-Ni system prepared by mechanical alloying at a ball-to-powder mass ratio of 10:1. It was found that this material would absorb up to approximately 1.0 wt% hydrogen at near ambient temperature and ambient pressure of hydrogen

  10. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  11. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  12. Influence of Pr in the microstructure and electrical properties in LaPrMgAlMnCoNi based alloys for using for Ni-MH batteries

    International Nuclear Information System (INIS)

    Galdino, Gabriel Souza

    2011-01-01

    The La 0.7-x Pr x Mg 0.3 Al 0.3 Mn- 0.4 Co 0.5 Ni 3.8 (x= 0 a 0.7) as-cast alloys to apply in negative electrodes for nickel-metal hydride batteries (Ni-MH). The characterizations of the alloys were realized by: scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction techniques. A study of hydrogen absorption capacity of the alloys realized. The hydrogenation of the material was performed in two processes: the low pressure (0.2 MPa of hydrogen and temperature of the 773 K) and high pressure (1 MPa of hydrogen and temperature of the 298 K). It was observed that with increasing Pr content occurred a decrease the hydrogen absorption capacity. The capacity of discharge of the batteries was determined utilizing an analyzer digital computerized composed of four channels. It was observed decreases of the discharge capacity of the batteries when increase praseodymium content in La 0.7- x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni-3 .8 (x= 0 a 0.3) alloys. The highest discharge capacity (386 mAhg -1 ) and stability cyclic were obtained to La 0.2 Pr 0.5 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. This capacity can be related to the higher proportion of phase LaMg 2 Ni 9 in the alloy with the addition of 0.5 at.% Pr. (author)

  13. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt %

    Directory of Open Access Journals (Sweden)

    Lucia Lattanzi

    2018-03-01

    Full Text Available In recent years, the influence of Ni on high-temperature mechanical properties of casting Al alloys has been extensively examined in the literature. In the present study, room temperature mechanical properties of an A356 alloy with Ni additions from 0.5 to 2 wt % were investigated. The role of Ni-based compounds and eutectic Si particles in reinforcing the Al matrix was studied with image analysis and was then related to tensile properties and microhardness. In the as-cast condition, the formation of the 3D network is not sufficient to determine an increase of mechanical properties of the alloys since fracture propagates by cleavage through eutectic Si particles and Ni aluminides or by the debonding of brittle phases from the aluminum matrix. After T6 heat treatment the increasing amount of Ni aluminides, due to further addition of Ni to the alloy, together with their brittle behavior, leads to a decrease of yield strength, ultimate tensile strength, and Vickers microhardness. Despite the fact that Ni addition up to 2 wt % hinders spheroidization of eutectic Si particles during T6 heat treatment, it also promotes the formation of a higher number of brittle Ni-based compounds that easily promote fracture propagation.

  14. Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Unfried-Silgado, Jimy [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Universidade Estadual de Campinas UNICAMP, Faculdade de Engenharia Mecanica FEM, Campinas (Brazil); Universidad Autonoma del Caribe, Grupo IMTEF, Ingenieria Mecanica, Barranquilla (Colombia); Wu, Leonardo [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Furlan Ferreira, Fabio [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas (CCNH), Sao Paulo (Brazil); Mario Garzon, Carlos [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Ramirez, Antonio J, E-mail: antonio.ramirez@lnnano.org.br [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil)

    2012-12-15

    The stacking fault energy (SFE) in a set of experimental Ni-Cr-Fe alloys was determined using line profile analysis on synchrotron X-ray diffraction measurements. The methodology used here is supported by the Warren-Averbach calculations and the relationships among the stacking fault probability ({alpha}) and the mean-square microstrain (<{epsilon}{sup 2}{sub L}>). These parameters were obtained experimentally from cold-worked and annealed specimens extracted from the set of studied Ni-alloys. The obtained results show that the SFE in these alloys is strongly influenced by the kind and quantity of addition elements. Different effects due to the action of carbide-forming elements and the solid solution hardening elements on the SFE are discussed here. The simultaneous addition of Nb, Hf, and, Mo, in the studied Ni-Cr-Fe alloys have generated the stronger decreasing of the SFE. The relationships between SFE and the contributions on electronic structure from each element of additions were established.

