WorldWideScience

Sample records for alloyed powders hyperfine

  1. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  2. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  3. Hyperfine field at 111Cd nuclei in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Walus, W.; Szytula, A.

    1978-01-01

    The magnitudes and signs of the hyperfine fields in the ordered ferromagnetic Heusler Alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroll-Blandin and Cambell-Blandin models and RKKY theory. (Auth)

  4. Hyperfine magnetic fields at 111Cd in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Szytula, A.; Walus, W.

    1977-01-01

    The magnitudes and signs of the hyperfine magnetic field on 111 Cd nuclei at Z sites in the ordered ferromagnetic Heusler alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroli-Blandin and Campbell-Blandin models and RKKY theory. (author)

  5. The hyperfine properties of iron-gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)

    2016-12-15

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  6. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  7. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  8. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    International Nuclear Information System (INIS)

    Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc

    2013-01-01

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field

  9. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2013-02-15

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.

  10. Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)

    2008-06-15

    The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.

  11. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements

    International Nuclear Information System (INIS)

    Michel, J.

    1969-01-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [fr

  12. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  13. Crystallographic, hyperfine and magnetic characterization of a maraging-400 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alves, T. J. B.; Nunes, G. C. S. [Universidade Estadual de Maringá (Brazil); Sarvezuk, P. W. C. [Universidade Tecnológica Federal do Paraná (Brazil); Ivashita, F. F. [Universidade Estadual de Maringá (Brazil); Andrade, A. M. H. de [Universidade Federal do Rio Grande do Sul (Brazil); Viegas, A. [Universidade Federal de Santa Catarina (Brazil); Paesano, A., E-mail: andrea.paesano@pq.cnpq.br [Universidade Estadual de Maringá (Brazil)

    2017-11-15

    Maraging400-like alloys were made by arc-melting iron with the alloy elements (i.e., Ni, Co, Ti and Mo), followed by a high temperature heat-treatment for solubilization. The solubilized alloys were further heat-treated (480 °C and 580 °C, by 3 h), for aging. The samples were finely characterized by X-ray diffraction (Rietveld refinement), Mössbauer spectroscopy and magnetization techniques. The results revealed that the as-solubilized sample is martensitic and ferromagnetic. Its residual induction and coercive field increase monotonically with the maximum applied field of a magnetization minor loop and both curves presented very similar shapes. The area of the minor loops varies parabolically with this maximum applied field. The aging induced an atomic rearrangement in the martensite phase, involving change in the composition and lattice parameters, reversion of austenite and the formation of the Fe {sub 3} Mo {sub 2} intermetallic compound. Comparisons are presented between the results obtained by us for these alloys and those obtained for Maraging-350 steel samples.

  14. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  15. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  16. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  17. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  18. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements; Etude du couplage hyperfin dans les alliages gadolinium-praseodyme par mesures de chaleur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [French] Nous avons etudie le couplage hyperfin d'alliages de gadolinium-praseodyme par des mesures de chaleur specifique jusqu'a 0.3 K. Dans la premiere partie de cette etude nous decrivons le dispositif experimental. La deuxieme partie est consacree a des considerations theoriques. Nous avons etudie en detail le cas du praseodyme qui est une exception dans la serie des terres rares. La troisieme partie est consacree aux resultats experimentaux. (auteur)

  19. Powder metallurgy of turbine disc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ingesten, N.G. (Dep. of Engineering Metals)

    1981-03-01

    The first part embraced a study of carbide precipitated in IN 100 and astrology powders. The powder was heat treated at temperatures between 950/sup 0/C and 1150/sup 0/C. After aging at 950-1100/sup 0/C the MC-carbides formed during atomization were replaced by M/sub 23/C/sub 6/-carbides. After 1150/sup 0/C treatments the MC carbides were present again. Precipitation comparable with that obtained in HIP:ed specimens was not observed at free particle surfaces. However, powder particles which had agglomerated during atomization often exhibited considerable precipitation at contiguous surfaces. Obviously, contact between the particles must occur if coarse precipitation at particle surfaces is to develop. Reduced PPB-precipitation was obtained by pre-heat- treatment of powder before compaction. It is suggested that the carbon otherwise available for PPB-precipitation forms carbides in the interior of the powder particles. The aim of the second part was to ..gamma..-strengthen a Co-based super-alloy (Co-15Cr-3Mo-5Ti). Here the Ti-addition gives a coherent and ordered ..gamma..-phase Co/sub 3/Ti. However, upon ageing the alloy is unstable in order to increase the stability modifications of the alloy were prepared by: leaving out the Mo-content, adding 10 % Ni and by decreasing the Ti-content to 4.2 %. In addition, the effect of enhanced grain size and of deformation was investigated. Significant reduction of the transformation rate was only obtained by decresing the Ti-content while deformation of the alloy greatly increased the transformation rate.(author).

