WorldWideScience

Sample records for alloying effects

  1. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  2. Fermi surface effects in terbium alloys

    International Nuclear Information System (INIS)

    Work is reported which was conducted to test of the relation of the generalized susceptibility (and therefore, the ordering properties) for Tb to the Fermi energy of Tb. In order to properly analyze the data a simple theory was developed to account for the effects on band structure which accompany alloying and attendant lattice size changes. Using this simple theory, the alloys of Tb with Mg are understood as a combination of Fermi energy lowering and of lattice contraction. The tendency of Th to promote the ferromagnetic structure in Th is understood as a combination of the Fermi energy being raised and of the lattice being expanded. The theory was also useful in explaining the interesting behavior of the Tb with Yb alloys which upon preliminary analysis did not seem to follow the theoretical predictions. After consideration of the volume effect, indeed the Tb with Yb alloys showed promotion of the helical structure as predicted. The complicated behavior of the Tb with Yb alloys is a case where the volume and valence effects compete. Results show that the magnetic ordering properties of the rare earths are intimately related to the Fermi surface geometry through the generalized susceptibility

  3. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.;

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  4. Mechanocaloric effects in shape memory alloys.

    Science.gov (United States)

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402931

  5. Localized Corrosion of Alloy 22 -Fabrication Effects-

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-11-05

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale: The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni

  6. Size Effect on Magnesium Alloy Castings

    Science.gov (United States)

    Li, Zhenming; Wang, Qigui; Luo, Alan A.; Zhang, Peng; Peng, Liming

    2016-06-01

    The effect of grain size on tensile and fatigue properties has been investigated in cast Mg alloys of Mg-2.98Nd-0.19Zn (1530 μm) and Mg-2.99Nd-0.2Zn-0.51Zr (41 μm). The difference between RB and push-pull fatigue testing was also evaluated in both alloys. The NZ30K05-T6 alloy shows much better tensile strengths (increased by 246 pct in YS and 159 pct in UTS) and fatigue strength (improved by ~80 pct) in comparison with NZ30-T6 alloy. RB fatigue testing results in higher fatigue strength compared with push-pull fatigue testing, mainly due to the stress/strain gradient in the RB specimen cross section. The material with coarse grains could be hardened more in the cyclic loading condition than in the monotonic loading condition, corresponding to the lower σ f and the higher σ f/ σ b or σ f/ σ 0.2 ratio compared to the materials with fine grains. The fatigue crack initiation sites and failure mechanism are mainly determined by the applied stress/strain amplitude. In LCF, fatigue failure mainly originates from the PSBs within the surface or subsurface grains of the samples. In HCF, cyclic deformation and damage irreversibly caused by environment-assisted cyclic slip is the crucial factor to influence the fatigue crack. The Coffin-Manson law and Basquin equation, and the developed MSF models and fatigue strength models can be used to predict fatigue lives and fatigue strengths of cast magnesium alloys.

  7. Effect of alloy elements on the anti-corrosion properties of low alloy steel

    Indian Academy of Sciences (India)

    Baorong Hou; Yantao Li; Yanxu Li; Jinglei Zhang

    2000-06-01

    Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

  8. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  9. Surface composition of ordered alloys: An off-stoichiometric effect

    DEFF Research Database (Denmark)

    Ruban, Andrei

    2002-01-01

    I predict the existence of an off-stoichiometric effect in ordered alloys in the form of a distinct transition in the surface segregation behavior of alloy components near the bulk stoichiometric composition. It is caused by the discontinuity in the effective chemical potential at the stoichiomet...... at the stoichiometric composition. The effect is predicted to occur at the (111) surface of ordered Ni3Al and Pt3Fe alloys....

  10. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    Science.gov (United States)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  11. Transformation Volume Effects on Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Anna Kosogor

    2013-07-01

    Full Text Available It is generally accepted that the martensitic transformations (MTs in the shape memory alloys (SMAs are mainly characterized by the shear deformation of the crystal lattice that arises in the course of MT, while a comparatively small volume change during MT is considered as the secondary effect, which can be disregarded when the basic characteristics of MTs and functional properties of SMAs are analyzed. This point of view is a subject to change nowadays due to the new experimental and theoretical findings. The present article elucidates (i the newly observed physical phenomena in different SMAs in their relation to the volume effect of MT; (ii the theoretical analysis of the aforementioned volume-related phenomena.

  12. Site Preference and Alloying Effect of Excess Ni in Ni-Mn-Ga Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; LI Yan; SHANG Jia-Xiang; XU Hui-Bin

    2009-01-01

    @@ The formation energies and electronic structures of Ni-rich Ni-Mn-Ga alloys have been investigated by first-principles calculations using the pseudopotential plane wave method baaed on density functional theory. The results show that the alloying Ni prefers to occupy the Mn site directly in Ni9Mn3Ga4 and to occupy the Mn site and drive the displaced Mn atom to the Ga site in Ni9Mn4Ga3, which is in accordance with the experimental result. According to the lattice constants and the density of states analyses, these site preference behaviours are closely related to the smaller lattice distortion and the lower-energy electronic structure when the excess Ni occupies the Mn site. The effect of Ni alloying on martensitic transformation is discussed and the enhancement of martensitic transformation temperature by Ni alloying is estimated by the calculated formation energy difference between anstenite and martensite phases.

  13. La doping effect on TZM alloy oxidation behavior

    International Nuclear Information System (INIS)

    Highlights: • The oxidation can be resisted by doping La into TZM alloy. • La doped TZM alloy has more compact organization. • It can rise the starting temperature of severe oxidation reaction by more than 50 °C. • Effectively slow down the oxidation rate. • Provide guidance for experiments of improving high-temperature oxidation resistance. - Abstract: Powder metallurgy methods were utilized to prepare lanthanum-doped (La-TZM) and traditional TZM alloy plates. High temperature oxidation experiments along with the differential thermal analysis were employed to study the oxidation behavior of the two kinds of TZM alloys. An extremely volatile oxide layer was generated on the surface of traditional TZM alloy plates when the oxidation started. Molybdenum oxide volatilization exposed the alloy matrix, which was gradually corroded by oxygen, losing its quality with serious surface degradation. The La-TZM alloy has a more compact structure due to the lanthanum doping. The minute lanthanum oxide particles are pinned at the grain boundaries and refine the grains. Oxide layer generated on the matrix surface can form a compact coating, which effectively blocks the surface from being corroded by oxidation. The oxidation resistance of La-TZM alloys has been enhanced, expanding its application range

  14. Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys

    Indian Academy of Sciences (India)

    Svetlana Nestorovic

    2005-08-01

    This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn, Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were followed in order to investigate the anneal hardening effect. This effect was observed after secondary annealing also. Au and Al have been found to be more effective in inducing anneal hardening effect.

  15. Tunable magnetocaloric effect in transition metal alloys

    Science.gov (United States)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  16. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  17. Correlation effects driven by reduced dimensionality in magnetic surface alloys

    Indian Academy of Sciences (India)

    U Manju

    2015-06-01

    The evolution of electronic properties and correlation effects in manganese-based two-dimensional magnetic surface alloys are discussed. Enhanced correlations resulting from the reduced dimensionality of the surface alloys lead to the modification of the core level and valence band electronic structures resulting in the appearance of distinct satellite features. Apart from this, surface alloying-induced strong modifications in the substrate surface states arising from charge reorganization and electron transfer to the surface states as well as band-gap openings are also discussed.

  18. Effect of palladium on sulfide tarnishing of noble metal alloys.

    Science.gov (United States)

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  19. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  20. First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, Mohammed K., E-mail: mohamed.kamal@ejust.edu.eg; Gepreel, Mohamed A. H. [Materials Science and Engineering Department, Egypt-Japan University of Science and Technology, Borg El Arab, Alexandria 21934 (Egypt); Nakamura, Koichi [Materials Science and Engineering Department, Egypt-Japan University of Science and Technology, Borg El Arab, Alexandria 21934 (Egypt); Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 615-8540 (Japan)

    2015-06-07

    Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus.

  1. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  2. Effect of hydrogen on mechanical properties of -titanium alloys

    Indian Academy of Sciences (India)

    H-J Christ; A Senemmar; M Decker; K Prüßner

    2003-06-01

    Conflicting opinions exist in the literature on the manner in which hydrogen influences the mechanical properties of -titanium alloys. This can be attributed to the -stabilizing effect of hydrogen in these materials leading to major changes in the microstructure as a result of hydrogen charging. The resulting (extrinsic) effect of hydrogen on the mechanical properties can possibly cover up the direct (intrinsic) influences. On the basis of experimentally determined thermodynamic and kinetic data regarding the interaction of hydrogen with -titanium alloys, hydrogen concentrations of up to 8 at.% were established in three commercial alloys by means of hydrogen charging from the gas phase. In order to separate intrinsic and extrinsic effects the charging was carried out during one step of the two-step heat treatment typical of metastable -titanium alloys, while the other step was performed in vacuum. The results on the single-phase condition represent the intrinsic hydrogen effect. Monotonic and cyclic strength increase at the expense of ductility with increasing hydrogen concentration. The brittle to ductile transition temperature shifts to higher values and the fatigue crack propagation threshold value decreases. The microstructure of the metastable, usually two-phase -titanium alloys is strongly affected by hydrogen, although the extent of this effect depends not only on the hydrogen concentration but also on the temperature of charging. This microstructural influence (extrinsic effect) changes the mechanical properties in the opposite direction as compared to the intrinsic hydrogen effect.

  3. Environmental and alloying effects on corrosion of metals and alloys

    Science.gov (United States)

    Liang, Dong

    2009-12-01

    species could be missed in standard laboratory exposures such as ASTM B117. Initial efforts focused on the effects UV radiation, O3, relative humidity on the atmospheric corrosion of bare silver. Later work addressed the corrosion of silver samples deposited with NaCl particles. An exposure chamber that can simulate various environmental effects was built. The effects of UV radiation, O3, and relative humidity were varied separately while keeping the other factors the same level. The corrosion products were analyzed by the galvanostatic reduction method and characterization techniques such as SEM and EDS. It was found that both UV and O3 are necessary for fast corrosion on bare silver and this fast corrosion reaction results from atomic oxygen generated photodegradation of O3. In the presence of UV and O3, relative humidity has little effect on the atmospheric corrosion of bare silver in contrast to conventional atmospheric corrosion. The degree of corrosion is found to increase with O3 concentration. Moreover, a kinetic study of atmospheric corrosion of bare silver found that an incubation time for the atmospheric corrosion attack is needed. This incubation time is related to the chemisorption process of atomic oxygen. Though UV radiation can form reactive atomic oxygen which is more reactive than O3 alone as shown in the last chapter, the enhancement of corrosion by UV is limited for Ag with NaCl particles at low ozone concentration and high RH. The corrosion rate of silver with NaCl particles is found to increase with relative humidity, which is different than the case of bare silver. This indicates that different mechanisms control the atmospheric corrosion of silver. The incubation time for corrosion of silver with NaCl particles is shorter than for bare silver. This result from chemisorption of Cl 2 is favored over that of atomic oxygen. Interestingly, the total corrosion product of silver with NaCl particles is less than that of bare silver. This could be due to

  4. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    K T Kashyap; T Chandrashekar

    2001-08-01

    Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific literature. The nucleant effects i.e. which particle and its characteristics nucleate -Al, has been the subject of intensive research. Lately the solute effect i.e. the effect of dissolved titanium on grain refinement, has come into forefront of grain refinement research. The present paper attempts to review the literature on the nucleant effects and solute effects on grain refinement and addresses the importance of dissolved titanium in promoting nucleation of -Al on nucleant particles.

  5. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    Science.gov (United States)

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  6. Effects of Alloying Elements on Microstructure and Properties of Magnesium Alloys for Tripling Ball

    Science.gov (United States)

    Xiao, D. H.; Geng, Z. W.; Chen, L.; Wu, Z.; Diao, H. Y.; Song, M.; Zhou, P. F.

    2015-10-01

    In order to find good candidate materials for degradable fracturing ball applications, Mg-Al-Zn-Cu alloys with different contents of aluminum, zinc, and copper were prepared by ingot metallurgy. The effects of aluminum, zinc, and copper additions on the microstructure, compressive strength, and rapid decomposition properties of the alloys have been investigated using scanning electron microscopy, compressive tests, and immersion tests. The results show that the addition of high contents Al (15 to 20 wt pct) in pure magnesium promotes a large number of network-like β-Mg17All2 phases, which helps produce more micro-thermocouples to accelerate the corrosion process in 3 wt pct potassium chloride (KCl) at 366 K (93 °C). Adding different Zn contents improves the compressive properties of Mg-20Al alloys drastically. However, it decreases the decomposition rate in 3 wt pct KCl at 366 K (93 °C). Small amount of Cu will slightly reduce the compressive strength of Mg-20Al-5Zn alloy but dramatically increase its decomposition rate.

  7. Effect of titanium content and aging temperature on the properties of uranium-titanium alloys

    International Nuclear Information System (INIS)

    The mechanical properties and microstructures of four uranium-titanium alloys were examined as functions of titanium content and aging temperature. Titanium alloy content was varied from 0.41 to 0.79 weight percent. Aging temperatures from 350 to 4500C (all for six hours) were evaluated for each alloy in addition to tests in the unaged conditions. Titanium and aging temperature were both shown to be strong effects in determining alloy properties. It was determined that the uranium-0.41 weight percent titanium alloy underwent extensive age-hardening even though the alloy did not exhibit a martensitic microstructure characteristic of the alloys richer in titanium

  8. Effects of rare earths on friction and wear characteristics of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    祁庆琚; 刘勇兵; 杨晓红

    2003-01-01

    The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloyAZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are betterthan those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear tosevere wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of themagnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.

  9. Ligand and ensemble effects in adsorption on alloy surfaces

    DEFF Research Database (Denmark)

    Liu, Ping; Nørskov, Jens Kehlet

    2001-01-01

    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand......) effects determining the adsorption properties....

  10. Point defects and diffusion in alloys: correlation effects

    International Nuclear Information System (INIS)

    Kinetic models in alloys aim at predicting the transport properties of a system starting from the microscopic jump frequencies of defects. Such properties are of prior importance in systems which stay out of equilibrium for a long time, as for example irradiated alloys in nuclear reactors. We hereby propose several developments of the recent self-consistent mean field (SCMF) kinetic theory, which deals particularly with the correlation effects due to the coupling of atomic and defect fluxes. They are taken into account through a non-equilibrium distribution function of the system, which is derived from the time evolution of small clusters (of two or more atoms or defects). We therefore introduce a set of 'dynamic' interactions called effective Hamiltonian. The SCMF theory is extended to treat high jump frequency ratios for the vacancy mechanism, as well as the transport through interstitial defects. We use in both cases an atomic model which accounts for the thermodynamic properties of the alloy, as e.g. the short-range order. Those models are eventually applied to predict the diffusion properties in two model alloys of nuclear interest: the concentrated Fe-Ni-Cr solid solution and the dilute Fe(P) alloy. We present adapted atomic models and compare our predictions to experimental data. (author)

  11. Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khovaylo, Vladimir, E-mail: khovaylo@misis.ru [National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation)

    2013-11-15

    Highlights: ► Critical analysis of the available experimental results on isothermal magnetic entropy change in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. ► Based on available in literature experimental data on total entropy change at martensitic transformation it is shown that the isothermal magnetic entropy change in Ni–Mn–X (X = Ga, In, Sn, Sb) should not greatly exceed 30 J/kg K. -- Abstract: Critical analysis available in the literature experimental results on magnetocaloric effect in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. Based on a model developed by Pecharsky et al. [22], it is shown that the isothermal magnetic field-induced entropy change in the Ni–Mn–X alloys should not greatly exceed 30 J/kg K. Considering thermodynamics of temperature- and magnetic field-induced martensitic transformations, it is demonstrated that a contribution of the structural subsystem to the magnetocaloric effect in the Ni–Mn–X alloys studied so far is irreversible in magnetic fields below 5 T. This makes ferromagnetic shape memory alloys an inconvenient system for the practical application in modern magnetic refrigeration technology.

  12. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  13. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  14. Effects of aging in electric field on 2024 alloy

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 孙东立; 武高辉; 王美玲

    2002-01-01

    The effect of heat treatment in an electric field on micro-plastic deformation characteristics of 2024 Al alloy was investigated.The mechanism of aging in an electric field affecting the micro-plastic deformation behavior was preliminarily discussed.The results show that the resistance to micro-plastic deformation of the alloy can be greatly increased by aging in an electric field.Aging temperature,aging time and electric field strength are selected by adopting the orthogonal design method and the optimum technological parameters are obtained.

  15. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  16. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  17. Thermal Arrest Memory Effect in Ni-Mn-Ga Alloys

    Directory of Open Access Journals (Sweden)

    A. Rudajevova

    2008-01-01

    Full Text Available Dilatation characteristics were measured to investigate the thermal arrest memory effect in Ni53.6Mn27.1Ga19.3 and Ni54.2Mn29.4Ga16.4 alloys. Interruption of the martensite-austenite phase transformation is connected with the reduction of the sample length after thermal cycle. If a total phase transformation took place in the complete thermal cycle following the interruption, then the sample length would return to its original length. Analysis of these results has shown that the thermal arrest memory effect is a consequence of a stress-focusing effect and shape memory effect. The stress-focusing effect occurs when the phase transformation propagates radially in a cylindrical sample from the surface, inward to the center. Evolution and release of the thermoelastic deformations in both alloys during heating and cooling are analyzed.

  18. The effects of some elements on the igniting temperature of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Weimin [School of Materials Science and Engineering, Hebei University of Technology, P.O. Box 549, South Campus, Tianjin 300132 (China)]. E-mail: wmzhao@mail.hebut.edu.cn; Sun Yong [School of Materials Science and Engineering, Hebei University of Technology, P.O. Box 549, South Campus, Tianjin 300132 (China); Li Haipeng [School of Materials Science and Engineering, Hebei University of Technology, P.O. Box 549, South Campus, Tianjin 300132 (China); Liang Chunyong [School of Materials Science and Engineering, Hebei University of Technology, P.O. Box 549, South Campus, Tianjin 300132 (China)

    2006-02-25

    This paper studied the effects of some elements on the igniting temperature of the magnesium alloys. The main proposals of the study is to increase the igniting temperature by adding some elements to the magnesium alloys and make the magnesium alloys process easily like cast iron and aluminium without flux and gas cover. The results show that oxide film of molten Mg alloys has turned into fine and close structure from porous structure to stop the Mg alloys from oxidating further and the kindling point of magnesium alloys can be increased by about 200 deg. C.

  19. Effect of titanium addition on fracture toughness behavior of ZL108 alloy

    Institute of Scientific and Technical Information of China (English)

    WENG Yong-gang; LI Zi-jing; LIU Zhi-yong; LIU Wen-cai; WANG Ming-xing; SONG Tian-fu

    2006-01-01

    Two different titanium alloying methods were applied to ZL108 alloy for preparing specimens containing titanium. The specimens were tested on the MTS 810 material test system for studying their behavior of the plane strain fracture toughness KIC. The experimental data were analyzed by the statistical significance tests. The results show that the fracture toughness of the ZL108 alloy containing titanium is superior to that of common ZL108 alloy containing no titanium, but there is no significant difference for different titanium alloying methods. Therefore titanium addition is an effective method for improving the fracture toughness of the alloy ZL108.

  20. Refining Effect of Boron on Hypoeutectic Al-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Several concepts of the grain refinement mechanism of B on hypoeutectic Al-Si alloys have been adopted: the refining effect of B on the α-Al and eutectic Si with the different additions of Al-B master alloys made at 850℃ was investigated; and the Al-B master alloys formed under different temperature conditions have been studied to explore the morphologies of AlB2 particles;slowly cooled sample with addition of Al-B was made to explore the refinement mechanism. AlB master alloy can refine not only α-Al, but eutectic Si. Theoretical analysis indicates that,although AlB2 does not take part directly in the nucleation process in pure Al in the presence of Si, it provides a substrate for precipitation of a small content of Si from which α-Al will grow without any undercooling. When the temperature decreases to eutectic line, AlB2 subsequently nucleates eutectic Si; AlB2 particles appear in two different morphologies, namely, hexagonal platelet and tetradehedron morphology which depend on the processing temperature conditions.

  1. Effect of silicon on oxidation of Ni-15Al alloy

    Institute of Scientific and Technical Information of China (English)

    WU Ying; NIU Yan; WU Wei-tao

    2005-01-01

    The oxidation of binary Ni-Al alloy containing 15% (mole fraction, the same below if not mentioned)Al (Ni-15Al), and of a ternary alloy with the same Al content but also containing 4% Si (Ni-4Si-15Al) has been studied at 1 000 ℃ under 1.0× 105Pa O2 to examine the effect of the addition of Si on the oxidation of Ni-15Al. Oxidation of Ni-15Al produces a duplex scale composed of an outer NiO layer and an inner layer riched in Al2O3. On the contrary, Ni-4Si-15Al forms an external alumina layer directly in contact with the alloy presenting only trace of NiO and the Ni-Al spinel. As a result, the kinetics of Ni-15Al shows a fast initial stage followed by two subsequent parabolic stages with decreasing rate constants, while Ni-4Si-15Al presents essentially a single nearly-parabolic behavior with a rate constant similar to that of the final stage of Ni-15Al. Therefore, the addition of 4% Si significantly reduces the oxidation rate during the initial stage by preventing the formation of Ni-riched scales and promoting an earlier development of an exclusive external alumina layer on the alloy surface.

  2. Effects of Alloying Elements on Martensitic Transformation Behavior and Damping Capacity in Fe-17Mn Alloy

    OpenAIRE

    Baik, S.; Kim, J; Jee, K.; Jang, W.; Shin, M.

    1997-01-01

    Effect of carbon and Ti on γ ←→ εmartensitic transformation behavior and damping capacity has been investigated in an Fe-17Mn alloy. The suppressive force of carbon against γ ←→ ε transformation increases linearly with an increase in carbon content, lowering Ms temperature and volume fraction of ε martensite. Carbon deteriorates damping capacity by reducing the area of γ/ε interfaces and by decreasing the mobility of the interfaces operated as damping source. The reduction in the mobility of ...

  3. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  4. Effect of Deep Cryogenic Treatment on Microstructure and Properties of AE42 Mg Alloy

    Science.gov (United States)

    Bhale, Pranav; Shastri, H.; Mondal, A. K.; Masanta, M.; Kumar, S.

    2016-09-01

    The effect of deep cryogenic treatment (DCT) on microstructure and mechanical properties including corrosion behavior of the squeeze-cast AE42 alloy has been investigated. For comparison, the same has also been studied on the untreated alloy. Both the untreated and deep cryogenic-treated (DCTed) alloys comprised α-Mg and Al4RE phases. Volume fraction of the Al4RE phase in the AE42 alloy reduced gradually following DCT carried out from 4 to 16 h. Ductility and UTS increase significantly with a marginal increase in YS of all the DCTed alloys. The improvement was attributed to the dissolution of the brittle Al4RE phase following DCT. Among the alloys employed, the best tensile properties were obtained for the 16-h DCT alloy due to its lowest content of the brittle Al4RE phase. Creep resistance of the DCTed alloys was lower than that of the untreated alloy owing to the presence of less amount of thermally stable intermetallic Al4RE phase. Wear resistance of the alloy reduces following DCT due to reduced hardness of the DCTed alloys. The untreated alloy exhibits the best corrosion resistance, whereas poor corrosion resistance of the DCTed alloys is attributed to the reduced amount of Al4RE phase that fails to built a corrosion resistance barrier.

  5. Effect of Deep Cryogenic Treatment on Microstructure and Properties of AE42 Mg Alloy

    Science.gov (United States)

    Bhale, Pranav; Shastri, H.; Mondal, A. K.; Masanta, M.; Kumar, S.

    2016-07-01

    The effect of deep cryogenic treatment (DCT) on microstructure and mechanical properties including corrosion behavior of the squeeze-cast AE42 alloy has been investigated. For comparison, the same has also been studied on the untreated alloy. Both the untreated and deep cryogenic-treated (DCTed) alloys comprised α-Mg and Al4RE phases. Volume fraction of the Al4RE phase in the AE42 alloy reduced gradually following DCT carried out from 4 to 16 h. Ductility and UTS increase significantly with a marginal increase in YS of all the DCTed alloys. The improvement was attributed to the dissolution of the brittle Al4RE phase following DCT. Among the alloys employed, the best tensile properties were obtained for the 16-h DCT alloy due to its lowest content of the brittle Al4RE phase. Creep resistance of the DCTed alloys was lower than that of the untreated alloy owing to the presence of less amount of thermally stable intermetallic Al4RE phase. Wear resistance of the alloy reduces following DCT due to reduced hardness of the DCTed alloys. The untreated alloy exhibits the best corrosion resistance, whereas poor corrosion resistance of the DCTed alloys is attributed to the reduced amount of Al4RE phase that fails to built a corrosion resistance barrier.

  6. Effect of Zr on behavior of compressive creep in as cast ZA27 alloy

    Institute of Scientific and Technical Information of China (English)

    魏晓伟; 沈保罗

    2003-01-01

    The effect of Zr on the behavior of compressive creep in as cast ZA27 alloy was investigated in the temperature range of 20-160 ℃ and under different compressive stresses in the range of 50-137.5 MPa with special apparatus. The results show that the primary compressive creep strains and steady creep rates of ZA27-Zr alloy and ZA27 alloy increase with increasing temperature and stress. However, the primary compressive creep strain and steady creep rate of the ZA27-Zr alloy are lower than that of the ZA27 alloy below 100 ℃, but higher at 160 ℃. The compressive creep behaviors in both ZA27-Zr alloy and ZA27 alloy obey an empirical equation lnt=C-nlnσ+Q/RT, and the exponent stress n is 3.63 for ZA27-Zr alloy and 3.46 for ZA27 alloy, respectively, the activation energy Q is 87.32 kJ/mol for ZA27-Zr alloy and 81.09 kJ/mol for ZA27 alloy. Different material structural constants are associated with different compressive creep behaviors in the alloy. The compressive creep rate in the alloy is controlled by the lattice diffusion of zinc and dislocation limb.

  7. Effects of energy-spectrum broadening in alloyed semiconductor superlattices

    OpenAIRE

    Ushakov, D.V.; Kononenko, V.K.; Manak, I. S.

    1999-01-01

    The density of energy states is calculated for alloyed semiconductor superlattices for different excitation levels with cllowance for the effects of screening and fluctuatio.zs of impurity -oncentrations. The influence of the state density tails on spontaneous-emission spectra is investigated for cross-over transitions and in a model without a selection rule for the electron wave vector. Account for the state density tails allows one to describe the longwave wing and shape of spon...

  8. Effects of Te on intergranular embrittlement of a Ni-16Mo-7Cr alloy

    Science.gov (United States)

    Cheng, Hongwei; Han, Fenfen; Jia, Yanyan; Li, Zhijun; Zhou, Xingtai

    2015-06-01

    Te was deposited on the surface of a Ni-16Mo-7Cr alloy by thermal evaporation at 700 °C, and the effect of Te on the intergranular cracking behavior and the tensile properties of the alloy was investigated. The results show that the reaction products formed on the surface of the alloy, the diffusion depth of Te in the alloy, and the yield strength of the alloy attacked by Te at room temperature are not changed remarkably with Te content increasing, whereas the ultimate tensile strength and elongation of the alloy is decreased distinctly. The primary surface reaction product are mainly composed of Ni3Te2, CrTe, and MoTe2, and the diffusion depth of Te in the alloys is about 50 μm. The intergranular embrittlement mechanism of the alloy induced by Te of is also discussed in this paper.

  9. Effect of Yttrium and Cerium Addition on Microstructure and Mechanical Properties of AM50 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To develop magnesium alloy with low cost, high strength and excellent elevated temperature properties, effect of Y and Ce addition on microstructure and mechanical properties of AM50 magnesium alloy was studied. Result showed that addition of small amount of Y and Ce to AM50 alloys resulted in refinement of microstructure. Owing to the improvement of microstructure, the mechanical properties of alloys at both ambient and elevated temperature were increased. AM50 alloy containing 0.6%Ce-0.3%Y (mass fraction) had good refinement effect and relatively ideal mechanical properties.

  10. Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin

    Science.gov (United States)

    Choo, Seung-Sik; Huh, Yoon-Hyuk; Cho, Lee-Ra

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (Pveneer resin to Co-Cr and Au-Ag-Pd alloys. PMID:26576256

  11. Effect of helium on tensile properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  12. Growth restriction effects during solidification of aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-wei; HE Zhi; JIE Wan-qi

    2009-01-01

    The effects of solute elements during solidification on the grain size are very important and can be quantified by the growth-restriction parameter Q, and Q possesses the better correlation with the grain size. Based on the constitutional undercooling generated by the growth of an adjacent grain during the initial solidification, the growth-restriction parameter Q is deduced and a comprehensive physical basis of Q is obtained by using an initial solute distributing equation. For the alloys with more potent nucleants, Q is a suitable predictor of the grain size. For less potent nucleants, the relative grain size(RGS) is a more accurate prediction of the grain size. This prediction coincides with the experimental behaviors for Al-Ti and Al-Cu alloys with lower solute content.

  13. Extrinsic Spin Hall effect of AuW alloys

    Science.gov (United States)

    Laczkowski, Piotr; Rojas-Sánchez, Juan Carlos; Savero-Torres, Williams; Reyren, Nicolas; Deranlot, Cyril; George, Jean-Marie; Jaffres, Henri; Beigné, Cyril; Notin, Lucien; Collin, Sophie; Marty, Alain; Attané, Jean-Philippe; Vila, Laurent; Petroff, Frederic; Fert, Albert; UMPhy CNRS-Thales Palaiseau Team; CEA-SP2M-INAC Grenoble Team

    The spin Hall effect (SHE) allows a reciprocal conversion between charge and spin currents using spin orbit interactions. Large Spin Hall angle have been reported in transition metals (Pt, W, Beta-Ta) and in alloys made of heavy metals. We will report on SHA in AuW alloys exhibiting a non-monotonic relation with W content. In this regime, it suggests a skew-scattering to side-jump dominant contribution to the spin Hall resistivity, thus allowing precise tuning of SHA vs. W content. We will present experiments by using Lateral Spin Valves with refined spin-absorption model adapted to strong spin-orbit interactions. By using complementary FMR/Spin-Pumping techniques, we demonstrate very large SHA of the order of 15 % at rather high W concentration in rather good agreement with the previous method

  14. Chloride ion effect and alloying effect on dealloying-induced formation of nanoporous AuPt alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan, E-mail: mse_wangy@ujn.edu.cn; Xu, Junling; Wu, Bo

    2013-07-01

    The dealloying of the rapidly solidified Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor in the 5 wt.% HCl or 20 wt.% NaOH solution has been investigated using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy, in order to clarify the chloride ion effect and alloying effect on the formation of nanoporous Au–Pt alloy. The Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor is composed of a single Al{sub 2}Au-type intermetallic compound and only Au(Pt) solid solution can be identified in the as-dealloyed sample. The Pt addition can significantly refine the nanoporous structure during the dealloying of the Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor either in the HCl or NaOH solution. Moreover, the alloying effect of Pt markedly exceeds the coarsening effect of chloride ion adsorption for the formation of nanoporous Au–Pt. The average ligament size is 5.2 ± 0.7 and 3.3 ± 0.4 nm for the nanoporous Au–Pt alloy obtained in the HCl and NaOH solution, respectively. In addition, electrochemical measurements including potentiodynamic polarization and cyclic voltammetry have also been performed on the Al{sub 66}Au{sub 23.8}Pt{sub 10.2} precursor.

  15. Effect of solution hardening on the shape memory effect of Fe-Mn based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzaki, K.; Natsume, Y.; Maki, T. [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering; Tomota, Y. [Ibaraki Univ., Hitachi (Japan)

    1995-10-01

    Fe-high Mn-Si alloys, which undergo {gamma} (fcc) to {var_epsilon} (hcp) martensitic transformation, exhibit a pronounced shape memory effect. The origin of shape memory effect of these alloys is the reversion of stress-induced {var_epsilon} martensite. A shape change must hence be accomplish3ed by stress-induced martensitic transformation without permanent slip in austenite ({gamma}) in order to obtain a good shape memory effect. It is clear that the intrusion of permanent slip can be suppressed by increasing the strength of austenite and by decreasing the applied stress required for a shape change due to stress-induced martensitic transformation. It has been reported that the addition of the interstitial elements of C and N as well as the substitutional elements of Mo and V increases the 0.2% proof stress of austenite in Fe-high Mn alloys. However, there have been few studies on the effect of these alloying elements on the shape memory effect of Fe-high Mn based alloys. In the present study, it was aimed to improve the shape memory effect of Fe-high Mn based alloys by the strengthening of austenite through solution hardening due to C and Mo.

  16. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Zhang Hailong; Xiao Nianxin; Zhao Xiangling

    2007-01-01

    The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5% NaCl + NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900℃ for 0.5h followed by tempered at 100℃ for 2h.

  17. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    Science.gov (United States)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  18. Effect of Silicon Alloying on the Structure of Exoplanetary Cores

    Science.gov (United States)

    Wicks, J. K.; Smith, R.; Coppari, F.; Kraus, R. G.; Newman, M.; Duffy, T. S.

    2015-12-01

    The composition of cores of terrestrial planets are expected to be broadly similar to that of Earth in that they are comprised of a Fe-Ni alloy with variable amounts of light elements such as O, Si, C, S, and H. With the increasing number of discoveries of Super-Earths (rocky planets many times the mass of our own), the properties of terrestrial phases at ultrahigh pressures are required to understand and interpret the variability of large-scale exoplanet observations. The properties of the cores of these bodies are important for understanding the bulk chemistry, thermal evolution, magnetic fields, and, ultimately, habitability of a planet. Recent diamond anvil cell studies interrogating the structure of iron generally agree that Fe should be hcp at core pressures and temperatures, although other structures have been proposed. At higher pressures and with the addition of light elements, the structure is less understood. The addition of large amounts of Si, for example, stabilizes the cubic B2 structure with respect to hcp at outer core pressures. Our goal in this study is to explore the effect of Si-alloying at inner core and exoplanetary-core pressures. Dynamic compression experiments were carried out at the Omega Laser at the Laboratory for Laser Energetics, University of Rochester. High pressures were achieved by focusing laser drives onto target packages containing Fe-Si alloys. Pressures within the sample were determined by monitoring the velocity history at the sample/window interface. Quasi-monochromatic X-rays, timed with maximum compression of the Fe-alloy sample, were generated via laser irradiation of iron or germanium foils arranged in a backlighter configuration and collected on image plates lining the inner walls of a box attached to the target package. In this presentation we will report on the effect of Si-alloying on the structure and density of Fe over the pressure range 100-1000 GPa. We find that while Fe with 7 wt.% Si remains in the hcp

  19. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    Science.gov (United States)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  20. Effect of Silicon on the casting properties of Al-5.0%Cu alloy

    Institute of Scientific and Technical Information of China (English)

    LI Weijing; CUI Shihai; HAN Jianmin; XU Chao

    2006-01-01

    Poor casting properties restrict the application of high strength casting Al-5.0%Cu alloy.The addition of element can improve the casting properties of this alloy.Effect of Si on the casting properties of Al-5.0%Cu alloy was studied.It has been found that the addition of Si can improve the casting properties of Al-5.0%Cu alloy obviously.With the increase of Si content, the hot cracking tendency of the alloy decreases significantly, and the fluidity of the alloy increases firstly and then decreases slowly.When the content of Si element is higher than 2wt.%, the fluidity of the alloy increases greatly with the increasing of Si content.

  1. Effects of Ce on damping capacity of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    黄正华; 郭学锋; 张忠明

    2004-01-01

    The microstructures and damping capacity of AZ91D cast alloys containing various Ce contents were investigated. Damping capacity (Q-1) of the alloys was measured by cantilever beam technique, and the relationship between damping capacity and strain amplitude was investigated. The results show that Al4 Ce phase is formed in AZ91D alloy after adding a certain quantity of Ce contents, then as-cast microstructures of the alloys are refined.Meanwhile the damping capacity of the alloys is also improved. When the mass fraction of Ce is 0.7 %, the most obvious refinement effect and the maximum damping capacity can be obtained. When the damping capacity (Q-1) is 2. 728 × 10-3 , 61% increment can be obtained compared with unmodified AZ91D alloy. The damping capacity of the alloys is relative to strain amplitude, and the damping behavior can be explained by the theory of Granato and Lucke.

  2. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kiran, U., E-mail: uravikiran@gmail.com [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Panchal, A.; Sankaranarayana, M. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Nageswara Rao, G.V.S. [National Institute of Technology, Warangal 506004 (India); Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India)

    2015-07-29

    Liquid phase sintering, heat treatment and swaging studies on three tungsten heavy alloys, 93W–4.9Ni–2.1Fe (wt%), 93W–4.2Ni–1.2Fe–1.6Co (wt%) and 93W–4.9Ni–1.9Fe–0.2Re (wt%) were carried out in detail with respect to microstructure, tensile and impact properties. All the alloys were sintered and swaged to 40% deformation. The results indicate that Re addition reduces the grain size of the alloy compared to W–Ni–Fe and W-Ni-Fe-Co alloys. W–Ni–Fe–Re alloy shows superior tensile properties in heat treated condition as compared to W–Ni–Fe and W–Ni–Fe–Co alloys. SEM study of fractured specimens clearly indicates that the failure in case of W–Ni–Fe–Re was due to transgranular cleavage of tungsten grains and W–W de-cohesion. W–Ni–Fe and W–Ni–Fe–Co alloys also failed by mixed mode failure. However, in these cases, ductile dimples corresponding the failure of the matrix phase was rarely seen. Thermo-mechanical processing resulted in significant changes in mechanical properties. While W–Ni–Fe–Re alloy showed the highest tensile strength (1380 MPa), W–Ni–Fe–Co exhibited the highest elongation (12%) to failure. A detailed analysis involving microstructure, mechanical properties and failure behavior was undertaken in order to understand the property trends.

  3. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  4. Effects of Deformation on Microstructure of Cu-Zn-Ni Alloy

    OpenAIRE

    ALDIRMAZ, Emine; CELIK, Harun; AKSOY, Ilhan

    2012-01-01

    The thermal and mechanical effects on microstructure of Cu-12.44%Zn-4.75%Ni (wt%) alloy were investigated. The effects mechanical on both rapidly cooled sample and slowly cooled sample obtained from Cu-Zn-Ni alloy were investigated by using scanning electron microscopy (SEM), X-ray diffraction techniques (XRD). The thermal energy changes of in the alloy were examined by means of differential scanning calorimetry (DSC). As a result of SEM observations, annealing twins structures are observed i...

  5. EFFECTS OF EXTREME AND UNUSUAL CONDITIONS ON LANA ALLOYS: INTERIM REPORT, FY14 (U)

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Kirk L.

    2014-04-25

    The TTP proposed research aimed at determining: a) the rate at which these changes occurred and the effect of initial conditions, especially in the early phases of Hydrogen Heat Treatment (HHT), b) whether or not different LANA alloys would show similar effects, and c) whether common contaminants/poisons impacted LANA alloy hydride chemistry similarly to what had been found for Pd and Pd-alloy hydride chemistry.

  6. The reactive element effect (REE) in oxidation of alloys

    OpenAIRE

    Saito, Yasutoshi; Önay, Bülent; MARUYAMA, TOSHIO

    1993-01-01

    The reactive element effect (REE) in high temperature oxidation is discussed, for chromia-forming alloys, in terms of a mechanistic model based on postulations that (a) reactive element/oxide additions promote nucleation of Cr2O3 and (b) reactive element-oxides react with Cr2O3 to form perovskite-type compounds, such as YCrO3, along scale boundaries which promote inward oxygen diffusion. The standard Gibbs energy of formation and concentrations of ionic defects for YCrO3 are calculated. For s...

  7. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  8. Effect of Microstructure on the Performance of Corrosion Resistant Alloys

    OpenAIRE

    Kishan Roodbari, Marzieh

    2015-01-01

    Corrosion by pitting in aluminum alloys is a very complex process that can be affected by various factors such as chemical composition and microstructure of the alloys. The electrochemistry and distribution of second phases populating the alloy are the main factors that significantly influence the corrosion of aluminum alloys. The purpose of the present work is to contribute to a deeper understanding of how the chemical composition and microstructure affect the ability of an al...

  9. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  10. Band anticrossing effects in highly mismatched semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junqiao

    2002-09-09

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between

  11. Effect of neodymium on the as-extruded ZK20 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    赵亚忠; 潘复生; 彭建; 王维青; 罗素琴

    2010-01-01

    The effect of Nd addition on the microstructure and mechanical properties of ZK20 magnesium alloy was investigated by room tensile test, optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to develop a magnesium alloy with higher ductility. Results showed that the crystal grains of as-extruded ZK20+0.5%Nd magnesium alloy were effectively refined, and the alloy exhibited higher strength and ductility, with the UTS of 237 MPa and the elongation of 32.8%, increasing by 5...

  12. Effect of microstructural parameters on the properties of W-Ni-Fe alloys

    Institute of Scientific and Technical Information of China (English)

    S.H. Islam; QU Xuanhui; S.J. Askari; M. Tufail; HE Xinbo

    2007-01-01

    The aim of this research was to examine the effect of microstructural parameters on the tensile properties of different compositions of tungsten heavy alloys. The microstructural parameters (grain size, connectivity, contiguity, and solid volume fraction) were measured and were found to have a significant effect on the tensile properties of tungsten-based heavy alloys. The microstructural parameters of W-Ni-Fe alloys are sufficiently different to present a range of mechanical properties. It is concluded that the mechanical properties of tungsten heavy alloys largely depend on the microstructural parameters and their ductility is particularly harmed when grains are contiguous.