  15. Effect of grain size on yield strength of Ni3Al and other alloys

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    This paper analyzes the effect of grain size on yield stress of ordered Ni 3 Al and Zr 3 Al, and mild steels that show Lueders band propagation after yielding, using the Hall--Petch relation, σ/sub y/ = σ 0 +k/sub y/ d -1 /sup // 2 , and the new relation proposed by Schulson et al., σ/sub y/ = σ 0 +kd/sup -(//sup p//sup +1)/2/ [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni 3 Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni 3 Al prepared by powder extrusion, fit the Hall--Petch relation, whereas the data from boron-doped Ni 3 Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lueders strain and alloy preparation methods. On the basis of the Hall--Petch analysis, the small slope k/sub y/ is obtained only for hypostoichiometric Ni 3 Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni 3 Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni 3 Al than for hypostoichiometric alloys

  16. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  17. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  18. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    International Nuclear Information System (INIS)

    Park, Gyu-Hyeon; Lee, Gwang-Yeob; Kim, Hyeon-Ah; Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi; Kim, Do-Hyang; Lee, Min-Ha

    2016-01-01

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  19. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyu-Hyeon [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, Gwang-Yeob [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyeon-Ah [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, Do-Hyang [Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Min-Ha, E-mail: mhlee1@kitech.re.kr [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of)

    2016-10-15

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  20. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.

    Science.gov (United States)

    Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian

    2017-10-18

    The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.

  1. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  2. Hydriding properties of an Mg-Al-Ni-Nd hydrogen storage alloy

    International Nuclear Information System (INIS)

    Duarte, G.I.; Bustamante, L.A.C.; Miranda, P.E.V. de

    2007-01-01

    This work presents the development of an Mg-Al-Ni-Nd alloy for hydrogen storage purposes. The hydrogen storage properties of the alloy were analyzed using pressure-composition isotherms and hydrogen desorption kinetic curves at different temperatures. The characterization of the microstructures, before and after hydrogenation, was performed using X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Hydrogenation caused significant changes in the alloy microstructure. Two pressure plateaus were observed. The maximum hydrogen storage reversible capacity measured was 4 wt.% at 573 K

  3. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  4. Pulse electrodeposition of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2000-01-01

    Pulse Electroplating is a relativity new technique in electrodeposition of pure metals and alloys which has resulted in a number of improvement over the traditional direct current method. Among these are a better composition control, lower porosity, reduction of internal stresses and hydrogen content as well as other impurities. In this work Pulse plating of Fe-Ni-Cr alloys has been investigated by using a series of planned experiments. A domain of Pulse parameters, such a pulse frequency, pulse duration, current density and batch condition such as Ph, temperature and has been defined where the coating quality is optimal. The result obtained were Compared with those of D C electroplating and finally a number of recommendations are made for future works towards a semi-industrial process

  5. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  6. Evolution of microstructure and property of NiTi alloy induced by cold rolling

    International Nuclear Information System (INIS)

    Li, Y.; Li, J.Y.; Liu, M.; Ren, Y.Y.; Chen, F.; Yao, G.C.; Mei, Q.S.

    2015-01-01

    We investigated the combination effect of plastic deformation and phase transformation on the evolution of microstructure and property of NiTi alloy. Samples of Ni 50.9 Ti 49.1 alloy were deformed by cold rolling to different strains/thickness reductions (4%–56%). X-ray diffraction, transmission electronic microscopy (TEM) and microhardness measurements were applied for characterization of the microstructure and property of the cold-rolled samples. Experimental results indicated the non-monotonic variations of microstructure parameters and mechanical property with strain, indicating the different processes in microstructure and property evolution of NiTi subjected to cold rolling. TEM observations further showed the dominating mechanisms of microstructure evolution at different strain levels, leading to the gradual reduction of grain size of NiTi to the nanoscale by cold rolling. The results were discussed and related to deformation of martensite, forward and reverse martensitic transformations and dynamic recrystallization. The present study provided experimental evidences for the enhanced formation of nanograins in NiTi by plastic deformation coupled with phase transformation. - Highlights: • Cold rolling of NiTi to thickness reductions from 4% to 56%. • Fluctuation behaviors in microstructure and property evolutions of NiTi. • Deformation coupled with phase transformation enhanced nanocrystallization of NiTi.

  7. Irradiation-induced softening of Ni3P and (Ni, Fe, Cr)3P alloys

    International Nuclear Information System (INIS)

    Schumacher, G.; Miekeley, W.; Wahi, R.P.