  20. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  1. Peculiarities of powder metallurgy of vanadium and its alloys

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-01-01

    Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base

  2. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  3. Welding of a powder metallurgy uranium alloy

    International Nuclear Information System (INIS)

    Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples

  4. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  5. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    Science.gov (United States)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  6. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  7. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  8. Hyperfine magnetic fields at 57Fe and 119Sn nuclei in the Fe48Rh52 alloy under pressure

    International Nuclear Information System (INIS)

    Nikolaev, I.N.; Potapov, V.N.; Bezotosnyj, I.Yu.; Mar'in, V.P.

    1978-01-01

    The pressure dependences of the hyperfine magnetic fields, H, and isomer shifts epsilon at the 57 Fe and 119 Sn nuclei in the Fe 48 Rh 52 alloy with an admixture of approximately 1 at. % Sn are measured by the Moessbauer effect technique. Under pressure epsilon decreases this signifying an increase (for 57 Fe) or decrease (for 119 Sn) of the s-electron density at the nuclei. In the ferromagnetic (FM) state at 398 K, ΔH/HΔp=(-2.8+-0.2)x10 -3 kbar -1 for 57 Fe and ΔH/HΔp=(-4.8+-0.8)x10 -3 kbar -1 for 119 Sn. In the antiferromagnetic (AFM) state at 78 K, ΔH/HΔp approximately 0 for 57 Fe and ΔH/HΔp=(-6.2+-1.0)x10 -3 kbar -1 for 119 Sn. The results for 57 Fe in the FM state can be ascribed to the strong dependence of the alloy matrix magnetization on the pressure and in the AFM state to the absence of local polarization of s-similar collectivized electrons and to the independence of the magnetic moments of the Fe ions of pressure. The causes of the different effect of pressure on the magnetic moments of Fe ions in the FM and AFM states are discussed. The results for 119 Sn in the FM and AFM states of the alloy are in agreement with the model of hyperfine fields at impurity Sn atoms in the magnetic matrices proposed earlier. The radial dependence of the hyperfine field at the 119 Sn nuclei in the AFM state is estimated and it is found that H(r) is stronger than r -9

  9. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  10. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    International Nuclear Information System (INIS)

    Ryu, Hyun Seok; Lee, Sung Chul; Kim, Ki Tae

    2002-01-01

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good

  11. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    Science.gov (United States)

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  12. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  13. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  14. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  15. Properties of boride-added powder metallurgy magnesium alloys

    Science.gov (United States)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.

  16. Properties of boride-added powder metallurgy magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi [Department of Mechanical Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan)], E-mail: ktakagi@tcu.ac.jp

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB{sub 2}) or aluminum diboride (AlB{sub 2}), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB{sub 2} exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB{sub 2}, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg{sub 17}Al{sub 12}, formed in the alloy with AlB{sub 2}, which was consistent with its higher hardness.

  17. Properties of boride-added powder metallurgy magnesium alloys

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-01-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB 2 ) or aluminum diboride (AlB 2 ), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB 2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB 2 , did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg 17 Al 12 , formed in the alloy with AlB 2 , which was consistent with its higher hardness.

  18. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  19. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  20. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  1. Gamma stability and powder formation of UMo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.B.V.; Andrade, D.A.; Angelo, G.; Belchior Junior, A.; Torres, W.M.; Umbehaun, P.E., E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Angelo, E., E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Grupo de Simulacao Numerica (GSN)

    2015-07-01

    A study of the hydrogen embrittlement as well as a research on the relation between gamma decomposition and powder formation of uranium molybdenum alloys were previously presented. In this study a comparison regarding the hypo-eutectoid and hyper-eutectoid molybdenum additions is presented. Gamma uranium molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR). Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation may occur with non-reactive or reactive mechanisms. Following the production of the alloys by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment, during the thermal shock phase of the experiments. Also, there is a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy and this phenomenon can be related to the eutectoid transformation temperature. This study was carried out to search for a new method for the production of powders and for the evaluation of important physical parameter such as the eutectoid transformation temperature, as an alternative to the existing ones. (author)

  2. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  3. Magnetic hyperfine fields on 181Ta at the Nb and V sites in Heusler alloys CO2YAL (Y=NB,V)

    International Nuclear Information System (INIS)

    Pendl Junior, W.