  13. Effects of high magnetic field on modification of Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    LIAN Feng; QI Feng; LI Ting-ju; HU Guo-bing

    2005-01-01

    Effects of high magnetic field on modification of Al-6 %Si hypoeutectic alloy, Ak-12.6%Si eutectic alloy and Al-18 % Si hypereutectic alloy were studied. For the Al-6 % Si alloy, it is found that the sample modified by Na salt does not lose efficacy after remelting under high magnetic field. For the Al-12.6%Si alloy, if the sample modi fied by Na-salt is kept at the temperature of modification reaction, high magnetic field can postpone the effective time of the modification. For Al-18%Si alloy modified by P-salt, the primary Si in solidified structure concentrates at the edge of the sample and eutectic Si appears in the center of the sample under the condition without high magnetic field, while the primary Si distributes evenly in the sample when the high magnetic field is imposed. It is thought that the high magnetic field restrains the convection of the melt.

  14. Effects of chemical coating with Ni on electrochemical properties of Mg2Ni hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of nickel coating on the electrochemical properties of Mg2Ni hydrogen storage alloys are presented in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques were employed to examine the crystal structure and surface morphologies of the bare and Ni-coated Mg2Ni alloys. The electrochemical properties of alloys were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that Ni coating not only decreased the charge transfer resistance, but also decreased the H atom diflusion resistance for Mg2Ni alloys. It was also found that Ni coating effectively improved the discharge capacity, but decreased the cycling performance of the as-synthesized Ni-coated Mg2Ni alloys. The discharge current has a great impact on the cycling performance of the as-synthesized Ni-coated Mg2Ni alloys.

  15. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys

    Directory of Open Access Journals (Sweden)

    J.B. Ferguson

    2016-02-01

    Full Text Available Because the mechanical performance of precipitation-hardened alloys can be significantly altered with temperature changes, understanding and predicting the effects of temperatures on various mechanical properties for these alloys are important. In the present work, an analytical model has been developed to predict the elastic modulus, the yield stress, the failure stress, and the failure strain taking into consideration the effect of temperatures for precipitation-hardenable Al-Mg-Cu-Si Alloys (Al-A319 alloys. In addition, other important mechanical properties of Al-A319 alloys including the strain hardening exponent, the strength coefficient, and the ductility parameter can be estimated using the current model. It is demonstrated that the prediction results based on the proposed model are in good agreement with those obtained experimentally in Al-A319 alloys in the as-cast condition and after W and T7 heat treatments.

  16. Effects of Friction Stir Welding Speed on AA2195 alloy

    Directory of Open Access Journals (Sweden)

    Lee Ho-Sung

    2016-01-01

    Full Text Available The application of friction stir welding (FSW to aerospace has grown rapidly due to the high efficiency and environmental friendly nature of the process. FSW is achieved by plastic flow of frictionally heated material in solid state and offers many advantages of avoiding hot cracking and limiting component distortion. Recently low density, high modulus and high strength AA2195 are used as substitute for conventional aluminum alloys since the weight saving is critical in aerospace applications. One of the problems for this alloy is weld metal porosity formation leading to hot cracking. Combination of FSW and AA2195 provides synergy effect to improve mechanical properties and weight saving of aerospace structure such as cryogenic fuel tanks for launch systems. The objective of this paper is to investigate the effect of friction stir welding speed on mechanical and microstructural properties of AA2195. The friction stir welded materials were joined with four different tool rotation speeds (350~800 rpm and five welding speeds (120~360 mm/min, which are the two prime welding parameters in this process.

  17. La2O3 effects on TZM alloy recovery, recrystallization and mechanical properties

    International Nuclear Information System (INIS)

    Titanium, zirconium and molybdenum (TZM) alloy with different amounts of rare earth lanthanum oxide was prepared by powder metallurgy into 0.5 mm thick sheets. The effects of the La2O3 content on recrystallization temperature and mechanical properties of the TZM alloy were studied. La2O3 increased the recrystallization and recovery temperature of the TZM alloy and increased its tensile strength and elongation

  18. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    OpenAIRE

    M.H. Shaeri; M. Shaeri; M.T. Salehi; S. H Seyyedein; M.R. Abutalebi

    2015-01-01

    The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 °C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens hav...

  19. Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Shallcross, S.;

    2003-01-01

    We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au...

  20. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  1. Effect of yttrium on the microstructure of a semi-solid A356 Al alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; HU Yongmei

    2008-01-01

    The semi-solid slurry of an A356 Al alloy,which was grain-freed by yttrium,was manufactured by low temperature pouring.The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched.The results indicate that the semi-solid A356 Al alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy.The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt.% Y.The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved.

  2. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  3. Effects of alloying elements on nitrogen diffusion behavior around TiN/Ti interface α region in as-cast titanium alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To characterize the effects of alloying elements on inclusion dissolution of titanium nitride, the content profiles of elements around TiN/Ti boundary α phase regions in liquid titanium alloys have been experimentally carried out. Four kinds of commercial alloys of CpTi, Ti64, Ti17 and Ti6242 containing different α-stabilizing or β-stabilizing elements are examined through artificially embedding the TiN sponge particle into liquid alloys in VAR conditions. The content profiles of nitrogen and alloying elements around TiN/Ti boundary were measured by WDX and microprobe for as-cast samples. The content profiles of nitrogen and alloying elements around N-containing solid in αTi region of these alloys show a common features of a steep change. In particular, the content profiles of elements for Ti6242 demonstrate unique change of a more gentle change tendency and further deeper into the alloy matrix. The experiment results show that, the differences among composite effects of alloying elements in different alloys within nitrogen-induced diffusion α region result in different dissolution and diffusion behaviors to overcome the α phase region barriers.

  4. Effect of Indium Content on the Microstructure, Mechanical Properties and Corrosion Behavior of Titanium Alloys

    OpenAIRE

    Mi-Kyung Han; Jae-Bong Im; Moon-Jin Hwang; Bong-Jun Kim; Hae-Young Kim; Yeong-Joon Park

    2015-01-01

    Ti-xIn (x = 0, 5, 10, 15 and 20 wt%) alloys were prepared to investigate the effect of indium on the microstructure, mechanical properties, and corrosion behavior of titanium with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xIn alloys. The Ti-xIn alloys exhibited a lamellar α-Ti structure at an indium content of up to 20 wt%. High-resolution TEM images of the Ti-xIn alloys revealed that all the systems contained a fine, acicular martensi...

  5. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  6. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Science.gov (United States)

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  7. Unified theoretical approach for binary and ternary alloys via an effective field theory

    Science.gov (United States)

    Freitas, Augusto S.; de Albuquerque, Douglas F.

    2016-01-01

    We describe the phase diagram of binary and ternary disordered alloys using the mixed-bond Ising model, via effective field theory (EFT). For example, we describe the Fe-Al alloy as a mixed-bond system instead of as diluted alloy. In our approach, we obtain the percolation threshold for some lattices and describe the lines of ferro-paramagnetic transition of Fe-Al, Fe-Mn, Fe-Mn-Al and Fe-Ni-Mn alloys and we obtain good agreement with the experimental data.

  8. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  9. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  10. Comparative study of the Portevin-Le Chatelier effect in interstitial and substitutional alloy

    International Nuclear Information System (INIS)

    Tensile tests were carried out by deforming polycrystalline samples of an interstitial alloy, low carbon steel at room temperature in a wide range of strain rates where the Portevin-Le Chatelier (PLC) effect was observed. The observed stress time series data were analyzed using the non-linear dynamical methods. From the analyses, we could establish the presence of marginal deterministic chaos in the PLC effect of the low carbon steel. Moreover, we made a comparative study of the PLC effect of this interstitial alloy with the substitutional Al-Mg alloy, which shows that the dynamics of the PLC effect in the interstitial alloy is more complex compared to that of the substitutional alloy

  11. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations.

    Science.gov (United States)

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-07-28

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction.

  12. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations

    Science.gov (United States)

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-01-01

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction. PMID:27466045

  13. Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters

    International Nuclear Information System (INIS)

    Research highlights: → Bond length difference analysis for martensite phases in Ti alloys is conducted. → Martensitic transformation is studied with the use of electron structure parameters. → The effect of alloy elements on martensitic tranformatio is analyzed. - Abstract: Because martensitic transformation in titanium alloy significantly affects properties and applications of the alloys, the analysis of the effect of alloy elements on martensitic transformation becomes primarily important. Through using the valence electron structure parameters calculated by the empirical electron theory (EET) of solids and molecules, our analysis results reveal that the addition of alloy elements (such as Zr, Nb, W, Mo, V) has the beneficial effect on the formation of orthorhombic martensite α'' as well as the addition of alloy elements (e.g., Al, Fe, Cr, Sn) has advantage to the formation of hcp-structured martensite α'. Our analysis results not only present the understanding about the effect of alloy elements on martensitic transformation at the electron structure level, but also provide a theoretical basis for the chemical composition design of titanium alloys.

  14. Effect of Carbon on DA718 Alloy with P Addition

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shouren GUO; Dezhong LU; Wenru SUN; Yan XU; Zhuangqi HU

    2003-01-01

    Lower content of carbon can further improve the stress rupture life of p-modified DA 718 alloy up to more than 270%.Meanwhile, the ductility of the alloy decreased a little. More boron atoms dissociate due to decreasing carbon content and interact with phosphorus which brings the longer stress rupture life of the alloy. Less carbon may induce more phosphorus segregating in the grain boundary and result in brittleness.

  15. Effect of alloying and heat treatment on the formation of recrystallization cube texture in nickel alloys

    International Nuclear Information System (INIS)

    Specific features of manufacturing thin ribbons with acute cubic texture of nickel and nickel base alloys (Ni-Cr, Ni-W, Ni-Nb, Ni-V) are under consideration. The ribbons are used as substrates to create perfect crystal structure during epitaxial deposition of buffer and functional layers. It is shown that on using alloying elements when obtaining FCC nickel alloys the application of 99.93% pure nickel is possible. To obtain the perfect structure with a {100} cubic component content of 90-95% the initial grain size prior to deformation is desirable to be no greater than 30-40 μm. Nickel base alloys with Va, VIa and VIIa group transition elements remain the cubic texture of recrystallization up to 1000-1150 Deg C. Magnetic and nonmagnetic (with Tc<70 K) ribbons-substrates with a perfect cubic texture can be manufactured from textureless alloy billets with fine grains (below 40 μm) by 98-99% deformation and an one-hour annealing at 900-1100 Deg C in vacuum or protective environment

  16. Preirradiation effect on quenching structure of Cu-4 at.% Ti alloy

    International Nuclear Information System (INIS)

    Methods of X-ray diffraction analysis and microhardness were used to study the effect of preliminary neutron irradiation by various fluences on formation of the structure of two-phase copper-titanium alloy (4 at.%) after quenching from 1223 K. It was established that quenched alloy was characterized by different structure and microhardness, depending on neutron fluence under preirradiation

  17. Effect of Mo content on thermal and mechanical properties of Mo–Ru–Rh–Pd alloys

    International Nuclear Information System (INIS)

    Metallic inclusions are precipitated in irradiated oxide fuels. The composition of the phases varies with the burnup and the conditions such as temperature gradients and oxygen potential of the fuel. In the present work, Mox/(0.7+x) (Ru0.5Rh0.1Pd0.1)(0.7)/(0.7+x) (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) alloys were prepared by arc melting, followed by annealing in a high vacuum. The thermal and mechanical properties of the alloys such as elastic moduli, Debye temperature, micro-Vickers hardness, electrical resistivity, and thermal conductivity have been evaluated to elucidate the effect of Mo content on these physical properties of the alloys. The alloys with lower Mo contents show higher thermal conductivity. The thermal conductivity of the alloy with x = 0 is almost twice of that of the alloy with x = 0.25. The thermal conductivities of the alloys are dominated by electronic contribution, which has been evaluated using the Wiedemann–Franz–Lorenz relation from the electrical resistivity data. It is confirmed that the variation of the Mo contents of the alloys considerably affects the mechanical and thermal properties of the alloys

  18. Effect of thermomechanical processing on evolution of various phases in Ti–Nb alloys

    Indian Academy of Sciences (India)

    S Banumathy; K S Prasad; R K Mandal; A K Singh

    2011-12-01

    This paper deals with the effect of thermomechanical processing on microstructural evolution of three alloys, viz. Ti–8Nb, Ti–12Nb and Ti–16Nb. The alloys were hot rolled at 800°C and then subjected to various heat treatments. Samples from hot-rolled alloys were given solution-treatment in and + phase fields, respectively followed by water quenching and furnace cooling. The solution-treated alloys were subsequently aged at different temperatures for 24 h. Phases evolved after various heat treatments were studied using X-ray diffractometer, optical, scanning and transmission electron microscopes. The alloy Ti–8Nb exhibits and phases while the alloys Ti–12Nb and Ti–16Nb show the presence of '', and phases in the as-cast and hot-rolled conditions. The solution treated and water quenched specimen of the alloy Ti–8Nb displays '' phase while the alloys Ti–12Nb and Ti–16Nb exhibit '', and phases. The alloy Ti–8Nb shows the presence of , and phases while those of Ti–12Nb and Ti–16Nb display the presence of , '', and in + solution treated and water quenched condition. The observation of phase in solution treated condition depends on the cooling rate and the Nb content while in the aged specimens, it is governed by aging temperature as well as the Nb content.

  19. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

    Science.gov (United States)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Wang, Jia-Siang; Lin, Chi-Ming; Wu, Weite

    2015-11-01

    In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

  20. Effect of chemical component on shape memory effect of Fe-Mn-Si-Ni-C-RE shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    Naichao Si; Zhihong Jia; Longbiao Qi

    2004-01-01

    Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it′s range from 3% up to 4%.But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1% to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.

  1. Simulation of grain size effects in nanocrystalline shape memory alloys

    Science.gov (United States)

    Ahluwalia, Rajeev; Quek, Siu Sin; Wu, David T.

    2015-06-01

    Recently, it has been demonstrated that martensitic transformation in nanocrystalline shape memory alloys can be suppressed for small grain sizes. Motivated by these results, we study the grain size dependence of martensitic transformations and stress-strain response of nanocrystalline shape memory alloys within the framework of the Ginzburg-Landau (GL) theory. A GL model for a square to rectangle transformation in polycrystals is extended to account for grain boundary effects. We propose that an inhibition of the transformation in grain boundary regions can occur, if the grain boundary energy of the martensite is higher than that of the austenite phase. We show that this inhibition of transformation in grain boundary regions has a strong influence on domain patterns inside grains. Although the transformation is inhibited only at the grain boundaries, it leads to a suppression of the transformation even inside the grains as grain size is decreased. In fact, below a critical grain size, the transformation can be completely suppressed. We explain these results in terms of the extra strain gradient cost associated with grain boundaries, when the transformation is inhibited at grain boundaries. On the other hand, no significant size effects are observed when transformation is not inhibited at grain boundaries. We also study the grain size dependence of the stress strain curve. It is found that when the transformation is inhibited at grain boundaries, a significant reduction in the hysteresis associated with stress-strain curves during the loading-unloading cycles is observed. The hysteresis for this situation reduces even further as the grain size is reduced, which is consistent with recent experiments. The simulations also demonstrate that the mechanical behavior is influenced by inter-granular interactions and the local microstructural neighbourhood of a grain has a stronger influence than the orientation of the grain itself.

  2. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  3. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  4. Effect of silver addition on the properties of nickel-titanium alloys for dental application.

    Science.gov (United States)

    Oh, Keun-Taek; Joo, Uk-Hyon; Park, Gee-Ho; Hwang, Chung-Ju; Kim, Kyoung-Nam

    2006-02-01

    Equiatomic and near-equiatomic nickel-titanium alloys exhibit a shape-memory effect and superelasticity. However, the properties of such alloys are extremely sensitive to the precise nickel-titanium ratio and the addition of alloying elements. High corrosion resistance is necessary for biomedical applications, especially orthodontic. The purpose of this study was to investigate the effect of silver addition to nickel-titanium alloys for dental and medical application. Arc melting, homogenization, hot rolling, and solution heat treatment were performed to prepare the nickel-titanium-silver (NiTi-Ag) specimens. The properties of the ternary NiTi-Ag alloys such as phase-transformation temperature, microstructure, microhardness, corrosion resistance, and cytotoxicity were investigated. The NiTi-Ag alloys showed low silver recovery rate for the cast alloy, due to silver's low evaporation temperature, and low silver solubility in nickel-titanium. Silver addition to nickel-titanium increased the transition temperature range to 100 degrees C and stabilized the martensitic phase (monoclinic structure) at room temperature, because the martensitic transformation starting temperature (Ms) was above room temperature. Martensitic and austenitic phases existed in X-ray diffraction patterns of solution-annealed NiTi-Ag alloys. The silver addition was considered to improve the corrosion resistance and form a stable passive film. Significantly, the mechanical properties of the silver-added alloys were dependent upon the amount of alloying addition. There was no toxicity in the NiTi-Ag alloys, as the response index showed none or mild levels.

  5. Effect of Trivalent Additions and Processing on Structural and Magnetic Transitions in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    R.P. Mathur

    2012-07-01

    Full Text Available Ferromagnetic shape memory Ni50Mn30Ga15Al5-xBx (x = 0, 1, and 4 alloys were prepared by vacuum arc melting and subsequent heat-treatment as well as by melt spinning to investigate the effect of trivalent element additions in ternary Ni-Mn-Ga alloys. The heat-treated alloys containing Al were reported to possess a modulated martensite structure, however alloy containing both Al and B showed a loss of modulated structure in martensite formed. The rapidly solidified alloys on the other hand showed the formation of a similar modulated structure without composition change in alloys containing Al and the alloys containing Al and B. In addition, the former showed a presence of an amorphous phase with latter showing crystalline boron rich phases. The magnetisation of the B containing alloys in both the processing technique was however very low, showing lower magnetic exchange interaction in such alloys.

  6. Effect of Plastic Deformation on Magnetic Properties of Fe-40%Ni-2%Mn Austenitic Alloy

    Institute of Scientific and Technical Information of China (English)

    Selva Büyükakkas; H Aktas; S Akturk

    2007-01-01

    The effects of plastic deformation on the magnetic properties of austenite structure in an Fe-40%Ni-2%Mn alloy is investigated by using Mssbauer spectroscopy and Differential Scanning Calorimetry (DSC) techniques The morphology of the alloy has been obtained by using Scanning Electron Microscopy (SEM). The magnetic behaviour of austenite state is ferromagnetic. After plastic deformation, a mixed magnetic structure including both paramagnetic and ferromagnetic states has been obtained at the room temperature. The volume fraction changes, the effective hyperfine fields of the ferromagnetic austenite phase and isomery shift values have also been determined by Mssbauer spectroscopy. The Curie point (TC) and the Neel temperature (TN) have been investigated by means of DSC system for non-deformed and deformed Fe-Ni-Mn alloy. The plastic deformation of the alloy reduces the TN and enhances the paramagnetic character of austenitic Fe-Ni-Mn alloy.

  7. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap...

  8. Effect of scandium on superplasticity of Al-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    孝云祯; 高彩茹; 马宏声; 田士平

    2001-01-01

    The superplastic behavior of adding 0.22%Sc into the Al-6Mg alloy was studied by simple superplastic pretreatment process—warm rolling and cold rolling. The optimum superplastic temperature and strain rate of the alloys were defined and satisfactory results were obtained during the superplastic deformation at 811  K and initial strain rate 0=1.67×10-3 s-1. The average elongation of Al-6Mg-0.22Sc alloys reaches to 1  125%, and the maximum elongation is 1  200%, maximum m value (strain rate sensitive index) is 0.879. But under the same condition the elongation and maximum m value for Al-6Mg alloy were only 377% and 0.595, respectively. The superplastic deforming mechanism for Al-6Mg-0.22Sc alloys was also discussed.

  9. Local environmental effects in magnetic alloys and multilayers

    International Nuclear Information System (INIS)

    The authors have developed an ab-initio method for calculating the static response functions in substitutional alloys. For magnetic alloys, in addition to the nuclear diffuse scattering, a contribution to the alloy diffuse scattering intensities results from the response of the local moments to changes in the local chemical environment (i.e. jμi/jcj) The authors present results of first-principles calculations of these local response functions in magnetic alloys. These response functions, which may be directly compared to neutron-scattering and Moeβbauer experiments, are derived via a mean-field statistical mechanical description of compositional fluctuations in alloys. The statistical averages are performed via the Korringa-Kohn- Rostoker coherent potential approximation, which incorporates the electronic structure of the high-temperature, chemically disordered state

  10. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Pengyu [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China)], E-mail: linpengyu2000@yahoo.com.cn; Zhou Hong; Li Wei; Li Wenping; Sun Na [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China); Yang Rong [Public Mathematics Teaching and Research Center, College of Mathematics, Qianwei Campus of Jilin University, Changchun Jilin 130012 (China)

    2008-09-15

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point.

  11. Effect of Electric Field on Conductivity and Vickers Hardness of an A1-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    刘兵; 陈大融; 陈铮; 王永欣; 李晓玲

    2003-01-01

    Static electric fields were applied on an aluminium-lithium alloy during solution treatment.The conductivity and Vickers hardness of the quenched Al-Li alloy is changed with the effect of electric field.The Vickers hardness increases with the applied electric field for a certain solutionizing time but decreases with the time under an electric field.In the absence of the electric field,the Vickers hardness and the conductivity increase synchronously,while reversed after electric field treatment.Positive and negative electric fields had the similar effect.The change of the local electron density in alloy caused by electric field is presented to explain the effect.

  12. Effect of Al–5Ti–C Master Alloy on the Microstructure and Mechanical Properties of Hypereutectic Al–20%Si Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding

    2014-02-01

    Full Text Available Al–5Ti–C master alloy was prepared and used to modify hypereutectic Al–20%Si alloy. The microstructure evolution and mechanical properties of hypereutectic Al–20%Si alloy with Al–5Ti–C master alloy additions (0, 0.4, 0.6, 1.0, 1.6 and 2.0 wt% were investigated. The results show that, Al–5Ti–C master alloy (0.6 wt%, 10 min can significantly refine both eutectic and primary Si of hypereutectic Al–20%Si alloy. The morphology of the primary Si crystals was significantly refined from a coarse polygonal and star-like shape to a fine polyhedral shape and the grain size of the primary Si was refined from roughly 90–120 μm to 20–50 μm. The eutectic Si phases were modified from a coarse platelet-like/needle-like structure to a fine fibrous structure with discrete particles. The Al–5Ti–C master alloy (0.6 wt%, 30 min still has a good refinement effect. The ultimate tensile strength (UTS, elongation (El and Brinell hardness (HB of Al–20%Si alloy modified by the Al–5Ti–C master alloy (0.6 wt%, 10 min increased by roughly 65%, 70% and 51%, respectively, due to decreasing the size and changing the morphology on the primary and eutectic Si crystals. The change in mechanical properties corresponds to evolution of the microstructure.

  13. Influence of precipitation on the Portevin-Le Chatelier effect in Al-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatelier(PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates.The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the ...

  14. Effect of Sn on the Color and Tarnishing of Cu-Mn-Zn Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of Sn on the color and tarnishing of Cu-Mn-Zn alloys is investigated quantitatively. Using the CIE LAB color system,color parameters such as L*, a* and b* are selected to describe the surface color of alloys while the color difference (△E*)is used to evaluate the color stability. The results show that with the increase of Sn, the color change of Cu-Mn-Zn alloys is greatly reduced and the corrosion resistance in the synthetic sweat is improved dramatically. However, up to 4.4 wt pct Sn does not change the color of Cu-Mn-Zn alloys much. XPS and AES are employed to analyze the tarnished surface. It is proved that a Sn enriched film is formed and Sn takes the form of Sn oxide. This thin and protective oxide film can prevent alloy from further tarnishing.

  15. The effect of heat treatment on the corrosion behaviour of 319 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N.; Georgiou, E.P.; Giannakopoulos, K.I. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, Athens (Greece)

    2009-06-15

    The effect of various heat treatments on the corrosion behaviour of 319 T1 cast aluminium alloy was investigated. From this alloy, specimens were heat treated in T5, T6 and two steps solution heat treatment T6 conditions and afterwards were subjected to electrochemical corrosion in a 0.1 M NaCl solution (pH = 12). From the above treatments, T5 heat treatment did not improve the corrosion resistance of the as-received alloy in contrast to T6 heat treatment which improved the corrosion resistance of the same alloy. However, two steps solutionizing T6 treatment showed the best corrosion resistance of the aluminium alloy. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Effects of copper-based alloy on the synthesis of single-crystal diamond

    CERN Document Server

    Chen Li Xue; Ma Hong An; Jia Xiao Peng; Wakatsuki, M; Zou Guang Tian

    2002-01-01

    The catalytic effects of copper-based alloys in diamond growth have been investigated. A single crystal of diamond has been obtained by the temperature gradient method (TGM), using Cu-Mn-Co and Cu-Co alloys as catalysts. It was found that the melted Cu-Mn-Co and Cu-Co alloys show low viscosity. The eutectic temperatures of these two alloys with graphite were between 1130 and 1150 deg. C, and the temperature of the transition to diamond was over 1300 deg. C at 5.5 GPa. High-quality diamond could not be obtained in Cu-Co alloy by the TGM. Our results suggest that adding Cu to a catalyst cannot decrease the reaction temperature for diamond growth.

  17. Effects of Ni addition on liquid phase separation and giant magnetoresistance of Cu-Co alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of Ni addition on the liquid phase separation and giant magnetoresistance (GMR) of Cu-Co alloys were discussed. The results reveal that Ni addition can partially restrain the liquid phase separation of Cu-Co alloys, resulting in a decrease of volume fraction for the Co-rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate that Ni is dissolved in both the Co-rich and the Cu-rich phases, but Ni content in the Co-rich phase is much higher than that in the Cu matrix. At the same time, Ni addition enhance the solubility between Cu and Co, especially Cu in Co solid solution. Ni alloying into Cu-Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu-Co alloys.

  18. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    Science.gov (United States)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  19. Effects of Sm on Phase Transformation in Ni-Mn-Ga Alloys

    Institute of Scientific and Technical Information of China (English)

    郭世海; 张羊换; 赵增祺; 祁焱; 全白云; 王新林

    2004-01-01

    The effects of small amount additions of Sm on the martensitic transition and magnetic phase transition of polycrystalline Ni-Mn-Ga alloys were investigated. The experimental results show that the Sm doped alloys also undergo a thermal-elastic martensitic transformation and reverse transformation during cooling and heating process and the addition of Sm decreases the martensitic transformation temperature and Curie temperature in different degree respectively. Ni-Mn-Ga alloys of adding Sm still possess Heusler structure, but their crystal lattice parameters are modified slightly. The addition of a proper amount of Sm does not basically decrease Tc of the alloy when avoiding the appearance of second phase. In addition, the doped alloys have favorable toughness because of grain refinement of Sm.

  20. Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Dirscherl, Kai;

    2014-01-01

    that the roughness of the as-etched surface increases with the degree of alloying due to second phase particles making the reflection more diffused, and that the as-etched surface morphology is similar to the oxide–substrate interface after anodising. Proper polishing is achieved on hard alloys and the glossy......Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrate...... prior to anodising were analysed using scanning electron microscopy and atomic force microscopy. The optical appearance of the anodised surface with and without sealing was investigated using a photography setup, photospectrometry and bidirectional reflectance distribution function. It was found...

  1. Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. S.; Choe, H. C. [Chosun Univ., Gwangju (Korea, Republic of); Kim, W. G. [Daegu Health College, Daegu (Korea, Republic of)

    2013-01-15

    In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An α-phase in Ti alloy was transformed into a β-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density(+300 mV{sub SCE}) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9 % NaCl solution.

  2. Effects of dispersion particle agents on the hardening of V–4Cr–4Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, P.F., E-mail: zhengpf@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China); Chen, J.M., E-mail: chenjm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China); Nagasaka, T., E-mail: nagasaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Muroga, T., E-mail: muroga@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Zhao, J.J., E-mail: zhaojj@dlut.edu.cn [Dalian University of Technology, Dalian, Liaoning (China); Xu, Z.Y., E-mail: zyxu@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China); Li, C.H., E-mail: li_chenhui68@163.com [Huazhong University of Science and Technology, Wuhan, Hubei (China); Fu, H.Y., E-mail: fu_haiying@ms.nifs.ac.jp [The Graduate University for Advanced Studies, Toki, Gifu (Japan); Chen, H., E-mail: chenh@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China); Duan, X.R., E-mail: duanxr@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2014-12-15

    In the mechanical alloying (MA) of vanadium alloys, various particles can have a combined dispersion-strengthening effect. The nature, especially the thermal stability, of the dispersion particle agents can play an important role for the strengthening at elevated temperatures. In order to optimize the particle species in dispersion strengthened vanadium alloys for high temperature application, this study focuses on the hardening of V–4Cr–4Ti alloy by different dispersion particle agents such as yttrium compounds and carbides. Alloying degrees, grain sizes, densifications and solid solution of interstitial impurities are compared for better understanding the hardening due to nano-particles. Though the dissolution of carbides may be poor, it has been found that the hardening due to Ti{sub 3}SiC{sub 2} addition is efficient and most stable after annealing at high temperature up to 1723 K.

  3. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    International Nuclear Information System (INIS)

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities

  4. Effect of Ca and Y additions on oxidation behavior of AZ91 alloy at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    CHENG Su-ling; YANG Gen-cang; FAN Jian-feng; LI You-jie; ZHOU Yao-he

    2009-01-01

    In order to develop the ignition-proof magnesium alloy, the effect of alloying elements, Ca and Y, on the oxidation behavior of AZ91 magnesium alloy at elevated temperatures was investigated. The ignition-proof performance, oxide products and oxidation kinetics of Ca- and Y-containing AZ91 alloys were studied. The results indicate that the proper addition of Ca can increase the ignition point of AZ91 alloy greatly. However, the oxide film of Ca-bearing AZ91 alloy formed at elevated temperature is thick and brittle, which is prone to crack in melting and cooling process. In addition, the oxide film of AZ91-xCa alloy is incompact and cannot inhibit the diffusion of reaction particles. The oxide film of AZ91-xCa alloy turns to thin and plastic one after Y is added, and the density of the oxide film increases greatly due to the formation of composite oxide film composed of MgO, CaO and Y2O3.

  5. Effect of Indium Content on the Microstructure, Mechanical Properties and Corrosion Behavior of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Han

    2015-05-01

    Full Text Available Ti-xIn (x = 0, 5, 10, 15 and 20 wt% alloys were prepared to investigate the effect of indium on the microstructure, mechanical properties, and corrosion behavior of titanium with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xIn alloys. The Ti-xIn alloys exhibited a lamellar α-Ti structure at an indium content of up to 20 wt%. High-resolution TEM images of the Ti-xIn alloys revealed that all the systems contained a fine, acicular martensitic phase, which showed compositional fluctuations at the nanoscopic level. The mechanical properties and corrosion behavior of Ti-xIn alloys were sensitive to the indium content. The Vickers hardness increased as the In content increased because of solid solution strengthening. The Ti-xIn alloys exhibited superior oxidation resistance compared to commercially pure Ti (cp-Ti. Electrochemical results showed that the Ti-xIn alloys exhibited a similar corrosion resistance to cp-Ti. Among the alloys tested, Ti-10In showed a potential for use as a dental material.

  6. Effect of minor Sc and Zr on superplasticity of Al-Mg-Mn alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of Sc and Zr on the superplastic properties of Al-Mg-Mn alloy sheets was investigated by control experiment.The superplastic properties and the mechanism of superplastic deformation of the two alloys were studied by means of optical microscope, scanning electronic microscope and transmission electron microscope. The elongation to failure of Al-Mg-Mn-Sc-Zr alloy is larger than that of Al-Mg-Mn alloy at the same temperature and initial strain rate. The variation of strain rate sensitivity index is similar to that of elongation to failure. In addition, Al-Mg-Mn-Sc-Zr alloy exhibits higher strain rate superplastic property. The activation energies of the two alloys that are calculated by constitutive equation and linear regression method approach the energy of grain boundary diffusion. The addition of Sc and Zr decreases activation energy and improves the superplastic property of Al-Mg-Mn alloy. The addition of Sc and Zr refines the grain structure greatly. The main mechanism of superplastic deformation of the two alloys is grain boundary sliding accommodated by grain boundary diffusion. The fine grain structure and high density of grain boundary,benefit grain boundary sliding, and dynamic recrystallization brings new fine grain and high angle grain boundary which benefit grain boundary sliding too. Grain boundary diffusion, dislocation motion and dynamic recrystallization harmonize the grain boundary sliding during deformation.

  7. Effect of filtration on reoxidation proceses in aluminium alloys

    Directory of Open Access Journals (Sweden)

    D. Bolibruchova

    2010-01-01

    Full Text Available This article is focused on reoxidation processes during filtration of aluminium alloys. Many of our experimental works pointed out, that using filtration media placed in gating system causes reoxidation of poured aluminium alloy. Main aim of our latest work was to validate our arguments, that filter in gating system can be considered as obstacle for continuous pouring, with help of computer simulations. This article is only a small part of our researches focused on reoxidation processes during filtration of aluminium alloys.

  8. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Department of Dentistry, Chang Yin dental clinic, No.46-1, Yangming St., Banqiao City, Taipei County 220, Taiwan (China); Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Chen, May-Show [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Lin, Ling-Hung [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Wu, Ching-Zong, E-mail: chinaowu@tmu.edu.tw [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang, E-mail: klou@tmu.edu.tw [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Graduated Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Yu, Chih-Hua [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China)

    2011-01-21

    Research highlights: > When the as-quenched Mg-1Zr alloy was aged at temperatures ranging from 200 deg. C to 500 deg. C, a microstructural transformation sequence was found to be {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). > As the as-quenched Mg-1Zr alloy was subjected to aging treatment at 300 deg. C for 16 h, it exhibited the maximum damping properties. > The twin structure plays a crucial role in increasing the damping capacity of the Mg-1Zr alloy. - Abstract: In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg-1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200-500 deg. C: {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 deg. C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.

  9. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

    International Nuclear Information System (INIS)

    Research highlights: → When the as-quenched Mg-1Zr alloy was aged at temperatures ranging from 200 deg. C to 500 deg. C, a microstructural transformation sequence was found to be α-Mg → (α-Mg + twindense) → (α-Mg + twinloose) → (α-Mg + α-Zr). → As the as-quenched Mg-1Zr alloy was subjected to aging treatment at 300 deg. C for 16 h, it exhibited the maximum damping properties. → The twin structure plays a crucial role in increasing the damping capacity of the Mg-1Zr alloy. - Abstract: In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg-1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200-500 deg. C: α-Mg → (α-Mg + twindense) → (α-Mg + twinloose) → (α-Mg + α-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 deg. C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.

  10. Modification Effects of Lanthanum-Rich Mischmetal on A357 Alloy

    Institute of Scientific and Technical Information of China (English)

    李华基; 刘昌明; 李革胜; 薛寒松

    2001-01-01

    A357 alloy was modified with lanthanum -rich mischmetal, and modification effects of the mischmetal on its as-cast and heat-treated structures, mechanical properties and hydrogen content were investigated and compared with that of strontium metal. It is shown that the modification effect of La-rich mischmetal is better than that of strontium in the aspects of refining eutectic silicon, ejecting hydrogen from the melt and improving comprehensive mechanical properties of the alloy. Therefore Al-Si-Mg alloy with high strength and improved toughness can be obtained by modification with La-rich mischmetal.

  11. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Dun-Hui; Han Zhi-Da; Xuan Hai-Cheng; Ma Sheng-Can; Chen Shui-Yuan; Zhang Cheng-Liang; Du You-Wei

    2013-01-01

    Ferromagnetic shape memory alloys,which undergo the martensitic transformation,are famous multifunctional materials.They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure.Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance.In this paper,the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.

  12. Ion Nitriding of Titanium Alloys with a Hollow Cathode Effect Application

    Directory of Open Access Journals (Sweden)

    V.V. Budilov

    2015-09-01

    Full Text Available The method of ion nitriding the titanium VT6 alloy in glow discharge with the hollow cathode effect (HCE was investigated. Probe measurements of glow discharge plasma under HCE conditions and without it were performed; ion densities near the cathode surface were measured. The effect of HCE on microstructure, microhardness and wear resistance of VT6 alloy was determined. The technology of ion nitriding titanium alloys, based on phase modification of the surface layer in glow discharge with HCE, was developed.

  13. Effect of Microalloying on Wettability, Oxidation and Solidification Morphology of Sn-9Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Xiuqin; Huang Huizhen; Zhou Lang; Zhang Meng

    2005-01-01

    Eutectic alloy Sn-9Zn is an attractive candidate for lead-free solders. However, its wettability to copper is poor thus,its development was limited. Effects of less than 1% (mass fraction) additions of mischmetal consisting mainly of La and Ce, heavy rare earth Y, pure P, Al, Mg and Ti elements on the wetting/adhesion behavior of Sn-9Zn alloy to copper, as well as the associated oxidation and solidification morphology of this alloy were examined. The results show that harmful effect on the wettability can be found when adding Al and Ti elements, while the wettability can be improved slightly by adding Mg and Y elements. The adhesion of the alloy to copper can be decreased by Mg element. The RE and P are found to significantly improve the wettability. In addition, oxidation of the alloy can be increased by adding RE, while little effect on the oxidation behavior can be found by adding P element. As-solidified Sn-9Zn alloy has a rough surface with protrusions and cavities shaped by coarse needle-like crystallites, while the Sn-37Pb sample has a rather smooth surface, which indicates the different solidification behavior of Sn-9Zn alloy and the Sn-37Pb one. The additions of the different elements investigated in this study do not alter Sn-9Zn's as-solidified morphology.

  14. Effect of inter-critical quenching on mechanical properties of casting low-alloy steel

    OpenAIRE

    Liu Zhongli; Shang Yong

    2013-01-01

    For some casting low-alloy steels, traditional quenching and tempering heat treatments can improve the strength; however, sometimes the ductility is not satisfied. Therefore, some kind of effective heat treatment method seems necessary; one which could improve the ductility, but not seriously affect the strength. In this paper, the effect of inter-critical quenching (IQ) on the mechanical properties of casting low-alloy steel was studied. IQ was added between quenching and tempering heat trea...

  15. Purifying effect of new flux on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    高洪涛; 吴国华; 丁文江; 朱燕萍

    2004-01-01

    A new flux which can remove both Fe and non-metallic inclusions in magnesium alloy was introduced.The Fe content of the magnesium alloy can be decreased greatly from 0. 062% to lower than 0. 005% (degree of AZ91D) after being purified by this new flux. The optimum addition of B2O3 in the flux is 0. 58 % by Gaussian Curve Fitting. Corrosion rate was measured after the specimen being immersed in 5 % NaCl solution for 3 d. The resuits show that the corrosion rate of the magnesium alloy after purification by the new flux is only 0.3 mg · cm-2 ·d-1. On the other hand, non-metallic inclusions in the magnesium alloy decrease with increasing addition of JDMJ in the new flux. Average volume fraction of the non-metallic inclusions in the magnesium alloy decreases from 1.52 % to 1.08%, which leads to improvement in the mechanical properties of the magnesium alloy by 30%. The mechanisms of Fe reduction and non-metallic inclusion-removing in magnesium melt by purification with the new flux were also revealed.

  16. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  17. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys

  18. Effect of Rare Earth Metals on Structure and Properties of Electroless Co-B Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    宣天鹏; 张雷; 黄秋华

    2002-01-01

    The effect of rare earth metals cerium, lanthanum and yttrium on chemical composition, structure and properties of electroless Co-B alloy coating was studied. By plasma transmitting spectrograph, electron energy spectrometer, X-ray diffractometter, micro-hardometer and vibratory sample magnetometer the chemical constitution, structure and properties of the alloy coatings were analyzed and inspected. The results show that with a tiny quantity of rare earth metal added into Co-B alloy coating, the content of boron is decreased in the alloy coatings, and the kinds of rare earth metal have enormous effect on the structure and properties of electroless Co-B alloy coating. At the same time electroless Co-B alloy with amorphous structure is transformed to electroless Co-B-RE alloy with microcrystalline or crystalline structure. In this way microhardness of the coatings is increased remarkably. Cerium and lanthanum would also increase the saturated magnetic intensity and decrease coercitive force of the coating. So soft magnetization of the coatings would be improved.

  19. Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy

    Indian Academy of Sciences (India)

    Svetlana Nestorovic; Desimir Markovic; Ljubica Ivanic

    2003-10-01

    This paper reports results of investigations carried out on a cast copper alloy containing 8 at.% Al. The alloy, and pure copper for the sake of comparison, were subjected to cold rolling with a final reduction of 30, 50 or 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to the recrystallization temperature. The hardness, strength and electrical conductivity were measured and X-ray and DSC analyses performed. Anneal hardening effect was observed in the alloy in the temperature range 180–300°C, followed by an increase in the electrical conductivity. The amount of strengthening increases with increasing degree of prior cold work. The X-ray analysis shows a change in the lattice parameter during annealing when anneal hardening effect was observed. The DSC analysis shows the exothermic character of this effect.

  20. Effect of Sc addition on microstructure and mechanical properties of 1460 alloy

    Directory of Open Access Journals (Sweden)

    Juan Ma

    2014-02-01

    Full Text Available The effect of minor addition of Sc on microstructure, age hardening behavior, tensile properties and fracture morphology of 1460 alloy have been studied. It is found that Sc content increase from 0.11 wt% to 0.22 wt% is favorable for grain refinement in as-cast alloy but results in a coarsening of Cu-rich particles. The alloy with 0.11 wt% Sc exhibits enhanced mechanical properties and age hardening effect. Transmission electron microscopy (TEM investigations on the alloy with 0.11 wt% Sc have suggested that a large amount of Al3(Sc, Zr particles precipitated at the earlier aging may inhibit recrystallization effectively.