    1993-01-01

    Production of amorphous alloys by solid state reactions (SSR) has attracted much interest during the last few years. One of the methods to induce such a reaction is the irradiation of suitable crystalline alloys by fast particles. Examination of this kind of SSR in M 3 P type of brazing alloys (M: Metal) is attractive because of the following reason: In brazed joints of candidate structural materials like 316L stainless steel for applications in fusion reactors, crystalline intermetallic phases have been detected which are unstable relative to the amorphous state when irradiated at moderate temperatures with fast particles. It is expected that the transition to the amorphous state is accompanied by changes of the mechanical properties, which are of fundamental interest in this context. Until now, only a few studies on the evolution of mechanical properties during amorphization have been performed. Measurements of microhardness of the crystalline and the corresponding amorphous phase do not exist to the authors knowledge. In this communication, the authors present results on changes of microhardness, due to amorphization by fast ions. The measurements have been performed on a model alloy Ni 3 P and on the brazed joint of stainless steel 316L, containing M 3 P (M: Ni, Fe, Cr) as one of the phases. Though microhardness is not a fundamental property of materials, it is a manifestation of several related properties, such as yield stress, ductility, work-hardening, elastic modulus and residual stress states. It represents a resistance for indentation and is, therefore, appropriate for comparative purposes

  8. Effects of annealing and deforming temperature on microstructure and deformation characteristics of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer The deformation behaviors of annealed Ti-50.8Ni-0.5V shape memory alloy (SMA) were given. Black-Right-Pointing-Pointer The effect of annealing temperature on microstructure and deformation characteristics of Ti-50.8Ni-0.5V SMA was shown. Black-Right-Pointing-Pointer The effect of deforming temperature on deformation characteristics of Ti-50.8Ni-0.5V SMA was given. - Abstract: Effects of annealing temperature T{sub an} and deforming temperature T{sub d} on microstructure and deformation characteristics of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of optical microscopy and tensile test. With increasing T{sub an}, the microstructure of Ti-50.8Ni-0.5V alloy wire changes from fiber style to equiaxed grain, and the recrystallization temperature of the alloy is about 580 Degree-Sign C; the critical stress for stress-induced martensite {sigma}{sub M} of the alloy decreases first and then increases, and the minimum value 382 MPa is got at T{sub an} = 450 Degree-Sign C; the residual strain {epsilon}{sub R} first increases, then decreases, and then increases, and its maximum value 2.5% is reached at T{sub an} = 450 Degree-Sign C. With increasing T{sub d}, a transformation from shape memory effect (SME) to superelasticity (SE) occurs in the alloy annealed at different temperatures, and the SME {yields} SE transformation temperature was affected by T{sub an}; the {sigma}{sub M} of the alloy increases linearly; the {epsilon}{sub R} of the alloy annealed at 350-600 Degree-Sign C decreases first and then tends to constant, while that of the alloy annealed at 650 Degree-Sign C and 700 Degree-Sign C decreases first and then increases. To get an excellent SE at room temperature for Ti-50.8Ni-0.5V alloy, T{sub an} should be 500-600 Degree-Sign C.

  9. The pseudoelasticity of a Ni45Ti50Cu5 alloy

    International Nuclear Information System (INIS)

    Ranucci, T.; Airoldi, G.

    2000-01-01

    Since several years the Ni (50-X) Ti 50 Cu X alloys are attentively considered for the interesting features related to the B2=>B19' transformation involved in the pseudoelastic behavior. In contrast with the binary NiTi, where two martensitic transformations, B2=>R-phase and R-phase=>B19' can overlap, in the ternary alloy a single transformation is expected with a narrower hysteresis. The pseudoelastic behavior of a Ni 45 Ti 50 Cu 5 is here thoroughly investigated both as a function of different thermal treatments and of the maximum applied strain. The minimum hysteresis width of the pseudoelastic cycle appears for a thermal treatment of 450 C and decreases with stress cycling. The stress induced transformation involves, however, a single process whenever the maximum applied strain is smaller than the transformation strain. When the attained strain exceeds the transformation strain, another transformation sets in as supported by electrical resistance measurements performed concomitantly to stress-strain tests. (orig.)

  10. Microstructural evidence of presence of beryllium in Ni-Cr alloys for dental prostheses; Evidencia microestrutural da presenca de berilio em ligas Ni-Cr para proteses dentarias

    Energy Technology Data Exchange (ETDEWEB)

    Alkmin, L.B.; Nunes, C.A., E-mail: lba@ppgem.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Coelho, G.C. [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Santos, C. [Protmat Materiais Avancados, Guaratingueta, SP (Brazil)

    2010-07-01

    This study aimed to characterize the microstructure of commercial Ni-Cr alloys for dental prosthesis, with special focus on those containing Be. For this, the materials were characterized in terms of chemical composition, phases and melting point temperature. The following techniques were used: X-ray fluorescence, ICP-OES, scanning electron microscopy, electron probe microanalysis, X-ray diffraction and differential thermal analysis. The results clearly showed the presence of a typical eutectic, formed by the Ni{sub ss} and NiBe phases in those alloys containing Be, which can be considered a 'fingerprint' of the presence of this element in these alloys. (author)

  11. Void formation in NiTi shape memory alloys by medium-voltage electron irradiation

    International Nuclear Information System (INIS)

    Schlossmacher, P.; Stober, T.

    1995-01-01

    In-situ electron irradiation experiments of NiTi shape memory alloys, using high-voltage transmission electron microscopes, result in amorphization of the intermetallic compound. In all of these experiments high-voltages more than 1.0 MeV had to be applied in order to induce the crystalline-to-amorphous transformation. To their knowledge no irradiation effects of medium-voltage electrons of e.g. 0.5 MeV have been reported in the literature. In this contribution, the authors describe void formation in two different NiTi shape memory alloys, resulting from in-situ electron irradiation, using a 300 kV electron beam in a transmission electron microscope. First evidence is presented that void formation is correlated with the total oxygen content of the alloys

  12. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first p...

  13. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  14. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  15. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  16. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  17. Development of cube textured Ni-W alloy substrates used for coated conductors

    DEFF Research Database (Denmark)

    Suo, Hongli; Ma, Lin; Gao, Mangmang

    2014-01-01

    It is considered as a challenge for RABiTS route to get cube textured Ni-W alloy substrates with high mechanical and magnetic properties for coated conductors. The works of our group in recent years are summarized about different Ni-W substrates with high W content and composite tapes made by RABiTS...

  18. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Průša, F., E-mail: Filip.Prusa@vscht.cz; Vojtěch, D.; Michalcová, A.; Marek, I.

    2014-05-01

    In this work, Al–12Fe and Al–7Fe–5Ni (wt%) alloys prepared by a novel technique including centrifugal atomisation and hot extrusion were studied. The microstructures were investigated using light microscopy, electron scanning microscopy, transmission electron microscopy and X-ray diffraction. The mechanical properties were determined by Vickers hardness measurements and compressive stress–strain tests. To study the thermal stability, the mechanical properties were also measured after 100 h of annealing at 300 °C and 400 °C. In addition, creep tests at a stress of 120 MPa and a temperature of 300 °C were performed. The investigated materials were composed of fine-grained α-Al and intermetallic phases identified as Al{sub 13}Fe{sub 4} and Al{sub 9}FeNi. The Vickers hardness and compressive yield strength were 68 HV5 and 183 MPa, respectively, for the Al–12Fe alloy and 73 HV5 and 226 MPa, respectively, for the Al–7Fe–5Ni alloy. After long-term annealing, the change in the mechanical properties was negligible, indicating the excellent thermal stability of both materials. The creep tests confirmed the highest thermal stability of the Al–7Fe–5Ni alloy with a total compressive creep strain of 15%. The “thermally stable” casting Al–12Si–1Cu–1Mg–1Ni alloy treated by the T6 regime was used as a reference material. The casting alloy exhibited sufficient mechanical properties (hardness and compressive yield strength) at room temperature. However, annealing remarkably softened and reduced its compressive yield strength to almost 50% of the initial values. Additionally, the total creep strain of the casting reference material was almost three times higher than that of the Al–7Fe–5Ni alloy. It has been proven that centrifugally atomised materials quickly compacted via hot extrusion can compete or even exceed the properties of common casting aluminium alloys that are used in automotive industry.

  19. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion

    International Nuclear Information System (INIS)

    Průša, F.; Vojtěch, D.; Michalcová, A.; Marek, I.