  1. EFFECT OF Si ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE Al-4.5%Cu ALLOYS

    Institute of Scientific and Technical Information of China (English)

    N. Han; X.F. Bian; Z.K. Li; T. Mao; C.D. Wang

    2006-01-01

    The effect of Si on the microstructure and mechanical properties of binary Al-4.5% Cu alloy has been investigated. The results show that the addition of Si does not have any effect on alloy strength; however, it decreases the ductility of the as-cast Al-4.5% Cu alloy. It is obvious that after T4 heat treatment, the microstructure and mechanical properties of Al-4.5% Cu-Si alloys are improved, especially for the alloy with an Si addition of 2%.

  2. Effects of Si Content and the Addition Amount of Al-3B Master Alloy on the Solidification Structures of Hypoeutectic Al-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Si content and the addition amount of Al-3B master alloy on the solidification structures of hypoeutectic Al-Si alloys were studied. The addition amounts of the master alloy were 0.2%, 0.4%, 0.7% and 1% (mass fraction, so as the follows), respectively. The Si content of Al-Si binary alloys investigated varied from 1% to 11%. The observation of macrostructures of non-refined samples showed that 3% Si constitutes a transition point at which the minimum grain size can be obtained. It was also found that Al-3B master alloy can shift the transition point towards a higher Si value when its addition amount increases, making this point appear at 4%, 5% and 6% Si as its addition amount increases up to 0.4%, 0.7% and 1%, respectively.

  3. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  4. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    International Nuclear Information System (INIS)

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references

  5. Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy

    Institute of Scientific and Technical Information of China (English)

    SU Yan-qing; LIU Xin-wang; ZHAO Long; WANG Liang; GUO Jing-jie; FU Heng-zhi

    2009-01-01

    Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy were studied. The stress-strain curves demonstrate that the plastic deformation of the hydrogenated alloys becomes more remarkable than that of the unhydrogenated alloy.Meanwhile, the compression strength and maximum strain are reduced. Both the hydride and hydrogen atoms in the interstices affect the compression deformation behaviors. The reason of the hydrogen-induced embrittlement is that the hydride is easy to become the nucleus of the cracks. And the variation of plastic deformation process is attributed to hydrogen-promoted emission, multiplication and motion of dislocation.

  6. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    Science.gov (United States)

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402932

  7. Effect of Yttrium Addition on Glass Forming Ability of ZrCuAlSi Alloy

    International Nuclear Information System (INIS)

    The effect of yttrium addition on glass formation of a ZrCuAlSi alloy is investigated. The maximum diameter 8mm of the glassy rods for (Zr46.3Cu43.3Al8.9Si1.5)100−xYx alloy with x = 2.5 is obtained by copper mould casting. Apparent enhancement of the glass formation ability is found with addition of yttrium, mainly due to the purification of the alloy melt and the suppression of formation of the primary phases by yttrium. (condensed matter: structure, mechanical and thermal properties)

  8. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  9. Effect of Cerium on Mechanical Properties and Morphology of ZZn4-1 Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effect of the addition of cerium in appropriate amount on the mechanical properties and morphology of ZZn4-1 alloy was investigated. In the case of samples collected from metal mould, the results show that the addition of cerium in appropriate amount can increase tensile strength and HB hardness, and can refine the microstructure of ZZn4-1 alloy considerably. In the case of samples collected from pressure die-casting, the addition of cerium in appropriate amount can refine the primary η-phase and the eutectic structure of pressure die-casting and improve mechanical and processing properties of the alloy.

  10. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  11. Catalytic Effect of SCN- on Electrodeposition of Zinc-Nickle Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrodeposition of zinc-nickle alloy was obtained on a copper cathode of 1 × lcm2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was observed by means of scanning electron microscopy(SEM). We observed that the electrodeposition of zinc-nickle alloy is an anomalous codeposition. The catalytic effects of SCN- on the electrochemical behavior of Ni deposition and hydrogen discharge are obvious. SEM analysis shows that the surface morphology of the coating appears to be more compact and homogeneous with the increase of SCN- concentration.

  12. Effects of annealing process on electrical conductivity and mechanical property of Cu-Te alloys

    Institute of Scientific and Technical Information of China (English)

    ZHU Da-chuan; TANG Ke; SONG Ming-zhao; TU Ming-jing

    2006-01-01

    The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results show that recrystallization and precipitation occur simultaneously during the annealing process of Cu-Te alloys. Tellurium precipitates as Cu2Te second phase. The grain size increases with the increasing of annealing temperature and time. The electrical conductivity increases monotonously. The tensile strength of Cu-Te alloy is higher than that of pure copper.

  13. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    Science.gov (United States)

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  14. The effects of. gamma. -irradiation on Ti-Ni shape-memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guilin; Xu Feng; Liu Wenhong; Hu Wenxiang; Yu Fanghua; Zhang Yiping (Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research); Wang Jingcheng; Shao Zichang (Shanghai Iron and Steel Research Inst, SH (China))

    1992-04-01

    Because gamma irradiation provides a means of introducing lattice defects into crystalline solids in a controlled fashion, it can be used to study the influence of lattice defects on the physical properties of solids such as shape-memory alloys (SMAs). The study described here shows that gamma irradiation can be used to ameliorate the performance of SMAs and to understand the mechanism of the shape memory further in these alloys. In particular it shows the effect of gamma irradiation on the martensitic transformation temperatures of Ti-Ni alloys. (UK).

  15. The effects of γ-irradiation on Ti-Ni shape-memory alloy

    International Nuclear Information System (INIS)

    Because gamma irradiation provides a means of introducing lattice defects into crystalline solids in a controlled fashion, it can be used to study the influence of lattice defects on the physical properties of solids such as shape-memory alloys (SMAs). The study described here shows that gamma irradiation can be used to ameliorate the performance of SMAs and to understand the mechanism of the shape memory further in these alloys. In particular it shows the effect of gamma irradiation on the martensitic transformation temperatures of Ti-Ni alloys. (UK)

  16. Composition effects on the early-stage oxidation kinetics of (001) Cu-Au alloys

    Science.gov (United States)

    Zhou, G.-W.; Eastman, J. A.; Birtcher, R. C.; Baldo, P. M.; Pearson, J. E.; Thompson, L. J.; Wang, L.; Yang, J. C.

    2007-02-01

    An in situ environmental transmission electron microscopy study of the nucleation and growth of oxide islands during the early-stage oxidation of (001) Cu1-xAux alloys (x⩽38at.%) was undertaken in order to investigate the effects of alloying on oxide island nucleation behavior and growth kinetics. The kinetic data reveal that Au enhances the nucleation density of oxide islands and suppresses their growth rate. Our results provide insight into reasons for the decreased passivation properties of Cu when alloyed with Au.

  17. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    Science.gov (United States)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  18. Effect of heat treatment on corrosion resistance of WE54 alloy

    Directory of Open Access Journals (Sweden)

    T. Rzychoń

    2007-01-01

    Full Text Available Purpose: Poor corrosion resistance is one of the main causes to prevent magnesium alloys for wide applications.The addition of rare earth elements (RE is an effective way to improve corrosion resistance of magnesiumalloys. Heat treatment condition can also influence the corrosion behavior of magnesium alloys. The purpose ofthe investigation was to study the corrosion resistance of WE54 alloy after heat treatment.Design/methodology/approach: The study was conducted on WE54 alloy in the as-cast condition and after heattreatment at 250-300˚C for periods of time 4 – 96 h. Immersion test was performed using not deaerated 3.5%NaCl solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time betweenone and 7 days. The dissolution rates (mg cm-2 day-1 were determined by weight loss measurements. Afterimmersion test, the microstructure and the appearances of the corroded structure were examined by scanningelectron microscopy.Findings: The corrosion rate of WE54 alloy strongly depends on heat treatment condition. WE54 alloy in theas-cast and after solution treated have similar corrosion behavior, different from that of aged specimens. Thecurves of corrosion rate for aged specimens were higher than that for as-cast and solution treated conditions. Itwas also noticed that the longer time of ageing the higher corrosion rates were observed.Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currentlyunder evaluation on many speciality applications where lightweight connected with optimum corrosionresistance are required.Practical implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently underevaluation on many speciality applications where lightweight connected with optimum corrosion resistance arerequired.Originality/value: This paper includes the effect of heat treatment condition on corrosion resistance of WE54magnesium alloy.

  19. Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium

    International Nuclear Information System (INIS)

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving 'diffusion towards electrode surface'. The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance

  20. Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali

    2003-12-30

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving 'diffusion towards electrode surface'. The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  1. Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg-Al alloy

    Institute of Scientific and Technical Information of China (English)

    张诗昌; 魏伯康; 蔡启舟; 王立世

    2003-01-01

    The effect of yttrium and mischmetal(MMs) on the as-cast and solid solution treated structures of Mg-Al alloys with different Al-contents was investigated. The results show that the MMs in Mg-Al alloy existed in rodAl4 (Ce, La)compound while Y in Mg-Al alloy in polygonal Al2 Y compound. The amount of Mg17 Al12 in Mg-Al al-loy is decreased with increasing Y or MMs addition, and Mg17 Al12 intermetallic compound is changed from continu-ous network to discontinuous one. The Al4 (Ce, La) and Al2 Y compounds are not dissolved into Mg-Al alloy matrixduring solid solution treatment so that their high heat stability can be exhibited. The experiment of mechanical prop-erties indicate that elongation and impact toughness of the Mg-Al-Y alloy with polygonal Al2 Y compound are higherthan those of Mg-Al-MMs alloy with rod Al4 (Ce, La) compound.

  2. Effect of Microstructure on Thermal Expansion Coefficient of 7A09 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Hongzhi Ji; Lin Yuan; Debin Shan

    2011-01-01

    The relationship between microstructure evolution and coefficient of thermal expansion (CTE) of 7A09 aluminum alloy was investigated in this paper. Differential scanning calorimetry (DSC) was combined with transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) to investigate microstructure evolution taking place in 7A09 aluminum alloy during heating and cooling process. The corresponding CTE curves of the 7A0g alloy were recorded by thermal dilatometer. Results indicated that GPII zones and Ur phase were main precipitates in the highest strength tempered (T6) 7A09 alloy. The r/phase was the main participate in 7A09 alloy during the cooling process. The nonlinear dependency existed between CTE and temperature in both changing temperature processes. During the heating process, obvious additional contraction of alloy volume was directly caused by phase transition, such as dissolution of η' phase, transition from η' to η phase and dissolution of η phase. The additional contraction could slow down the increase of CTE greatly and be expressed in the nonlinearity of CTE curve. Volume and energy changes of alloy system influenced the variation trend of CTE directly, which was caused by the precipitation of U phase during the cooling process. These effects were revealed by the corresponding nonlinear change of CTE.

  3. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Barannikova, Svetlana, E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Gorbatenko, Vadim, E-mail: gvv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Shlyakhova, Galina, E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Zuev, Lev, E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  4. Effect of Microstructure and Sulfide on Corrosion of Cu-Ni Alloys in Seawater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microstructure and the corrosion product films have been investigated on Cu-Ni alloys by TEM, SEM, AES and electrochemical technique as well as natural seawater exposure tests. Experimental results showed that the alloys had two kinds of microstructure, I.e. Recrystallization and incomplete recrystallization. In synthetic seawater containing 2×10-6 S2-, the stability of the alloy increased with the increase of deformation and annealing temperature, I.e., the degree of recrystallization. After exposure to natural seawater for different periods of time, the corrosion product films of the recrystallized alloy were rich in Ni and compact, and there were cracks in the outer layer which contained a small amount of S; the films of the alloy of incomplete recrystallization became thick, loose and porous, and obviously of layered structure. And the intergranular corrosion took place in the underlying substrate. Besides, a great amount of seawater substance existed in the outer layer and some sulfur was found within the grain boundaries that prefer to corrode. The accelerating effect of sulfides in corrosion of Cu-Ni alloys in seawater is attributed to the coexistence and absorption of sulfides and carbides promoting the preference of corrosion where they absorb, and the formation of dissolvable Cu2S results in keeping the surface of the alloys in the active state.

  5. Effects of grain refinement on mechanical properties and microstructures of AZ31 alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cerium was added in AZ31 alloy with the contents of 0.4%, 0.8% and 1.2% respectively to produce experimental alloys.The grain refinement of Ce in the as-east and rolled AZ31 alloy were studied by using Polyvar-MET optical microscope with a VSM2000 quantitative analysis system, KYKY2000 SEM and Tecnai G2 20 TEM. And the mechanical properties of AZ31+Ce alloy were tested on a CSS-44100 testing system with computerized data acquisition. The results show that the cerium has a good grain refinement effect on the as-cast AZ31 alloy because cerium can build up a solute enriched zone rapidly during the solidification process. The dynamic recrystallization (DRX) grains less than 10 μm can be obtained in hot rolled AZ31+Ce alloy. A cold rolling deformation degree over than 20% and a following annealing at 400 ℃ for 1h will lead to refine and uniform grains with the sizes of about 25μm. The cerium can form dispersed and thermally stable Al4Ce phase that can prohibit the coarsening of grains in AZ31 +Ce alloy during the hot rolling and annealing process.

  6. EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE OF Cu-Zn-Al (RE) SHAPE MEMORY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    N.C.Si; S.C.Sun

    2001-01-01

    The effects of heat treatment on the Cu-Zn-Al shape memory alloys with mixed REwere researched with the help of X-ray diffraction and transmission electron micro-scope (TEM).The results show that the shape memory alloys with martensite can beproduced by adding mixed RE and heat treatment processes holding at 820C -880Cfor 15min,quenching into oil,aging at 150C for 15min,and then holding in waterat 50C for 10min.The alloys have the lowest transformation thermal hysteresis.Among the four experimental heat treatment processes the gradationally quenchingmakes the alloy have the highest transformation temperature and quenching into oilor water at room temperature makes the alloy have the largest thermal hysteresis.Mi-crostructure examination shows that aging at 2000C could destroy the substructuresin lathy martensites in the alloy and form a lot of dislocations,and aging at 250℃could cause the bainite transformation in the alloy.

  7. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    Science.gov (United States)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  8. Effect of cobalt powder morphology on the properties of WC-Co hard alloys

    OpenAIRE

    Kurlov, A. S.; Rempel, A. A.

    2013-01-01

    The effect of cobalt powder morphology on the microstructure of WC-Co hard alloys produced by sintering cobalt + tungsten carbide powder mixtures has been studied using X-ray diffraction, laser diffraction, scanning electron microscopy, density measurements, and Vickers microhardness tests. The results indicate that, under identical sintering conditions, the densest and most homogeneous microstructure is formed in hard alloys sintered using cobalt powders consisting of rounded particles. The ...

  9. Effect of Squeeze Cast Process Parameters on Fluidity of Hypereutectic Al-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated. The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the applied pressure of 30 MPa. The fluidity increased with superheat. The fluidity increased with silicon content in the range from 12.0% to 20.0%. That was decreased respectively by eutectic modification and primary silicon refinement.

  10. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy

    Science.gov (United States)

    Surekha, K.; Murty, B. S.; Prasad Rao, K.

    2009-04-01

    The effect of processing parameters (rotation speed and traverse speed) on the corrosion behaviour of friction stir processed high strength precipitation hardenable AA 2219-T87 alloy was investigated. The results indicate that the rotation speed has a major influence in determining the rate of corrosion, which is attributed to the breaking down and dissolution of the intermetallic particles. Corrosion resistance of friction stir processed alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, salt spray and immersion tests.

  11. AbstractEffect of Hydrogen on the Corrosion Performance of Zirconium Alloys

    OpenAIRE

    Wei, Jianfei

    2012-01-01

    This study is part of the multidisciplinary research program funded by the EPSRC aimed at further understanding the mechanisms behind the oxidation, transition and breakaway of zirconium alloys. The current study concentrates on the effect of artificially introduced hydride rich rim region upon the corrosion performance of zirconium alloys.The methodology of cathodic hydrogen charging of zirconium specimen has been described. The intention is to create a hydride rich rim similar to observatio...

  12. Effect of short range order on electronic and magnetic properties of disordered Co based alloys

    OpenAIRE

    Ghosh, Subhradip; Chaudhuri, Chhanda Basu; Sanyal, Biplab; Mookerjee, Abhijit

    2000-01-01

    We here study electronic structure and magnetic properties of disordered CoPd and CoPt alloys using Augmented Space Recursion technique coupled with the tight-binding linearized muffin tin orbital (TB-LMTO) method. Effect of short range ordering present in disordered phase of alloys on electronic and magnetic properties has been discussed. We present results for magnetic moments, Curie temperatures and electronic band energies with varying degrees of short range order for different concentrat...

  13. Effect of B addition to hypereutectic Ti-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Louzguina-Luzgina, Larissa V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, Dmitri V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)], E-mail: dml@imr.tohoku.ac.jp; Inoue, Akihisa [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-04-17

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 {beta}-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied.

  14. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  15. Effects of hot-salt stress corrosion on titanium alloys.

    Science.gov (United States)

    Gray, H. R.

    1972-01-01

    Susceptibility of titanium alloys to hot-salt stress-corrosion cracking increased as follows: Ti-2Al-11Sn-5Zr-1Mo-0.2Si (679), Ti-6Al-2Sn-4Zr-2Mo (6242), Ti-6Al-4V (64), Ti-6Al-4V-3Co (643), Ti-8Al-1Mo-1V (811), and Ti-13V-11Cr-3Al (13-11-3). The Ti-5Al-6Sn-2Zr-1Mo-0.25Si (5621S) alloy was both the least and most susceptible, depending on heat treatment. Such rankings can be drastically altered by heat-to-heat variations and processing conditions. Residual compressive stresses reduce susceptibility to stress-corrosion. Detection of substantial concentrations of hydrogen in all corroded alloys confirmed the generality of a previously proposed hydrogen embrittlement mechanism.

  16. Effect of zirconium addition on the recrystallization behaviour of a commercial Al–Cu–Mg alloy

    Indian Academy of Sciences (India)

    K T Kashyap

    2001-12-01

    It is well known that the second phase particles have an effect on recrystallization and grain growth behaviour of an alloy. Particularly the bimodal distribution of second phase particles has an effect which is opposite in sense where coarse second phase particles (> 1 m) stimulate nucleation while fine particles exhibit Zener drag. In the literature, the effect of zirconium addition to aluminium alloys has been well documented in order to produce superplasticity by giving ultra fine grain size to the alloy. Addition of zirconium produces Al3Zr particles which pin the grain boundaries during recrystallization and grain growth. In the present work, zirconium was added to a commercial Al–Cu–Mg alloy and by heat treatment Al3Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, i.e. Al3Zr particles and found to be rod shaped and identified to be cubic ordered 12 phase with a lattice parameter of 0.408 nm. Further, it was observed that fine (100 nm) Al3Zr particles promote only continuous recrystallization which is polygonization of subgrains and subgrain growth. It was found that the fine dispersion of Al3Zr particles inhibits both recrystallization and grain growth in the commercial Al–Cu–Mg alloy.

  17. Effect of Surface Pretreatment on Adhesive Properties of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Jinsheng ZHANG; Xuhui ZHAO; Yu ZUO; Jinping XIONG; Xiaofeng ZHANG

    2008-01-01

    The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and durability of the bonding joints pretreated by different processes are influenced by the grade of abrasive papers and can be obviously improved by phosphoric acid anodizing. Alkali etching can obviously improve the durability of bonding joints although it slightly influences the maximum lap-shear strength. The process which is composed of grit-finishing, acetone degreasing, alkali etching and phosphoric acid anodizing, provides a better adhesive bonding property of AI alloy.

  18. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  19. Grain refinement of AZ31 magnesium alloy by electromagnetic stirring under effect of grain-refiner

    Indian Academy of Sciences (India)

    S Y Gao; Q C Le; Z Q Zhang; J Z Cui

    2012-08-01

    The effects of electromagnetic stirring and Al4C3 grain refiner on the grain refinement of semicontinuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has an effective refining effect on the grain size of AZ31 magnesium alloy under the effect of Al4C3 grain refiner. Electromagnetic stirring can `activate’ the Al4C3 particles, resulting in more heterogeneous nucleation sites for the primary -Mg grains. But, longer holding time can `deactivate’ the Al4C3 particles and poison the grain refining effect.

  20. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 3600C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  1. Alloying effects on hydrogen permeability of V without catalytic Pd overlayer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yukawa, H.; Suzuki, A. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Nambu, T. [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Matsumoto, Y. [Department of Mechanical Engineering, Oita National College of Technology, Maki, Oita 870-0152 (Japan); Murata, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2015-10-05

    Highlights: • Air–treated V–based alloy membranes without catalytic Pd overlayer are found to possess excellent hydrogen permeability. • They also exhibit good durability at high temperature. • Alloying effects are discussed in view of the new description of hydrogen permeation based on hydrogen chemical potential. - Abstract: Hydrogen permeability of air–treated V–based alloy membranes without Pd coating have been investigated. The diffusion–limiting hydrogen permeation reaction takes place even without catalytic Pd overlayer on the surface. It is shown that pure V and its alloy membranes without Pd overlayer possess excellent hydrogen permeability and good durability at high temperature. The new description of hydrogen permeation based on hydrogen chemical potential has been applied and the hydrogen flux is analyzed in terms of the mobility of hydrogen atom and the PCT factor, f{sub PCT}.

  2. Effect of Sr on forming properties of Al-Mg-Si based alloy sheets

    Institute of Scientific and Technical Information of China (English)

    LU Guang-xi; CHEN Hai-jun; GUAN Shao-kang

    2006-01-01

    The effects of Sr element on the forming properties of the Al-Mg-Si based alloy sheets were studied by tensile test,metallograph, DSC, XRD, SEM and TEM. The results show that the tensile strength of aluminum alloy sheet added 0.033%(mass fraction)Sr increases comparing with that of free Sr. Simultaneously, the forming properties of sheets evidently increase, the elongation hardenability (n) and plastic strain ratio (r) and Erichsen number increase 27.8%, 11.1%, 10.8% and 12%, respectively,and the forming limit diagram increases evidently, too. The analysis shows that Sr is surface active element, which can refine grains of alloys, promote precipitation, reduce activation energy ofβ" phase, and lead the formation of α-(Al8Fe2Si) phase instead of β-(Al5FeSi) phase. As a result, the forming properties of the alloy sheet increase.

  3. EFFECT OF CUTTING PARAMETERS ON SUPER ALLOY IN TURNING OPERATION UNDER DRY CONDITION

    Directory of Open Access Journals (Sweden)

    P.Marimuthu

    2014-12-01

    Full Text Available Ni-base super alloys are widely used in several industrial sectors, like petrochemical and power generation due to their high performance in aggressive environments. Inconel625 is primarily a Ni–Cr– Mo alloy used in different applications for its strength, excellent fabric ability and outstanding corrosion resistance. Machining of super alloy has been found to be a challenging task it has attracted considerable research. So, it is essential to know the cutting parameters for effective machining of super alloys. The present work focuses on finding the optimal cutting parameters for turning Inconel625 to achieve minimum surface roughness (SR, tool wear (TW and maximum material removal rate (MRR in CNC turning under dry conditions using TiAlN coated cutting tool. Single response optimization is performed by Taguchi method and multi response optimization is performed by desirability function analysis.

  4. Effect of Temperature and Electrolyte Composition on the Susceptibility of Alloy 22 to Localized Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    S.D. Day; K.J. Evans; G.O. Ilevbare

    2002-10-07

    The study of the electrochemical behavior of Alloy 22 has been carried out in various concentrated environments using different sample configurations. Comparisons were made between the electrochemical behaviors of Alloy 22 in concentrated chloride solutions, and in concentrated chloride solutions with nitrate ions (NO{sub 3}{sup -}). In other experiments, the effect of fluoride ions (F{sup -}) was investigated. These comparative studies were performed at various temperatures. The rate of corrosion was found to increase with increase in temperature. The presence of nitrate ions reduced corrosion attack on Alloy 22. F{sup -} was found to be more benign to Alloy 22 compared with chloride ions (Cl{sup -}). However a combination of F{sup -} and Cl{sup -} was found to initiate deeper crevices compared with the only Cl{sup -} in the electrolyte.

  5. Effect of homogenization process on the hardness of Zn–Al–Cu alloys

    Institute of Scientific and Technical Information of China (English)

    Jose D. Villegas-Cardenas; Maribel L. Saucedo-Mu?oz; Victor M. Lopez-Hirata; Antonio De Ita-De la Torre; Erika O. Avila-Davila; Jorge Luis Gonzalez-Velazquez

    2015-01-01

    The effect of a homogenizing treatment on the hardness of as-cast Zn–Al–Cu alloys was investigated. Eight alloy compositions were prepared and homogenized at 350 ℃ for 180 h, and their Rockwell "B" hardness was subsequently measured. All the specimens were analyzed by X-ray diffraction and metallographically prepared for observation by optical microscopy and scanning electron microscopy. The results of the present work indicated that the hardness of both alloys (as-cast and homogenized) increased with increasing Al and Cu contents; this increased hardness is likely related to the presence of theθandτ′ phases. A regression equation was obtained to determine the hardness of the homogenized alloys as a function of their chemical composition and processing parameters, such as homogenization time and tem-perature, used in their preparation.

  6. Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    FAN Jianfeng; YANG Changlin; XU Bingshe

    2012-01-01

    Oxidation and ignition of magnesium alloys at elevated temperature were successfully retarded by additions of Y and Ca.which could be melted at 1173 K in air without any protection.Thermogravimetric measurements in dry air revealed that the oxidation dynamics curves of Mg-2.5Ca alloy and Mg-3.5Y-0.79Ca alloy at high temperatures followed the parabolic-line law or the ubic-line law.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the oxide film on the surface of Mg-3.5Y-0.79Ca and Mg-2.5Ca alloys exhibited a duplex structure.which agreed with the results of thermodynamic analysis.By comparison,the ignition-proof effect of the combination addition of Y and Ca was better than that of the single addition of Ca.

  7. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.;

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first...... process, corresponding to simultaneous precipitation of fcc-Al crystals and the metastable bcc-(AlNi)(11)La-3-like phase, is governed by a eutectic reaction. The second process corresponds to the transformation of a residual amorphous alloy into fcc-Al, Al11La3, Al3Ni, and as yet unidentified phase......(s). The applied pressure strongly affects the crystallization processes of the amorphous alloy. Both temperatures first decrease with pressure in the pressure range of 0-1 GPa and then increase with pressure up to 4 GPa. The results are discussed with reference to competing processes between the thermodynamic...

  8. Effect of Sn on as-cast ageing behavior of Al-Si-Mg alloy

    Institute of Scientific and Technical Information of China (English)

    王桂青; 边秀房; 段佑峰; 张均艳

    2003-01-01

    The effect of minor additions of Sn on the as-cast ageing behavior of Al-11Si-0.35Mg alloy was investigated. It is shown that precipitation has been retarded in Sn containing alloy and more time is needed to reach its peak hardness,which is bigger than that of the base alloy. Analysis of the kinetic data shows that Sn addition does not change the growth dependent parameter n, but increases the nucleation density dependent parameter k. TEM results show that there are little precipitates in Sn containing alloy at the initial stage of as-cast ageing. However, the Sn addition increases the net density of precipitates during as-cast ageing, because there are many dislocation loops formed as ageing progresses and Sn segregated at the edges of dislocation loops, which acts as the nuclei of precipitates.

  9. Effects of Ca addition on microstructure and properties of AZ63 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    钱宝光; 耿浩然; 陶珍东; 赵鹏; 田宪法

    2004-01-01

    Effects of Ca addition on the microstructure and viscosity as well as electrochemical properties of casting AZ63 magnesium alloy were studied. Testing results show that the viscosity value increases with the increase of calcium content, especially at the higher temperature, and there exists such a relation between the ignition temperature and viscosity of magnesium alloy: when the melt viscosity increases, the ignition temperature increases too. The microstructure of AZ63 magnesium alloy is first refined and then coarsened with the increase of Ca addition. By the addition of 0.15% Ca, AZ63 alloy has more negative open-circuit potential(1. 624 5V), bigger anode efficiency (55.65%) and lower corrosion rate(0.214g/(m2·h).AZ63 allo6y containing some Ca content is a high driving-potential and high-efficiency sacrificial anodes material.

  10. Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation.The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.

  11. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications.

    Science.gov (United States)

    Souza, Maria E P; Lima, Lonetá; Lima, Carmo R P; Zavaglia, Cecília A C; Freire, Célia M A

    2009-02-01

    The electrochemical behaviour of two commercial titanium alloys Ti-6Al-4 V (ASTM F136) and Ti-13Nb-13Zr (ASTM F1713) was investigated in Ringer physiological solution at two pH values (5.5 and 7.0). The corrosion properties were examined by using electrochemical techniques: Potentiodynamic anodic polarization, cyclic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion properties of both alloys at different conditions were measured in terms of corrosion potential (E (corr)), corrosion current density (i (corr)) and passivation current density (i (pass)). Equivalent electrical circuits were used to modulate EIS data, in order to characterize alloys surface and better understanding the pH effect on the interface alloy/solution.

  12. Effect of age condition on fatigue properties of 2E12 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Liang; DU Feng-shan; DAI Sheng-long; YANG Shou-jie

    2010-01-01

    The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM)and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP)resistance in T3condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR)decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.

  13. Interface conjunction factors of the second phase particles in alloys and their effects

    Institute of Scientific and Technical Information of China (English)

    LI; Zhilin(李志林); LIU; Zhilin(刘志林); LIU; Weidong(刘伟东); ZHANG; Lingwen(张凌雯)

    2002-01-01

    The second phase in multi-phase alloys has connection with many important phenomena such as aging strengthening,dispersion strengthening,secondary hardening,crystal refinement.In this paper,the interface conjunction factors of the interface between MC(M=V,Nb,Ti) and austenite and martensite are calculate out.The relationship between these factors and the characteristics are analyzed.The reason for the second phases being fine and dispersing and their strengthening and toughening effect on the alloy is explained using the relationship.Based on the relationship,the valence electron structure of the interface between the second phase particles and the matrix can be optimized by changing the alloying elements,which make it possible to design the composition of alloys from the valence electron structure of the second phase particles.``

  14. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  15. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    Science.gov (United States)

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  16. The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    ZK60A nanocomposite containing Al2O3 nanoparticle reinforcement (50 nm average size) was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 15% higher hardness than the monolithic alloy. Compared to the monolithic alloy (in tension), the nanocomposite exhibited lower yield strength (0.2%TYS) (−4%) and higher ultimate strength (UTS), failure strain, and work of fracture (WOF) (+13%, +170%, and +200%, respectively). Compared to the monolithic alloy (in compression), the nanocomposite exhibited lower yield strength (0.2%CYS) (−5%) and higher ultimate strength (UCS), failure strain, and WOF (+6%, +41%, and +43%, respectively). The effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of ZK60A are investigated in this article.

  17. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H2SO4, even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni2(Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and P, may

  18. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    International Nuclear Information System (INIS)

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni3Si and δ-Ni2Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar )Cu (01-bar 1-bar )β (010)δ, [100]Cu [100]β [001]δ; (111-bar )Cu (111-bar )β (02-bar 1)δ, [112]Cu [112]β [012]δ. Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy

  19. The Sintering Temperature Effect on the Shrinkage Behavior of Cobalt Chromium Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Kamardan

    2010-01-01

    Full Text Available Problem Statement: Co-Cr based alloys which is well known for its high Youngs modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio-material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400°C. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material.

  20. Effect of the addition of Ge to the FINEMET alloy

    International Nuclear Information System (INIS)

    The results obtained by partially substituting Ge for B and Si in the FINEMET alloy for the purpose of improving its magnetic properties at high temperatures are presented in this work. Nanocrystalline ribbons were obtained from controlled crystallization of amorphous material made employing the melt spinning technique. The studied compositions were: Fe73.5Si13.5Ge2Nb3B7Cu1 and Fe73.5Si13.5Ge4Nb3B5Cu1. The structural evolution of these alloys was studied using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and these results were correlated with their magnetic properties at different annealing temperatures. The coercivity obtained for both alloys was below 1 A/m at anneling temperatures between 773 and 823 K. The amorphous saturation magnetization was satisfactory, almost 137 emu/g, comparable with that obtained for FINEMET alloys. The nanocrystallization and the Curie temperatures are dependent on Ge concentration

  1. Magnetic properties and magnetocaloric effect in Ni–Mn–Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dan, N.H., E-mail: dannh@ims.vast.ac.vn [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Duc, N.H.; Yen, N.H.; Thanh, P.T. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Bau, L.V.; An, N.M. [Hong Duc University, 565 Quang Trung, Dong Ve, Thanh Hoa (Viet Nam); Anh, D.T.K.; Bang, N.A.; Mai, N.T. [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Anh, P.K. [Vietnam Academy of Military Science, 322 Le Trong Tan, Thanh Xuan, Hanoi (Viet Nam); Thanh, T.D. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Phan, T.L. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yu, S.C., E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2015-01-15

    Magnetic and magnetocaloric properties in Ni{sub 50}Mn{sub 50−x}Sn{sub x} alloys with wide range of the Sn-concentration (x=0–40) were investigated. The alloys were prepared by arc-melting and subsequently annealing at 850 °C for 4 h. The X-ray diffraction analyses manifest the formation of the crystalline phases (Ni{sub 2}MnSn, NiMn, Ni{sub 3}Sn{sub 2}, Mn{sub 3}Sn, and MnSn{sub 2}) in the alloys with various compositions and fabrication conditions. With increasing x, the saturation magnetization first increases from near zero (at x=10) to above 40 emu/g (at x=20) and then decreases to below 10 emu/g (at x=40) for both the as-melted and annealed cases. The martensitic–austenitic transition was observed in the alloys with a narrow range of x (13–15). The magnetic transitions in the alloy can be controlled by changing Sn-concentration. The alloy reveals both the positive and negative entropy changes with quite large magnitude (∆S{sub m}>1 J/kg K with ∆H=12 kOe) with appropriate compositions and annealing conditions. - Highlights: • Crystalline phases and magnetic properties in Ni{sub 50}Mn{sub 50−x}Sn{sub x} alloys (x=0–40). • Simultaneous transitions of structural and magnetic phases. • Coexistence of positive and negative giant magnetocaloric effect in Heusler alloys. • Tuning giant magnetocaloric effect in room temperature region.

  2. Effect of Equal Channel Angular Extrusion on the Microstructures and Properties of Two Extruded Al-Mg-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    M. Cai; G. W. Lorimer

    2005-01-01

    The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun scanning electron microscope (FEG-SEM) and a transmission electron microscope (TEM). Two contrasting alloys: a dilute alloy, based on alloy 6061 and a concentrated alloy, based on alloy 6069 were employed for this research. It has been found that prior ECAE to extrusion promotes high angle grain boundaries (HAGBs) in the extrusions, and the increase in HAGBs ratio is due to the large shear deformation involved in the processof ECAE. Tensile testing results show that a further ageing treatment strengthens the alloys after extrusion and the ECAE processedextrusions are more ductile than conventional extrusions.

  3. Twice reverse shape memory effect in CuZnAl shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    李周; 汪明朴; 徐根应; 郭明星

    2004-01-01

    The variations of the shape memory effects in the Cu-13Zn-15Al(mole fraction, %) alloy upon successive heating (the rate of heating is 5 ℃/min) have been studied by means of p-T curve , shape memory effect measurement, optical metallographical observation and X-ray diffraction. The first abnormal reverse shape memory effect occurs when the tested alloy is heated to the temperature below 320 ℃; when it is heated to the temperature between 320 ℃ and 450 ℃, the forward shape memory effect occurs; in the two stages, the shape of the sample remains the same as that in the furnace when it is taken out from the furnace and air-cooled; when the tested alloy is heated to the temperature above 450 ℃, the shape of the sample remains unchanged during heating, but the second reverse shape memory effect occurs after it is air-quenched.

  4. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  5. Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior

    International Nuclear Information System (INIS)

    A simple thermodynamic theory is proposed for the quantitative description of giant magnetocaloric effect observed in metamagnetic shape memory alloys. Both the conventional magnetocaloric effect at the Curie temperature and the inverse magnetocaloric effect at the transition from the ferromagnetic austenite to a weakly magnetic martensite are considered. These effects are evaluated from the Landau-type free energy expression involving exchange interactions in a system of a two magnetic sublattices. The findings of the thermodynamic theory agree with first-principles calculations and experimental results from Ni-Mn-In-Co and Ni-Mn-Sn alloys, respectively

  6. Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    L' vov, Victor A. [Institute of Magnetism, Kyiv 03142 (Ukraine); Taras Shevchenko National University, Kyiv 01601 (Ukraine); Kosogor, Anna, E-mail: annakosogor@gmail.com [Institute of Magnetism, Kyiv 03142 (Ukraine); National University of Science and Technology ‘MISiS’, Moscow 119049 (Russian Federation); Barandiaran, Jose M. [BCMaterials and University of Basque Country, UPV/EHU, Bilbao 48080 (Spain); Chernenko, Volodymyr A. [BCMaterials and University of Basque Country, UPV/EHU, Bilbao 48080 (Spain); Ikerbasque, Basque Foundation for Science, Bilbao 48013 (Spain)

    2016-01-07

    A simple thermodynamic theory is proposed for the quantitative description of giant magnetocaloric effect observed in metamagnetic shape memory alloys. Both the conventional magnetocaloric effect at the Curie temperature and the inverse magnetocaloric effect at the transition from the ferromagnetic austenite to a weakly magnetic martensite are considered. These effects are evaluated from the Landau-type free energy expression involving exchange interactions in a system of a two magnetic sublattices. The findings of the thermodynamic theory agree with first-principles calculations and experimental results from Ni-Mn-In-Co and Ni-Mn-Sn alloys, respectively.

  7. Effect of topical fluoride application on titanium alloys: a review of effects and clinical implications.

    Science.gov (United States)

    Fragou, Stella; Eliades, Theodore

    2010-01-01

    The purposes of this review were to: summarize the currently available evidence on the effect of fluoride on titanium alloys; discuss the mechanisms involved; and assess the clinical relevance and validity of statements deriving from in vitro approaches. The spectrum of effects noted include: morphological variations, such as increased roughness with adverse effects on sliding mechanics; mechanical properties of the wires, which may entail effects on the superelastic plateau of nickel-titanium wires, or reduction in the strength of wires, which can result in frequent intraoral failures; and release of ions during service. Reduced nickel release rates have been documented, however, from retrieved nickel-titanium wires presumably due to the passive layer formed. In relevant research, forming oxide on titanium alloys has been proposed to provide immunity to further degradation and ionic release, since nickel ions must diffuse through this layer to be released. The described evidence of fluoride on titanium alloys derives mostly from in vitro research, which includes oversimplifications in simulating the oral environment. The reactivity in laboratory experiments is dramatically increased relative to the actual clinical conditions, which exaggerates the effects noted. The effects shown have not been validated in vivo, since the only available evidence on intraorally fractured nickel-titanium archwires did not support the implication of hydrogen embrittlement as a failure mechanism. Rather, fractures were found to be related to: (1) mechanical factors associated with loading of the wire in specific arch sites; and (2) the masticatory forces. Clinically, the use of fluoride varnishes at specific, caries-risk sites may provide protection while minimizing the potential risk of adverse effects.

  8. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  9. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  10. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    International Nuclear Information System (INIS)

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm (∼700 deg. C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W

  11. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    Science.gov (United States)

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-01

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm (˜700 °C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  12. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cancan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Lingqian [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China)

    2015-07-15

    Highlights: • Laser surface melting was used on AM60B Mg alloy. • The microstructure, composition and corrosion behavior of the as-received and LSM treated specimens were compared. • The laser treated alloy exhibited better corrosion resistance than the as-received one in the long term. • A model of two different corrosion mechanisms was established. - Abstract: Surface modification of laser surface melting (LSM) was applied to the AM60B magnesium alloy using a 10 kW continuous-wave CO{sub 2} laser. The microstructure, composition and corrosion resistance of AM60B magnesium alloy after LSM treatment were investigated by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and corrosion tests, respectively. Results showed that the LSM treatment produced a continuous and homogeneous modified layer with refined grains, enriched Al element and redistributed intermetallic compounds on AM60B alloy. The corrosion resistance of the AM60B alloy was enhanced by the LSM treatment. The enhancement of the corrosion resistance was mainly attributed to the reduced corrosion susceptibility of Al enriched α-Mg matrix and the barrier effect of uniformly distributed β-phase of the LSM modified layer.

  13. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    International Nuclear Information System (INIS)

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  14. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minqing, E-mail: minqingw@yahoo.com [Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Advanced High Temperature Materials, Beijing 100081 (China); Du, Jinhui; Deng, Qun [Central Iron and Steel Research Institute, Beijing 100081 (China); Beijing Key Laboratory of Advanced High Temperature Materials, Beijing 100081 (China); Tian, Zhiling [Central Iron and Steel Research Institute, Beijing 100081 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-25

    Since the discovery in the 1990s of the abnormal improvement produced by phosphorus in the stress rupture and creep life of Inconel 718 (hereafter referred to as 718), a great deal of additional research followed. However, the mechanism of the action of phosphorous in 718 is still in question. This paper details an experimental study that was intended to determine how phosphorus acts upon the microstructure and mechanical properties of Ni–Fe based alloy 718Plus. The results show that phosphorus has little effect on the strength and ductility of alloy 718Plus, but can significantly improve the stress rupture life. Phase constituents such as the δ and γ′ phases were quantitatively analyzed using electrolytic phase isolation and micro-chemical and XRD analysis as the phosphorous content of the alloy was increased. A full atom mapping of the distribution of phosphorus in the 718Plus alloy was quantitatively determined using APT (Atom Probe Tomography) technique. The results showed that there is no significant segregation of phosphorus at the γ′/γ and γ′/γ′ interface, but it significantly segregates at the grain boundaries and δ/γ interface. It was found that phosphorus is extremely depleted in the δ phase, which is believed to inhibit δ-phase precipitation by preventing δ phase nucleation and growth in the 718Plus alloy. Finally, the influence of phosphorus on the microstructure and mechanical properties of the 718Plus alloy was discussed.

  15. Effect of phosphor addition on eutectic solidification and microstructure of an Al-13%Si alloy

    Directory of Open Access Journals (Sweden)

    Liao Hengcheng

    2011-11-01

    Full Text Available As the refiner or modifier, the master alloys containing high concentration phosphor are widely used in preparing eutectic or hypereutectic Al-Si alloys. To study the effect of phosphor addition on the eutectic solidification and microstructure of the Al-13%Si alloy, an investigation has been undertaken by means of thermal analysis and micro/macro-structure observation. Results indicate that addition of phosphor in near eutectic Al-Si alloy promotes the nucleation of eutectic but has little refinement impact on primary Si particles as expected. Conversely, both primary Si particles and eutectic Si flakes become slightly coarser in P-rich alloys. The coarsening of eutectic Si flakes ties closely to the increased eutectic growth temperature with phosphor addition. The eutectic solidification of the alloy proceeds from the near mold zone towards the center, and it is also found that a few independent nucleation regions emerge in liquid at the solidification front due to the addition of phosphor.

  16. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Cu–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xianhua, E-mail: xhchen@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045 (China); Liu, Lizi [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Mao, Jianjun; Xu, Xiaoyang; Yan, Tao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China)

    2015-07-15

    Highlights: • The second phases were characterized systematically in Mg–Zn–Cu–Zr alloys. • Excellent EMI SE was successfully obtained by adding Cu. • Mechanism of EMI SE was analyzed. • Good mechanical properties could be achieved by adding low Cu content. - Abstract: The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE) and mechanical properties of Mg–Zn–xCu–Zr alloys (x = 0–2.32 wt.%) were investigated in this study. The results indicated that the addition of Cu led to the formation of MgZnCu phase with a face-center cubic structure, and resulted in grain refinement. EMI SE increased significantly with increasing Cu content in extruded state. The alloy with 2.32 wt.% Cu exhibited optimal EMI shielding capacity with SE value of 84–117 dB. Meanwhile, it was found that good mechanical properties could be achieved by adding low Cu content. The extruded alloy with 0.37 wt.% Cu presented higher yield strength (276 MPa), ultimate tensile strength (346 MPa) and elongation (δ = 11.4%) compared with other extruded alloys. However, a higher Cu content would substantially deteriorate tensile properties of the alloys. Based on microstructure observation, the variation of EMI shielding capacity and mechanical properties have been discussed.

  17. Effect of Cerium on Gas Evolution Behavior of Pb-Ca-Sn Alloy

    Institute of Scientific and Technical Information of China (English)

    Lin Guanfa; Zhou Genshu; Li Dangguo; Zheng Maosheng

    2006-01-01

    The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS).Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage.Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy.The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode.The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction.All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy.It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.

  18. Effects of titanium-dental restorative alloy galvanic couples on cultured cells.

    Science.gov (United States)

    Bumgardner, J D; Johansson, B I

    1998-01-01

    The potential exists for titanium and amalgams to become galvanically coupled in the oral cavity. While low galvanic corrosion rates have been measured in vivo for titanium-amalgam or mercury-free alloy couples, concerns exist over released corrosion products and adverse tissue responses. It was hypothesized in this study that coupling titanium to amalgams or gallium alloys increased the release of metallic corrosion products and decreased cellular activity and function. The effects of titanium coupled and uncoupled to a conventional amalgam, palladium-enriched spherical high copper amalgam, a dispersed type high copper amalgam, and a mercury-free gallium alloy were evaluated in 24-h cell culture tests. Viability, proliferation, and collagen synthesis were evaluated by the uptake of neutral red, 3H-thymidine, and immunoassay of procollagen, respectively, and compared to cells not exposed to any test material. The gallium alloy-titanium couple resulted in significant decreases in cellular viability, proliferation, and collagen synthesis as compared to the other coupled and uncoupled samples. Few differences in the cellular responses of the other coupled and uncoupled samples were observed. Atomic absorption analyses indicated increased release of metal ions from the amalgam and gallium alloy samples coupled to titanium as compared to their uncoupled condition, although the differences were not always significant. Galvanic corrosion of amalgam-titanium couples in the long term may become significant, and further research is needed. Coupling the gallium alloy to titanium may result in increased galvanic corrosion and cytotoxic responses.

  19. Influence of process factors on shape memory effect of CuZnAl alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-xia; SI Nai-chao; XU Gui-fang

    2006-01-01

    Thermal cycle training of CuZnAI shape memory alloys with different transformation temperatures was carried out. The influence of different pre-strains, heat treatments and media on the shape memory effect(SME) of CuZnAl alloys with different transformation temperatures was studied by means of scanning electron microscopy(SEM) and X-ray diffractometry(XRD).Experimental results show that despite respective variation in heat treatment, medium and cycling number, the recovery rate always decreases as pre-strain increases. The decline is obvious when pre-strain is less than 2.6% but not so sharp when pre-strain exceeds 2.6%. Larger pre-strain results in more than one slip system and causes intercutting of the martensite strips among martensitic variants, then leads to the decline of SME. The SME of alloys with transformation temperatures below 347 K is larger than that of alloys beyond 361 K by 20%-40%. The recovery rate of two-step aged alloy is higher than that of step-quenched alloy by 20%-25%.During thermal cycling, the recovery rate in oil is better than that in water.

  20. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    Science.gov (United States)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.

  1. Effect of rare earth elements on the microstructure of Mg-Al alloys

    Directory of Open Access Journals (Sweden)

    T. Rzychoń

    2006-04-01

    Full Text Available Purpose: The automotive use of magnesium is currently restricted to low-temperature structural components. Rare earth additions such as Ce, Nd, La and Pr are known to improve the creep performance. The aim of the research was to determine the effect of rare earths elements on the as-cast microstructure of magnesium alloys containing 4 wt% aluminum.Design/methodology/approach: The study was conducted on Mg-4Al-2RE (AE42 and a new Mg-4Al-4RE (AE44 alloys in the as-cast condition. The microstructure was characterized by optical microscopy (Olympus GX-70 and a scanning electron microscopy (Hitachi S3400 equipped with an X-radiation detector EDS (VOYAGER of NORAN INSTRUMENTS. The phase identification of these alloys was identified by X-ray diffraction (JDX-75.Findings: The microstructure of AE42 alloy consists of α-Mg solid solution with divorced eutectic Mg17Al12 + α-Mg, RE-rich phases and Mn-rich phase. The increase of RE contents from 2 wt% to 4 wt% leads to a change of microstructure of these alloys. In AE44 alloy was observed globular, lamellar and acicular precipitations of Al11RE3 and Al3RE phases. Moreover, there was found globular Mn-rich phase existence, but the Mg17Al12 phase was not observed.Research limitations/implications: The increase of RE content to 4 wt% caused the formation of new phases in the microstructure and prevented the formation Mg17Al12 phase. These factors can improve the creep resistance of the Mg-Al-RE alloys. The future research will contain creep tests and microstructural investigations of cast and die-cast alloys using TEM microscopy.Practical implications: The improvement of creep resistance of Mg-Al alloys can cause their application in automotive industry on the elevated-temperature structural components (above 150 °C. Results of investigation may be useful for preparing die casting technology of the Mg-Al-RE alloys.Originality/value: paper includes the results of microstructural investigations of new AE44

  2. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    International Nuclear Information System (INIS)

    Controlling the elements content in the niobium solid solution (NbSS) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, NbSS grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr2Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of NbSS grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in NbSS and brittle Cr2Nb and Nb-silicides precipitate phases display negative effect

  3. Corrosion effects of runway de-icing chemicals on aircraft alloys and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen-Saarivirta, E., E-mail: elina.huttunen-saarivirta@tut.fi [Department of Materials Science, Tampere University of Technology, P.O. Box 589, FI-33101 Tampere (Finland); Kuokkala, V.-T.; Kokkonen, J. [Department of Materials Science, Tampere University of Technology, P.O. Box 589, FI-33101 Tampere (Finland); Paajanen, H. [Finnish Air Force Materiel Command, Plans Division, Support Systems Section, P.O. Box 210, FI-33101 Tampere (Finland)

    2011-03-15

    Research highlights: {yields} Corrosion effects of urea and four new runway de-icing chemicals on Al alloy 2024, Mg alloy RZ5 and cadmium-plated and subsequently chromate-treated steel 4340 were examined by three types of corrosion tests. {yields} Corrosion effects of urea on Al alloy 2024 were more pronounced than those of the new de-icing chemicals, with pitting corrosion being evident in urea in all tests. {yields} The rate of corrosion in Mg alloy RZ5 was often higher in new de-icing chemicals than in urea, although the form of corrosion was the same in most cases, i.e., general corrosion. {yields} Corrosion effects of the five runway de-icing chemicals on cadmium-plated and subsequently chromate-treated steel 4340 were slightly different in all three tests, but some loss of the coating layers was detected in all cases. - Abstract: Corrosion effects of five runway de-icing chemicals on aluminium alloy 2024, magnesium alloy RZ5 and cadmium-plated and subsequently chromate-treated steel 4340 were investigated by cyclic polarisation measurements, open circuit potential monitoring and cyclic chemical exposure tests. The runway de-icing chemicals included in the study contained urea, which has a long history as a runway de-icing chemical, and four new commercial de-icing chemicals, which were based on betaine and potassium formate. Corrosion effects of urea on aluminium alloy 2024 were more pronounced than those of the new de-icing chemicals. In urea, the breakdown potential, indicating the onset of pitting, was clearly distinguishable in the cyclic polarisation curve and pitting corrosion was detected on the specimen surface after all three types of tests. Weight losses during the chemical exposure tests were also higher for urea than for the other four chemicals, where pitting corrosion was only occasionally detected. The opposite was true in the case of magnesium alloy RZ5: although the alloy experienced general corrosion in each de-icing chemical included in the

  4. Effect of radiation on bulk swelling of plutonium alloys

    International Nuclear Information System (INIS)

    Several studies show that plutonium alloys present bulk swelling. More precisely, length (as measured by dilatometry) and lattice parameter (as measured by X-ray diffraction) increase with time and seems to reach saturation after a few months for the microscopic scale. This bulk swelling can be correlated to self-induced radiation due to the decay of the different plutonium isotopes (238Pu, 239Pu, 241Pu and 242Pu) which also induce helium that tends to forms clusters, then bubbles. Many experimental and theoretical results have already been published on this topic. The goal of this paper is to review some of the results and to propose a strategy for both experiments and modelling to try to answer some of the remaining questions regarding swelling and more generally self-irradiation defects in plutonium alloys

  5. Effect of Cd and Sn Addition on the Microstructure and Mechanical Properties of Al-Si-Cu-Mg Cast Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Rong-de; LI Run-xia; YU Li; HU Zhuang-qi

    2004-01-01

    The present work has investigated the effect of trace elements Cd and Sn on the microstructure and mechanical properties of Al-Si-Cu-Mg cast alloy. With the increase of Cd addition the strength of alloy rises at first and then drops. The optimal amount of Cd and Sn addition for Al-Si-Cu-Mg alloy is about 0.27% and 0.1% respectively. Due to the formation of some coarse Cd-rich phases and pure Cd particles the mechanical properties of alloy decrease when Cd amount exceeds0.27%. When more than 0.1% Sn added, some Sn atoms form low-melting eutectic compound at grain boundary, and then cause over-burning in alloy when solution treated, which may deteriorate properties of alloy, especially ductility of alloy.On the other hand, the addition of Cd and Sn remarkably increases the peak hardness and reduces the time to reach aging peak in Al-Si-Cu-Mg alloy. The action of Cd/Sn in quaternary Al-Si-Cu-Mg alloy is effectively the same as that occur in binary Al-Cu alloy that the enhanced hardening associated with Cd / Sn addition is due to the promotion of the θ' phase.

  6. The thermal transient effect on some nickel-based alloys

    International Nuclear Information System (INIS)

    This paper studies two nickel-based alloys after thermal transient tests. Two alloys were tested, namely Inconel 617 (UNS N06617) and Haynes 230 (UNS N06230). These materials are study for to be used in the construction of the steam generators of the future NPP reactors which must operate in severe conditions (high temperature, thermo-mechanical stress, aggressive media). The experiment consisted in thermal transient tests using a few scenarios: fast heating rates (50OC/minute) up to 1,000OC, maintaining this temperature level (0-60 minutes) and slowly/fast cooling. The metallographic analysis consisted in microstructure, micro-hardness determinations and traction tests. The average grain size was determined by linear interception method. The micro hardness was calculated by the relationship from the device technical book. On the traction diagrams the following mechanic characteristics were obtained: breaking resistance (Rm), elongation at rupture (A) and elastic modulus (E). The tested alloys were compared with the received materials. (authors)

  7. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy

    Indian Academy of Sciences (India)

    S Farahany; A Ourdjini; M H Idris; L T Thai

    2011-10-01

    Nucleation and growth, temperature measurements andmicrostructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0.2°C and the morphology of silicon displayed the same flakelike structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1.2 which is equivalent to a Sr/Bi ratio of 0.43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.

  8. The size-effect on the formation enthalpy of nanosized binary ti based alloy

    International Nuclear Information System (INIS)

    The effects of grain size and composition on the formation enthalpy of nano binary Ti-based alloy are investigated by taking the surface effect into account within the modified Miedema model. It is demonstrated that the formation enthalpy of binary Ti based alloy with nano grains is size-dependent and exhibits evident size-effects. The formation enthalpy increases with the size decrease, and its value turns from negative to positive at a critical size, which will weaken the thermal stability of the nano grains. Furthermore, the composition segregation taking place in the nano grains of the Ti based alloy is obvious when the grain size is less than 10 nm and the tendency of segregation is dependent on the surface formation enthalpy of nanoparticle. (authors)

  9. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2014-06-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  10. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2015-07-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  11. Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    S Sriram; R Balasubramaniam; M N Mungole; S Bharagava; R G Baligidad

    2005-10-01

    The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

  12. Effect of Boron and Cerium on Corrosion Resistance of Cu -Fe -P Alloy

    Science.gov (United States)

    Zou, Jin; Lu, Lei; Lu, De-ping; Liu, Ke-Ming; Chen, Zhi-bao; Zhai, Qi-jie

    2016-03-01

    The effects of B and Ce on the corrosion resistance of Cu-0.22Fe-0.06P alloy were investigated by salt spray and electrochemical tests. The corrosion morphology was studied by scanning electron microscopy. The corrosion products were characterized by energy-dispersive x-ray spectroscopy and x-ray diffraction analysis. The impurity content was determined by inductively coupled plasma mass spectrometry. The conductivity was measured using an eddy current conductivity meter. The grains of Cu-0.22Fe-0.06P alloy were refined by the addition of B and Ce. The electrochemical corrosion process of alloy is retarded due to purification effect of B and Ce. After the addition of a trace amount of B, the corrosion resistance of the alloy decreased. The corrosion resistance of Cu-0.22Fe-0.06P-0.025B-0.05Ce was better than that of Cu-0.22Fe-0.06P-0.025B due to the fact that the purification effect of Ce is better than that of B. The main corrosion products of the Cu-Fe-P alloys in a NaCl solution are Cu2Cl(OH)3 and Cu2O. The addition of trace amounts of B and Ce did not change the components of the corrosion product.

  13. Effect of Cerium on Microstructure and Electrochemical Performance of Ti-V-Cr-Ni Electrode Alloy

    Institute of Scientific and Technical Information of China (English)

    Qiao Yuqing; Zhao Minshou; Zhu Xinjian; Cao Guangyi

    2007-01-01

    Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x=0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (RT) to decrease and exchange current density (I0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively. The diffusion coefficient of hydrogen (D) in the bulk alloy electrode decreased with addition of Ce, but it did not decrease so much, and the apparent activation energy (△rH) was far higher than that of the AB5 type alloy.

  14. Effects of Thermal Exposure on Properties of Al-Li Alloys

    Science.gov (United States)

    Shah, Sandeep; Wells, Douglas; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Aluminum-Lithium (Al-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional Al alloys. For example, the application of Al-Li alloy 2195 to the space shuffle external cryogenic fuel tank resulted in weight savings of over 7,000 lb, enabling successful deployment of International Space Station components. The composition and heat treatment of 2195 were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time-dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. Literature surveys have indicated that there is limited thermal exposure data on Al-Li alloys. The effort reported here was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of Al-Li alloys C458, L277, and 2195 in plate gages. Tensile, fracture toughness, and corrosion resistance were evaluated for both parent metal and friction stir welds (FSW) after exposure to temperatures as high as 300 F for up to 1000 hrs. Microstructural changes were evaluated with thermal exposure in order to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Friction stir welds of all alloys showed a drop in elongation with increased length of exposure. Understanding the effect of thermal exposure on the properties and microstructure of Al-Li alloys must be considered in defining service limiting temperatures and exposure times for a reusable cryotank structure.

  15. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    Science.gov (United States)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2002-01-01

    Aluminum-Lithium (AL-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional aluminum alloys. For example, the application of an Al-Li alloy to the space shuttle external cryogenic fuel tank contributed to the weight savings that enabled successful deployment of International Space Station components. The composition and heat treatment of this alloy were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. As most aerospace structural hardware is weight sensitive, a reusable cryotank will be designed to the limits of the materials mechanical properties. Therefore, this effort was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of one relatively production mature alloy and two developmental alloys C458 and L277. Tensile and fracture toughness behavior was evaluated after exposure to temperatures as high as 3oooF for up to IO00 hrs. Microstructural changes were also evaluated to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Characterizing the effect of thermal exposure on the properties of Al-Li alloys is important to defining a service limiting temperature, exposure time, and end-of-life properties.

  16. Effects of alloying elements and solution-annealing temperature on the mechanical properties of austenitic Fe-Mn-C alloy

    International Nuclear Information System (INIS)

    In order to investigate the effects of various alloying elements including S as a free-machining element on the mechanical properties of high manganese non-magnetic steel, tensile and Charpy impact tests were carried out in the annealed condition. The mechanism of the observed large strengthening effect of V especially on the 0.2% proof stress was investigated by examining Petch relation and its solution hardening effect. A linear regression equation which relates the 0.2% proof stress to the chemical composition is obtained. The strengthening effect of ferrite-forming substitutional element becomes greater in the order of Cr, Mo and V. Especially, the effect of V on the 0.2% proof stress is comparable with that of interstitial element C. While, austenite-forming substitutional elements Ni and Mn have little effect on the strength. The elongation and Charpy impact toughness show decreasing tendencies by the additions of ferrite-forming substitutional elements and S. However, interstitial elements C and N hardly decrease the elongation irrespective of their large strengthening effect. 0.2% proof stress and tensile strength decrease with increasing solution annealing temperature and a Petch relation is found. The large strengthening effect of V cannot be explained by its small solution hardening effect and is rather considered to be mainly attributable to grain refining by the V addition. (author)

  17. The effects of low doses of 14 MeV neutrons on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Miniature tensile specimens of high purity copper and five copper alloys were irradiated with D-T fusion neutrons in the RTNS-II to fluences up to 2.5x1022 n/m2 at 900C and 2900C. The series of alloys includes solution-strengthened, precipitate-strengthened and dispersion-strengthened alloys. To compare fission and fusion neutron effects, some of the alloys were also irradiated at the same temperatures to similar damage levels of the Omega West Reactor. Tensile tests were performed at room temperature, and the radiation-induced changes in tensile properties are examined as functions of fluence and displacements per atom (dpa). All the alloys sustain less irradiation-induced strengthening than pure copper. In contrast to pure copper, the effects of fission and fusion neutrons on the yield stress changes in the copper alloys correlate well on the basis of dpa. (orig.)

  18. The effects of low doses of 14 MeV neutrons on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Miniature tensile specimens of high purity copper and five copper alloys were irradiated with D-T fusion neutrons in the RINS-II to fluences up to 2.5 x 1022 n/m2 at 90 and 2900C. The series of alloys includes solution-strengthened, precipitate-strengthened and dispersion-strengthened alloys. To compare fission and fusion neutron effects, some of the alloys were also irradiated at the same temperatures to similar damage levels in the Omega West Reactor. Tensile tests were performed at room temperature, and the radiation-induced changes in tensile properties are examined as functions of fluence and displacements per atom (dpa). All the alloys sustain less irradiation-induced strengthening than pure copper. In contrast to pure copper, the effects of fission and fusion neutrons on the yield stress changes in the copper alloys correlate well on the basis of dpa

  19. Further investigations on high temperature magnetic after-effect in iron alloys containing oxygen

    Science.gov (United States)

    Földeáki, M.; Stefán, M.; Köszegi, L.; Kisdi-Koszó, É.

    1980-04-01

    Magnetic after-effect and disaccommodation measurements were performed on iron alloys containing oxygen. A new effect was found. Time dependence, activation energy and ageing properties were determined and interpreted as the relaxation of dislocations with mobile oxygen Cottrell clouds and as the relaxation of interstitial clusters around the precipitates.

  20. Effects of irradiation on properties of refractory alloys with emphasis on space power reactor applications

    International Nuclear Information System (INIS)

    The probable effects of irradiation on niobium and tungsten alloys in use as components of thermionic convertors in a space reactor were reviewed by the author in 1971. While considerably more data on refractory metals have been generated since that time, the data have not been reviewed with respect to space reactor applications. This paper attempts such a review. The approach used is to work from the most recently available review of irradiation effects for each alloy system (where such a review is available) and to discuss that review and more recent data judged to be the most useful in establishing likely behavior in high-temperature reactor service. 28 figures, 6 tables

  1. Effect of electromagnetic field on macrosegregation of continuous casting 7075 alloy

    Institute of Scientific and Technical Information of China (English)

    张北江; 崔建忠; 路贵民; 张勤; 班春燕

    2003-01-01

    The effect of electromagnetic field on macrosegregation of continuous casting aluminum alloy was stud-ied. 7075 aluminum alloy ingot with diameter of 200 mm was produced by electromagnetic casting. Magnitude of coilcurrent was varied from 100 A to 600 A, and frequency from 10 Hz to 100 Hz. Variation of element content along theradius of ingot was examined by means of chemical analysis. The results show that electromagnetic casting processcan effectively reduce the macrosegregation, and electromagnetic frequency has a great influence on element distribu-tion along the radius of ingot. When frequency is 30 Hz, macrosegregation is eliminated completely.

  2. Effect of lithium on the casting microstructure of Cu-Li alloys

    Institute of Scientific and Technical Information of China (English)

    ZHU Dachuan; SONG Mingzhao; YANG Dingming; CHEN Jiazhao; TU Mingjing

    2005-01-01

    The effect of lithium on the casting microstructure of Cu-Li alloys was studied via the Wild MPS 46 Automatic camera, Deitz Diaplan, and scanning electron microscope. The result shows that trace lithium added to copper coarsens the grains of Cu-Li alloys in equiaxed crystal area because of the excellent purification effect. With the amount of lithium increasing, the average grain size increases sharply. But when the amount of lithium increases more, the average grain size decreases instead. At the same time, the typical dentritic crystal area of copper is diminished when lithium is added to pure copper.

  3. Effect of selected microadditives on the mechanical properties of aluminium alloys

    OpenAIRE

    Rzadkosz S.; Staszczak L.

    2007-01-01

    The effect of iron impurities on microstructure and mechanical properties of cast Al-Cu and Al-Zn-Mg alloys was discussed. The role of iron in the process of solutioning and ageing of these alloys was described. Basing on the results of investigations, a comparative analysis was made to disclose the effect of low content (microadditives) of the elements, like Mn, Ti, Zr, B, Cr, Ni, Zn, Sn, Cd, In, Mg, Sb, and Ag on the primary structure of castings, mainly on the morphology of iron-bonding in...

  4. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  5. Effect of La and Nd on microstructures and mechanical properties of AZ61 wrought magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    周海涛; 曾小勤; 丁文江; 马春江; 朱燕萍

    2004-01-01

    Effects of La and Nd addition on the microstructure and mechanical properties of the AZ61 alloy have been investigated. The results show that when La and Nd are added into the AZ61 alloy respectively, the β(Mg17Al12 ) phase is refined and granulated, and new phases are formed in the form of small rod-like shape, which are verified as La3 Al11 and Nd3 Al11 phase by X-ray diffraction and TEM observation. Microstructure observations show that the effective efficiency of La addition is higher than that of Nd addition, thus the sizes ofβ(Mg17 Al12 ) and La3 Al11 phase are relatively smaller than those ofβ(Mg17 Al12 ) and Nd3 Al11 phases in both AZ61 alloy and Nd-containing alloy. The increase of the tensile strength and elongation of AZ61 alloy refers to the existence of small rod-like La3Al11 and Nd3 Al11 phases, and fine granulatedβ(Mg17 Al12) phase.

  6. Effect Of Cooling Rate On Thermal And Mechanical Properties Of Cu-%24.2Mn Alloy

    International Nuclear Information System (INIS)

    In this research, different heat and mechanical treatments have been applied to the Cu-%24.2Mn and some samples have been obtained from this alloy. On these samples, phase transformations have been formed by thermal and mechanical effect. Morphological, mechanical and crystallographic properties of the phase transformations have been examined by using different physical methods. Austenite phase has been obtained in the samples which have been applied slow and rapid cooling according to the SEM analysis. It has been observed that the grain size obtained by the rapid cooling is smaller than the grain size obtained by the slow cooling. Therefore, it has been concluded that the cooling process differences, changes the grain size of the alloy. Compression stress has been applied to the alloy in order to search the deformation effect on the austenite phase transformation. The structural features of the phase transformations have been examined. Slip lines and martensite structural were observed on the surface of the alloys after the deformation. Changes in phase structure of the alloy are also examined by means of XRD technique.

  7. Effect of cooling rate on microstructure and compressive performance of AZ91 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; FENG Hui; QIU Ke-qiang; CHEN Li-jia; LIU Zheng

    2006-01-01

    Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of the solid solution phase increases and the fraction of secondary phase Mg17Al12 decreases. The almost single solid solution phase can be obtained with using liquid nitrogen as a coolant. The compressive strengths of the rapid solidified AZ91 magnesium alloys are higher than those of normal cast alloy, and decrease with increasing cooling rate. After artificial aging treatment for 14 h at 168 ℃, the compressive strength of the rapidly solidified AZ91 magnesium alloy cooled in liquid nitrogen increases from 253.5 to 335.3 MPa, while the compressive yield strength increases from 138.1 to 225.91 MPa. The improvement in the compressive strength of the rapidly solidified AZ91magnesium alloys can be attributed to the hardening effect from fine secondary phase.

  8. Effect of homogenization treatment on microstructure and properties of Al-Mg-Mn-Sc-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    NIE Bo; YIN Zhi-min; ZHU Da-peng; PENG Yong-yi; JIANG Feng; HUANG Ji-wu

    2007-01-01

    The effect of homogenization on the hardness, tensile properties, electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied. The results show that during homogenization as-cast studied alloy has obviously hardening effect that is similar to aging hardening behavior in traditional Al alloys. The precipitates are mainly Al3(Sc,Zr) and Al6Mn.When homogenization temperature increases the hardness peak value is declined and the time corresponding to hardness peak value is shortened. The electrical conductivity of the alloy monotonously increases with increasing homogenization temperature and time.The decomposition of the supersaturated solid solution containing Sc and Zr which is formed during direct chilling casting and the precipitation of Al3(Sc, Zr) cause hardness increasing. The depletion of the matrix solid solubility decreases the ability of electron scattering in the alloy, resulting in the electrical conductivity increased. Tensile property result at hot rolling state shows that the optimal homogenization treatment processing is holding at 300-350 ℃ for 6-8 h.

  9. Effect of aging on mechanical properties and localized corrosion behaviors of Al-Cu-Li alloy

    Institute of Scientific and Technical Information of China (English)

    JIANG Na; LI Jin-feng; ZHENG Zi-qiao; WEI Xiu-yu; LI Yan-fen

    2005-01-01

    The effects of aging on mechanical properties,intergranular corrosion and exfoliation corrosion behaviors of a 2197 type A1-Li alloy were investigated,and the mechanisms were studied through microstructure observation and electrochemical measurement of simulated bulk phase.The main strengthening precipitates of the alloy aged at175 ℃ and 160 ℃ are δ' and T1.T1 precipitation in the alloy aged at 160 ℃ is delayed,which results in its slower age strengthening and over-aging behavior than the alloy aged at 175 ℃.Meanwhile,aging temperature of 160 ℃causes more uniform distribution and finer size of T1,resulting in its better strengthening effect.As aging time and aging temperature are increased,the size of T1 at grain boundaries and the width of PFZ along grain boundaries are increased,leading to an increase in the susceptibility to intergranular corrosion and exfoliation corrosion.It is suggested that better comprehensive properties can be obtained when the alloy is aged at 160 ℃.

  10. Radiation effects in the aluminium alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Full text: Materials of fuel elements for water cooled nuclear reactors are exposed to simultaneous action of an ionizing radiation, temperature and yields of water radiolysis. In particular, irradiation by fast neutrons (En> 0.1 MeV) in research reactors influences mainly the mechanical properties of aluminium alloys, increasing their strength and reducing the plasticity. Radiation can essentially affect the stability of the heat-generating assembly material, changing its structure state. The structure change may also be the result of post-radiation ageing. This paper presents the results of studying the influence of reactor neutrons (research reactor of INP AS RU) on microstructure, electrical characteristics and length changes of SAV-1 and AMG-2 aluminium alloys used in nuclear industry. These alloys are low-alloyed solid solutions and intermetallic phases of CuAl2, Mg2Si, CuMgAl2, CuMg4Al6, Al2Mg2 in an equilibrium state. Samples were cut with orientation in 111 crystallographic axis in the shape of disks with the diameter d= 15 mm and thickness h= 3 mm for the metallographic analysis, and rods with the length of 40 mm and width d = 5 mm for measuring specific electrical resistance and linear dimension changes prior and after irradiations. For precise measurements the sample surfaces were mechanically handled and polished in a chemical solution, and then washed out in the distilled water and ethanol. Further samples, were put into the aluminum container and irradiated in a vertical channel of the reactor to fluencies 1018, 1019, 1020 n/cm2. The relative elongation (extension) δ was calculated as the measured length ratio of the non-irradiated and irradiated sample: δ=L0/L1x100%. Determination of element composition and the metallographic analysis of studied samples were done at the X-ray microanalyzer 'Jeol' JSM 5910 IV. Specific resistance (ρ) values were measures with four probe technique by compensation method at the direct voltage. The sample lengths

  11. Effect of hydrogen on the mechanical properties of titanium and its alloys

    Science.gov (United States)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  12. Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.

  13. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Saleh A. Alkahtani

    2016-01-01

    Full Text Available The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  14. Effect of yttrium on the twinning and plastic deformation of AE magnesium alloy under ballistic impact

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, H., E-mail: hamed.asgari@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Odeshi, A.G.; Szpunar, J.A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Zeng, L.J.; Olsson, E. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Li, D.Y. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton (Canada)

    2015-01-19

    In this research, effect of yttrium on the texture formation, microstructural evolution and mechanical response of AE42 and AE44 cast magnesium alloys were investigated under ballistic impact. The selected strain rates were 800 and 1100 s{sup −1} and the tests were conducted using Split Hopkinson Pressure Bar. It was inferred that after high velocity impact, a weaker basal texture developed in the samples with lower content of yttrium. Experimental results also showed that by increasing the concentration of yttrium in the cast AE alloys, strength, ductility and dislocation density of the impacted alloys increased but, the fraction of twinning decreased, which indicate the effective influence of yttrium on the nucleation and growth of twins. Moreover, it was inferred that accumulation of dislocations at intersections of the twins led to the cracking and fracture of the samples under shock loading conditions.

  15. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Directory of Open Access Journals (Sweden)

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  16. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  17. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    OpenAIRE

    Xu Chunxiang; Zhao Gaozhan; Zhang Jinshan

    2013-01-01

    To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.%) master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu ma...

  18. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  19. Effect of Coolant Water Flow Rate on Aluminum Alloys Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, O.A. [Institute of Nuclear Materials, Zarechny, Sverdlovsk region, 624250 (Russian Federation)

    2011-07-01

    One of the most important factors limiting a life-time of fuel elements in high-flux research reactors are a corrosion rate of fuel cladding material and a formation rate of oxide film. This study presents the results of the corrosion tests with and without irradiation. The aluminum alloys systems Al-Fe-Ni, Al-Fe-Ni-Cu-Mg and Al-Mg-Si-Cu were irradiated in the water flow of a velocity from 1.3 to 14.2m/s at 200 {sup o}C for time within 570 to 2000 hours. (author)

  20. Thermoelastic Stress Analysis: The Mean Stress Effect in Metallic Alloys

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    1999-01-01

    The primary objective of this study involved the utilization of the thermoelastic stress analysis (TSA) method to demonstrate the mean stress dependence of the thermoelastic constant. Titanium and nickel base alloys, commonly employed in aerospace gas turbines, were the materials of interest. The repeatability of the results was studied through a statistical analysis of the data. Although the mean stress dependence was well established, the ability to confidently quantify it was diminished by the experimental variations. If calibration of the thermoelastic response to mean stress can be successfully implemented, it is feasible to use the relationship to determine a structure's residual stress state.

  1. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Takeshi, E-mail: go-sai@imr.tohoku.ac.jp; Takanashi, Koki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Uchida, Ken-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Kikkawa, Takashi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Qiu, Zhiyong [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, Eiji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-08-31

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  2. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yue, E-mail: 373073766@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Ren, Ling, E-mail: lren@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Chang, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yuan, Yajiang, E-mail: yuan925@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Lin, Xiao, E-mail: linx@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Chen, Shurui, E-mail: 272146792@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Mei, Xifan, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China)

    2013-10-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis.

  3. Effects of partial crystallinity and quenched-in defects on corrosion of a rapidly solidified Ti–Cu alloy

    Indian Academy of Sciences (India)

    R S Dutta; G K Dey

    2003-08-01

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42.9-Cu57.1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified Ti42.9-Cu57.1 alloy ribbons, electrochemical behaviour of alloy ribbons has been investigated in the acidic chloride environments at room temperature by taking into consideration each side of the alloy ribbon separately. The alloy displayed passivity followed by pitting corrosion. In the as-solidified condition, air pockets appear to be the most detrimental defect from the viewpoint of corrosion resistance of the alloy ribbons.

  4. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  5. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    Science.gov (United States)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-06-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  6. On the effects of partial substitution of Co for Fe in FINEMET and Nb-containing HITPERM alloys

    CERN Document Server

    Blazquez, J S; Conde, C F; Conde, A; Greneche, J M

    2003-01-01

    A comparative study of the effects of partial substitution of Co for Fe on thermal stability, crystallization and magnetic properties of Co-containing FINEMET and HITPERM alloys series is presented. The difference in metalloid and Nb content between the two alloy series and the presence of Si in the nanocrystals in the case of FINEMET alloys appear as key parameters. A recrystallization process involving the alpha-Fe type phase in nanocrystalline alloys of both series is evident from thermomagnetic results as a significant decrease in magnetization at the second crystallization stage.

  7. Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy

    Indian Academy of Sciences (India)

    G Durashevich; V Cvetkovski; V Jovanovich

    2002-02-01

    The CuCrZr alloy undergoes processes of precipitation during ageing. Besides precipitation hardening the strength is affected by cold deformation which is performed before and after ageing. The cold deformation (1) before ageing accelerates the process of strength hardening, since it induces higher rate of precipitation from the saturated -solid solution. Cold deformation (2) after ageing primarily affects the alloy strength. In this paper the results of the effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy are presented. The aim of the paper was to evaluate the most suitable combination of thermomechanical treatment and alloy properties.

  8. Galvanic corrosion and cytotoxic effects of amalgam and gallium alloys coupled to titanium.

    Science.gov (United States)

    Bumgardner, J D; Johansson, B I

    1996-06-01

    The aim of this study was to examine and compare the galvanic corrosion of a conventional, a dispersed high-copper, and a palladium-enriched spherical high-copper amalgam and a gallium alloy coupled to titanium in saline and cell culture solutions, and to evaluate the effects of the couples on cultured cells. The potentials and charge transfers between amalgams and titanium were measured by electrochemical corrosion methods. Cytotoxicity of the couples, as indicated by the uptake of neutral red vital stain, was determined in 24-h direct contact human gingival fibroblast cell cultures. Results of this study indicated that before connecting the high-copper amalgams to titanium, the amalgams exhibited more positive potentials which resulted in initial negative charge transfers, i.e. corrosion of titanium. However, this initial corrosion appeared to cause titanium to passivate, and a shift in galvanic currents to positive charge transfers, i.e. corrosion of the amalgam samples. Lower galvanic currents were measured for the amalgam-titanium couples as compared to the gallium alloy-titanium couple. Coupling the conventional or the palladium-enriched high-copper amalgams to titanium did not significantly affect the uptake of neutral red as compared to cells not exposed to any test alloy. However, significant cytotoxic effects were observed when the dispersed-type high-copper amalgam and the gallium alloy were coupled to titanium. Even though the corrosion currents measured for these couples were less than gold alloys coupled to amalgam, these results suggest there is the potential for released galvanic corrosion products to become cytotoxic. These data warrant further investigations into the effects of coupling amalgam and gallium alloys to titanium in the oral environment.

  9. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  10. Effects of composition, heat treatment and cold work on structure and properties of alloy 800

    International Nuclear Information System (INIS)

    The creep characteristics of alloy 800 at temperatures around 6000C are greatly affected by the composition and treatments in the final stages of manufacture. Short-term and creep properties of alloy 800 at 6000C are described for six melts covering the carbon range 0.054-0.078%, the titanium range 0.23-0.57% and the aluminium range 0.17-0.52%. The properties are related to the alloy chemistry and the microstructure. It is shown that homogeneously nucleated γ'-precipitates are the main cause of low ductility in alloy 800 but there is also some influence of, for instance, grain boundary M23C6 films and discontinuous precipitation of Ni3Ti or M23C6 in grain boundaries. The extent of γ'-precipitation is controlled primarily by the (Ti+Al)-content. To avoid γ' and ensure a high creep ductility the (Ti+Al)-content should be limited to 0.70-0.75% for alloy 800 with a carbon content of 0.054-0.078% and solution annealed at 11500C. A lower solution temperature will reduce the matrix Ti-content and push the allowed total (Ti+Al)-content upwards. The effect of grain size is such that a coarse-grained material becomes more brittle than a fine-grained one. Cold work of up to 10% will enhance the creep-rupture strength but reduce the ductility

  11. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  12. Effects of alloying elements on elastic properties of Al by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Wang J.

    2014-01-01

    Full Text Available The effects of alloying elements (Co, Cu, Fe, Ge, Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr on elastic properties of Al have been investigated using first-principles calculations within the generalized gradient approximation. A supercell consisting of 31 Al atoms and one solute atom is used. A good agreement is obtained between calculated and available experimental data. Lattice parameters of the studied Al alloys are found to be depended on atomic radii of solute atoms. The elastic properties of polycrystalline aggregates including bulk modulus (B, shear modulus (G, Young’s modulus (E, and the B/G ratio are also determined based on the calculated elastic constants (cij’s. It is found that the bulk modulus of Al alloys decreases with increasing volume due to the addition of alloying elements and the bulk modulus is also related to the total molar volume (Vm and electron density (nAl31x with the relationship of nAl31x=1.0594+0.0207√B/Vm. These results are of relevance to tailor the properties of Al alloys.

  13. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects.

    Science.gov (United States)

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K

    2016-06-07

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications.

  14. The Effects of Corrosive Media on Fatigue Performance of Structural Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Huihui Yang

    2016-07-01

    Full Text Available The effects of corrosive media on rotating bending fatigue lives (the cyclic numbers from 104 to 108 of different aluminum alloys were investigated, which involved the corrosion fatigue lives of five kinds of aluminum alloys in air, at 3.5 wt. % and 5.0 wt. % NaCl aqueous solutions. Experimental results indicate that corrosive media have different harmful influences on fatigue lives of different aluminum alloys, in which the differences of corrosion fatigue lives depend strongly on the plastic property (such as the elongation parameter of aluminum alloys and whether to exist with and without fracture mode II. The other various influence factors (such as the dropping corrosive liquid rate, the loading style, and the nondimensionalization of strength of corrosion fatigue lives in three media were also discussed in detail by using the typical cases. Furthermore, fracture morphologies and characteristics of samples, which showed the different fatigue cracking behaviors of aluminum alloys in three media, were investigated by scanning electron microscopy (SEM in this paper.