    2014-01-01

    In this work, Al–12Fe and Al–7Fe–5Ni (wt%) alloys prepared by a novel technique including centrifugal atomisation and hot extrusion were studied. The microstructures were investigated using light microscopy, electron scanning microscopy, transmission electron microscopy and X-ray diffraction. The mechanical properties were determined by Vickers hardness measurements and compressive stress–strain tests. To study the thermal stability, the mechanical properties were also measured after 100 h of annealing at 300 °C and 400 °C. In addition, creep tests at a stress of 120 MPa and a temperature of 300 °C were performed. The investigated materials were composed of fine-grained α-Al and intermetallic phases identified as Al 13 Fe 4 and Al 9 FeNi. The Vickers hardness and compressive yield strength were 68 HV5 and 183 MPa, respectively, for the Al–12Fe alloy and 73 HV5 and 226 MPa, respectively, for the Al–7Fe–5Ni alloy. After long-term annealing, the change in the mechanical properties was negligible, indicating the excellent thermal stability of both materials. The creep tests confirmed the highest thermal stability of the Al–7Fe–5Ni alloy with a total compressive creep strain of 15%. The “thermally stable” casting Al–12Si–1Cu–1Mg–1Ni alloy treated by the T6 regime was used as a reference material. The casting alloy exhibited sufficient mechanical properties (hardness and compressive yield strength) at room temperature. However, annealing remarkably softened and reduced its compressive yield strength to almost 50% of the initial values. Additionally, the total creep strain of the casting reference material was almost three times higher than that of the Al–7Fe–5Ni alloy. It has been proven that centrifugally atomised materials quickly compacted via hot extrusion can compete or even exceed the properties of common casting aluminium alloys that are used in automotive industry

  20. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  1. Behaviour of Tiu-Nb-Ni alloys in sulfuric and hydrochloric acids

    International Nuclear Information System (INIS)

    Shcherbakov, A.I.; Dorofeeva, V.N.; Tomashov, N.D.; Goncharenko, B.A.; Mikheev, V.S.

    1991-01-01

    Regularities of corrosion behaviour and passivation of ternary alloys containing 0.2; 0.5, 1,2, 3% Ni and 1,2,3,4,5,6,8 % Nb in 5n. H 2 SO 4 and 5n HCl, i.e. under conditions when unalloyed titanium dissolves actively, are considered. High cathodic efficiency of nickel plays essential role for the ternary alloy transfer to passive state, while a lower cathodic efficiency of niobium is sufficient for the alloy maintaining in the passive state. At the same time high corrosion resistance of niobium (in contract to nickel) undr potentials of titanium passive state promotes stable maintenance of the alloy in the passive state

  2. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni−Al−Mn alloys

    International Nuclear Information System (INIS)

    Cheng, Kaiming; Liu, Dandan; Zhang, Lijun; Du, Yong; Liu, Shuhong; Tang, Chengying

    2013-01-01

    Highlights: •The interdiffusion coefficients of fcc Ni–Al–Mn alloys are experimentally determined. •The atomic mobilities of fcc Ni–Al–Mn alloys have been assessed. •The calculated results agree well with the present experimental diffusivities. •The mobility parameters obtained can be used to predict many diffusion phenomena. -- Abstract: By employing nine groups of bulk diffusion couples together with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Ni-rich fcc Ni−Al−Mn alloys at 1373 K was determined via the Matano–Kirkaldy method. The experimental interdiffusion coefficients were critically assessed to obtain the atomic mobilities of Ni, Al and Mn in fcc Ni−Al−Mn alloys by using the DICTRA (DIffusion-Controlled TRAnsformations) software package. The reliability of these mobilities was validated by comprehensive comparison between the model-predicted diffusion properties and the experimental data. The obtained atomic mobilities could be used to describe various diffusion phenomena in fcc Ni–Al–Mn alloys, such as the concentration profiles, interdiffusion flux and diffusion paths