  15. Effect of nitriding treatment on corrosion behaviour of Co–Cr–Mo alloy in liquid Al

    International Nuclear Information System (INIS)

    Highlights: •Co–29Cr–6Mo alloy is nitrided in pure nitrogen. •Sample surface after nitriding is observed using transmission electron microscope. •Sample subsurface after nitriding is observed with electron backscatter diffraction. •Corrosion of nitrided samples in liquid Al is evaluated with immersion test. •Nitriding treatment is compared and discussed with oxidation treatment. -- Abstract: Effects of nitriding treatment on the corrosion behaviour of Co–29Cr–6Mo alloy in liquid Al were investigated. Because of the high solubility and high diffusion coefficient of nitrogen in Co, Cr2N and π phases formed from sample surface into alloy matrix during nitriding at 1273 K; however, the nitride layer was not continuously formed on sample surface even in a prolonged process. The Cr2N showed obviously higher resistance to liquid Al compared to alloy matrix, but owing to its discontinuous distribution, the formed Cr2N did not obviously improve the corrosion resistance of the alloy to liquid Al

  16. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    Science.gov (United States)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  17. Effect of heat treatment on the physical properties of Ni-Mn-Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koek, Mediha, E-mail: msoglu@firat.edu.tr [Firat University, Sciences Faculty, Department of Physics Elazig (Turkey); Aydogdu, Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I m, E-mail: y.aydogdu@gazi.edu.tr [Superconductivity and Thermal Analysis Laboratory, Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Heat treatment on the physical properties of Ni{sub 50.5}Mn{sub 29.5}Ga{sub 20} alloys was investigated. Black-Right-Pointing-Pointer The heat treatments were conducted at 800 Degree-Sign C, 900 Degree-Sign C, and 1000 Degree-Sign C for 2 h in argon atmosphere. Black-Right-Pointing-Pointer Heat treatment emerged as a new phase, which improves ductility. Black-Right-Pointing-Pointer Heat treatment changed the thermal properties of NiMnGa alloys. - Abstract: In this study, the effect of heat treatment on physical properties such as crystal structure, transformation temperatures, thermodynamic behavior and activation energy of Ni{sub 50.5}Mn{sub 29.5}Ga{sub 20} (at.%) off-stoichiometric Heusler alloys was investigated. The heat treatments were conducted at 800 Degree-Sign C, 900 Degree-Sign C and 1000 Degree-Sign C for 2 h in argon atmosphere and then samples were quenched in ice brine. It has been found that the heat treated alloys possess a coexistence phase of martensite and gamma ({gamma}) phases while the untreated alloy is {gamma} phase free. Moreover, elevating the annealing temperature resulted in increased martensitic transformation temperatures.

  18. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  19. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects

    Science.gov (United States)

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K.

    2016-01-01

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications. PMID:27271057

  20. Effects of AI Addition on the Thermoelectric Properties of Zn-Sb Based Alloys

    Institute of Scientific and Technical Information of China (English)

    CUI Jiaolin; LIU Xianglian; YANG Wei; CHEN Dongyong; MAO Liding; QIAN Xin

    2009-01-01

    The β-Zn4Sb3, emerged as a compelling p-type thermoelectric material, is widely used in heat-electricity conversion in the 400-650 K range. In order to probe the effects of slight doping on the crystal structure and physical properties, we prepared the samples of Al-added Zn-Sb based alloys by spark plasma sintering and evaluated their microstructures and thermoelectric properties. After a limited Al addition into the Zn-Sb based alloys we observed many phases in the alloys, which include a major phase β-Zn4Sb3,intermetallic phases ZnSb and AISb. The major β-Zn4Sb3 phase plays a fundamental role in controlling the thermoelectric performance, the precipitated phases ZnSb and AISb are of great importance to tailor the transport properties, such as the gradual enhancement of lattice thermal conductivity, in spite of an increased phonon scattering in additional grain boundaries. The highest thermoelectric figure of merit of 0.55 is obtained for the alloy with a limited AI addition at 653 K, which is 0.08 higher than that of un-doped β-Zn4Sb3 at the corresponding temperature. Physical property experiments indicate that there is a potentiality for the improvement of thermoelectric properties if a proper elemental doping is carried out into the Zn-Sb based alloys, which was confirmed by AI addition in the present work.

  1. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2015-02-11

    With its combination of high specific strength, good machinability and excellent weldability, AA2219 direct chill (DC) cast alloy has become a new category of materials for manufacturing large molds for the plastics and automotive industries. The effect of two-step aging on the microstructural evolution and mechanical properties of AA2219 DC cast alloy was investigated. The precipitate microstructure was characterized under different heat treatment conditions using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The poor mechanical properties of the air-quenched alloy were attributed to the presence of quench-induced coarse θ′ and θ precipitates, which had very limited contribution to the precipitation hardening during the aging treatment. The two-step aging treatment of the air-quenched AA2219 alloy involved the precipitation of GP zones in the first step followed by their transformation into fine θ″ strengthening precipitates in the second step, which considerably improved the mechanical properties. After undergoing 120 °C/36 h+190 °C/8 h two-step aging, the hardness, YS and UTS of the air-quenched alloy were increased by 27%, 46% and 15%, respectively, compared with 190 °C/8 h one-step aging.

  2. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys

    Science.gov (United States)

    Kimoto, T.; Lee, E. H.; Mansur, L. K.

    1988-09-01

    The effect of the helium injection mode on void formation during ion irradiation of the pure solution-annealing alloys Fe-15Ni-7Cr, Fe-35Ni-7Cr, Fe-45Ni-7Cr, Fe-10Ni-13Cr, Fe-40Ni-13Cr, Fe-45Ni-15Cr was examined. Ion irradiation was carried out with 4 MeV Ni ions at 948 K to doses of 30 to 100 dpa with: (1) no helium injection, (2) simultaneous helium injection and (3) helium preinjection and aging. Swelling variation with helium injection differed among the 7Cr alloys and 13-15Cr alloys. Only the simultaneous helium injection mode produced a bimodal cavity size distribution in the high Ni alloys. The critical radius, as estimated from the cavity size distributions appears to have increased with increasing dose, but no clear variation of the critical radius with composition was observed. Helium preinjection and one-hour aging at 948 K formed helium bubbles along the residual dislocations, while subsequent Ni irradiation caused void formation along the dislocation lines. The calculated helium concentration deduced from observable helium bubbles was low compared with the injected helium concentration in the alloys containing higher Ni and lower Cr.

  3. Effect of nitrocarburizing on shape of titanium alloy parts

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.A.

    1993-09-27

    Components are being developed for plutonium casting in support of Lawrence Livermore National Laboratory. A vendor used a proprietary process to grow a nitrocarburized surface layer on a titanium alloy shot sleeve to be used in a prototype die casting machine. The shot sleeve was significantly out-of-round upon return from the vendor and could not be used. Purpose of this study was to determine whether the shape change could have been caused by this surface treatment. Visual observation of disk and ring samples exposed first to surface treatment alone temperature and then the actual nitrocarburizing environment revealed no gross warping in either case. Dimension measurements of each sample before and after both the thermal treatment and the nitrocarburizing revealed no significant changes. Visual examination of the shot sleeve revealed a surface flaw likely made during handling after machining at SRS and before the part was nitrocarburized. The out-of-roundness of the shot sleeve could be related to the damage observed on the surface, but the possibility of warping during the nitrocarburizing cannot be excluded. Nitrocarburization should remain a candidate method to protect titanium alloys from molten metals.

  4. Effect of cerium on abrasive wear behaviour of hardfacing alloy

    Institute of Scientific and Technical Information of China (English)

    XING Shule; YU Shengfu; DENG Yu; DAI Minghui; YU Lu

    2012-01-01

    Hardfacing alloys with different amounts of ceria were prepared by self-shielded flux cored arc welding.The abrasion tests were carried out using the dry sand-rubber wheel machine according to JB/T 7705-1995 standard.The hardness of hardfacing deposits was measured by means of HR-150AL Rockwell hardness test and the fracture toughness was measured by the indentation method.Microstructure characterization and surface analysis were made using optical microscopy,scanning electron microscopy (SEM) and energy spectrum analysis.The results showed that the wear resistance was determined by the size and distribution of the carbides,as well as by the matrix microstructure.The main wear mechanisms observed at the surfaces included micro-cutting and micro-ploughing of the matrix.The addition of ceria improved the hardness and fracture toughness of hardfacing deposits,which would increase the resistance to plastic deformation and scratch,thus the wear resistance of hardfacing alloys was improved.

  5. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  6. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    Science.gov (United States)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  7. Effect of cold work on initiation stage crack growth rate of nickel based alloys

    International Nuclear Information System (INIS)

    To investigate the effect of cold work on initiation stage crack growth rates of nickel based alloy, initiation stage crack growth rates were measured for simulated PWR primary water conditions using flat type specimens which were prepared from three different heats of alloy 600 and then 20 and 40% cold worked. Almost all data showed the stress had an increasing linear dependency on crack growth rate ; however there was some scattering of data and some materials showed a different tendency. Since yield strength was increased by cold work, for the same stress, the initiation stage crack growth rates were restrained or were not changed significantly by cold work. (author)

  8. Effects of Magnetic Field on Fracture of Al-Li Alloy Containing Cerium

    Institute of Scientific and Technical Information of China (English)

    刘兵; 王西宁; 陈铮

    2003-01-01

    The effects of magnetic field on fracture feature and microstructure of Al-Li alloys containing Ce were investigated. Experiment results show that the fracture features and the microstructures are changed with the magnetic field. The fracture surface of the alloys is mainly quasi-cleavage without applying magnetic field. With a magnetic field, the fracture of quasi-cleavage changes to more secondary cracks and less quasi-cleavage plates on fracture surface. Grains become thinner and uniform with applying magnetic field. The influence of magnetic field on atom diffusion was discussed.

  9. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.;

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  10. Thermal conductivity prediction of closed-cell aluminum alloy considering micropore effect

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    2015-02-01

    Full Text Available Large quantities of micro-scale pores are observed in the matrix of closed-cell aluminum alloy by scanning electron microscope, which indicates the dual-scale pore characteristics. Corresponding to this kind of special structural morphology, a new kind of dual-scale method is proposed to estimate its effective thermal conductivity. Comparing with the experimental results, the article puts forward the view that the prediction accuracy can be improved by the dual-scale method greatly. Different empirical formulas are also investigated in detail. It provides a new method for thermal properties estimation and makes preparation for more suitable empirical formula for closed-cell aluminum alloy.

  11. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  12. The pseudoelasticity and the shape memory effect in CoNiAl alloys

    Directory of Open Access Journals (Sweden)

    Jaromir Kopecek

    2014-01-01

    Full Text Available The cobalt alloys (close to the CoNiAl stoichiometry are the less known shape memory alloys. Such behavior is consequence of the martensitic transformation. The pseudoelasticity is caused by the stress-induced martensitic transformation above the equilibrium martensite start temperature from high temperature cubic phase (austenite to lower symmetry phase (martensite. In CoNiAl the pseudoelastic behavior can be obtained by the high temperature annealing. In presented work the effect of the annealing temperature on both pseudoelastic behavior and microstructure was investigated.

  13. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    Science.gov (United States)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  14. Hydrogen effect on zirconium alloy surface treated by pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pushilina, N.S.; Lider, A.M. [Department of General Physics, Institute of Physics and Technology, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Kudiiarov, V.N., E-mail: viktor.kudiiarov@gmail.com [Department of General Physics, Institute of Physics and Technology, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Chernov, I.P. [Department of General Physics, Institute of Physics and Technology, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Ivanova, S.V. [National Research Nuclear University “MIFI”, Kashirskoye shosse 31, Moscow 115409 (Russian Federation)

    2015-01-15

    Influence of modification by pulsed electron beam (PEB) and hydrogen adsorption in zirconium alloys have been investigated. Treatment of Zr–1Nb alloy by high-current PEB allows for a decrease in the amount of hydrogen absorbed by the samples during the hydrogenation process from gas atmosphere in the temperature range of (350–550 °S). The effect of the PEB surface treatment on the hydrogen adsorption connected with the formation of a protective oxide film after PEB irradiation and also by the formation of a specific hardening structure under the action of irradiation at temperatures exceeding the melting temperature from the subsequent high-speed surface cooling.

  15. Effect of displacement damage on the stability of oxide nanoparticles in model ODS alloys: TEM studies

    International Nuclear Information System (INIS)

    Model ODS alloy containing Fe-0.3% yttria was prepared by ball milling and hipping at high temperature and the effect of irradiation on stability of yttria nanoclusters in model ODS alloy is studied by dual beam ion irradiation using 5 MeV Fe+ and 1.5 MeV He+ ions. TEM studies on irradiated sample show that these particles are stable at 25 dpa and 40 appm He concentration. However, at 80 dpa and 360 appm He concentration Yttria particles were found to be unstable as evidenced from increase in average particle size and particle size distribution.

  16. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  17. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Science.gov (United States)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; Savero-Torres, W.; Jaffrès, H.; Reyren, N.; Deranlot, C.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L.; George, J.-M.; Fert, A.

    2014-04-01

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  18. Substitutional impurities and their effect on fracture peculiarities in W-Ni-Fe-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Minakova, R.V.; Bazhenova, L.G.; Verkhovodov, P.A.; Kolchin, O.P.; Nedelyaeva, L.P.; Tolstunov, A.V. (AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya)

    1983-11-01

    The paper deals with distribution of admixture elements, shape, size, content, chemical composition, distribution of nonmetal inclusions and their effect on peculiarities of W-Ni-Fe-alloy deformation and fractures. It is established that non-metal inclusions play the part of additional ''notches'' decreasing the size of the slow crack growth area in a refractory component. Segregation of the impurities and the film on the boundaries of nickel base solid solution promote intercrystalline fracture of the alloy.

  19. Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kwang Keun; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National University, Daejeon (Korea, Republic of)

    2015-06-15

    CrMo alloy steel was nitrided using two types of processing methods, ion-nitriding processing and nitrocarburizing. Both processes were conducted for a duration of 30 min. To compare the surface hardness of the alloys created by the different processes , microhardness tests were conducted, and fatigue tests of each material were performed by a cantilever rotary bending fatigue test machine (Yamamoto, YRB 200) in the very high cycle regime (N > 10{sup 7}cycle). Fractography of the fractured surfaces was conducted by scanning electron microscopy - to observe the fracture mechanisms of very high cycle fatigue and the effect of the nitriding process on the fatigue characteristics.

  20. Effect of pressure on the feeding characteristics of ZCUZn16Si4 alloy

    Institute of Scientific and Technical Information of China (English)

    Li Hailan; Sun Xun; Zhang Shiyan; Liu Xiaofu; Qi Xiaobing; Wang Penghua; Yu Bo

    2008-01-01

    The experimental and numerical simulation methods were employed to study the effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy castings.The results proved that different pressures would lead to different feeding distance of riser over a suitable pressure range,and the pressure can be used to greatly improve the feeding characteristics compared with gravity casting.It should be pointed out that current porosity criteria in the numerical simulation codes cannot yet be applied well enough to predict the porosity defects of low-pressure copper alloy castings.

  1. Effect of Deformation on Order-Disorder Phase Transformation in Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Ruijun; Xu Liang; Liu Jianhua

    2007-01-01

    The phase transformation temperature of ordered β' to disordered β in the Cu-Zn alloy was tested by DSC. The transformation activation energy was calculated and the effect of deformation of the phase transformation was discussed. The results show that the phase transformation temperature and activation energy of ordered β' to disordered β in the Cu-Zn alloy can be decreased going through deformation, and the phase transformation time can be also decreased. As a result, the order-disorder phase transformation occurs more easily.

  2. Effect of fluoride ions on Ti6Al4V alloy passivation in lactated Ringer's serum

    Directory of Open Access Journals (Sweden)

    Schmidt Anelise M.

    2003-01-01

    Full Text Available The corrosive behavior of Ti and its alloys in fluoride media is well known. Based on electrochemical studies, this paper describes the effect of fluoride ions on the passive behavior of Ti6Al4V alloy in lactated Ringer's serum. The open circuit potential of the alloy in the serum, which lies in the passive region of TiO2, shifts to more negative values as fluoride ions are added. The voltammogram obtained in the serum presents an active-passive behavior close to -0.2 V (SCE that changes with the presence of fluoride ions, evidencing higher anodic currents. Electrochemical impedance spectroscopy plots obtained at OCP after varying immersion times in the serum display an almost capacitive behavior and the polarization resistance becomes enhanced after 7 days. With the addition of fluoride ions, the film's resistance decreases, but a stable protective layer develops after 7 days of immersion time, indicating the film's repair.

  3. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  4. Effect of Yb additions on microstructures and properties of 7A60 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    FANG Hua-chan; CHEN Kang-hua; ZHANG Zhuo; ZHU Chang-jun

    2008-01-01

    Al-Zn-Mg-Cu-Zr alloys containing Yb were prepared by cast metallurgy. Effect of 0.30% Yb additions on the microstructure and properties of 7A60 aluminum alloys with T6 and T77 aging treatments was investigated by TEM, optical microscopy, hardness and electric conductivity measurement, tensile test and stress corrosion cracking test. The results show that the Yb additions to high strength Al-Zn-Mg-Cu-Zr aluminum alloys can produce fine coherent dispersoids. Those dispersoids can strongly pin dislocation and subgrain boundaries, which can significantly retard the recrystallization by inhibiting the nucleation of recrystallization and the growth of subgrains and keeping low-angle subgrain boundaries. Yb additions can obviously enhance the resistance to stress corrosion cracking and the fracture toughness property, and mildly increase the strength and ductility with T6 and T77 treatments.

  5. Effect of Phosphorous Inoculation on Creep Behavior of a Hypereutectic Al-Si Alloy

    Science.gov (United States)

    Faraji, Masoumeh; Khalilpour, Hamid

    2014-10-01

    Creep behavior of Al-Si hypereutectic alloys inoculated with phosphorus was investigated using the impression creep testing. The results showed that at stress regimes of up to 400-450 MPa and temperatures up to 300 °C, no significant creep deformation occurred in both uninoculated and inoculated specimens; however, at temperatures above 300 °C, the inoculated alloys presented better creep properties. Creep data were used to calculate the stress exponent of steady-state creep rate, n, and creep activation energy, Q, for different additive conditions where n was found varied between 5 and 8. Owing to the fact that most alloys have lower values for n (4, 5), threshold stress was estimated for studied conditions. The creep governing mechanisms for different conditions are discussed here, with a particular attention to the effect of phosphorous addition on the microstructural features, including number of primary silicon particles, mean primary silicon spacing, and morphology and distribution of eutectic silicon.

  6. Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties

    Indian Academy of Sciences (India)

    K O Nayana; T V Venkatesha

    2014-08-01

    The bright ZnNi alloy coating on steel surface was prepared by elctrodepostion technique using brightener ethyl vanillin (EV). To know the influence of brightener on deposition and dissolution behaviour of ZnNi alloy, cyclic voltammetric studies were carried out. FT–IR spectroscopic evidence was given to confirm selective adsorption of brightener on steel surface. The brightener enhances current efficiency and throwing power of plating bath during coating. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses in presence of brightener confirmed the change in surface morphology, phase composition and preferred orientation of ZnNi coating. In presence of brightener, nickel content of the coating was reduced at higher current density and thickness. In addition, deposit properties like appearances, hardness, adherence, ductility and corrosion resistance of ZnNi alloy deposits were also improved in bright deposit. Simultaneously, effect of deposition current density and thickness on corrosion behaviour of coating was examined.

  7. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phase increases and the microstructure becomes finer after solidifying from the melt experiencing the L-LST. In the meantime, in hypoeutectic alloy, when solidifying from the melt experiencing the L-LST, the morphology of primary phase changes from the fir-tree crystal into the equiaxed crystal, and less primary phase and more eutectic structure are observed. Moreover, in eutectic alloy, the spacing of eutectic phase decreases markedly. These investigations would be beneficial to further exploration of the correlation between the melt structure and the micro mechanism of solidification.

  8. Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys.

    Science.gov (United States)

    Han, I; Demir, L

    2010-01-01

    The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. PMID:20421703

  9. Effect of Fe and Cu on Electrochemical Characteristics of Low-Co AB5 Type Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhu Xilin; Zhou Yu; Chong Fayao; Li Xiaochun; Pan Weilin

    2004-01-01

    In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is Cu > Fe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.

  10. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  11. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Cheng, Y.F. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta (Canada)

    2010-07-15

    In this work, effects of coolant chemistry, including concentrations of chloride ions and ethylene glycol and addition of various ions, on corrosion of 3003 Al alloy were investigated by electrochemical impedance spectroscopy measurements and scanning electron microscopy characterization. In chloride-free, ethylene glycol-water solution, a layer of Al-alcohol film is proposed to form on the electrode surface. With the increase of ethylene glycol concentration, more Al-alcohol film is formed, resulting in the increase in film resistance and charge-transfer resistance. In the presence of Cl{sup -} ions, they would be involved in the film formation, decreasing the stability of the film. In 50% ethylene glycol-water solution, the threshold value of Cl{sup -} concentration for pitting initiation is within the range of 100 ppm to 0.01 M. When the ethylene glycol concentration increases to 70%, the threshold Cl{sup -} concentration for pitting is from 0.01 to 0.1 M. In 100% ethylene glycol, there is no pitting of 3003 Al alloy even at 0.1 M of Cl{sup -}. Even a trace amount of impurity cation could affect significantly the corrosion behavior of 3003 Al alloy in ethylene glycol-water solution. Addition of Zn{sup 2+} is capable of increasing the corrosion resistance of Al alloy electrode, while Cu{sup 2+} ions containing in the solution would enhance corrosion, especially pitting corrosion, of Al alloy. The effect of Mg{sup 2+} on Al alloy corrosion is only slight. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Effects of biodegradable Mg–6Zn alloy extracts on apoptosis of intestinal epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► We evaluated the effects of Mg–6Zn alloys on apoptosis of IEC-6 cells. ► The apoptosis was evaluated by investigating the expression of caspase-1 and Bcl-2. ► The IEC-6 cells displayed better cell functions in 60% or 20% extract. ► The conspicuous alkaline environment is disadvantageous to apoptosis of IEC cells. ► The excessive Mg concentration is disadvantageous to apoptosis of IEC-6 cells. - Abstract: In this study, intestinal epithelial cells (IEC)-6 were cultured in different concentration extracts of Mg–6Zn alloys for different time periods. To achieve a total of three concentrations (100%, 60% and 20% concentration), the extracts were serially diluted with Dulbecco's modified Eagle medium High Glucose to observe a dose–response relationship. We studied the indirect effects of Mg–6Zn alloys on IEC-6 cells apoptosis. The apoptosis of IEC-6 cells was measured using flow cytometry. And the apoptosis of IEC-6 cells was evaluated by investigating the expression of caspase-1and Bcl-2 using real-time polymerase chain reaction (PCR) and Western blotting tests. It was found that the levels of apoptosis in IEC-6 cells cultured in 100% Mg–6Zn alloy extracts were significantly higher than those in 60% and 20% extracts; the 100% extract can down-regulate expression of Bcl-2 after culture. The in vitro results indicated that the conspicuous alkaline environment and excessive Mg concentration, even Zn concentration caused by rapid corrosion of Mg–6Zn alloys promote IEC-6 cells apoptosis, although further experiments will be necessary to formally prove our conclusions. Therefore, the adjustment of the degradation rate is needed for using Mg–Zn alloy as a surgical suture material.

  13. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  14. Effects of Cerium on Alloy Elements Distribution in Ferrous Matrix Material

    Institute of Scientific and Technical Information of China (English)

    刘英才; 刘俊友; 尹衍生; 刘国权

    2001-01-01

    The effect of the addition of rare earths in Fe-based high chromium alloy powders on elements distribution in matrix materials and mechanical properties were studied. The results show that the addition of cerium can increase the chromium amount in carbonides and increase the micro-hardness after carbonization and the wear-resistant property of materials.

  15. Effect of recovery on the recrystallization texture of an Al-Mg alloy

    International Nuclear Information System (INIS)

    The effect of recovery on the recrystallization texture of an Al-Mg alloy was investigated by X-ray diffraction. It was found that the recovery of cold-rolled sheets prior to recrystallization annealing promoted the formation of the R texture, but restrained the formation of the cube texture

  16. Effect of recovery on the recrystallization texture of an Al-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.C. [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States)], E-mail: wcliu@ysu.edu.cn; Li, J.; Yuan, H.; Yang, Q.X. [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2007-11-15

    The effect of recovery on the recrystallization texture of an Al-Mg alloy was investigated by X-ray diffraction. It was found that the recovery of cold-rolled sheets prior to recrystallization annealing promoted the formation of the R texture, but restrained the formation of the cube texture.

  17. Comparison of heat effects associated with metal cutting method on ST 37 alloy steel

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2014-04-01

    Full Text Available In this study, by examining effects of the heat on the cut surface of material formed by the processes, such as Plasma, Laser, Wire Erosion applied on St 37 alloy steel material, it has been determined that minimum cutting damage occurs in wire erosion process.

  18. Effects of neutron irradiation in magnetic properties of metals and alloys

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on the magnetic properties of metals and alloys, namely magnetic anisotropy, hysteresis loop, initial magnetic permeability, which are sensitives to structural changes, are studied. First a short review is made, followed by experimentals results and the plot of the vacancies supersaturation, which are obtained in the reactor of the Instituto de Pesquisas Energeticas e Nucleares. (Author)

  19. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  20. Effects of Mm(NiCoAlMn)5 hydrogen storage alloy coated with Ni-Co-P alloy by electroless plating on electrochemical properties of hydride electrodes

    Institute of Scientific and Technical Information of China (English)

    孙春文; 郭占成; 唐致远; 郭鹤桐

    2003-01-01

    The effect of chemical plating with Ni-Co-P alloy on the properties of MH electrodes is investigated. The results show that the efficiency of storage alloy and the activation of MH electrode have been improved by introducing 1.74% cobalt in the Ni-Co-P alloy coating. The initial discharge capacity is 208 mAh/g. The maximum discharge capacity gets to 298.5 mAh/g. At the same time the cycle life of MH electrodes is improved. The discharge capacity of MH electrodes coated with Ni-Co-P is 88% of the maximum discharge capacity after 300 cycles. Whereas the discharge capacity of bare alloy electrodes retains 62% of the maximum capacity after 300 cycles. An increment of discharge capacity is mainly due to the superposition of the oxidation current of Co as well as improved efficiency of microcurrent collection. The effect of Ni-Co-P alloy coating by electroless plating on the kinetic properties of hydride electrode has been systematically investigated by electrochemical techniques. The results indicate that the kinetic properties of MH electrodes, including exchange current density, limiting current density, have been improved markedly. This improvement of kinetic properties leads to the decrease of the overpotential of anodic and cathodic polarization.

  1. Silicidation of Mo-alloyed ytterbium: Mo alloying effects on microstructure evolution and contact properties

    International Nuclear Information System (INIS)

    In this study, we investigated the effects of Mo addition to Yb as a contact material with Si for metal–oxide-semiconductor field-effect transistors (MOSFETs) to mitigate oxidation problems, a persistent problem for rare-earth metal-based contacts (such as Yb/Si and Er/Si). Our thorough materials characterization using transmission electron microscopy and X-ray diffraction unravels Mo segregation during silicidation and its effect against oxidation. I–V characteristics, measured from Schottky diodes produced from the samples, reflect such microstructure evolution and demonstrate a strong improvement in contact properties at high temperatures

  2. Effect of cobalt content on electrochemical performance of La-Mg-Ni system (Ce2Ni7-type) electrode alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Xinlin; DONG Xiaoping; ZHANG Yanghuan; GUO Shihai; Lü Fanxiu

    2008-01-01

    In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and La in alkaline solution.

  3. Effect of Trivalent Additions and Processing on Structural and Magnetic Transitions in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    R. P. Mathur

    2012-07-01

    Full Text Available Ferromagnetic shape memory Ni50Mn30Ga15Al5-xBx (x = 0, 1, and 4 alloys were prepared by vacuum arc melting and subsequent heat-treatment as well as by melt spinning to investigate the effect of trivalent element additions in ternary Ni-Mn-Ga alloys. The heat-treated alloys containing Al were reported to possess a modulated martensite structure, however alloy containing both Al and B showed a loss of modulated structure in martensite formed. The rapidly solidified alloys on the other hand showed the formation of a similar modulated structure without composition change in alloys containing Al and the alloys containing Al and B. In addition, the former showed a presence of an amorphous phase with latter showing crystalline boron rich phases. The magnetisation of the B containing alloys in both the processing technique was however very low, showing lower magnetic exchange interaction in such alloys.Defence Science Journal, 2012, 62(4, pp.252-260, DOI:http://dx.doi.org/10.14429/dsj.62.1279

  4. Effect of Ca, RE elements and semi-solid processing on the microstructure and creep properties of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nami, B. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Shabestari, S.G., E-mail: shabestari@iust.ac.ir [Center of Excellence for Advanced Materials and Processing (CEAMP), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Razavi, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mirdamadi, Sh. [Center of Excellence for Advanced Materials and Processing (CEAMP), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Miresmaeili, S.M. [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, Tehran (Iran, Islamic Republic of)

    2011-01-25

    Research highlights: {yields} The size of solid globular {alpha}(Mg) particles decreases in semi-solid slurries of AZ91 alloy by adding Ca and RE elements, whereas it has no considerable effect on the shape factor of the solid particles. {yields} Particle growth in semi-solid slurries of AZ91 and AZRC91 alloys takes place by Ostwald ripening mechanism. {yields} The coarsening rate of solid particles in semi-solid slurries of AZRC91 alloy is lower than that of AZ91 alloy. {yields} Creep properties of AZ91 alloy was improved by adding Ca and RE elements. The thixoformed specimens exhibit the better creep resistance than the as-cast specimens. - Abstract: The effects of calcium and rare earth elements (RE) on the microstructure and creep properties of as-cast and thixoformed AZ91 magnesium alloy have been investigated. It has been shown that the amount of {beta}(Mg{sub 17}Al{sub 12}) intermetallic compound decreases by adding Ca and RE elements into AZ91 alloy and new Al{sub 11}RE{sub 3} and Al{sub 2}Ca intermetallic compounds form in the microstructure. The coarsening of primary {alpha}(Mg) particles in AZ91 alloy and in the Ca and RE containing (AZRC91) alloy takes place by Ostwald ripening mechanism. Adding Ca and RE elements into AZ91 alloy results in a decrease in the coarsening rate of solid particles in semi-solid slurry, whereas it has no visible effect on the shape factor of the solid-particles. The creep properties of AZ91 alloy are improved by adding Ca and RE elements particularly, in the thixoformed condition.

  5. Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys. Part II: Mechanical Properties

    Science.gov (United States)

    Manda, Premkumar; Chakkingal, Uday; Singh, A. K.

    2016-07-01

    This paper describes the tensile properties, flow and work-hardening behavior of four metastable β-titanium alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) in α+β hot-rolled condition. The decreasing order of average strength parameters ( σ YS and σ UTS) is A4, A2, A1, and A3. The maximum strength observed in alloy A4 is due to the presence of highest wt. fraction of Cr. The elongation is the maximum and minimum in alloys A3 and A4, respectively. These alloys display moderate to high percent in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values. Both the A IP and δ values are maximum and minimum in alloys A1 and A3, respectively. The yield locus plots also exhibit the presence of anisotropy due to relatively large differences in yield strength values along tension and compression directions. The flow behavior of alloys A1, A2, and A4 follows Swift equation, while the alloy A3 displays best fit with Holloman equation. The presence of prestrain ( ɛ 0) in hot-rolled materials before tensile testing has an important bearing on the flow curves of A1, A2, and A4 alloys. The instantaneous work-hardening rate curves of the alloys A1, A2, and A3 exhibit all the three typical stages (stage I, stage II, and stage III) in RD samples, while the alloy A4 shows the presence of only stage I and stage III. The 45 deg to RD and TD samples of alloys A1, A2, and A4 display only stage I. The stages I and III as well as I and II are present in alloy A3 in 45 deg to RD and TD samples, respectively. Dislocation-controlled strain hardening occurs in all the three stages of these alloys in the absence of stress-induced martensitic transformation (α″) and twinning. Slip is the predominant deformation mechanism during tensile testing. Three types of slip lines, i.e., planar, wavy, and intersecting have been observed close to fracture surfaces of post tensile-tested specimens.

  6. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  7. Effect of simulated HTGR primary circuit helium on properties of structural alloys

    International Nuclear Information System (INIS)

    The effect of exposure to simulated HTGR primary circuit helium (400 μatm H2/2 μatm H2O/40 μatm CO/0.2 μ atm CO2/20 μatm CH4 in He at 2 atm total pressure) on the properties of structural alloys is studied over the temperature range of 750 to 10500C (1382 to 19220F). Creep-rupture testing is being performed using both single specimen and multispecimen equipment. Specimens are also being exposed unstressed for post-exposure evaluation of oxidation, thermal aging effects and carburization and for evaluating changes in tensile, impact and fatigue properties due to exposure. Some air tests are being performed for comparison. The results to date (exposure times to approximately 10,000 hours) are discussed for a variety of wrought iron- and nickel-based austentic alloys, cast nickel-based alloys, and oxide dispersion strengthened alloys. It generally appears that the environmental effect is significant only in the highest temperature range: thermal aging appears to be the cause of most of the changes seen during lower temperature exposures accomplished to date

  8. Phase transformation behaviors and shape memory effects of TiNiFeAl shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Xiao; Fushun Liu; Huibin Xu

    2007-01-01

    Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and -196℃ were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but decreases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.sAl1 alloys, which results from the stress-induced martensite transformation from the R-phase.

  9. Effect of alloying on microstructure and precipitate evolution in ferritic weld metal

    Science.gov (United States)

    Narayanan, Badri Kannan

    The effect of alloying on the microstructure of ferritic weld metal produced with an self-shielded flux cored arc welding process (FCAW-S) has been studied. The welding electrode has a flux core that is intentionally alloyed with strong deoxidizers and denitriding elements such as aluminum, titanium and zirconium in addition to austenite formers such as manganese and nickel. This results in formation of microstructure consisting of carbide free bainite, retained austenite and twinned martensite. The work focuses on characterization of the microstructures and the precipitates formed during solidification and the allotropic phase transformation of the weld metal. Aluminum, manganese and nickel have significant solubility in iron while aluminum, titanium and zirconium have very strong affinity for nitrogen and oxygen. The effect of these alloying elements on the phase transformation and precipitation of oxides and nitrides have been studied with various characterization techniques. In-situ X-ray synchrotron diffraction has been used to characterize the solidification path and the effect of heating and cooling rates on microstructure evolution. Scanning Transmission Electron Microscopy (STEM) in conjunction with Energy Dispersive Spectroscopy (EDS) and Electron energy loss spectroscopy (EELS) was used to study the effect of micro-alloying additions on inclusion evolution. The formation of core-shell structure of oxide/nitride is identified as being key to improvement in toughness of the weld metal. Electron Back Scattered Diffraction (EBSD) in combination with Orientation Imaging Microscopy (OIM) and Transmission electron microscopy (TEM) has been employed to study the effect of alloying on austenite to ferrite transformation modes. The prevention of twinned martensite has been identified to be key to improving ductility for achieving high strength weld metal.

  10. Effects of minor yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-yong; LI Bao-hui; KONG Fan-tao

    2007-01-01

    The effects of 0.3%(molar fraction, the same below) yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy were investigated by simulated isothermal forging tests. The ingots with the nominal compositions of Ti-45Al-5Nb and Ti-45Al-5Nb-0.3Y were prepared by induction skull melting. Simulated isothermal forging tests were conducted on Gleeble 1500D thermo-simulation machine using a 6 mm in diameter and 10 mm in length compressive specimen at the deformation temperatures of 1 100, 1 150, 1 200 ℃ and strain rates of 1.0, 0.1, 0.01 s-1. The results show that yttrium addition remarkably improves hot deformability of Ti-45Al-5Nb alloy. An appropriate hot deformation processing parameter of Ti-45Al-5Nb-0.3Y alloy is determined as 1 200 ℃, 0.01 s-1. The flow stresses are decreased by yttrium addition under the same compressive conditions. The activation energies of deformation Q are calculated as 448.6 and 399.5 kJ/mol for Y-free and Y-containing alloys, respectively. The deformed microstructure observation under 1 200 ℃, 0.01 s-1 condition indicates that Ti-45Al-5Nb-0.3Y alloy shows more dynamic recrystallization. The improvement of hot deformability of Ti-45Al-5Nb-0.3Y alloy induced by yttrium addition should be attributed to that the smaller the original lamellar colonies, the lower the deformation resistance and activation energy of deformation are, and the more the dynamic recrystallization is.

  11. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z., E-mail: zuojia.liu@gmail.com; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G.E.; Skeldon, P.

    2014-09-30

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO{sub 4} electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO{sub 4} electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions.

  12. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys

    International Nuclear Information System (INIS)

    Three-dimensional atom probe analysis is employed to characterize the Sc segregation at θ′/α-Al interfaces in Al–2.5 wt.% Cu–0.3 wt.% Sc alloys aged at 473, 523 and 573 K, respectively. The interfacial Sc concentration is quantitatively evaluated and the change in interfacial energy caused by Sc segregation is assessed, which is in turn correlated to yield strength and ductility of the alloys. The strongest interfacial Sc segregation is generated in the 523 K-aged alloy, resulting in an interfacial Sc concentration about 10 times greater than that in the matrix and a reduction of ∼25% in interfacial energy. Experimental results show that the interfacial Sc segregation promotes θ′ precipitation and enhances the strengthening response. A scaling relationship between the interfacial energy and precipitation strengthening increment is proposed to account for the most notable strengthening effect observed in the 523 K-aged alloy, which is ∼2.5 times that in its Sc-free counterpart and ∼1.5 times that in the 473 and 573 K-aged Al–Cu–Sc alloys. The interfacial Sc segregation, however, causes a sharp drop in the ductility when the precipitate radius is larger than ∼200 nm in the 523 K-aged alloy, indicative of a transition in fracture mechanisms. The underlying fracture mechanism for the low ductility regime, revealed by in situ transmission electron microscopy tensile testing, is that interfacial decohesion occurs at the θ′ precipitates ahead of crack tip and favorably aids the crack propagation. A micromechanical model is developed to rationalize the precipitate size-dependent transition in fracture mechanisms by taking into account the competition between interfacial voiding and matrix Al rupture that is tailored by interfacial Sc segregation

  13. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 2000C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 4500C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 4500C is typically 0.5 percent. Good combinations of strength and ductility at 4500C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  14. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: leandro.bolzoni@brunel.ac.uk; Nowak, M.; Hari Babu, N.

    2015-07-15

    Cast Al alloys are important structural materials for the lightweighting of cars and, consequently, reduction of greenhouse gases emission and pollution. The microstructure and properties of cast Al alloys could be further improved by means of grain refinement, practise which cannot efficiently be performed with common Al–Ti–B grain refiners used for wrought Al alloys. In this work we proposed the employment of Nb+B inoculation as an alternative for the refinement of the primary α-Al dendrites of cast Al–Si alloy by studying the grain refinement induced by the Nb+B inoculants as a function of key aspects such as cooling rate, fading behaviour and simulated recyclability tests. It is found that the grain size of the Nb+B inoculated material is noticeably less sensitive to the cooling rate. Nb+B inoculants are still present and promote the refinement of the Al–12Si alloy even after few hours of contact time, although some fading is detected. Furthermore, Nb+B inoculants are also still effective for enhancing heterogeneous nucleation after three remelting of the inoculated alloy. The fading behaviour and ability to retain grain refining potency after remelting are highly relevant to industrial scale applications. - Highlights: • The influence of Nb+B inoculation on Al–12SSi is assessed. • The grain size decreases along with the amount of Nb+B compounds. • Nb+B inoculation makes the grain size less sensitive from the cooling rate. • Grain refinement is obtained via heterogeneous nucleation.

  15. Effect of the Degree of Plastic Deformation on the Electrical Resistance and Thermal Conductivity of Al-Mg-Si Alloy

    Directory of Open Access Journals (Sweden)

    Joseph Ajibade OMOTOYINBO

    2014-02-01

    Full Text Available Experiments have been conducted to investigate the effect of the degree of plastic deformation on the electrical resistance and thermal conductivity of Al-Mg-Si (6063 alloy. Thirty six samples of the 6063 alloy were used in all for the experiments (three samples constituted a group and twelve groups were instituted in the experiment with each group corresponding to a particular degree of deformation. Eleven groups were cold deformed plastically by subjecting the groups to different percentages of cold work starting from 5% to 55%, with 5% intervals. It was observed that there was no appreciable increase in the electrical resistance of the alloy as the degree of deformation increased. However, cold deformed 6063-Aluminium alloy appeared to be thermally unstable as the degree of plastic deformation increased. It was concluded that plastic deformation has no deleterious effect on the electrical resistance of the alloy but rendered the material thermally unstable in terms of thermal conductivity.

  16. Investigation of microgravity effect on solidification of medium-low-melting-point alloy by drop tube experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of microgravity on the solidification process of medium-low-melting-point eutectic, monotectic and peritectic alloys were ana-lyzed and discussed. The results indicated that the effects of microgravity on the eutectic cell shape, the pattern in eutectic cell and the inter-eutectic spacing were different for different types of eutectic systems; the size distribution of Pb particles in Al-5wt% Pb monotectic alloy was significantly changed by microgravity; and the shape of retained primary α-Co phase in Cu-10wt%Co peritectic alloy was also changed by microgravity. These results are beneficial for people to further identify and analyze the solidification behavior of multiphase alloys under microgravity.

  17. Effect of nanostructured composite powders on the structure and strength properties of the high-temperature inconel 718 alloy

    Science.gov (United States)

    Cherepanov, A. N.; Ovcharenko, V. E.

    2015-12-01

    The experimental results of the effect of powder nanomodifiers of refractory compounds on the strength properties, the macro- and microstructure of the high-temperature Inconel 718 alloy have been presented. It has been shown that the introduction of powder modifiers into the melt leads to a decrease in the average grain size by a factor of 1.5-2 in the alloy. The long-term tensile strength of the alloy at 650°C increases 1.5-2 times, and the number of cycles at 482°C before fracture grows by more than three times. The effect of nanoparticles on the grain structure and strength properties of the alloy is due to an increase in the number of generated crystallization centers and the formation of nanoparticle clusters of refractory compounds at boundaries and junctions in the formed grain structure, which hinder the development of recrystallization processes in the alloy.