  3. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2016-03-01

    Full Text Available A highly active and selective hydrogenation of biomass-derived furfural into furfuryl alcohol was achieved using supported single phase Ni3Sn2 alloy catalysts. Various supports such as active carbon (AC, g-Al2O3, Al(OH3, ZnO, TiO2, ZrO2, MgO, Li-TN, and SiO2 have been employed in order to understand the role of the support on the formation of Ni3Sn2 alloy phase and its catalytic performance. Supported Ni3Sn2 alloy catalysts were synthesised via a simple hydrothermal treatment of the mixture of aqueous solution of nickel chloride hexahydrate and ethanol solution of tin(II chloride dihydrate in presence of ethylene glycol at 423 K for 24 h followed by H2 treatment at 673 K for 1.5 h, then characterised by using ICP-AES, XRD, H2- and N2-adsorption. XRD profiles of samples showed that the Ni3Sn2 alloy phases are readily formed during hydrothermal processes and become clearly observed at 2θ = 43-44o after H2 treatment. The presence of Ni3Sn2 alloy species that dispersed on the supports is believed to play a key role in highly active and selective hydrogenation of biomass-derived furfural towards furfuryl alcohol. Ni3Sn2 on TiO2 and ZnO supports exhibited much lower reaction temperature to achieved >99% yield of furfuryl alcohol product compared with other supports. The effects of loading amount of Ni-Sn, reaction conditions (temperature and time profile on the activity and selectivity towards the desired product are systematically discussed. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 31st December 2015; Accepted: 5th January 2016 How to Cite: Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 1-9. (doi:10.9767/bcrec.11.1.393.1-9 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.393.1-9

  4. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Selvi, V. Ezhil; Grips, V.K. William; Rajam, K.S.

    2006-01-01

    The autocatalytic (electroless) deposition of Ni-P based alloys is a well-known commercial process that has found numerous applications because of their excellent anticorrosive, wear, magnetic, solderable properties, etc. It is a barrier coating, protecting the substrate by sealing it off from the corrosive environments, rather than by sacrificial action. The corrosion resistance varies with the phosphorus content of the deposit: relatively high for a high-phosphorus electroless nickel deposit but low for a low-phosphorus electroless nickel deposit. In the present investigation ternary Ni-W-P alloy films were prepared using alkaline citrate-based bath. Quaternary Ni-W-Cu-P films were deposited by the addition of 3 mM copper ions in ternary Ni-W-P bath. X-ray diffraction (XRD) studies indicated that all the deposits were nanocrystalline, i.e. 1.2, 2.1 and 6.0 nm, respectively, for binary, ternary and quaternary alloys. Corrosion resistance of the films was evaluated in 3.5% sodium chloride solution in non-deaerated and deaerated conditions by potentiodynamic polarization and electrochemical impedance (EIS) methods. Lower corrosion current density values were obtained for the coatings tested in deaerated condition. EIS studies showed that higher charge transfer resistance values were obtained for binary Ni-P coatings compared to ternary or quaternary coatings. For all the coatings a gradual increase in the anodic current density had been observed beyond 740 mV. In deaerated condition all the reported coatings exhibited a narrow passive region and all the values of E p , E tp and i pass were very close showing no major changes in the electrochemical behavior. In the non-deaerated conditions no passivation behavior had been observed for all these coatings

  5. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  6. Study on the improvement of toughness of Nb-based super high temperature materials by forming solid solution and composites; Niobuki chokoon zairyo no koyoka to fukugoka ni yoru kyojinsei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    If materials superior to Ni-based and Co-based super alloys could be developed, great progress is expected in the energy source saving, enhancement of aircraft speed, and simplification of member structure. Metals having high fusing point are prospective as well as C/C composites and ceramics among possible materials. Especially, Nb has a similar density to Ni, and its fusing point is 1,000 centigrade higher than Ni. It has also ductility. Furthermore, it is characterized by the formation of solid solution with other various metals having high fusing point. Accordingly, Nb-based composite alloys having excellent high temperature strength as well as excellent ductility and toughness can be developed by enhancing the solid solution formation and the dispersion with composites of compound phases using Nb as a base material. The purpose of this study is to provide fundamental data for the development of Nb-based composite alloys. The optimum matrix materials and their fabrication processes have been investigated, to evaluate their high temperature properties. Consequently, it was found that the enhancement by the deposition of intermetallic compounds or by the dispersion of oxides was an effective method for the formation of composites of Nb-based alloys. 4 refs., 88 figs., 24 tabs.

  7. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  8. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  9. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.

    2000-04-01

    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  10. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles

    International Nuclear Information System (INIS)

    Frenzel, J.; Zhang, Z.; Neuking, K.; Eggeler, G.