  18. The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Highlights: • Powders of Mo and Si according to MoSi2 stoichiometry were mechanically alloyed. • The as milled powder mixture was sintered using spark plasma sintering. • We investigated the microstructure and mechanical properties of samples. - Abstract: In this research the effect of mechanical alloying on the in situ synthesis–sintering behavior and mechanical properties of MoSi2 has been investigated. The Mo and Si powders according to MoSi2 stoichiometric composition were mechanically alloyed at different times. Then, the powders were subjected to spark plasma sintering process for preparing monolithic MoSi2. X-ray diffraction pattern of the sintered samples showed that by increasing the mechanical alloying time, Mo5Si3 has been formed. It seems that the formation of Mo5Si3 is due to the effect of mechanical alloying on microstructure and thermodynamic condition of the reaction

  19. Influence of alloying effect on X-ray fluorescence parameters of Co and Cu in CoCuAg alloy films

    Science.gov (United States)

    Aylikci, Nuray Kup; Tiraşoğlu, Engin; Apaydin, Gökhan; Cengiz, Erhan; Aylikci, Volkan; Bakkaloğlu, Ömer Faruk

    2009-06-01

    In this study, K β/K α X-ray intensity ratios, σ, σ production cross-sections and ωK fluorescence yields of Co and Cu and L β/L α X-ray intensity ratios, σ, σ production cross-sections and ϖ average fluorescence yields of Ag in pure metals and in different alloy compositions were measured. In this study, alloying effects on the σ production cross-sections of Co and Cu were investigated and changes interpreted according to the rearrangement of valance state electrons and the charge transfer process between the 3d elements (Co and Cu) and Ag.

  20. Cathodic cycling effects in the oxide films formed on zirconium alloys type AB2

    International Nuclear Information System (INIS)

    The passive behavior of ZrNi alloys near the rest potential is studied through in situ voltammetry, ellipsometry, and microscopic observation.A significant oxide layer growth is observed in aqueous 1 M KOH during the application of different potential programs currently used in the activation processes of the alloy.The understanding of both the alloy activation process and the hydrogen absorption process is important in the strategies employed for the design of electrodes for nickel metal hydride batteries.The kinetics of the oxide layer formation, under potential cycling in the cathodic region related to the rest potential, plays a significant role in the activation process of metal alloy.Cathodic potential cycling increases the thickness and decreases the compactness of the passive oxide layer.The protonation of the oxide decreases the barrier effect and makes the anodic polarization more effective.Potential cycling gives rise to increasing surface oxidation, hydrogen absorption and hydride formation, and produces the consequent fragmentation of the material mainly through grain limits (J.Solid State Eletrochem. in press)

  1. Effect of Co addition on crystallization and magnetic properties of FeSiBPCu alloy

    Institute of Scientific and Technical Information of China (English)

    Rui Xiang; Shaoxiong Zhou; Bangshao Dong; Guangqiang Zhang; Zongzhen Li; Yanguo Wang; Chuntao Chang

    2014-01-01

    The effects of Co addition on the microstructure, crystallization processes and soft magnetic properties of (Fe1-xCox)83Si4B8P4Cu1 (x=0.35, 0.5, 0.65) alloys were investigated. The experimental results demonstrated that the addition of Co decreased the thermal stability against crystallization of the amorphous phase, and thus improved the heat treatment temperature of this alloy. FeCoSiBPCu nanocrystalline alloys with a dispersedα'-FeCo phase were obtained by appropriately annealing the as-quenched ribbons at 763 K for 10 min. Theα'-FeCo with grains size ranging from 9 to 28 nm was identified in primary crystallization. The coercivity (Hc) markedly increased with increasing x and exhibited a minimum value at x=0.35, while the saturation magnetic flux density (Bs) shows a slight decrease. The (Fe0.65Co0.35)83Si4B8P4Cu1 nanocrystalline alloy exhibited a high saturation magnetic flux density Bs of 1.68 T, a low coercivity, Hc of 5.4 A/m and a high effective permeability μe of 29,000 at 1 kHz.

  2. Effect of Co addition on crystallization and magnetic properties of FeSiBPCu alloy

    Directory of Open Access Journals (Sweden)

    Rui Xiang

    2014-12-01

    Full Text Available The effects of Co addition on the microstructure, crystallization processes and soft magnetic properties of (Fe1−xCox83Si4B8P4Cu1 (x=0.35, 0.5, 0.65 alloys were investigated. The experimental results demonstrated that the addition of Co decreased the thermal stability against crystallization of the amorphous phase, and thus improved the heat treatment temperature of this alloy. FeCoSiBPCu nanocrystalline alloys with a dispersed α′-FeCo phase were obtained by appropriately annealing the as-quenched ribbons at 763 K for 10 min. The α′-FeCo with grains size ranging from 9 to 28 nm was identified in primary crystallization. The coercivity (Hc markedly increased with increasing x and exhibited a minimum value at x=0.35, while the saturation magnetic flux density (Bs shows a slight decrease. The (Fe0.65Co0.3583Si4B8P4Cu1 nanocrystalline alloy exhibited a high saturation magnetic flux density Bs of 1.68 T, a low coercivity, Hc of 5.4 A/m and a high effective permeability µe of 29,000 at 1 kHz.

  3. Effect of δ Phase on Mechanical Properties of GH4169 Alloy at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    Neng-yong YE; Ming CHENG; Shi-hong ZHANG; Hong-wu SONG; Hong-wei ZHOU; Ping-bo WANG

    2015-01-01

    Tensile tests of GH4169 alloy were performed at room temperature. Different fractions, distributions and shapes of δ phase was prepared by aging treated at 880 °C, 930 °C and 980 °C for 5 h or 10 h. The effect of δ phase on the mechanical pro- perties of GH4169 alloy was investigated. The results show that 0.2% yield strength and ultimate tensile strength of GH4169 alloy increase by 61 MPa and 78 MPa respectively when the fraction of δ phase increases from 2.20% to 5.21%. Then, the ultimate tensile strength remains at 1 012 MPa even when the fraction of δ phase reaches 7.56%. The fraction effect of δ phase on the strength improvement of GH4169 alloy is more signiifcant than morphology, and the critical fraction value is 5.21%. In addition, the elongation decreases by 14.1% when the fraction of δ phase increases from 2.20% to 7.56%. Excessive needle or short rod shaped δ phase is responsible for the reduction of elongation.

  4. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet

    Institute of Scientific and Technical Information of China (English)

    SONG Hui; WANG Zhong-jin; GAO Tie-jun

    2007-01-01

    An annealed TC4 titanium alloy sheet was treated by high density electropulsing (Jmax=(5.09-5.26)×103A/mm2, tp=110 μs) under ambient conditions. The effect of electropulsing treatment(EPT) on the plastic deformation behavior of TC4 titanium alloy sheet was studied using uniaxial tension tests. The experimental results indicate that electropulsing treatment significantly changes the mechanical properties of sheet metal: the uniform elongation is increased by 35%, the yield stress is decreased by 19.8% and the yield to tensile ratio is decreased by 17.6%. It is of significant meaning to improve the formability of TC4 titanium alloy sheet. The optical microscope and scanning electron microscope(SEM) were used to examine the changes of the microstructure and the fracture morphology before and after the electropulsing treatment. It is found that recrystallization occurs in the sheet metal and dimples in fracture surface are large and deep after the electropulsing treatment. The research results show that the electropulsing treatment is an effective method to improve the formability of titanium alloy sheets.

  5. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU

    Science.gov (United States)

    Magdefrau, Neal J.; Chen, Lei; Sun, Ellen Y.; Aindow, Mark

    2013-11-01

    The effect of alloy heat treatment on the oxidation kinetics and oxide scale microstructure of Crofer 22 APU has been studied. Parabolic oxidation rate constants were measured for the as-received alloy and after pre-oxidation heat treatment in argon at 1050 °C for 1 and 4 h. The oxide scale microstructure was investigated using scanning electron microscopy, focused ion beam milling and transmission electron microscopy. It was found that the alloy forms a two-layer scale with a continuous chromia layer and a discontinuous MnCr2O4 overlayer. Two forms of internal oxides were also formed: subscale pockets of spinel and isolated TiOx precipitates in the underlying alloy. The pre-oxidation heat treatment had a profound effect on the grain size and morphology of the Cr2O3 and MnCr2O4 layers in the scale. The heat-treated samples exhibit a 3.5× lower parabolic oxidation rate constant than the as-received Crofer 22 APU. This improvement in oxidation resistance is attributed to the dramatic differences in the morphology of the oxide scale that forms during the earliest stages of oxidation (<5 h). The implications of these findings for oxidation mechanisms and long-term SOFC performance are discussed.

  6. Effects of production parameters on characteristics of magnesium alloy sheets manufactured by twin-roll casting

    Directory of Open Access Journals (Sweden)

    H. Watari

    2006-04-01

    Full Text Available Purpose: : The purpose of the work is to establish a manufacturing process and technology to facilitate the economical manufacture of high-quality magnesium sheet alloys.Design/methodology/approach: Magnesium alloy AZ31B was used to investigate the appropriate manufacturing conditions for use in twin-roll strip casting. Temperatures of the molten materials and roll speeds were varied to find the appropriate manufacturing conditions. The effects of manufacturing conditions on possible forming were clarified in terms of roll speeds and roll gaps between upper and lower rolls.Findings: In the hot-rolling process, a temperature exceeding 200°C was chosen to keep cast products from cracking. An appropriate annealing temperature was effective for homogenizing the microstructure of the rolled cast sheets after the strip casting process. The grain size of the manufactured wrought magnesium alloys sheet was less than 10 micrometers. The obtained magnesium alloy sheet exhibited an equivalent limiting drawing ratio in a warm-drawing test.Research limitations/implications: AZ31 were used to investigate the appropriate manufacturing conditions for use in twin-roll strip casting. Casting temperatures were varied from 630°C to 670°C to find the best casting conditions. Roll casting speeds were varied from 5m/min to 30 m/min in order to examine which roll speed was appropriate for solidifying the molten magnesium.Practical implications: It was found that the cast magnesium sheet manufactured by roll strip casting could be used for plastic forming if the appropriate magnesium sheets were produced after the roll casting process.Originality/value: This paper showed the effectiveness of twin roll casting for magnesium alloys by a horizontal roll caster.

  7. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    International Nuclear Information System (INIS)

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments

  8. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Han

    2015-09-01

    Full Text Available In this paper, the effects of Nb addition (5–20 wt % on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD, SEM, and TEM. The results indicated that the Ti-xNb alloys (x = 10, 15, and 20 wt % were mainly composed of α + β phases with precipitation of the isothermal ω phase. The volume percentage of the ω phase increased with increasing Nb content. We also investigated the effects of the alloying element Nb on the mechanical properties (including Vickers hardness and elastic modulus, oxidation protection ability, and corrosion behavior of Ti-xNb binary alloys. The mechanical properties and corrosion behavior of Ti-xNb alloys were found to be sensitive to Nb content. These experimental results indicated that the addition of Nb contributed to the hardening of cp-Ti and to the improvement of its oxidation resistance. Electrochemical experiments showed that the Ti-xNb alloys exhibited superior corrosion resistance to that of cp-Ti. The cytotoxicities of the Ti-xNb alloys were similar to that of pure titanium.

  9. Study on Electromagnetic Shielding Effectiveness of Ni-P-La Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1~5 dB.

  10. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties.

  11. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. PMID:27612770

  12. The Effects of Aging Precipitation on the Recrystallization of CuNiSiCr Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jingguo; HUANG Jinliang; LIU Ping; JING Xiaotian; ZHAO Dongmei; ZHI Xiao

    2005-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The results show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recrystallization. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in front of grain boundaries following a re-precipitation in the recrystallization area.

  13. Effect of Triple Annealing Treatment on Stress Relaxation of Ti-6Al-4V Alloy

    Institute of Scientific and Technical Information of China (English)

    Yong LIU; Jingchuan ZHU; Zhongda YIN; Mingwei LI

    2004-01-01

    The effect of triple annealing on stress relaxation of Ti-6Al-4V alloy as well as the microstructure after stress relaxation were studied. The results showed that triple annealing treatment enhanced the resistance of stress relaxation performance, and when the temperature was rising, this effect became notable. The stress relaxation deformation mechanism is of dislocation creep at 400℃ and recovery creep at 600℃.

  14. Effects of strain and trapping on hydrogen-induced cracking in high strength low alloy steels

    OpenAIRE

    Bosch, Cédric; Delafosse, David; Longaygue, Xavier

    2010-01-01

    International audience In pearlitic steels, hydrogen trapping at interphase boundaries may induce hydrogen- cracking in the absence of external applied stress such as in blistering and Hydrogen Induced Cracking. However, in low alloy steels containing a much lower density of such trapping sites and/or when hydrogen activity is reduced, most instances of hydrogen-induced cracking involve strong interactions between local plasticity and hydrogen effects. We investigated the effects of these ...

  15. Mitigation of harmful effects of welds in zirconium alloy components

    International Nuclear Information System (INIS)

    Welding produces local residual tensile stresses and changes in texture in components made from zirconium alloys. In the heat-affected zone in tubes or plates, the basal plane normals are rotated into the plane of the component and perpendicular to the direction of the weld. Thin-walled zircaloy-2 tubes containing an axial weld do not reach their full strength, because they always fail prematurely in the weld when pressurised to failure in a fixed-end burst test. Reinforcing the weld by increasing its thickness by 25% moves the failure to the parent metal, improves the biaxial strength of the tube by 20 to 25%, and increases the total elongation by 200 to 450%. In components made from Zr-2.5Nb, the texture in the heat-affected zone promotes delayed hydride cracking (DHC) driven by tensile residual stress. Although the texture is not much affected by heat-treatments below 630 degrees celsius and large grain interaction stresses remain as a result of mixed textures, macro-residual tensile stresses can be relieved by heat-treatment to the point where the probability of cracking is very low

  16. Mitigation of harmful effects of welds in zirconium alloy components

    International Nuclear Information System (INIS)

    Welding produces local residual tensile stresses and changes in texture in components made from zirconium alloys. In the heat-affected zone in tubes or plates, the basal plane normals are rotated into the plane of the component and perpendicular to the direction of the weld. Thin-walled Zircaloy-2 tubes containing an axial weld do not reach their full strength because they always fail prematurely in the weld when pressurized to failure in a fixed-end burst test. Reinforcing the weld by increasing its thickness by 25% moves the failure to the parent metal and improves the biaxial strength of the tube by 20 to 25% and increases the total elongation by 200 to 450%. In components made from Zr-2.5Nb, the texture in the heat-affected zone promotes delayed hydride cracking (DHC) driven by tensile residual stress. Although the texture is not much affected by heat-treatments below 630oC and large grain interaction stresses remain as a result of mixed textures, macro-residual tensile stresses can be relieved by heat treatment to the point where the probability of cracking is very low. (author)

  17. Effect of laser treatment on the surface of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garbacz, Halina, E-mail: hgarbacz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Fortuna-Zalesna, Elzbieta [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Koss, Andrzej; Zatorska, Anna [Academy of Fine Arts in Warsaw, Inter-Academy Institute for Conservation and Restoration of Works of Art, Wybrzeze Kosciuszkowskie 37, 00-379 Warsaw (Poland); Zukowska, Grazyna Z. [Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland); Onyszczuk, Tomasz; Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2011-06-15

    The paper presents the results of laser cleaning of the archaeological metal objects using two time widths of pulsed laser radiation, which are around 150 {mu}s and around 120 ns. Two archaeological objects made of copper alloys were studied: a bow and a ring. Both objects came from a cemetery which is located in the garden complex of Wilanow Palace in Warsaw and are dated from XII to XIII century. The bow and bronze ring had ornamental longitudinal grooving and were part of burial jewellery. The materials of which these artefacts were made of, as well as corrosion products on these objects, were studied by using a variety of analytical techniques. The phase composition of the corrosion layers was determined by using Raman spectroscopy. The surface topography as well as the chemical composition of the deposits and cleaned surfaces were investigated. The samples were examined using scanning electron microscopes equipped with EDS. The investigations included observations in SE and BSE modes and point analyses of the chemical composition by EDS.

  18. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  19. Influences of different degassing processes on refining effect and properties of 4004 Al alloy

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2013-03-01

    Full Text Available In order to improve the plasticity of 4004 Al alloy and subsequently the productivity of 4004 Al foil, the research studied in detail the influence of the rotary impeller degassing process on the refining effect of 4004 Al alloy, in which the impacts of four major parameters: gas flow, rotational speed, refining time, and stewing time, on degassing rate of 4004 Al alloy was systematically studied by using an orthogonal experiment methodology. Results show that the rotational speed has the greatest impact on the degassing of 4004 Al alloy, followed by gas flow and refining time; stewing time has the least impact. The optimum purification parameters obtained by current orthogonal analysis were: rotor speed of 500 r·min-1, inert gas flow of 0.4 mL·h-1, refining time of 15 min, and stewing time of 6 min. Degassing rate using the optimum parameters reaches 68%. In addition, the comparison experiments among C2Cl6 refining, rotary impeller degassing, and combined treatment of C2Cl6 refining and rotary impeller degassing for 4004 Al alloy were performed. The experimental data indicated that the combined treatment of C2Cl6 refining and rotary impeller degassing has the best degassing effect. Degassing rate of C2Cl6 refining, rotary impeller degassing and combined refining treatment is 39%, 69.1% and 76.9%, respectively. The mechanical properties of the specimen refined by rotary impeller degassing were higher than those by C2Cl6 refining, but lower than those by combined refining treatment.

  20. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  1. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  2. Effect of Residual Strain Induced by Cold Working on PWSCC of Alloy 690

    International Nuclear Information System (INIS)

    PWSCC has been widely reported to occur in the inside of the steam generator (SG) tubing, and in other instrumentation nozzles such as the control rod drive mechanism (CRDM) penetrations, especially on those surfaces having a dissimilar metal welds (DMW) or those heavily machined. Under an abnormal working procedure or without a sufficient post-heat treatment for stress relaxation, a high tensile stress can persist after welding or cold working of the alloys. Variation of a strain field is also accompanied by the cold working or machining process. The conventional method for measuring the residual strain is a micro-hardness test, which has a limitation owing to the presence of precipitates and grain boundaries in the matrix of the test specimen. A new technique of electron backscatter diffraction (EBSD) has recently been applied to residual strain analysis on a micro-scale to overcome this limitation. This work is concerning a quantitative analysis of the local residual strain by EBSD and its effect on the PWSCC of Alloy 690 CRDM materials. In this work, the local residual strain of Alloy 690 CRDM materials cold-worked at various plastic strain levels was quantitatively evaluated using an EBSD analysis. From KAM maps, it was confirmed that the residual strain increased with cold-working, and a higher strain was concentrated at the grain boundary than in the matrix. The severe strain field localized at the grain boundary accelerated the inter-grannular growth of PWSCC of Alloy 690

  3. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    Directory of Open Access Journals (Sweden)

    M.H. Shaeri

    2015-04-01

    Full Text Available The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 °C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens have been aged at 120 °C for different aging times. Mechanical properties were measured by Vickers microhardness and tensile tests and microstructural observations were undertaken using transmission electron microscopy, X-ray diffractometer as well as optical microscopy. Microstructural investigations showed that ultrafine-grained materials with grain size in the range of 200–350 nm and 300–500 nm could be obtained after three passes of equal channel angular pressing at room temperature and 120 °C, respectively. Equal channel angular pressing of solid solution heat-treated Al-7075 alloy accelerates precipitation rate and subsequently leads to a significant decrease in aging time to attain maximum mechanical properties. Furthermore, it is possible to achieve maximum mechanical properties during equal channel angular pressing at 120 °C as a result of dynamic aging and formation of small ɳ´ phase.

  4. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution

    Institute of Scientific and Technical Information of China (English)

    Chen Xin; Tian Wenming; Li Songmei; Yu Mei; Liu Jianhua

    2016-01-01

    The effect of temperature on the corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution was investigated by potentiodynamic polarization and electrochemical impe-dance spectroscopy (EIS) techniques. The surface characterization was observed and determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spec-trometer (EDS). The results demonstrate that the anodic aluminum dissolution and the cathodic oxygen reduction were accelerated by the increased temperature. However, as temperature was over 60 °C, the solubility and concentration of oxygen decreased, resulting in the inhibition of cathodic reaction. The cathodic reaction rate of 3003 aluminum alloy rose to the maximum at 60 °C. The Warburg impedance in Nyquist diagram diminished and then was replaced by a negative capaci-tance caused by the absorption of intermediate corrosion product on electrode. On the other hand, after potentiodynamic measurements, 3003 aluminum alloy suffered pitting corrosion. The dissolu-tion of aluminum alloy around secondary phase particles expanded both horizontally and vertically. © 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

  5. Effect of nanostructuring on the elastic properties of aluminum alloy AMg6

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, V., E-mail: pvm@tisnum.ru; Perfilov, S. [Technological Institute for Superhard and Novel Carbon Materials. Centralnaya 7a, Moscow, Troitsk, 142190 (Russian Federation); Korobov, A., E-mail: aikor42@mail.ru; Kokshaiskii, A.; Volkov, A. [Department of Acoustics, Faculty of Physics, M.V. Lomonosov Moscow State University. Leninskie gory 1, Moscow, 119991 (Russian Federation)

    2015-10-28

    We experimentally investigated the nanostructuring effect on the elastic properties of aluminum alloy AMg6 (Al–Mg–Mn system). The n-AMg6 nanostuctured specimens were prepared from a commercial polycrystalline alloy by refining and homogenizing a mixture of small chips of the alloy in a planetary mill. The resulting product consists of 200-500-micron agglomerates of nanoparticles with average nanoparticle size ∼ 40–60 nanometer according to the X-ray analysis. The compacted nanopowder was extruded at a temperature of 300°C with a reduction of cross-sectional area at least 4 times to 90 mm diameter. High resolution transmission electron microscopy studies confirmed the presence of the nanostructure with a grain size of ∼60 nanometers. For the experiments, nine parallelepiped shape specimens of 20×20×40 mm{sup 3} size were cut from the central and peripheral parts of the n-AMg6 rod. We measured of the second-order and third-order elastic coefficients of the obtained samples by ultrasonic method. The same measurements were made on specimens of the primary AMg6 alloy for comparison.

  6. Effect of compound field on horizontal continuous casting of Al-1wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Zhong-tao Zhang

    2015-03-01

    Full Text Available A travelling magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si alloy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single field can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best refinement and homogeneity of the Si element in the alloy, leading to the highest increase of tensile strength and elongation among the three applied fields. The mechanism of the action of external fields on the refinement of microstructures and homogeneity of the Si element is discussed and the compound field is considered to be an effective method to achieve high quality Al alloys.

  7. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, B. [Division de Technologie du Combustible, Departement de Metallurgie, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria)], E-mail: zaidbachir@yahoo.com; Saidi, D. [Division de Technologie du Combustible, Departement de Metallurgie, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria); Benzaid, A. [Divisionde Physique et Application Nucleaires, Departement Application Nucleaires, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria); Hadji, S. [Division de Technologie du Combustible, Departement du combustible, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria)

    2008-07-15

    Effects of pH solution and chloride (Cl{sup -}) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E{sub pit} and corrosion E{sub cor} potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  8. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    Science.gov (United States)

    Vlček, M.; Čížek, J.; Lukáč, F.; Melikhova, O.; Hruška, P.; Procházka, I.; Vlach, M.; Stulíková, I.; Smola, B.; Jäger, A.

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C.

  9. Effect of aging on the martensitic transformation temperature in Ag-Zn-Al alloys

    International Nuclear Information System (INIS)

    The relation between atomic ordering and martensitic transformation temperature, Ms, in Ag-Zn-Al alloys was examined mainly by means of electrical resistivity measurements. Disordered bcc phase was frozen-in by quenching from a temperature above the critical temperature for ordering, Tc. In a Ag-22.3at%Zn-8.9at%Al alloy, the Ms temperature has been found to decrease by aging in the parent phase at temperatures between 253 and 293 K. The resistivity also decreased in accord with the Ms temperature. This indicates that atomic ordering proceeds by aging. The relation between the decrease in the reverse transformation temperature, Af, and the degree of long range order was obtained. In a Ag-11.0at%Zn-15.5at%Al alloy, in which the Ms temperature in the as-quenched state is higher and the Tc temperature is lower than that of the former alloy, aging in the martensite phase was performed. In this case, the aging brought about the increase in the Af temperature. This is in contrast to the results of aging in the parent phase. Furthermore, the effect of aging in the parent phase at temperatures higher than Tc was examined. Both the transformation temperature and the resistivity were found to become higher. These changes are due to lowering in the degree of short range order. (orig.)

  10. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Nie, X. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada)]. E-mail: xnie@uwindsor.ca

    2006-01-03

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys ({approx} 17% Si) and hypoeutectic 319 alloys ({approx} 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms.

  11. Effect of Neodymium on Microstructure and Mechanical Properties of Mg-Sb Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of Nd on the microstructure and mechanical properties of Mg-Sb3 alloy were studied with the 0~0.15% addition content. The addition of Nd makes the grain of Mg-Sb3 alloy obviously refined, where the grain size decreases from 100~200 μm to 0.2~10 μm. And the typical dendrite characteristic turns into the equiaxed grain microstructure with the addition of 0.05%~0.1% Nd. The reason for grain refinement is from the supercooling theory. The mechanical properties tested indicate that the tensile strength and especially elongation of the alloys are improved with the addition of Nd and their maximum enhancing rates based on the Nd-free Mg-Sb3 alloy are 20% and 10% at 0.1% Nd, respectively. The main reason is attributed to the grain refinement by Nd. The tensile strength and especially elongation decline when Nd addition is over 0.1%, owing to the number and size increase of the needle-shaped phases on the grain boundaries with the Nd addition increasing.

  12. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni-W alloys

    Science.gov (United States)

    Pramod Kumar, U.; Kennady, C. Joseph

    2015-10-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni-W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni-W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 Ω·cm2 and a lower double-layer capacitance of 29.4 μF·cm-2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value ( R max) of the deposits is confirmed by atomic force microscopy.

  13. EFFECT OF CASTING MOULD ON MECHANICAL PROPERTIES OF 6063 ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    WASIU AJIBOLA AYOOLA

    2012-02-01

    Full Text Available Modern production methods for casting articles include the use of sand- mould, metal-mould, die, and centrifugal castings. Castings produced using sand mould is known to have peculiar microstructures depending on average size, distribution and shape of the moulding sand grains and the chemical composition of the alloy. These affect the surface finish, permeability and refractoriness of all the castings. In this paper, the effect of using CO2 process, metal mould, cement-bonded sand mould and naturally-bonded sand mould on the hardness, tensile and impact strengths of as-cast 6063 Aluminum alloy is presented. The results show that there is significant increase in hardness(33.7 HB of the alloy when naturally-bonded sand mould is used for its production over that of metal, CO2 and cement moulds. The stress-strain curves behaviour of the samples also indicated that sample from naturally bonded sand has highest tensile strength with superior ductility. The alloy shows highest impact strength when metal mould is used for sample preparation in comparison with other moulds.

  14. Effect of Residual Strain Induced by Cold Working on PWSCC of Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Lim, Yun Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    PWSCC has been widely reported to occur in the inside of the steam generator (SG) tubing, and in other instrumentation nozzles such as the control rod drive mechanism (CRDM) penetrations, especially on those surfaces having a dissimilar metal welds (DMW) or those heavily machined. Under an abnormal working procedure or without a sufficient post-heat treatment for stress relaxation, a high tensile stress can persist after welding or cold working of the alloys. Variation of a strain field is also accompanied by the cold working or machining process. The conventional method for measuring the residual strain is a micro-hardness test, which has a limitation owing to the presence of precipitates and grain boundaries in the matrix of the test specimen. A new technique of electron backscatter diffraction (EBSD) has recently been applied to residual strain analysis on a micro-scale to overcome this limitation. This work is concerning a quantitative analysis of the local residual strain by EBSD and its effect on the PWSCC of Alloy 690 CRDM materials. In this work, the local residual strain of Alloy 690 CRDM materials cold-worked at various plastic strain levels was quantitatively evaluated using an EBSD analysis. From KAM maps, it was confirmed that the residual strain increased with cold-working, and a higher strain was concentrated at the grain boundary than in the matrix. The severe strain field localized at the grain boundary accelerated the inter-grannular growth of PWSCC of Alloy 690.

  15. Effects of Compression Parameters on Deformation Behaviors of Semi-Solid ZA27 Alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ti-jun; HAO Yuan; SUN Jun

    2003-01-01

    An investigation was performed on the effects of semi-solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.

  16. Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy

    Institute of Scientific and Technical Information of China (English)

    李纪恒; 肖锡铭; 袁超; 高学绪; 包小倩

    2015-01-01

    Polycrystalline rod samples of (Fe83Ga17)100–xYx(x=0, 0.16, 0.32, 0.48, 0.64) were prepared by induction melting under ar-gon atmosphere. Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy was investigated. Small amount of yttrium (0.16 at.%) increased the tensile strength of as-cast Fe83Ga17 alloys to 674 MPa and improved the ductility with elongation of 4.2% at room temperature. The Y2Fe17?xGax (6≤x≤7) phase was formed in the Y-doped Fe83Ga17 alloy since yttrium was hardly dissolved into theα-Fe lattice. Y2(FeGa)17 secondary phase dispersed along the grain boundaries and inside the grains played an important role for the enhancement of mechanical property. The 0.64 at.% Y-doped alloy had magnetostriction of 133 ppm, which was thought to be associated with the alteration of the grain shape and preferential orientation along the axial direction of rods.

  17. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys

    Institute of Scientific and Technical Information of China (English)

    U. Pramod Kumar; C. Joseph Kennady

    2015-01-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40?·cm2 and a lower double-layer capacitance of 29.4 μF·cm?2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value (Rmax) of the deposits is confirmed by atomic force microscopy.

  18. The effect of neutron irradiation on the electrical resistivity of high-strength copper alloys

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on the electrical resistivity of precipitation hardened (PH) and dispersion strengthened (DS) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH and DS copper alloys, irradiated in the fast neutron reactor BOR-60 with doses of 8-16 x 1025 n/m2 and in the mixed spectrum neutron reactor SM-2 with doses of 3.7-5.5 x 1025 n/m2. The experimental data on the change Δρ in electrical resistivity of DS-type copper alloys irradiated in the BOR-60 reactor show that irradiation to 7-10 dpa at T=340-450 C causes a drop in electrical conductivity by not more than 20%. The obtained results show that in mixed-spectrum reactors the rate of Δρ normalized to the dpa is about 20 times as high as in fast neutron reactors. The conclusion is made that the calculations performed for ITER must take into account the presence of appreciable fluxes of thermal neutrons in certain components of the reactor. The latter will play a decisive role in the drop in thermal conductivity of copper alloys in these components. (orig.)

  19. Effects of neutron irradiation on structural stability and mechanical properties of copper alloys for ITER divertor

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on fine structure and mechanical properties of the precipitation-hardened alloy Cu-Cr-Zr-Mg and dispersion-strengthened alloys Cu-Mo and MAGT-0.2 have been investigated. Irradiation were performed in the BOR-60 (Tirr = 420deg C, 1.5 x 1022 n/cm2), SM-2 (Tirr = 300deg C, 1021 n/cm2) and WWR (Tirr = 80deg C, 9.3 x 1019 n/cm2) reactors. It was found that the precipitation-hardened alloy Cu-Cr-Zr-Mg exhibits high resistance to swelling. At Tirr ≅ 420deg C, however, polygonization and precipitate coarsening processes go on at a high rate, which results in a drastic decrease in strength. Dispersion-strengthened alloy Cu-Mo and MAGT-0.2 exhibit high resistance to radiation swelling and have high stability of strengthening structure during neutron irradiation over the temperature and dose range corresponding to ITER physics and technological stages. (orig.)

  20. EFFECT OF TITANIUM-ALLOY PARTICLES ON EXPRESSION OF MEDIATING-RELATED GENES IN HUMAN OSTEOBLASTS

    Institute of Scientific and Technical Information of China (English)

    杨旭; 杨庆铭; 邓廉夫; 许福平; 张玥

    2004-01-01

    Objective To study mRNA expression of the mediating-related genes in osteoblasts after exposure to Titanium-alloy particles and cytochalasin-D. Methods Human osteoblasts were isolated from trabecular fragments and exposed to 0. 01% (v/v) titanium-alloy particles for 8h. Pretreatment of osteoblasts with cytochalasinD( 5μmol/L ) to prevent phagocytosis prior to the addition of Titanium-alloy particles, mRNA expression of RANKL,OPG, and IL-6 was semi-quantified by RT-PCR. Results Expressions of RANKL, OPG, and lL-6 mRNA at respective levels were found in osteoblasts under normal condition, which did not show significant changes in the samples treated with cytochalasin-D but without particles. Exposure of osteoblasts to particles after being treated with or without cytochalasin-D altered mRNA expression of these genes, however, an increase in the ratio of RANKL/ OPG mRNA was only found in samples without cytochalassin-D treatment. Conclusion Changes of expression of RANKL, OPG, and IL-6 mRNA in osteoblasts after exposure to titanium-alloy particles were independent of phagocytosis, whereas phagocytosis has a direct effect on their ability to stimulate osteoclast differentiation and function.

  1. Effect of heating rate on temperature of titanium alloy (. cap alpha. +. beta. ). -->. beta. transformaton

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1985-01-01

    The effect of doping of two-phase titaniums alloys and morphology of initial structure on the Tsub(t) temperature shift value of (..cap alpha..+..beta..)..--> beta.. transformation depending on heating rate is investigated. It has been found that the Tsub(t) shift occurs in the strictly determined temperature range depending on chemical alloy composition. The Tsub(t) shift is directly proportional to the Ksub(..beta..) coefficient applied as a quantitative alloying characteristic as well as a dimensional factor equal either to the plate thickness or the ..cap alpha..-phase globule diameter depending on the type of initial structure. In the limits of this temperature range the (..cap alpha..+..beta..)..--> beta..-transformation occurs completely according to the diffusion mechanism. The critical heating rate at which maximum permissible Tsub(t) value is attained and above which its stabilization is observed is determined by the same parameters - the alloy doping degree characterized by the Ksub(..beta..) coefficient and the ..cap alpha..-phase crystal dimensions in the initial structure.

  2. Effect of disorder on electronic and magnetic properties of Co{sub 2}VGa Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seema, K., E-mail: s-phy@yahoo.co.in [Department of Physics, Panjab University, Chandigarh, India-160014 (India); Department of Physics, PGGC, Sector 11, Chandigarh, India-160011 (India); Kumar, Ranjan, E-mail: ranjan@pu.ac.in [Department of Physics, Panjab University, Chandigarh, India-160014 (India)

    2015-08-28

    This paper presents the effect of disorder on electronic, magnetic and half-metallic properties of Co{sub 2}VGa Heusler alloy using density functional theory. Binary mixing is the most common form of atomic disorder in these compounds. We have considered three types of disorders: DO{sub 3}, A2 and B2 disorder which corresponds to X-Y, X-Z and Y-Z mixing respectively. After structural optimization, we found that A2 disorder has high formation energy and is most unlikely to occur. The half-metallic nature of the alloy is destroyed in presence of DO{sub 3} and A2 disorder. The destruction of half-metallicity is due to reconstruction of energy states. Also the loss of half-metallicity is accompanied by reversal of spin-polarization at the Fermi level. B2 disorder retains the half-metallic nature of the alloy but spin-polarization value is reduced as compared to the ordered alloy.

  3. Effect of Cr and Ti contents on the recovery, recrystallization, and mechanical properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    A series of vacuum-anneals at temperatures from 900 to 100{degrees}C for 1 to 4 h was carried out on small heats of vanadium alloys with Cr and Ti contents ranging from 2 to 6wt. %. The alloys examined on this work were V-3Cr-3Ti, V-4Cr-4Ti, V-5Cr-5Ti, V-6Cr-3Ti, and V-6Cr-6Ti. Optical miscroscopy, TEM, and microhardness testing were conducted. Variation in Cr and Ti over the range of 3 to 6 wt% had no discernible effect on recovery/recrystallization behavior. The hardness of both recovered and recrystallized structures increased with total (CR + Ti) content. In order to study the effect of Cr and Ti content on mechanical properties, Charpy impact testing and tensile testing were carried out on small heats of compositional variants. The V-4Cr-4Ti-Si alloy, in a fully recrystallized conditions, exhibited a high level of resistance to cleavage failure with a DBTT at {approx} 190{degrees}C. The alloy containing higher concentrations of Cr and Ti, in a fully recrystallized condition, exhibited a DBTT around -100{degrees}C, whereas the V-3Cr-3Ti alloy failed by pure ductile shear at liquid nitrogen temperature without any ductile-to-brittle transition. Tensile testing was conducted on SS-3 tensile specimens punched from 0.762-mm-thick plates of V-3Cr-3Ti and V-6Cr-6Ti. The tests were done in air at temperature at strain rates ranging from 10{sup -3} to 2x10{sup -1}/s. For V-6Cr-6Ti, both the 0.2% yield stress (YS) and the ultimate tensile strength (UTS) were higher than those for V-3Cr-3Ti at all strain rates. Both YS and UTS showed a similiar trend in incremental increase with strain rate for the two alloys. In the same token, both alloys exhibited an identical behavior of almost no change in uniform and total elongation up to a strain rate of 10{sup -1}/s and a decrease with further increase in strain rate.

  4. Effect of cold working and applied stress on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking quantitative resistance of Alloys 600 and 690 in PWR primary water, the authors have studied the effect of cold working and applied stress on the stress corrosion cracking resistance of Alloys 600 and 690, in high temperature water. Stress corrosion cracking tests were conducted at 360 degrees C (633K) in a simulated PWR primary water for about 12,000 hours or 24,000 hours. From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked Alloys of thermally treated 690 have the excellent stress corrosion cracking resistance. Further, in this paper, the planning of stress corrosion cracking test for weld joints and weld metal of Alloy 600 is described

  5. Effects of Cu and Mn on mechanical properties and damping capacity of Mg-Cu-Mn alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of Cu and Mn additions on mechanical properties and damping capacity of Mg-Cu-Mn alloy were investigated.The tensile properties and damping capacity at room temperature of as-cast Mg-Cu-Mn alloy were tested. The microstructure was model were used to explain the influences of Cu and Mn additions on the tensile properties and damping capacity of Mg-Cu-Mn alloy. The results show that Cu and Mn additions remarkably reduce the grain size of Mg-Cu-Mn alloy, but have little influence on phase composition and solute atoms concentration, the tensile properties increase obviously and the internal friction of Mg-Cu-Mn alloy decreases with grain refining.

  6. Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Weiwei; HAN Jianmin; LI Weijing; WANG Jinhua

    2006-01-01

    The improvements of microstructures and properties of a high strength aluminum cast alloy were studied.The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated.The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si.With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down.The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.

  7. Deformation temperature and postdeformation annealing effects on severely deformed TiNi alloy by equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.

  8. The joint effect of laser and shear stress treatments for the surface strengthening of Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wei [Insitute of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Li, Jian [Insitute of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Jiang, Xiao [Insitute of Science, PLA University of Science and Technology, Nanjing 211101 (China); Xi, Mingzhe [Insitute of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Gao, Shiyou, E-mail: gao58@sina.com [Insitute of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-01

    In order to improve the surface strength, the structural evolution and mechanical properties of 47Zr–45Ti–5Al–3V alloys treated by laser and shear stress are investigated by X-ray diffraction (XRD), microhardness tester, and nanoindentation. The results indicate that the combined treatment of laser and shear stress is more advantageous than that of single laser or single shear stress to the surface strengthening of Zr alloys. α phase and β phase in the surface layer almost transform into fine β phase completely during laser treatment, which plays a fine grain strengthening effect. The followed treatment of shear stress can transform β phase into ω phase, which plays a dispersion strengthening effect, and induces a mass of dislocation which plays a dislocation strengthening effect. Higher plasticity and fine size of β phase are helpful to restrain the appearance of cracks during the treatment of shear stress.

  9. Bauschinger effect in haynes 230 alloy: Influence of strain rate and temperature

    Science.gov (United States)

    Thakur, Aniruddha; Vecchio, Kenneth S.; Nemat-Nasser, Sia

    1996-07-01

    Quasistatic and dynamic Bauschinger behavior in HAYNES 230 alloy is examined. At low strain rate (10-3/s), the as- received 230 alloy does not show a drop in flow stress, i.e., no Bauschinger effect is displayed. At high strain rate (103/s), a drop in flow stress of 240 MPa was observed upon stress reversal. In contrast, the precipitation- strengthened condition exhibited a Bauschinger effect in both low and high strain rate stress-reversal experiments. The magnitude of the Bauschinger effect was found to increase with increasing strain rate, forward strain, and decreasing temperature. The substructure evolution accompanying the forward loading cycles was investigated by transmission electron microscopy and is related to the back stresses that developed. The increased Bauschinger stress drop observed at high strain rate and/or low temperature was correlated to an increased degree of planar slip under these conditions.

  10. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Prescott, P.J. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  11. Modeling of effects of matrix on actuation characteristics of embedded shape memory alloy wires

    Institute of Scientific and Technical Information of China (English)

    CUI Xiao-long; ZHENG Yan-jun; CUI Li-shan

    2005-01-01

    Effects of matrix properties on the actuation characteristics of embedded shape memory alloy wires were studied. The coefficient of thermal expansion and the modulus of matrix have significant effect on the maximum recovery stress. The thermal strain rate of the SMA wires upon heating is more sensitive to the matrix properties than the stress rate does. Additional fibers embedded in the matrix have significant effect on the stress distribution between the SMA wires and the matrix, and thus affect the interface quality significantly. Fibers with negative thermal expansion coefficient are beneficial to the interface between shape memory alloy wires and the epoxy matrix. All conclusions based on the numerical modeling can find experimental supports.

  12. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field

    Indian Academy of Sciences (India)

    Hong Zeng; Chunjiang Kuang; Jiuxing Zhang; Ming Yue

    2011-07-01

    The magnetocaloric effect of Gd5Si2Ge2 alloys under heat treatment conditions are investigated in low magnetic fields. The magnetocaloric effect (MCE) is studied by measuring magnetic entropy change ( M) and adiabatic temperature change ( ad) in a magnetic field of 1.5 T using a vibrating sample magnetometer (VSM) and a home-made magnetocaloric effect measuring apparatus, respectively. The maximum M of the alloys increases by 200% from 4.38 to 13.32 J kg-1 K-1, the maximum ad increases by 105% from 1.9 to 3.9 K when compared to the as-cast due to the homogeneous composition distribution and microstructure, while the magnetic ordering temperature is slightly reduced. These results indicate that the annealed Gd5Si2Ge2 compounds are promising as high-performance magnetic refrigerants working room temperature in relatively low magnetic fields.

  13. The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tao, G.H. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Liu, C.H., E-mail: chliu@hnu.edu.cn [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, J.H. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha, Hunan 410082 (China); Lai, Y.X.; Ma, P.P.; Liu, L.M. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2015-08-26

    The effects of natural aging (NA) on subsequent artificial aging (AA) at 180 °C in Al–Mg–Si–Cu alloys with varied Mg/Si ratios (0.5, 1 and 2) were systematically studied by Vickers micro-hardness measurements, differential scanning calorimetry and transmission electron microscopy (TEM). The alloy with large Mg/Si ratio possesses a significant negative NA effect on the maximum hardness achieved during AA preceded by an extended NA, while the alloy with small Mg/Si ratio shows a negligible negative NA effect. Though few lath-like Q''/L precipitates exist, needle-like β'' precipitates are the primary hardening precipitates in all the peak-aged alloys. The negative NA effect is demonstrated to be determined by precipitate coarsening, which is manifested microscopically as the broader precipitate length distributions (PLD) and shift of PLD toward larger length range, in AA with the prolonging of NA. Our results suggest the nature of NA clusters is quite different in Al–Mg–Si–Cu alloy varying in Mg/Si ratio. Only a small fraction of NA clusters in alloy with large Mg/Si ratio are stable and could induce preferential growth of precipitates to be considerably coarsened during AA. A large fraction of stable NA clusters in alloy with low Mg/Si ratio lead to synchronous growth of β'' precipitates, thus restricting the preferential growth.

  14. Effect of rapid solidification treatment on structure and electrochemical performance of low-Co AB5-type hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    姚青荣; 唐莹; 周怀营; 邓健秋; 王仲民; 潘顺康; 饶光辉; 朱其明

    2014-01-01

    The effect of rapid solidification on structure and electrochemical performance of the LaNi4.5Co0.25Al0.25 hydrogen storage alloy was investigated by X-ray powder diffraction and a simulated battery test, including maximum capacity, cycling stability, self-discharge, and high-rate discharge ability (HRD). All the melt-spun alloys were single-phase with the CaCu5-type structure (space groupP6/mmm). In comparison to the as-cast alloy, the rapidly quenched alloys manifested an improved homogeneity of com-position and expanded lattice parameters. The electrochemical measurements showed that the activation property, cycling stability and self-discharge of the alloy electrodes were also improved for the rapid solidified alloys. The HRDof the as-cast alloy was better than those of all the rapidly solidified alloys. As the quenching rate increased, the HRD and exchange current density first decreased and then increased.

  15. Effects of rapid quenching on structure and cycle stability of La-Mg-Ni-Co type hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    DONG Xiaoping; Lü Fanxiu; ZHANG Yanghuan; YANG Liying; FENG Meng; WANG Xinlin

    2006-01-01

    In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s -1 (As-cast is defined as quenching rate of 0 m·s-1 ) to 30 m·s -1 , the cycle lives of the MB, M Cr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, M Cr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.

  16. Effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Mingbo; CHENG Liang; SHEN Jia; PAN Fusheng

    2009-01-01

    The effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67×10~(-8) to 1.43×10~(-8) s~(-1). The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.

  17. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    Science.gov (United States)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  18. Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates

    Science.gov (United States)

    Chen, Po-Shou; Bradford, Vann; Russell, Carolyn

    2011-01-01

    Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.

  19. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2008-01-01

    Full Text Available Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. Methods. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99 and cobalt-chromium alloy (Wirobond C were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX (Oxford Instruments and Scanning Electon Microscop (SEM analysis (JEOL were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual information's (KVI POPOVAC. Results. Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Conclusion. Recasting of nickel-chromium and cobaltchromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  20. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-10-06

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni

  1. The effect of alloyed nickel on the short-term high temperature oxidation behaviour of Co–Re–Cr-based alloys

    International Nuclear Information System (INIS)

    Highlights: • The alloying of 15 at.% Ni improves the oxidation resistance of Co–17Re–23Cr significantly. • The improvement relies on promoting the formation of protective Cr2O3 layer. • Calculation of thermodynamics and diffusion kinetics were conducted. • Results show Ni does not promote Cr2O3 nucleation but enhances the Cr diffusion in matrix. • Slow growing Co(Ni)O layer facilitates the selective oxidation of Cr. - Abstract: The effect of Ni on the oxidation behaviour of the alloy Co–17Re–23Cr (at.%) is studied. The results show that the alloying of 15 at.% Ni improves the alloy oxidation resistance significantly by promoting the formation of a protective Cr2O3 layer. This effect can be attributed at least partially to the enhancement of Cr diffusion by Ni in the metallic Co–Re–Cr–Ni matrix. Moreover, the formation of relatively slow growing Co(Ni)O solid–solution in the transient stage supports the lateral growth of Cr2O3 nuclei and thus accelerates the establishment of the compact chromia layer

  2. The effects of cold work on the ordering reaction in Alloy 600

    International Nuclear Information System (INIS)

    Recently it is reported that there is ordering reaction in Alloy 600 and that the exothermic reaction near 500 .deg. C in the water quenching specimen originated from formation of short range order (SRO). Marucco and Nath have investigated and concluded that most commercial Ni.Cr based alloys like Alloy 600 have an ordering reaction based on Ni2Cr at temperatures below 550 .deg. C. Ordering is known to have the following consequences: (i) dimensional instability due to lattice parameter changes; (ii) electrical and thermal characteristics; (iii) changes in mechanical properties due to pile-ups of dislocations; and (iv) phenomenon of negative creep or material contraction under load. Completing the picture further, Lang et al. found that order and precipitation phenomena in Ni.Cr based alloys is strongly dependent on thermo-mechanical treatments producing different metallurgical states. Slow cooling from solution annealing temperatures produces a rather advanced precipitation stage and a degree of SRO corresponding to the thermodynamic equilibrium at 500 .deg. C while a more disordered state is retained. The kinetics of SRO formation is strongly determined by the nucleation of ordered zones, and carbon in the solution appears to suppress the formation of SRO nuclei by trapping excess vacancies during water quenching and hence, retarding the establishment of SRO. Cold working destroys SRO but also produces various lattice defects, which enhance SRO formation and carbide precipitation during re-heating. Marucco has established the existence of an order. disorder transformation in Ni.Cr base alloys from the study of Ni2Cr, Ni3Cr, and Ni.Cr.Fe. She concluded that the degree of order primarily depends on Cr content and that the ordering kinetics become slower when the Ni:Cr atomic ratio departs from that of stochiometric Ni2Cr. The presence of Fe has a strong delaying effect on ordering kinetics, even in small quantities and other alloying elements can also influence the

  3. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic–martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Y.B., E-mail: borobang@gmail.com [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kang, S.H.; Noh, S.; Kim, T.K. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Lee, D.W. [Nuclear Fusion Engineering Development Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Jeong, Y.H. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2014-12-15

    As part of an alloy development program for Korean reduced-activation ferritic–martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile–brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.

  4. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel

    Science.gov (United States)

    Chun, Y. B.; Kang, S. H.; Noh, S.; Kim, T. K.; Lee, D. W.; Cho, S.; Jeong, Y. H.

    2014-12-01

    As part of an alloy development program for Korean reduced-activation ferritic-martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile-brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.

  5. Effects of Sm on the grain refinement, microstructures and mechanical properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ming [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Hu, Xiaoyu [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Peng, Liming, E-mail: plm616@sjtu.edu.cn [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Fu, Penghuai [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Peng, Yinghong [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-01-03

    The effects of samarium (Sm) on the grain refinement, microstructures and mechanical properties of as-cast AZ31 (Mg–3Al–1Zn–0.3Mn) magnesium (Mg) alloy have been investigated. Very serious grain coarsening happens when Sm content is between 0.16% and 1.18%. This is due to both the reactions between Al and Sm which reduce the constitutional undercooling effect and the lack of Al{sub 2}Sm heterogeneous nuclei. However, excellent grain refinement effect is achieved at Sm content above 2.17%, which is because the in-situ formed Al{sub 2}Sm particles significantly promote heterogeneous nucleation. The main phases in AZ31–xSm alloys include α-Mg, β-Mg{sub 17}Al{sub 12}, Al{sub 11}Sm{sub 3} and Al{sub 2}Sm. The Mg{sub 17}Al{sub 12} phase is gradually suppressed by the increase in Sm content, and the Al{sub 2}Sm is present at a higher Sm content. Because of grain refinement strengthening and secondary phase strengthening effects, the room temperature tensile property of AZ31–3.13Sm alloy has the optimal value of YS78.7MPa–UTS216.7MPa-EL13.6%.

  6. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen; Korinek, Andreas; Kirk, Marquis A.; Sattari, Mohammad; Preuss, Michael; Daymond, M. R.

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmission electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  7. Grain refinement effects of Al based alloys with low titanium content produced by electrolysis

    Institute of Scientific and Technical Information of China (English)

    刘志勇; 王明星; 翁永刚; 宋天福; 谢敬佩; 霍裕平

    2002-01-01

    A series of Al based alloys with low titanium contents (mass fraction) from 0.178% to 0.526% were directly produced in ordinary industrial electrolyzer. The electrolyzing results show that producing Al based alloys with titanium contents of less than 0.30% without great loss of electrolysis efficiency is possible. The quantitative analysis shows that this method has a great refining effect on transiting the coarse columnar grains in pure Al to equiaxed grains. The grain sizes decrease with the increase of titanium content and tend to a low limit at about 130μm. During the solidification, the non-equilibrium distribution of titanium leads to a great growth-restricting effect and a constitutional under-cooling zone in front of the growing liquid /solid interface.

  8. EFFECTS OF INTERSTITIAL IMPURITIES ON PHASE TRANSFORMATION OF Ti-Al ALLOYS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    According to the Average Lattice and Atom Models of the Empirical Electron Theory of Solids and Molecules(EET), effects of interstitial impurities on valence electron structures and phase transformation of Ti-Al alloys are analyzed, and descendant degree of bond energy, melting point and liquidus temperatures affected by interstitial impurities are calculated by the bond energy formula of the EET, and then the main experimental results which are not confirmed about phase transformation in Ti-Al alloys are explained.The results are that, because of the effects of interstitial impurities, atom states increase, bond structures are seriously anisotropic, β→α transformation is hindered, and the phase transformation in an intermediate content is very complex. Also, the melting point and liquidus temperatures decrease, and average decreased degree is estimated through approximation by the EET.

  9. Supercooling effects in Cu-10 wt pct Co alloys solidified at different cooling rates

    Science.gov (United States)

    Munitz, A.; Elder-Randall, S. P.; Abbaschian, R.

    1992-01-01

    Electromagnetic levitation and electron beam surface melting were employed to study the effects of supercooling and cooling rate on the solidification of Cu-10 wt pct Co alloys. Two major effects were observed in the supercooled alloys: the nucleation of a metastable copper-rich phase which contains 13 wt pct to 20 wt pct Co in samples supercooled between 105 and 150 K and liquid phase separation which occurs in samples supercooled 150 K or more. The microstructure of the electron beam melted surfaces consisted of very fine spheres which were similar to those of the sample supercooled more than 150 K but with a refined microstructure. The results indicate that a dynamic bulk supercooling of 150 K may exist in the molten pool during the solidification of electron beam melted surfaces.

  10. Effect of deformation structure on fatigue behavior of an Al-Mg-Sc alloy

    Science.gov (United States)

    Zhemchuzhnikova, Daria; Kaibyshev, Rustam

    2014-08-01

    Effect of initial grain size on fatigue behavior of an Al-6%Mg-0.35%Mn-0.2%Sc- 0.08%Zr-0.07%Cr alloy was examined. The initial CG microstructure with an average grain size of ~ 22 μm was manufactured by casting followed by solution treatment at 360 °C for 12 h. To produce the UFG condition, the alloy was subjected to equal-channel angular pressing (ECAP) at 320 °C up to a total strain of ~ 14. Extensive grain refinement provided the formation of fully recrystallized structure with an average grain size of 700 nm. It was shown that the formation of UFG structure provided +60% increases in yield stress and +25% increases in fatigue strength. Fundamentals of this effect of microstructure on the static strength, fatigue resistance and fracture modes are discussed.

  11. Effect of Process Parameters of Friction Stir Welded Joint for Similar Aluminium Alloys H30

    Directory of Open Access Journals (Sweden)

    Vanita S. Thete

    2015-05-01

    Full Text Available In this paper the effect of process parameters of friction stir welded joint for similar aluminium alloys H30 was studied. Taper cylindrical with three flutes all made of High speed steel was used for the friction stir welding (FSW aluminium alloy H30 and the tensile test of the welded joint were tested by universal testing method. The optimization done using detailed mathematical model is simulated by Minitab17. In this investigation, an effective approach based on Taguchi method, has been developed to determine the optimum conditions leading to higher tensile strength. Experiments were conducted on varying rotational speed, transverse speed, and axial force using L9 orthogonal array of Taguchi method. The present study aims at optimizing process parameters to achieve high tensile strength.

  12. Effect of high pressure on microstructure of crystallizing amorphous Nd9Fe85B6 alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LI Hui; XIE Yanwu; ZHANG Xiangyi

    2008-01-01

    The effect of high pressure on the microstructure of annealed amorphous NdgFegsB6 alloy was studied. It was found that applica- tion of high pressure made the microstructure of the crystallized alloy much more homogeneous. The average grain size of the Nd2Fe14B phase decreased with the increase of pressure, whereas, the size of the α-Fe first increased when a pressure of 1 Gpa was applied and then decreased with further increase of pressure. Pressure-induced (410) texture of the Nd2Fe14B phase was also observed. The present study sug-gested an effective route for controlling the microstructure in a nanoscale solid.

  13. Effects of milling process and alloying additions on oxide particle dispersion in austenitic stainless steel

    International Nuclear Information System (INIS)

    An oxide dispersion strengthened (ODS) austenitic stainless steel was developed by mechanical alloying (MA) of advanced SUS316 stainless steel. A nano-characterization was performed to understand details of the effect of minor alloying elements in the distribution of dispersoids. It is shown that Y2O3 particles dissolve into the austenitic matrix after the MA for 6 h. Annealing at 1073 K or higher temperatures result in a distribution of fine oxide particles in the recrystallized grains in the ODS austenitic stainless steel. Additions of Hafnium or Zirconium led to the distribution of finer oxide particles than in samples without these elements, resulting in an increase in the hardness of the samples. The most effective concentration of Hf and Zr to increase the hardness was 0.6 and 0.2–0.3 wt%, respectively

  14. Effect of constituent-particles distribution on mechanical behavior of an AlMgSi alloy

    International Nuclear Information System (INIS)

    In the present work, the effect of constituent particles distribution on mechanical behavior of a high strength AlMgSi alloy is investigated. The study consists of the tensile and fatigue testing of the material in longitudinal and transverse directions. Monotonic tensile properties, in both the directions showed virtually identical yield and tensile strengths. However, higher values of elongation and reduction in area were observed in the longitudinal direction. SN curves produced after fatigue testing displayed a shorter fatigue life in transverse direction as compared to the longitudinal direction. Microstructural analysis exposed that the material had clusters of constituent particles. Post fracture analysis of tensile and fatigue samples, in SEM, revealed that the topographical features change with the sample orientation. The present study revealed that the distribution of constituent particles in longitudinal and transverse directions has a pronounced effect on the tensile and fatigue behavior of the alloy and also induce anisotropy in the material

  15. Effect of Laser Welding Parameters on Formation of NiTi Shape Memory Alloy Welds

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available In this work experimental trials of welding of NiTi flat plates with 2.0 mm thickness were conducted using a 4.5 kW continuous wave (CW Nd:YAG laser. The influences of laser output power, welding speed, defocus amount and side-blow shielding gas flow rate on the morphology, welding depth and width, and quality of the welded seam were investigated. Meanwhile, the effects of heat input on the mechanical and functional properties of welded joints were studied. The results show that laser welding can take better formation in NiTi alloys. The matching curves with laser power and welding speed affecting different formation of welds were experimentally acquired, which can provide references for laser welding and engineering application of NiTi alloy. The heat input has obvious effects on the ultimate tensile strength (UTS and shape memory behavior of the welded joints.

  16. Effects of different tempers on precipitation hardening of 6000 series aluminium alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; ZHAO Gang; LIU Chun-ming; ZUO Liang

    2007-01-01

    By means of Vickers hardness, mechanical property and formability tests, the effects of different tempers on precipitation hardening of 6000 series aluminium alloys for automotive body sheets were investigated. The results indicate that the short-time pre-aging at 170 ℃ makes for subsequent artificial aging precipitation hardening. With the increase of pre-aging time, the artificial aging hardenability increases. The aging hardening rate reaches the maximum when pre-aging time is up to 10 min, and then it decreases. The short-time pre-aging at 170 ℃ benefits sheets to obtain lower strength under delivery condition and consequently to improve stamping formability of automotive body sheets. The effects of different tempers on precipitation hardening are much more obvious than those of the alloying elements. It is a good treatment schedule to perform pre-aging for 5 min at 170 ℃ right after solution treatment.

  17. Investigation on Crack Tip Transformation in NiTi Alloys: Effect of the Temperature

    Science.gov (United States)

    Sgambitterra, Emanuele; Maletta, Carmine; Furgiuele, Franco

    2015-06-01

    The effect of the temperature on crack tip transformation in Nickel-Titanium (NiTi) shape memory alloys was analyzed in this work by means of experimental and analytical approaches. In particular, single edge crack specimens were analyzed for two different values of the testing temperature in the pseudoelastic regime of the alloy, i.e., T = 298 K and T = 338 K. The thermal-dependent phase transition mechanisms occurring at the crack tip region were studied by analyzing data obtained from digital image correlation as well as by nanoindentation experiments performed near the crack tip. Finally, experimental results were compared with predictions of a recent analytical model. Results revealed that an increase in temperature causes a decrease of the phase transformation zone and that both the techniques are well suitable in capturing the thermal effect on the phase transformation mechanisms near the crack tip.

  18. Effect of constituent-particles distribution on mechanical behavior of an AIMgSi alloy

    International Nuclear Information System (INIS)

    In the present work, the effect of constituent particles distribution on mechanical behavior of a high strength AlMgSi alloy is investigated. The study consists of the tensile and fatigue testing of the material in longitudinal and transverse directions. Monotonic tensile properties, in both the directions showed virtually identical yield and tensile strengths. However, higher values of elongation and reduction in area were observed in the longitudinal direction. SN curves produced after fatigue testing displayed a shorter fatigue life in transverse direction as compared to the longitudinal direction. Microstructural analysis exposed that the material had clusters of constituent particles. Post fracture analysis of tensile and fatigue samples, in SEM, revealed that the topographical features change with the sample orientation. The present study revealed that the distribution of constituent particles in longitudinal and transverse directions has a pronounced effect on the tensile and fatigue behavior of the alloy and also induce anisotropy in the material. (author)

  19. The effect of nickel on alloy microstructure and electrochemical behaviour of AA1050 aluminium alloy in acid and alkaline solutions

    International Nuclear Information System (INIS)

    The study investigates the influence of nickel and magnesium additions to AA1050 aluminium alloy on the alloy electrochemical behaviour in sodium hydroxide and hydrochloric solutions under conditions relevant to industries that use alkaline etching as a standard surface treatment procedure and to the lithographic and electronic industries where surface convolution is assisted by pitting in hydrochloric acid. Scanning and transmission electron microscopes were used to characterize the intermetallic particles, and scanning Kelvin probe microscopy was utilised in monitoring the surface potential. Nickel is shown to be incorporated into second phase particles, which mostly consisted of Al3Fe and α-(AlFeSi) phases, resulting in enhanced cathodic activity on the aluminium surface. Consequently, the dissolution rates of the superpure aluminium, alloys without nickel addition and alloy with nickel addition are increased respectively in sodium hydroxide, and increased pitting is respectively promoted in hydrochloric acid. In contrast, the addition of magnesium to the alloy had negligible influence on the etching and pitting behaviour.

  20. Effect of (Mn + Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hou, L.G. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Cui, H. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Y.H. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, J.S., E-mail: zhangjs@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-12-15

    Microstructures and thermal stability of hypereutectic Al-Si alloys with or without (Mn + Cr) addition, prepared via Spray Forming technique, are studied and compared with traditional cast alloys with same composition, using scanning electron microscopy with energy diffraction spectrum, X-ray diffraction, transmission electron microscopy and differential scanning calorimeter. The results show that the Fe-bearing and primary silicon phases in SF-3C alloy can be refined to less than 10 {mu}m, especially in SF-MC21 alloy the Fe-bearing phase is refined into uniformly distributed {alpha}-Al(Fe,Mn,Cr)Si phase particles with sizes smaller than 5-6 {mu}m, contributing to the decrease/elimination of the deleterious effect of needle-like Fe-bearing phases. The results of different heat treatments show SF-MC21 alloy possesses excellent thermal stability than SF-3C alloy which is unstable below 750 K for the coarsening of {beta}-Al{sub 5}FeSi phase and formation of Al{sub 7}Cu{sub 2}Fe phase. The study indicates that both the existence of thermodynamically stable {alpha}-Al(Fe,Mn,Cr)Si particles and the increase of solidus temperature of SF-3C alloy induced by adding (2Mn + 1Cr) elements contribute to the high thermal stability of SF-MC21 alloy. Contemporarily, combined the phase reactions or transformation occurred during the melting and solidification processes of both spray-formed hypereutectic Al-Si alloys, the microstructure formation of spray-formed alloys is discussed.

  1. Effect of (Mn + Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Microstructures and thermal stability of hypereutectic Al-Si alloys with or without (Mn + Cr) addition, prepared via Spray Forming technique, are studied and compared with traditional cast alloys with same composition, using scanning electron microscopy with energy diffraction spectrum, X-ray diffraction, transmission electron microscopy and differential scanning calorimeter. The results show that the Fe-bearing and primary silicon phases in SF-3C alloy can be refined to less than 10 μm, especially in SF-MC21 alloy the Fe-bearing phase is refined into uniformly distributed α-Al(Fe,Mn,Cr)Si phase particles with sizes smaller than 5-6 μm, contributing to the decrease/elimination of the deleterious effect of needle-like Fe-bearing phases. The results of different heat treatments show SF-MC21 alloy possesses excellent thermal stability than SF-3C alloy which is unstable below 750 K for the coarsening of β-Al5FeSi phase and formation of Al7Cu2Fe phase. The study indicates that both the existence of thermodynamically stable α-Al(Fe,Mn,Cr)Si particles and the increase of solidus temperature of SF-3C alloy induced by adding (2Mn + 1Cr) elements contribute to the high thermal stability of SF-MC21 alloy. Contemporarily, combined the phase reactions or transformation occurred during the melting and solidification processes of both spray-formed hypereutectic Al-Si alloys, the microstructure formation of spray-formed alloys is discussed.

  2. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy

    OpenAIRE

    M.H. Shaeri; M. Shaeri; Ebrahimi, M.; M.T. Salehi; S. H Seyyedein

    2016-01-01

    The effect of equal channel angular pressing (ECAP) at different temperatures (room temperature, 120, 150 and 180 °C) on microstructure and mechanical properties of Al-7075 solid solution alloy was investigated. Microstructure of the specimens was examined using orientation imaging microscopy, transmission electron microscopy as well as X-ray diffractometer, and mechanical properties were measured by Vickers microhardness and tensile tests. Microstructural investigations showed that after 3 o...

  3. M"ossbauer study of the effect of Nb in Fe-based nanocrystalline alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microstructure of nanocrystalline alloys of Fe73.5Cu1Nb3Si13.5B9and (Fe3Si)0.95Nb0.05 was investigated by M"ossbauerspectroscopy. A Nb-rich interfaciallayer with weak magnetism formed in the residual amorphous phase of these materials.It has an important effect on the exchange coupling and magnetic properties.

  4. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  5. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    OpenAIRE

    Tomiczek B.; Pawlyta M.; Adamiak M.; Dobrzański L.A.

    2015-01-01

    The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obta...

  6. Effect of pouring temperature on fractal dimension of primary phase morphology in semi-solid A356 alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; MAO Wei-min; LIU Xiao-mei

    2009-01-01

    The fractal dimensions of primary phase morphology in semi-solid A356 alloy prepared by low superheat pouring and slightly electromagnetic stirring were calculated, and the effect of pouring temperature on fractal dimension of primary phase morphology in semi-solid A356 alloy was researched. The results indicate that it is feasible to prepare semisolid A356 alloy slurry by low superheat pouring and slightly electromagnetic stirring, and there is an important effect of pouring temperature on the morphology and the grain size of the primary phase in semi-solid A356 alloy, in which the reduction of pouring temperature can obviously improve grain size and shape factor of primary phase in semi-solid A356 alloy under the condition of a certain stirring power. The primary phase morphology of semi-solid A356 alloy prepared by low superheat pouring and slightly electromagnetic stirring can be characterized by fractal dimension, and the primary phase morphology obtained by the different processing parameters has the different fractal dimensions. Solidification of semi-solid alloy is a course of change in fractal dimension.

  7. Effect of Ar bubbling during plasma electrolytic oxidation of AZ31B magnesium alloy in silicate electrolyte

    Science.gov (United States)

    Lee, Junghoon; Kim, Yonghwan; Chung, Wonsub

    2012-10-01

    Argon gas was bubbled during plasma electrolytic oxidation (PEO) treatment of magnesium alloy in a silicate solution. The appearance of arcs and plasma discharging was locally concentrated on the magnesium alloy surface and phase fraction of Mg2SiO4 in the oxide layer was increased due to Argon gas bubbling. The higher energy density of the Ar plasma atmosphere is believed to contribute to the effective formation of the high temperature phase (Mg2SiO4), particularly in the inner layer. Furthermore, the PEO treated Mg alloy with Ar bubbling showed improved corrosion resistance by a change of open pores structure.

  8. Elimination of casting heterogeneities by high temperature heat treatment on a titanium stabilized austenitic alloy. Effect on the microstructure

    International Nuclear Information System (INIS)

    Microstructural observation on a longitudinal section of stainless steels often reveals the presence of a ''veined'' structure showing a segregation remainder due to the setting of the ingot. This casting heterogeneity can be eliminated by high temperature treatments. This study shows the change in the structure and the state of solubilization produced by these high temperature treatments and the effect of a stabilizing element such as titanium on Z6CNDT17.13 and Z10CNDT15.15B alloys compared with the Z6CND17.13 alloy. It is also shown that a high temperature treatment applied to these stabilized alloys deeply modifies the recrystallization kinetics

  9. The Effect of Cooling Rate on Microstructure and Mechanical Properties of Al-Mg-Si (6063 Alloy

    Directory of Open Access Journals (Sweden)

    Mustafa Türkmen

    2015-02-01

    Full Text Available In this study, the effect of cooling rate on microstructure and mechanical properties of Al-Mg-Si (6063 alloys was investigated. In order to obtain different cooling rate, samples heat treated at 520 oC for 2 h and then cooled in furnace, sand, air, oil and water environments. A decrease in the cooling rate caused the growth of grains and precipitates as the strength of Al-Mg-Si alloys reduced. As a result, Al-Mg-Si alloy was found to change significantly the properties of strength and forming depending on the cooling conditions.

  10. Effect of eutectic phase on damping and mechanical properties of as-cast Mg-Ni hypoeutectic alloys

    Institute of Scientific and Technical Information of China (English)

    WAN Di-qing; WANG Jin-cheng; WANG Gai-fang; LIN Lin; FENG Zhi-gang; YANG Gen-cang

    2009-01-01

    Dynamic mechanical analysis (DMA) was applied to systematically investigate the low frequency damping properties of as-cast hypoeutectic Mg-Ni alloys. The results show that the as-cast hypoeutectic Mg-Ni alloys exhibit high damping capacities. The strain amplitude dependent damping curve has its own special characteristic, in which the damping is strongly related to the strain amplitude. The effect of the eutectic phase on damping and the mechanical properties of as-cast hypoeutectic Mg-Ni alloys were also discussed in detail.

  11. Effect of Post-Weld Heat Treatment on the Mechanical Properties of Friction Stir Welds of Dissimilar Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2011-07-01

    Full Text Available This paper focuses on the effect of post weld heat treatment (PWHT on microstructure and mechanical properties of dissimilar friction stir welding (FSW of AA2024-T6 to AA6351-T6. FSW is getting widened to be used to join the aluminum alloys. PWHT of AA2024 and AA6351 aluminum alloys are not reported so far even though these alloys are widely used in aerospace and automobile industries. A post weld solution treatment and subsequent ageing resulted in improvement in mechanical properties (hardness and tensile strength.

  12. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoxin; Li, Xiaopei; Song, Guolin; Tang, Guoyi, E-mail: tanggy@mail.sz.tsinghua.edu.cn

    2014-12-15

    Highlights: • Damage recovery of Ti alloy occurred in the electropulsing treatment (EPT). • Rapid recrystallization of Ti alloy by accelerated atoms diffusion under EPT. • Hybrid effects of EPT were completed in fast and low temperature process. • Ductility and follow-up formability of the materials are greatly improved by EPT. • Internal and external compressive stress of healing microcracks was compared. - Abstract: The effect of electropulsing treatment (EPT) on the microstructure improvement and damage recovery of cold-tension Ti–6Al–4V alloy strips was investigated. The results showed that the ductility and subsequent formability of the titanium alloy were improved noticeably by EPT, which originated from the rapid recrystallization and microcracks healing at a relative low temperature. Cold-rolling was introduced as a comparison, which brought in similar damage pressing but worsens materials ductility by work hardening. The rapid recrystallization process of Ti–6Al–4V alloy under EPT was attributed to the enhancement of nucleation rate and atomic diffusion resulting from the coupling of the thermal and athermal effects. Thermal compressive effect and pinch effect of electropulses were utilized to discuss the damage healing. Therefore, it is supposed that EPT provides a highly-efficiency and energy-saving method for enhancing ductility of titanium alloy by improving microstructure and recovering damage.

  13. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses

    International Nuclear Information System (INIS)

    Highlights: • Damage recovery of Ti alloy occurred in the electropulsing treatment (EPT). • Rapid recrystallization of Ti alloy by accelerated atoms diffusion under EPT. • Hybrid effects of EPT were completed in fast and low temperature process. • Ductility and follow-up formability of the materials are greatly improved by EPT. • Internal and external compressive stress of healing microcracks was compared. - Abstract: The effect of electropulsing treatment (EPT) on the microstructure improvement and damage recovery of cold-tension Ti–6Al–4V alloy strips was investigated. The results showed that the ductility and subsequent formability of the titanium alloy were improved noticeably by EPT, which originated from the rapid recrystallization and microcracks healing at a relative low temperature. Cold-rolling was introduced as a comparison, which brought in similar damage pressing but worsens materials ductility by work hardening. The rapid recrystallization process of Ti–6Al–4V alloy under EPT was attributed to the enhancement of nucleation rate and atomic diffusion resulting from the coupling of the thermal and athermal effects. Thermal compressive effect and pinch effect of electropulses were utilized to discuss the damage healing. Therefore, it is supposed that EPT provides a highly-efficiency and energy-saving method for enhancing ductility of titanium alloy by improving microstructure and recovering damage

  14. Use of thermodynamic calculation to predict the effect of Si on the ageing behavior of Al-Mg-Si-Cu alloys

    International Nuclear Information System (INIS)

    Research highlights: → Thermodynamic calculation can predict the ageing behavior of 6xxx alloys. → The hardness level of the alloys depends on the Si content in as-quenched matrix. → The precipitation strengthening effect depends on the Mg2Si level of the alloys. -- Abstract: Thermodynamic calculation was employed to predict the influence of Si content on the ageing behavior of Al-Mg-Si-Cu alloys. In addition, experiments were carried out to verify the predictions. The results show that thermodynamic calculation can predict the effect of Si content on the ageing behavior of the studied alloys. This study further proposes that the hardness level of alloys during ageing is directly related to the Si content in the as-quenched supersaturated solution, while the precipitation strengthening effect is directly related to the Mg2Si level of the alloys.

  15. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  16. Effect of high-temperature hydrogen treatment on the microstructure and properties of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Sozanska, M, E-mail: maria.sozanska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019, Katowice (Poland)

    2011-05-15

    The influence of hydrogen on the structure of titanium alloys is a complex phenomenon, which, depending on the circumstances, may be negative or positive. Negative effects of hydrogen on the properties of titanium alloys primarily manifest themselves in a decrease in plastic properties and impact resistance and the formation of cracks in the structure. The positive effect of hydrogen on the titanium alloy properties is manifested in the high-temperature hydrogen treatment (HTM-Hydrogen Treatment of Materials), where hydrogen is a temporary alloying component. Because of the high values of its diffusion coefficient, hydrogen can be easily introduced into the titanium and just as easily removed from it. The HTM plays an important role in the forming and fragmentation of titanium hydride. Because the diameter of a hydrogen atom is very small, the hydrogen atoms occupy the interstitial sites. Titanium and its alloys exhibit a high affinity for hydrogen absorption, about 60 at.% hydrogen at 600 deg. C. Because the specific volume of titanium hydride is about 13-17% higher compared to that of the {alpha} phase, high stresses in the crystal lattice of the titanium hydride phase leads to local plastic deformation and a highly deformed phase. These developments lead to changes in the structure of titanium alloys and their mechanical properties. This paper presents characterization studies of the structure of two-phase titanium alloy Ti-6Al-4V after hydrogen treatment. This hydrogen treatment consisted of three stages: hydrogenation in a hydrogen gas atmosphere at 850 deg. C, a cyclic hydrogen treatment (1 or 3 cycles at 250 deg. C) and dehydrogenation in a vacuum (550 deg. C). It was shown that hydrogen appreciably changed the microstructure of the surface layer of the tested titanium alloy. Qualitative analyses of the structure using secondary electrons in a scanning electron microscope (SEM) were carried out. Image analysis helped to determine a quantitative description

  17. Effects of HSHPT on the martensitic transformation behaviour of an NiTi alloy

    Directory of Open Access Journals (Sweden)

    Gurau Carmela

    2015-01-01

    Full Text Available High speed high pressure torsion (HSHPT is a novel severe plastic deformation technique that is used to produce bulk ultrafine-grained nickel-titanium shape memory alloys. In this study, the effect of grain refinement on phase transformation was investigated in a near equiatomic NiTi shape memory alloy subjected to processing by this technique. Phase transformations involving different degrees of deformation and stability of thermally-induced phase transformations were analyzed by differential scanning calorimetry (DSC. The measurements suggest that the martensitic transformation occurred even when the highest degree of deformation was applied. Optical microscopy (OM, scanning electron microscopy (SEM and transmission electron microscopy (TEM investigations bring to light that the true strain applied controls the evolution of the microstructure. The results are presented and discussed in detail in this paper.

  18. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    KaikunWang; KuiZhang; 等

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of Magnesium alloy AZ91D alloy were studied.The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures.The experimental results show that at room temperature or at 120℃ the AZ91D's decrease with the increasing amount of the rare earth elements.however,the ductility is improved.The influence of 0.14%Sb(mass fraction)on the AZ91D's strength is like that of rare earth elements(0.2%-0.4%)(mass fraction).Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  19. Effects of rare earth elements on the microstructureand properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D alloy were studied. The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures. The experimental results show that at room temperature or at 120℃ the AZ91D's strength decrease with the increasing amount of the rare earth elements. However, the ductility is improved. The influence of 0.14%Sb (mass fraction) on the AZ91D's strength is like that of rare earth elements (0.2%-0.4%) (mass fraction). Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  20. Effect of rare earth elements on the microstructure and property for magnesium alloy AM60B

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added to AM60B and the tensile tests were carried out under different temperatures. The experimental results show that at room temperature the tensile strength of AM60B can be improved with the addition of rare earth elements. The ductility of which at room or elevated temperature (120℃) can also be improved, and the ductility is to some extent in proportion with the amount of rare earth elements. The ductility at 120℃ is better than that at room temperature. The microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%, mass fraction) can fine AM60B's grain and improve its ductility.

  1. Effects of saccharin on microstructure and property of electro-deposited Ni-Fe alloys

    Institute of Scientific and Technical Information of China (English)

    YU Jin-ku; WANG Ming-zhi; LI Qun; YANG Jun; LIU Lian

    2009-01-01

    The Ni-Fe alloy coatings were prepared by electro-deposited method, and the effects of the saccharin content in the electrolytes on the microstructure of the coatings were studied by using X-ray diffractometry(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that the saccharin content in the bath affects the plating rates and the current efficiency remarkably. As the saccharin content increases, the grain size of the Ni-Fe alloys decreases. The average grain size of the deposits varies from 13 nm to 10.8 nm as the saccharin content increases from 0 g/L to 8 g/L. Accordingly, the microhardness of the as-cold deformed samples increases from Hv 600 to Hv 656.

  2. Effect of different grain sizes and textures on the corrosion behaviour of aluminum alloy AA6082

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, D.; Lampke, T. [Technische Universitaet Chemnitz (Germany), Institut fuer Werkstoffwissenschaft und Werkstofftechnik, Professur Oberflaechentechnik / Funktionswerkstoffe, D-09125 Chemnitz; Haendel, M.

    2011-07-15

    The fabrication and processing of aluminum alloys can result in the formation of different grain sizes and textures within the material. The effects of these differences on the corrosion behaviour of the commercially available alloy AA6082 have been investigated. The results of the macro- and microelectrochemical investigations have been compared with each other and with the resulting corrosion appearance. The observed corrosion damage is not always consistent with the measured corrosion and pitting potential. In the finer-grained part, with a strongly preferred orientation of (002) planes parallel to the sample surface, less corrosion damage could be observed than in the coarser-grained part. However, microelectrochemical measurements show a slightly lower pitting potential in the finer-grained part, so that pitting is likely to start earlier in this area. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. DEFORMATION BEHAVIOR OF AA6063 ALUMINIUM ALLOY AFTER REMOVING FRICTION EFFECT UNDER HOT WORKING CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The hot deformation behavior of AA6063 aluminium alloy has been investigated by means of compression tests at temperatures between 400 and 520℃, and strain ratesranging from 2.5 to 10 s-1. Owing to the barreling, the theoretical model on the basis of Hill's general method is used to calculate the flow stress of a cylindrical spec-imen under uniaxial simple compression so as to consider the friction effect at the die-specimen interface. A method of evaluating the friction coefficient by combining compression tests with the finite element method is presented. The real flow behavior of AA6063 aluminium alloy can be described with sinh-Arrhenius equation. The hot deformation activation energy Q derived from the corrected stress and strain data is 232.350 k.J/mol.

  4. Effect of surface preparation on corrosion properties and nickel release of a NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    MIAO Weidong; MI Xujun; XU Guodong; LI Huachu

    2006-01-01

    Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys.The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied.Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system.Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed.Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.

  5. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhibin, E-mail: huangzhibin83@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Zhou Wancheng; Tang Xiufeng [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-01-15

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 {mu}m was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  6. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy

    International Nuclear Information System (INIS)

    Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 deg. C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 deg. C.

  7. The Effect of Diffusion Barrier and Bombardment on Adhesive Strength of CuCr Alloy Films

    Institute of Scientific and Technical Information of China (English)

    WANGJian-feng; SONGZhong-xiao; XUKe-wei; WANGYuan

    2004-01-01

    A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.

  8. Effect of CaO composition on oxidation and burning behaviors of AM50 Mg alloy

    Institute of Scientific and Technical Information of China (English)

    Jin-Kyu LEE; Shae K. KIM

    2011-01-01

    Oxidation and burning behaviors were studied for CaO added AM50 Mg composites which were manufactured by conventional melting and casting processes without SF6 protective gas. CaO added AM50 Mg composites show the stable oxidation resistance. while AM50 Mg alloys show the poor oxidation resistance. The effects of CaO addition on the burning resistance under ambient, nitrogen and dry air atmospheres were examined for CaO added AM50 Mg composites. With increasing CaO addition, the burning temperature increases under ambient, nitrogen and dry air atmospheres. The burning temperatures of small test specimen under all conditions greatly increase even by 0.3% CaO (mass fraction) addition into AM50 Mg alloys.

  9. Effect of heat treatment on the inhibition of the acidic corrosion aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. (Alexandria Univ. (Egypt). Dept. of Chemistry); El-Gamal, M. (Alexandria Univ. (Egypt). Dept. of Material Science); El-Toukhy, A. (Alexandria Univ. (Egypt). Dept. of Material Science); Atea, M. (Alexandria Univ. (Egypt). Dept. of Material Science)

    1994-12-01

    The effect of heat treatment on the inhibition of acid corrosion of duralumin has been studied using gasometry, mass loss measurements and potentiodynamic technique. All the data reveal that the duralumin generally developed good corrosion resistance after heat treatment and the corrosion rate ranked as follows: Non treated > Naturally aged > quenched. This improvement in the corrosion resistance was attributed to the structural homogeneity of the heat-treated alloys. The presence of some selected aryl and alkyl triazoline derivatives at the threshold concentration of 5 x 10[sup -3] M indicate that these compounds retard the corrosion rate of duralumin and the extent of inhibition depends on the molecular structure of the inhibitors. Polarization curves show that the triazoline compounds act as mixed-type inhibitors affecting both the cathodic and anodic processes. Moreover, there is no noticeable difference in the degree by which the triazoline derivatives inhibit the corrosion of pure aluminium and heat treated duralumin alloy. (orig.)