    2004-01-01

    Binary NiTi based shape memory alloys can be produced starting from the pure elements (Ni-pellets, Ti-rods) by using vacuum induction melting (VIM). VIM ingot metallurgy is known to produce materials with a good chemical homogeneity; it, moreover, is cheaper than vacuum arc melting (VAM) when small quantities of laboratory materials are needed. In a VIM procedure, graphite crucibles are attractive because they have appropriate electrical properties. For NiTi melting, graphite crucibles are interesting because they are reasonably priced and they show a good resistance against thermal cracking. On the other hand, it is well known that melting of Ti alloys in graphite crucibles is associated with a vigorous interface reaction. And the carbon concentration of NiTi alloys needs to be kept below a certain minimum in order to assure that the functional properties of the alloys meet the required targets. Therefore, it is important to minimize the carbon pick up of the melt. The present work presents experimental results and discusses thermodynamic and kinetic aspects of the reaction of NiTi melts with graphite crucibles; a method is suggested to keep the carbon dissolution into the melt at a minimum

  11. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    Science.gov (United States)

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  12. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  13. Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode

    NARCIS (Netherlands)

    Jayasayee, K.; Veen, van J.A.R.; Hensen, E.J.M.; Bruijn, de F.A.

    2011-01-01

    The dependence of the rate of Ni dissolution from PtNi alloys on the chloride concentration was studied electrochemically in 0.5 M HClO4 at room temperature. Electrodeposited PtNi catalysts were subjected to extensive potential cycling between 20 mV and 1.3 V at various Cl- concentrations and the

  14. Microemulsion synthesis and magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of Fe{sub x}Ni{sub (1−x)} bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. Fe{sub x}Ni{sub (1−x)} nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl{sub 2}·6H{sub 2}O to FeCl{sub 2}·4H{sub 2}O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties. - Highlights: • Fe{sub x}Ni{sub (1−x)} alloy NPs synthesized by simultaneous metal ions reduction in microemulsion. • Finer NPs synthesized at lower amount of oil and water and higher amount of CTAB. • Chain-like Fe{sub x}Ni{sub (1−x)} NPs are ferromagnetic; higher aspect ratio, more magnetization. • Spherical Fe{sub x}Ni({sub 1−x)} NPs with smaller size (7 nm) are superparamagnetic. • Spherical Fe{sub x}Ni{sub (1−x)} nanoparticles with higher x had increased magnetic properties.

  15. Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Ali, N.; Rodionov, I. D.; Blinov, M. I.; Titov, I. S.; Prudnikov, V. N.; Granovsky, A. B.; Stadler, S.

    2015-01-01

    The impact of B substitution in Ni 50 Mn 35 In 15−x B x Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5–400 K). Direct adiabatic temperature change (ΔT AD ) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni 50 Mn 34.8 In 14.2 B and Ni 50 Mn 35 In 14 X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of ΔT AD  = 2.5 K was observed at the magnetostructural transition for Ni 50 Mn 35 In 14.5 B 0.5

  16. Comparison between thermal annealing and ion mixing of alloyed Ni-W films on Si. I

    International Nuclear Information System (INIS)

    Pai, C.S.; Lau, S.S.; Poker, D.B.; Hung, L.S.

    1985-01-01

    The reactions between Ni-W alloys and Si substrates induced by thermal annealing and ion mixing were investigated and compared. Samples were prepared by sputtering of Ni-W alloys, both Ni-rich and W-rich, onto the Si substrates, and followed by either furnace annealing (200--900 0 C) or ion mixing (2 x 10 15 -- 4 x 10 16 86 Kr + ions/cm 2 ). The reactions were analyzed by Rutherford backscattering and x-ray diffraction (Read camera). In general, thermal annealing and ion mixing lead to similar reactions. Phase separation between Ni and W with Ni silicides formed next to the Si substrate and W silicide formed on the surface was observed for both Ni-rich and W-rich samples under thermal annealing. Phase separation was also observed for Ni-rich samples under ion mixing; however, a Ni-W-Si ternary compound was possibly formed for ion-mixed W-rich samples. These reactions were rationalized in terms of the mobilities of various atoms and the energetics of the systems

  17. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  18. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  19. Angular distributions of sputtered particles from NiTi alloy

    International Nuclear Information System (INIS)

    Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.

    1993-01-01

    The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)

  20. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan [Erciyes University, Institute of Science and Technology, Department of Physics, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2009-12-15

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were {alpha}-Al, intermetallic Al{sub 3}Ni and Al{sub 2}Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al{sub 3}Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.