  10. Magnetocaloric effect in Ni-Fe-Ga Heusler alloys with Co and Al substitutions

    Directory of Open Access Journals (Sweden)

    Tolea F.

    2015-01-01

    Full Text Available The functionality of the ferromagnetic shape memory alloys is related to the martensitic and magnetic order-disorder transformations, both of which may be tailored by doping with other elements or by suitable thermal treatments, so that alloys with concomitant (or sequential but close structural and magnetic phase transitions may be obtained. Concerning the magnetocaloric applications, it is assumed that the thin melt-spun ribbons assure a more efficient heat transfer. In the present work we investigate the influence of Co and Al substitutions on magnetocaloric effect characteristics of NiFeGa in bulk and also in ribbons prepared by melt spinning method and subjected to different thermal treatments. X-ray diffraction, differential scanning calorimetry, magnetocaloric and magnetoresistive characterizations have been performed. The results highlight the differences between the bulk and the ribbons (both as prepared and annealed and the role of substitutions.

  11. Effects of plate thickness on reverse martensitic transformation of prestrained NiTi/NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Lishan; ZHENG Yanjun

    2007-01-01

    In this Paper, differential scanning calorimeter (DSC)was used to study the effects of predeformation and plate thickness on the reverse martensitic transformation of explosively welded NiTi/NiTi alloy.Results showed that there was a constraint between Ni50.4Ti(NiTi-1)and Ni49.8Ti (NiTi-2),which led to that the thickness of NiTi-1 or NiTi-2 strongly affected the reverse martensitic transformation behavior because residual stress variations in thickness wound enable bias force to be built inside the composite.The DSC measurements showed that after deformation,the reverse martensitic transformation temperature of the composite was increased with the increasing thickness of NiTi-2.Also.the XRD results revealed that the microstructure of NiTi/NiTi alloy changed from B2 phase to B19'phase along the thickness direction.

  12. Effects of heat treatment process on thin film alloy resistance and its stability

    Institute of Scientific and Technical Information of China (English)

    周继承; 彭银桥

    2003-01-01

    Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process.

  13. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    Science.gov (United States)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-09-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  14. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    Science.gov (United States)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-07-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  15. Effects of Cr on the interdiffusion between Ce and Fe-Cr alloys

    Science.gov (United States)

    Lo, Wei-Yang; Silva, Nicolas; Wu, Yuedong; Winmann-Smith, Robert; Yang, Yong

    2015-03-01

    Fuel cladding chemical interaction (FCCI) has been a long-standing issue for the metallic fuel with a steel cladding in a sodium-cooled fast reactor, particularly for a high burnup fuel. Although the FCCI has been largely improved by alloying the fuels with Zr or Pd elements, applying a physical diffusion barrier between fuel and cladding, and employing advanced ferritic/martensitic (F/M) claddings, there is a scientific knowledge gap in understanding the behavior of chromium and its effects on the interdiffusion between lanthanides and advanced F/M steels that contain 9-12 wt.% Cr. In this paper, we systematically studied the interdiffusion between cerium and Fe-Cr model alloys with Cr contents of 6, 9 and 12 wt.%. Following the thermal annealing at 560 °C for up to 100 h, detailed microstructural characterizations were performed to determine the interdiffusion microstructures, compositional distributions, diffusion kinetics, and phase structures in the interdiffusion zone. This study unambiguously disclosed that, as the Ce diffuses into Fe-Cr model alloys, Cr segregates and precipitates into Cr-rich σ phase consisted of Fe and Cr instead of forming a ternary phase together with Fe and Ce. The precipitation of those nano-sized σ phase particles at the Ce diffusion front would effectively slow down the interdiffusion.

  16. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys

    Science.gov (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei

    2016-04-01

    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  17. Effect of electric current on the cast microstructure of Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effect of electric current on the cast microstructure of Al-Si alloy was investigated. It was found that the microstructure of Al-Si alloy was refined as the electric current was applied during solidification. When DC (Direct Current) was applied in solidification, the eutectic Si flakes are similar to those solidified without current, but its length was shortened and its distribution was changed ,with most of the Si flakes arrange in the radial direction, because of the electromagnetic force that resulted from the DC. On the other hand, when AC (Alternating Current) was applied during the solidification of Al-Si alloy, most of the minute hooks on the silicon flakes that were found under DC or without any applied current were broken into small silicon particles. Through silicon concentration measurement by electron microprobe, it was found that the silicon content in the α-Al matrix increased with the current application during solidification, and the effect is more obvious when AC was applied.

  18. Radiation therapy: dosimetry study of the effect of the composition of Pb alloys by PENELOPE

    Directory of Open Access Journals (Sweden)

    Jose McDonnell

    2011-02-01

    Full Text Available Radiotherapy is a widely used treatment for cancer. Currently applying the technique of Intensity Modulated Radiation Therapy, in which an important aspect is the modulation of the radiation beam to generate a non-uniform dose distribution in the tumor. One way to achieve the above non-uniform dose distribution is using solid compensators. In the market there are a number of materials used to manufacture compensators. Pb alloys on the market are: Cerromatrix, Rose, Wood, Newton, Darcet, whose compositions vary with respect to the composition of the lipowitz metal. This paper quantifies the dosimetric effects of the composition of commercial alloys, routinely used in radiotherapy. This quantification is important because of its impact on the total uncertainty of treatment accepted in the dosimetric calculations. To investigate the dosimetric effect of the composition of commercial alloys in the market we used the PENELOPE code, code that allows the simulation of radiation transport in different media by Monte Carlo method.The results show that there is a difference dosimetric respect lipowitz material, ranging from 7 % to 9 % for the materials investigated. These values indicate the importance of knowing exactly the dosimetric characteristics of the material used as compensator for their implications in the dose calculation.

  19. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Galliano, Florian; Andrieu, Eric; Blanc, Christine; Cloue, Jean-Marc; Connetable, Damien; Odemer, Gregory, E-mail: gregory.odemer@ensiacet.fr

    2014-08-12

    Ni-based alloy 718 is widely used to manufacture structural components in the aeronautic and nuclear industries. Numerous studies have shown that alloy 718 may be sensitive to hydrogen embrittlement. In the present study, the susceptibilities of three distinct metallurgical states of alloy 718 to hydrogen embrittlement were investigated to identify both the effect of hydrogen trapping on hydrogen embrittlement and the role of temperature in the hydrogen-trapping mechanism. Cathodic charging in a molten salt bath was used to saturate the different hydrogen traps of each metallurgical state. Tensile tests at different temperatures and different strain rates were carried out to study the effect of hydrogen on mechanical properties and failure modes, in combination with hydrogen content measurements. The results demonstrated that Ni-based superalloy 718 was strongly susceptible to hydrogen embrittlement between 25 °C and 300 °C, and highlighted the dominant roles played by the hydrogen solubility and the hydrogen trapping on mechanical behavior and fracture modes.

  20. Effect of chemical composition and cooling conditions on solidification hot cracking of Ni-based alloys

    International Nuclear Information System (INIS)

    Ni-based alloys 690 present solidification hot cracks during welding of vapour generators. Hot cracks are qualitatively known to be due to the formation of inter-dendritic liquid films and of secondary phases down to low temperatures. This study aims at establishing the link between thermodynamics, solidification and hot cracking. Experimental solidification paths of high purity alloys (with varying Nb and Si contents) are obtained from quenching during directional solidification and TIG-welding experiments. They are compared to Thermo-Calc computations, assuming no diffusion in the solid. From directional solidification samples, good agreement between computed and experimental solidification paths is shown in the quenched liquid. Secondary arms of dendrites are affected by solid state diffusion of Nb. Combined effect of diffusion and solute build-up in the liquid phase modifies micro-segregation in the solid region. Solidification paths from welding specimens are similar to those of the solid region of quenched samples. Nb solid state diffusion is negligible but undercooling compensates the effect of solid state diffusion in directional solidification. Evolution of liquid fraction at the end of the solidification is in accordance with the hot cracking classification of the alloys. Nb favours formation of inter-dendritic liquid films and eutectic-like phases down to low temperature. (author)

  1. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weizbauer, Andreas, E-mail: weizbauer.andreas@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Werle, Peter [ABB AG, Trafoweg 4, 06112 Halle (Germany); Hegermann, Jan [Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover (Germany); Willbold, Elmar [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Eifler, Rainer [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Windhagen, Henning [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); Reifenrath, Janin [Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover (Germany); Waizy, Hazibullah [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany)

    2014-08-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly.

  2. Effects of trace Zr on the microstructure and properties of 2E12 alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Jianzhao; FANG Canfeng; HAO Hai; WANG Shaohua; YANG Shoujie; DAI Shenglong; ZHANG Xingguo

    2009-01-01

    Al-4.0Cu-1.4Mg-0.6Mn (2E12) and Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr aluminum billets were manufactured by soft-contact electromagnetic continuous casting (EMC). Subsequent forging and heat treatment were conducted and the effects of Zr on the microstructure and properties of the Al-4.0Cu-1.4Mg-0.6Mn alloy were studied. The results show that the addition of 0.3% Zr can reduce the dendrite and refine grains. During forging and solution treatment, fine and dispersive Al3Zr particles precipitated from the supersaturated α (A1) solid solution in the heating process of the billet can effectively pin dislocations and subgrain boundaries. Because of the addition of Zr, the mechanical properties are improved with the tensile strength, yield strength, elongation, and contraction of the area increasing by 5.4%, 11.3%, 9.7%, and 12.6%, respectively. Moreover, under the condition of R = 0.1, the fatigue crack growth rate (da/dN) of the Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr alloy is lower than that of the Al-4.0Cu-1.4Mg-0.6Mn alloy.

  3. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    International Nuclear Information System (INIS)

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly

  4. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  5. Effect of Brownian Coagulation on the Liquid-liquid Decomposition in Gas-atomized Alloy Drops

    Institute of Scientific and Technical Information of China (English)

    Jiuzhou ZHAO; Lingling GAO; Jie HE; L.Ratke

    2006-01-01

    Modeling and simulation have been carried out for Al-Pb alloys to investigate the Brownian coagulation effect on the microstructure development in a gas-atomized drop during the liquid-liquid decomposition.The results indicate that Brownian coagulation has a weak effect on the nucleation and a relatively strong effect on coarsening the minority phase droplets. The influence of Brownian coagulation on the liquid-liquid decomposition decreases with the increase in the diameter (or the decrease in the cooling rate) of the atomized drop.

  6. Magnetocaloric effect in ribbon samples of Heusler alloys Ni-Mn-M (M=In,Sn)

    Science.gov (United States)

    Aliev, A. M.; Batdalov, A. B.; Kamilov, I. K.; Koledov, V. V.; Shavrov, V. G.; Buchelnikov, V. D.; García, J.; Prida, V. M.; Hernando, B.

    2010-11-01

    Direct measurements of the magnetocaloric effect in samples of rapidly quenched ribbons of Mn50Ni40In10 and Ni50Mn37Sn13 Heusler alloys with potential applications in magnetic refrigeration technology are carried out. The measurements were made by a precise method based on the measurement of the oscillation amplitude of the temperature in the sample while is subjected to a modulated magnetic field. In the studied compositions both direct and inverse magnetocaloric effects associated with magnetic (paramagnet-ferromagnet-antiferromagnet) and structural (austenite-martensite) phase transitions are found. Additional inverse magnetocaloric effects of small value are observed around the ferromagnetic transitions.

  7. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  8. Cyclic deformation and anelastic behavior of ZEK100 magnesium alloy: Effect of strain ratio

    Energy Technology Data Exchange (ETDEWEB)

    Mokdad, F.; Chen, D.L., E-mail: dchen@ryerson.ca

    2015-07-29

    Wrought magnesium alloys with low rare-earth (RE) contents are being considered for lightweight automotive applications. The purpose of this study was to identify the effect of strain ratio on cyclic deformation behavior of a rolled ZEK100-O Mg alloy with 0.2 wt% neodymium. The microstructure in its annealing condition consisted of equiaxed grains which were oriented with most c-axes perpendicular to the rolling direction. This alloy exhibited a superior combination of tensile strength and ductility due to its weak basal texture and decreased stacking fault energy. Significant plastic deformation occurred in the tensile phase of the first cycle at strain ratios of R{sub ε}=0 and 0.5. The asymmetry of initial hysteresis loops tended to diminish towards the mid-life cycles. With increasing strain ratio, fatigue life first increased, reached its maximum at a strain ratio of R{sub ε}=−1, and then decreased. This was attributed to a combined effect of mid-life stress amplitude, plastic strain amplitude and mean stress, where the stress amplitude increased and plastic strain amplitude decreased with increasing strain ratio. The closer the strain ratio to R{sub ε}=−1 was, the lower the absolute value of mean stress was. The mean stress relaxation occurred mainly in the initial stage and for the strain ratios more remotely from R{sub ε}=−1. The anelastic behavior of this alloy largely remained arising from the twinning and detwinning, with the strain ratio identified as an influential parameter via sensitivity analyses. The anelastic strain amplitude, along with three newly-defined parameters (eccentricity, angle deviation, and relative slope change) all decreased with increasing strain ratio, reflecting more symmetric hysteresis loops.

  9. Electrical and thermal conductivities of rapidly crystallized Cu-Zr alloys: The effect of anharmonicity

    Science.gov (United States)

    Uporov, S.; Bykov, V.; Estemirova, S.

    2016-10-01

    We present a comprehensive study of electrical and thermal conductivities, specific heat and magnetic susceptibility of rapidly crystallized Cu100-xZrx (x = 20-90) alloys. X-ray diffraction analysis has revealed that all the prepared compositions had strongly textured and distorted crystal structures. Different monoclinic and other non-equilibrium phases were detected in the case of glass-forming samples, whereas the alloys without a tendency to form glassy state show almost equilibrium phase content. Metallic type of electrical conductivity and the Kondo anomaly were observed for all the examined samples. It was found that the electrical resistance data cannot be adequately described within the standard Bloch-Grüneisen theory. We use the Debye characteristic temperature as a linear function to fit the electrical conductivity accurately. The composition dependence of the electron density of states at the Fermi level (DOS) has been extracted from room temperature magnetic susceptibility. We found that the glass-forming alloys are characterized by abnormally large values of DOS, which are comparable to those of glassy analogues. Noticeable anharmonic contribution in total specific heat has been revealed for all the studied compositions. In order to estimate the effect of anharmonicity in the system under consideration, we analyzed composition and temperature dependencies of the studied thermal characteristics related to the Grüneisen coefficient. Basing on the results obtained in this study we propose a phenomenological concept to explain abnormal behavior of physical properties of glass-forming Cu-Zr alloys within the standard solid state theory taking into account anharmonic effects.

  10. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    International Nuclear Information System (INIS)

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under −10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T. - Highlights: ► The annealing temperature effect of Fe-based amorphous alloy was studied. ► Fe-based amorphous and nanocrystalline alloy has a good absorbing property in C-band. ► There exists a correspondence between microwave properties and microstructure.

  11. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    He Jinghua; Wang Wei; Wang Aimin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Guan Jianguo, E-mail: guanjg@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2012-09-15

    Fe{sub 74}Ni{sub 3}Si{sub 13}Cr{sub 6}W{sub 4} amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 Degree-Sign C or more are composed of lots of ultra-fine {alpha}-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 Degree-Sign C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 Degree-Sign C. Thus the powder samples annealed at 650 Degree-Sign C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T. - Highlights: Black-Right-Pointing-Pointer The annealing temperature effect of Fe-based amorphous alloy was studied. Black-Right-Pointing-Pointer Fe-based amorphous and nanocrystalline alloy has a good absorbing property in C-band. Black-Right-Pointing-Pointer There exists a correspondence between microwave properties and microstructure.

  12. Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-06-01

    Full Text Available Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries. These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding, leading to the improvement of creep properties. Based on this point, adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys. The present investigation, however, shows that the creep properties of binary Mg–Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg2Sn at grain boundaries. That means other possible mechanisms function to affect the creep response. It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries. Based on this observation, new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg–Sn alloys.

  13. Effect of Laser Surface Treatment on the Corrosion Behavior of FeCrAl-Coated TZM Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Min Kim

    2016-01-01

    Full Text Available The current study involves the coating of Titanium-Zirconium-Molybdenum (TZM alloy with FeCrAl through plasma thermal spraying which proved effective in improving the oxidation resistance of the substrate. A post-laser surface melting treatment further enhanced the surface protection of the TZM alloy. Oxidation tests conducted at 1100 °C in air indicated that some Mo oxides were formed at the surface but a relatively small amount of weight reduction was observed for FeCrAl-coated TZM alloys up to 60 min of treatment. The post-laser surface treatment following the plasma thermal spray process apparently delayed the severe oxidation process and surface spalling of the alloy. It was suggested that the slow reduction in weight in the post-laser-treated specimen was related to fewer defects in the coating layer. It was also found that a surface reaction layer formed through the diffusion of Fe into the Mo alloy substrate at high temperature. The layer mainly consisted of Fe-saturated Mo and FeMo intermetallic compounds. In order to observe the corrosion behavior of the laser-treated alloy in 3.5% NaCl solution, electrochemical characteristics were also investigated. A proposed equivalent circuit model for the specimen indicated localized corrosion of coated alloy with some permeable defects in the coating layer.

  14. Effect of Zr Addition on Resistance to High Temperature Softening and Resistivity of 6082 Al-Mg-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    JIN Man; SUN Bao-liang; ZHANG Pei-pei; LI Jing; SHAO Guang-jie

    2004-01-01

    The influence of zirconium on the resistance to high temperature softening of 6082 Al-Mg-Si alloys has been researched. The softening process of 6082 alloys with Zr and without Zr, isothermally conditioned at 250℃, has been investigated. The results show the inclusion of Zr inhibits the decrease of HB in hardness(HB) compared with the alloys without Zr. This is due to the Zr and Al forming coherent dispersoid-Al3Zr, and Al3Zr particles within an Al matrix, which effectively restricts grain boundary movement. A study is also carried out to investigate the changes in resistivity, which occurs during the ageing of alloys containing Zr, compared to those without Zr. It is found that in both cases there is an initial rapid rise in resistivity followed by a slower rise in resistivity as ageing proceeds. The value of resistivity is lower for6082 alloys with Zr compared with 6082 alloys without Zr; this is explained in terms of the role of Zr in the 6082 alloys.

  15. Effects of aging on the microstructures and mechanical properties of extruded AM50 + xCa magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Qudong; PENG Jianguo; Suéry Michel; Jean-Jacques Blandin

    2006-01-01

    The effects of aging treatment on the microstructures and mechanical properties of extruded AM50 + xCa alloys (x = 0, 1, 2 wt.%) were studied. The results indicated the secondary phase Mg17Al12 precipitated from the saturated α-Mg solid solution while Al2Ca changed slightly when the aging time was increased. The hardness of extruded AM50 + xCa alloys increased initially to its peak, and then dropped to reach its original hardness with the increase in aging time. With the increase in aging temperature, the hardness of the AM50 + 2Ca alloy decreased, whereas the hardness of AM50 and AM50 + 1Ca alloys decreased in the initial stages of aging treatment and increased in the later stages of aging treatment. The tensile strengths of AM50 and AM50 + 1Ca alloys increased after aging treatment for the precipitation of Mg17Al12 phase, which increases the resistance against dislocation movement at the grain boundary; with increase in aging temperature, their tensile strengths increased. For AM50 + 2Ca alloy, the tensile strength declined after aging at 150℃ and 175℃, while it increased slightly at 200℃. The ductility of AM50 + xCa alloys (x = 0, 1, 2 wt.%) declined after aging treatment.

  16. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  17. Effect of Rare Earth on Microstructure of Vacuum Melting Ni-Based Self-Fluxing Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    宣天鹏; 闵丹

    2004-01-01

    The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni3B, Cr7C3, Cr23C6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr6.5Ni2.5Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating.

  18. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy

    Directory of Open Access Journals (Sweden)

    Yuanxin Wang

    2016-03-01

    Full Text Available This work illustrates the effect of thermal mechanical processing parameters on the microstructure and mechanical properties of the Ti-22Al-25Nb alloy prepared by reactive sintering with element powders, consisting of O, B2 and Ti3Al phases. Tensile and plane strain fracture toughness tests were carried out at room temperature to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. The results show that the increased tensile strength (from 340 to 500 MPa and elongation (from 3.6% to 4.2% is due to the presence of lamellar O/B2 colony and needle-like O phase in B2 matrix in the as-processed Ti-22Al-25Nb alloys, as compared to the coarse lath O adjacent to B2 in the sintered alloys. Changes in morphologies of O phase improve the fracture toughness (KIC of the sintered alloys from 7 to 15 MPa·m−1/2. Additionally, the fracture mechanism shifts from cleavage fracture in the as-sintered alloys to quasi-cleavage fracture in the as-processed alloys.

  19. Effects of Ce addition on microstructure, mechanical properties and corrosion resistance of as-cast AZ80 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-05-01

    Full Text Available In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The results show that the addition of Ce into the AZ80 alloy can not only refine the microstructure, but also result in the formation of the needle-like Al4Ce phase. These tiny Al4Ce phases are homogeneously distributed at grain boundaries and within grains. An appropriate Ce addition can also change the β-Mg17Al12 phase at the grain boundaries from continuous network to small island-like. At the same time, with the increase of Ce content from 0 to 2.0wt.%, the macro-hardness of the as-cast alloy is enhanced linearly, while impact toughness, tensile strength and elongation all firstly increase and then decrease. The AZ80 alloy containing 1.0wt.% Ce exhibits the optimal properties. Its macro-hardness, impact toughness, tensile strength and elongation are 61.90 HB, 15.50 J·cm-2, 171.80 MPa and 3.35%, increase by 9.95%, 63%, 13.3% and 36.7%, respectively compared with the base alloy. In addition, Ce can enhance the corrosion resistance of the AZ80 magnesium alloy.

  20. Effect of rare earths on phase transformation in as-cast ZA27 alloy during compressive creep

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaowei; SHEN Baoluo

    2003-01-01

    The effect of the mixed rare earths of Ce on the phase transformation in as cast ZA27 alloy during compressive creep was investigated under 37 MPa and at 160℃ by X-ray diffraction technique and SEM. The results showed that the as cast microstructure of ZA27-RE alloy consisted of a dendritic Al-rich α' surrounded by Zn-rich β' phase, interdendritic ε phase and Zn-rich η phase together with a complex Z phase which was a complex constitute compound, (RE,Cu)Al5Zn16,dispersed in crystal interfaces or branch crystal interfaces and stable during compressive creep test at 160℃. The phase transformations of ZA27-RE alloy, decomposition of β' phase and four transformation, were delayed by the addition of rare earths, also the lamellar structure and the spheroidized structure in ZA27-RE alloy were finer than in ZA27 alloy during compressive creep test at 160℃ at the same creep time, and the compressive creep resistance of ZA27-RE alloy was higher than that of ZA27 alloy.

  1. Effect Of Process Parameters On Mechanical Properties Of Friction Stir.Welded Joint Of Two Similar &Dissimilar Al-Alloys

    Directory of Open Access Journals (Sweden)

    Umasankar Das,

    2015-09-01

    Full Text Available Friction Stir Welding (FSW is an advance joining process for different similar and dissimilar materials. It is commonly used for joining of Aluminum alloys. However it is necessary to overcome some challenges for its wide-spread uses. Tool design and the selection of process parameters are critical issues in the usage of this process. This study focuses on the process parameters that is required for producing effective friction stir welding of two similar aluminum alloys (AA6101T6 to AA6101T6 and dissimilar Aluminum alloys (AA6101T6 alloy to AA6351T6 . Three different tool diameters such as 20 mm, 25 mm and 30 mm with three different tool rotational speeds such as 600 rpm, 800 rpm and 1200 rpm have been used to weld the joints. The welded samples were tested for mechanical properties as well as microstructure. It was observed that 30 mm tool gives better weld quality for friction stir welding of similar aluminum alloy but 25 mm tool with 1200 rpm rotational speed gave satisfactory weld quality for friction stir welding of dissimilar aluminum alloys. It is one of the important welding process that can adopted for welding of aluminum alloys with excellent mechanical properties. The results were confirmed by further experiments.

  2. Deformation mechanisms and irradiation effects in zirconium alloys. A multi-scale study

    International Nuclear Information System (INIS)

    occurs at high doses, the nucleation and growth of loops, has been particularly studied. The effects of the hydrogen pick up and of an external applied stress on loops have been characterized by TEM. This work, which already contributes to a better understanding of deformation mechanisms and mechanical behavior of zirconium alloys, should improve, in a future prospect, the reliability and performance of pressurized water reactors fuel assemblies. (author)

  3. Effect of Processing of HIPERCO® 50 Alloy Laminates on Their Magnetic Properties

    Science.gov (United States)

    Jayaraman, Tanjore V.

    2015-11-01

    Fe-Co-based soft-magnetic materials form an important class of high-induction alloys that are widely used in energy conversion applications in the aerospace industry. In this work, the effect of processing—cut method [stamping and wire-electrical discharge machining (EDM)] and annealing (cut unannealed, cut followed by annealing, and annealing followed by cut)—on the magnetic properties of the HIPERCO® 50 Alloy laminates was investigated. A cold-rolled ˜0.006-in (˜150-μm)-thick strip of HIPERCO® 50 Alloy was cut into ring laminations and final-annealed in dry hydrogen. Scanning electron microscopy (SEM) and x-ray diffraction analysis indicated the presence of extraneous Cu on the cut edge of the wire-EDM cut ring laminates, along with the expected Fe-Co phase for HIPERCO® 50 alloy. SEM micrographs of the cut edge showed the typical sheared surface and irregular surface for stamped and wire-EDM cut ring laminates respectively. The rings that were stamped followed by annealing (STfA) showed superior direct current (DC) and alternating current (AC) magnetic properties. The presence of Cu (diamagnetic) in wire-EDM cut rings adversely affects induction ( B) and core loss ( P T), compared to the stamped rings for corresponding annealing conditions. The difference in the DC magnetic properties between the ring laminates STfA and annealed followed by stamping (AfST) was significantly large compared to that between the ring laminates that were wire-EDM cut followed by annealing (EDfA) and annealing followed by wire-EDM (AfED). This suggests that, for certain applications where the differences in DC magnetic properties between EDfA and AfED are acceptable, the AfED rings may be put to application/service after the wire-EDM cut operation, i.e. wire-EDM may be performed after `final-annealing'. However, the AC properties between EDfA and AfED rings were significantly different, hence for AC applications, the `final annealing', post-cutting, is critical irrespective

  4. Effect of aging time and temperature on exfoliation corrosion of aluminum alloys 2024-T3 and 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Khoshnaw, F.M.; Gardi, R.H. [Wolfson School of Mechanical and Manufacturing Engineering Loughborough University, Loughborough, LE11 3TU Leicestershire (United Kingdom)

    2007-05-15

    Two types of aluminum alloys, 2024-T3 and 7075-T6, have been selected in this study to investigate the effect of metallurgical aspects on exfoliation corrosion. To determine and evaluate the metallurgical effects of heat treatments on corrosion behaviour of these alloys, G34 ASTM test was selected to investigate the exfoliation corrosion behaviour. The results showed that with increasing the aging time for the aluminum alloy type 2024-T3 the susceptibility to exfoliation corrosion increases, while for type 7075-T6 decreased. These results refer to precipitation of the intermetallic compound phases such as CuAl{sub 2}, and MgZn{sub 2}, in 2024-T3 and 7075-T6 respectively. The amount of these phases increases with increasing the aging time for both alloys. The investigations showed the phases that initiate in 2024-T3 act as anode sites while in 7075-T6 they act as cathode sites. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Effect of austenitization heat treatment on the magnetic properties of Fe-40wt% Ni-2wt% Mn alloy

    Institute of Scientific and Technical Information of China (English)

    S. Buyukakkas; H. Aktas; S. Akturk

    2007-01-01

    The effect of austenitization heat treatment on magnetic properties was examined by means of M(o)ssbauer spectroscopy on an Fe-40wt%Ni-2wt%Mn alloy. The morphology of the alloy was obtained by using scanning electron microscopy (SEM) under different heat treatment conditions. The magnetic behavior of the non heat-treated alloy is ferromagnetic. A mixed magnetic structure including both paramagnetic and ferromagnetic states was obtained at 800℃ after 6 and 12 h heat treatments. In addition, the magnetic structure of the heat-treated alloy at 1150℃ for 12 h was ferromagnetic. With the volume fraction changing, the effective hyperfine field of the ferromagnetic austenite phase and isomery shift values were also determined by M(o)ssbauer spectroscopy.

  6. Effect of coupling asynchronous acoustoelectric effects on the corrosion behavior, microhardness and biocompatibility of biomedical titanium alloy strips.

    Science.gov (United States)

    Ye, Xiaoxin; Tang, Guoyi

    2015-01-01

    The coupling asynchronous acoustoelectric effects (CAAE) of the high-energy electropulsing treatment (EPT) technique and ultrasonic surface strengthening modification (USSM) are innovatively combined in improving the surface microhardness, corrosion behavior and biocompatibility of the pre-deformed titanium alloy strips. Experimental results show that EPT and USSM processes facilitate the surface grain refining and USSM brings in the micro-dimples on the materials surface, which is attributed to the atoms diffusion acceleration under EPT and severe surface plastic deformation under USSM. These microstructure changes can not only enhance the corrosion resistance in the acidic simulated body fluids and fluoridated acidic artificial saliva but also improve the biocompatibility of the titanium alloy strip materials. Moreover, the surface microhardness of the titanium alloy strips is enhanced to improve the wear resistance. Therefore, CAAE processing is a high-efficiency and energy-saving method for obtaining biomedical titanium alloys with superior anti-corrosion performance, microhardness and biocompatibility, which can be widely applied in dental implants and artificial joint.

  7. Effect of alloying on carbon formation during ethane dehydrogenation

    DEFF Research Database (Denmark)

    Rovik, Anne; Kegnæs, Søren; Dahl, Søren;

    2009-01-01

    -impregnation of Ag and Ni. The effect of Ag is limited for Ru since the active sites are self-poisoned by carbon; nor for Rh/spinel is the effect observed, which is possibly due to island formation of Ag on the terraces of the Rh metal. A prolongation of the initial period with hydrogenolysis is observed for Ag...

  8. Effect of Alloying Element (Nb, Ta, Fe and Zr) on Microstructure and Mechanical Properties of Biomedical Titanium Alloy%合金元素Nb、Ta、Fe、Zr对钛合金组织和性能的影响

    Institute of Scientific and Technical Information of China (English)

    廉才浩; 杨胜; 周慧; 唐仁波; 李丹

    2013-01-01

    综述了Nb、Ta、Fe、Zr四种元素对β钛合金组织和力学性能的影响,以期对合金的设计起到指导作用.%The effects of beta alloying element (Nb,Ta,Fe,Zr) on the microstructure and mechanical properties of biomedical titanium alloys were reviewed.

  9. Effect of the Degree of Plastic Deformation on the Electrical Resistance and Thermal Conductivity of Al-Mg-Si Alloy

    OpenAIRE

    Joseph Ajibade OMOTOYINBO; Oladele, Isiaka Oluwole; Wasiu SHOKOYA

    2014-01-01

    Experiments have been conducted to investigate the effect of the degree of plastic deformation on the electrical resistance and thermal conductivity of Al-Mg-Si (6063) alloy. Thirty six samples of the 6063 alloy were used in all for the experiments (three samples constituted a group and twelve groups were instituted in the experiment with each group corresponding to a particular degree of deformation). Eleven groups were cold deformed plastically by subjecting the groups to different percenta...

  10. Effect of silica coating on bond strength between a gold alloy and metal bracket bonded with chemically cured resin

    OpenAIRE

    Ryu, Min-Ju; Gang, Sung-Nam; Lim, Sung-Hoon

    2014-01-01

    Objective The purpose of this study was to evaluate the effects of three different surface conditioning methods on the shear bond strength (SBS) of metal brackets bonded directly to gold alloy with chemically cured resin. Methods Two hundred ten type III gold alloy specimens were randomly divided into six groups according to the combination of three different surface conditioning methods (aluminum oxide sandblasting only, application of a metal primer after aluminum oxide sandblasting, silica...

  11. Synthesis and Study on Effect of Parameters on Dry Sliding Wear Characteristics of AL-SI Alloys

    OpenAIRE

    Francis Uchenna OZIOKO

    2012-01-01

    The effect of parameters on dry sliding wear characteristics of Al-Si alloys was studied. Aluminium-silicon alloys containing 7%, 12% and 14% weight of silicon were synthesized using casting method. Dry sliding wear characteristics of sample were studied against a hardened carbon steel (Fe-2.3%Cr-0.9%C) using a pin-on-disc. Observations were recorded keeping two parameters (sliding distance, sliding speed and load) constant against wear at room temperature. Microstructural characterization wa...

  12. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy.

    Science.gov (United States)

    Zhang, D C; Tan, C G; Tang, D M; Zhang, Y; Lin, J G; Wen, C E

    2014-11-01

    Effects of thermomechanical treatment on the microstructure and superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy were investigated by using XRD measurement, optical microscope (OM), transmission electron microscope (TEM) and tensile tests. The titanium alloy samples were prepared by annealing at a temperature in the range of 600 to 1000°C after severe cold rolling; and the samples that were annealed at 800°C were further aged at 600 and 700°C. The volume fraction of α phases decreased while that of ω phases increase with increasing annealing temperature. The α→β transformation temperature of the alloy was determined to be between 700 and 800°C. The alloy that was annealed at 700°C exhibited a high level of superelasticity with relatively high first yield stress (σSIM) at room temperature because it contained a fine α phase. A certain amount of ω phases also resulted in an increase in σSIM, leading to an improvement in the superelasticity of the alloys that were annealed at 900 and 1000°C. Aging treatment led to the precipitations of α and ω phases in the alloy after annealing at 800°C; and the volume fraction of α phases decreased while that of ω phases increased with increasing aging temperature. Excellent superelasticity with high recovered strain (εrecoverable) and strain recovery rate (η) were obtained in the aged alloy due to the reinforcement of α and ω phases induced by aging treatment. The alloy annealed at 700°C for 0.5h exhibited the best superelasticity in all the thermomechanically treated alloys due to the strengthening from the subgrain refining and the precipitating of fine α phases.

  13. Effects of Mold Temperature and Pouring Temperature on the Hot Tearing of Cast Al-Cu Alloys

    Science.gov (United States)

    Li, Shimin; Sadayappan, Kumar; Apelian, Diran

    2016-07-01

    The effects of mold temperature and pouring temperature on hot tearing formation and contraction behavior of a modified Al-Cu alloy 206 (M206) have been studied. The experiments were conducted using a newly developed Constrained Rod Mold, which simultaneously measures the contraction force/time/temperature during solidification for the restrained casting or linear contraction/time/temperature for a relaxed casting. Three mold temperatures [473 K, 573 K, and 643 K (200 °C, 300 °C, and 370 °C)] and three pouring temperatures [superheat of 50 K, 100 K, and 150 K (50 °C, 100 °C, and 150 °C)] were studied, and alloy A356 was used as reference for comparison. The results confirm that alloy A356 has high resistance to hot tearing. Hot tearing did not occur for the three mold temperatures evaluated, whereas alloy M206 exhibited significant hot tearing for the same casting and mold temperature conditions. Hot tearing severity and linear contraction in alloy 206 decreased significantly with increasing mold temperature. Increasing pouring temperature increases hot tearing in alloy M206, but the effect is not as significant as that of mold temperature. The results and underlying mechanism of these effects are discussed in correlation with the thermomechanical properties and microstructures.

  14. Effects of Mold Temperature and Pouring Temperature on the Hot Tearing of Cast Al-Cu Alloys

    Science.gov (United States)

    Li, Shimin; Sadayappan, Kumar; Apelian, Diran

    2016-10-01

    The effects of mold temperature and pouring temperature on hot tearing formation and contraction behavior of a modified Al-Cu alloy 206 (M206) have been studied. The experiments were conducted using a newly developed Constrained Rod Mold, which simultaneously measures the contraction force/time/temperature during solidification for the restrained casting or linear contraction/time/temperature for a relaxed casting. Three mold temperatures [473 K, 573 K, and 643 K (200 °C, 300 °C, and 370 °C)] and three pouring temperatures [superheat of 50 K, 100 K, and 150 K (50 °C, 100 °C, and 150 °C)] were studied, and alloy A356 was used as reference for comparison. The results confirm that alloy A356 has high resistance to hot tearing. Hot tearing did not occur for the three mold temperatures evaluated, whereas alloy M206 exhibited significant hot tearing for the same casting and mold temperature conditions. Hot tearing severity and linear contraction in alloy 206 decreased significantly with increasing mold temperature. Increasing pouring temperature increases hot tearing in alloy M206, but the effect is not as significant as that of mold temperature. The results and underlying mechanism of these effects are discussed in correlation with the thermomechanical properties and microstructures.

  15. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    International Nuclear Information System (INIS)

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times

  16. Effect of rapid solidification and heat treatment on Co-20 wt. %Cr alloy for biomedical applications

    International Nuclear Information System (INIS)

    A series of cobalt-base alloys with different chromium contents (20, 25, 30, 35, 40 and 44 wt. %) were melted into an induction furnace with argon atmosphere and casted into a chill cooper mold. The characterization of samples was carried out with a scanning electron microscope in order to evaluate the effect of chromium additions on microstructure. The resulting microstructure consisted mainly of columnar dendrites with randomly distributed precipitates in primary and secondary dendrite arms. X-ray diffraction patterns in as-cast samples identified the presence of both ε-hcp and the metastable α-fcc cobalt solid solution. As the Cr-content increased, the amount of both interdendrite segregation and precipitates increased too. From the Co-Cr alloys under study, the Co-20 wt. % Cr alloy showed a microstructure nearly free of interdendrite segregation and precipitation therefore was subject to an additional heat treatment to improve elongation from 2.6%, in the as-cast condition to 25.5% in the as-heat treated condition

  17. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys.

    Science.gov (United States)

    Kramer, Rebecca K; Boley, J William; Stone, Howard A; Weaver, James C; Wood, Robert J

    2014-01-21

    Liquid-embedded elastomer electronics have recently attracted much attention as key elements of highly deformable and "soft" electromechanical systems. Many of these fluid-elastomer composites utilize liquid metal alloys because of their high conductivities and inherent compliance. Understanding how these alloys interface with surfaces of various composition and texture is critical to the development of parallel processing technology, which is needed to create more complex and low-cost systems. In this work, we explore the wetting behaviors between droplets of gallium-indium alloys and thin metal films, with an emphasis on tin and indium substrates. We find that metallic droplets reactively wet thin metal foils, but the wettability of the foils may be tuned by the surface texture (produced by sputtering). The effects of both composition and texture of the substrate on wetting dynamics are quantified by measuring contact angle and droplet contact diameter as a function of time. Finally, we apply the Cassie-Baxter model to the sputtered and native substrates to gain insight into the behavior of liquid metals and the role of the oxide formation during interfacial processes. PMID:24358994

  18. Effect of pre-deformation on the stress corrosion cracking susceptibility of aluminum alloy 2519

    Institute of Scientific and Technical Information of China (English)

    LI Huizhong; ZHANG Xinming; CHEN Mingan; LI Yanfang; LIANG Xiaopeng

    2007-01-01

    The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCl water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCl water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10-5 s-1 than at 6.66 × 10-5 s-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of θ precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.

  19. Looking for Multiple Scattering Effects in Backscattered Ultrasonic Grain Noise from Jet-Engine Nickel Alloys

    International Nuclear Information System (INIS)

    For pulse/echo inspections of metals, models which predict backscattered noise characteristics often make a 'single-scattering' assumption, i.e., multiple-scattering events in which sound is scattered from one grain to another before returning to the transducer are ignored. Models based on the single-scattering assumption have proven to be very useful in simulating inspections of engine-alloy billets and forgings. However, this assumption may not be accurate if grain scattering is too 'strong' (e.g., if the mean grain diameter and/or the inspection frequency is too large). In this work, backscattered grain noise measurements and analyses were undertaken to search for evidence of significant multiple scattering in pulse/echo inspections of jet-engine Nickel alloys. At or above about 7 MHz frequency and 50 micron grain diameter, problems were seen with single-scattering noise models that are likely due to the neglect of multiple scattering by the models. The modeling errors were less severe for focused-probe measurements in the focal zone than for planar probe inspections. Single-scattering noise models are likely adequate for simulating current billet inspections which are carried out using 5-MHz focused transducers. However, multiple scattering effects should be taken into account in some fashion when simulating higher-frequency inspections of Nickel-alloy billets having large mean grain diameters (> 40 microns)

  20. Effect of microstructure refinement on low cycle fatigue behavior of Alloy 718

    Directory of Open Access Journals (Sweden)

    Mukhtarov Shamil

    2014-01-01

    Full Text Available Microstructure refinement down to d ∼ 0.1–1 μm is known to enhance processing properties of hard-to-deform materials and particularly can be used for facilitating superplastic forming or roll-forming. However refined microstructure can compromise service properties, particularly fatigue properties. In the present work, the fatigue behavior of the fine-grained Alloy 718 has been investigated. A number of fine-grained conditions with a grain size ∼0.1–1 μm were produced using multiple forging with a graduate decrease of the forging temperature. Part of the forged fine-grained conditions was also subjected to conventional solution annealing and ageing. In this case a small grain size was controlled by precipitates of the δ phase located on grain boundaries. Low cycle fatigue tests of the fine-grained conditions were carried out at room and elevated temperatures. The obtained properties are compared with those of the Alloy 718 in the coarse-grained conditions. The effect of the grain size on the fatigue strength of the fine-grained Alloy 718 is discussed in terms of the microstructure evolution and fracture mode.