    1990-01-01

    Magnetic hyperfine fields (MHF) acting on sup(181)Ta at the Nb and V sites have been determined in the Heusler alloys Co sub(2) NbA1 and Co sub(2) VA1 by the time differential perturbed angular correlation (TDPAC) technique utilizing the well known 133-482 Kev gamma cascade in sup(181)Ta. The measurement were carried out using an automatic spectrometer consisting of three NaI(T1) detectors and a fast-slow coincidence system. The measurements were performed at 77 K with and without an externally applied magnetic field ( ∼ 4.5 KGauss) to determine the sign as well as the magnitude of the hyperfine fields in both alloys. For the alloy Co sub(2) NbA1 a unique field of -138(4) KOe was observed whereas in the case of Co sub(2)VA1 two distinct magnetic sites were observed. The present result show that approximately 24% of the sup(181)Ta atoms in this alloy probe a field of -116(4) KOe while the other ∼ 76% of the atoms feel -83(3) KOe. Present data along with the existing results on similar alloys Co sub(2)T1,Hf,Zr (Al,Ga,Sn) are discussed and compared with the magnetic hyperfine field systematics in Heusler alloys. (author)

  4. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  5. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  6. Design of powder metallurgy titanium alloys and composites

    International Nuclear Information System (INIS)

    Liu, Y.; Chen, L.F.; Tang, H.P.; Liu, C.T.; Liu, B.; Huang, B.Y.

    2006-01-01

    Low cost and good performance are two major factors virtually important for Ti alloy development. In this paper, we have studied the effects of alloying elements, thermo-mechanical treatment and particle reinforcement on microstructures and mechanical properties of powder metallurgy (PM) Ti alloys and their composites. Our results indicate that low cost PM Ti alloys and their composites with attractive properties can be fabricated through a single compaction-sintering process, although secondary treatments are required for high performance applications. Three new PM Ti alloys and one TiC/Ti composite of high performance are developed, and new design principles are also proposed. For design of PM Ti alloys, addition of alloying elements has the beneficial effect of enhanced sintering and/or improved mechanical properties. For example, Fe element accelerates the sintering process, Mo and Al are good candidates for solution strengthening, and rare earth elements effectively increase the material ductility by scavenging oxygen from the Ti matrix. For the design of Ti-based composites, in situ formation of strengthening particles and solid solution hardening of the matrix both should be considered simultaneously for alloy development. Cr 3 C 2 is found to be a very suitable additive for processing particle reinforced Ti composites

  7. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.

    1995-01-01

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  8. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  9. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  10. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  11. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  12. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  13. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    Science.gov (United States)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  14. Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu-Al-Ni-Mn alloy

    International Nuclear Information System (INIS)

    Xiao Zhu; Li Zhou; Fang Mei; Xiong Shiyun; Sheng Xiaofei; Zhou Mengqi

    2008-01-01

    The fabrication conditions of Cu-Al-Ni-Mn alloy powder by mechanical alloying and powder metallurgy have been systematically studied. The mechanically alloyed powder (MAed powder) was fabricated at a speed between 100 rpm and 300 rpm for various milling times with and without process control agent (PCA). With an increasing of milling time, the size of crystallite grain decreases. Only the Cu diffraction pattern appear as the rotation speed is up to 300 rpm for 25 h. The elemental powders with PCA agglomerate slightly, but the degree of alloying is lower than that without PCA. The shape memory recovery of the quenched sample hot-extruded at extrusion rate of 50:1 is measured to be 100% recovered in 250 deg. C oil bath for 40 s after deformed to 4.0%. After aging at 120 deg. C for 10 days, the shape memory recovery of the alloy remains 98%

  15. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    Science.gov (United States)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  16. The magnetic hyperfine field in the 181Ta site in the Co2HfAl and Co2HfGa Heusler alloys

    International Nuclear Information System (INIS)

    Silva, R. da.

    1979-01-01

    The hyperfine magnetic fields at 181 Ta nuclei in Heusler alloys Co 2 HfZ (Z=Al, Ga) have been measured using the time differential perturbed gamma-gamma angular correlation (TDPAC) method. The hyperfine fields obtained from these measurements at the liquid nitrogen temperature are -189 and +- 150 kOersted for Co 2 HfAl and Co 2 HfGa, respectively. The concept that the hyperfine field at the Y site is similar to the solute fields in Fe, Co, Ni and Gd matrices is corroborated. We have verified that ratios H sub(hf) sub(Ta)/T sub(c) and H sub(hf) sub(Ta)μ sub(Co) in Co 2 HfZ compounds (Z=Al, Ga, Sn) do not depend on the nature of Z element. However a dependence in the value of observed field with the s-p element in Z site was noticed. We feel that the samples are not completely ordered cubic as observed by the quadrupole interaction measurements. The results are interpreted in terms of the Campbell-Blandin formalism, and it is shown that the spin polarization of conduction electrons at Hf and Ta have opposite signs. (Author) [pt

  17. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  18. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  19. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  20. Quantifying the properties of low-cost powder metallurgy titanium alloys

    International Nuclear Information System (INIS)

    Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E.

    2017-01-01

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  1. Quantifying the properties of low-cost powder metallurgy titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: bolzoni.leandro@gmail.com [WaiCAM (Waikato Centre for Advanced Materials), The University of Waikato, Private Bag 3105, 3240 Hamilton (New Zealand); Ruiz-Navas, E.M.; Gordo, E. [Department of Materials Science and Engineering, University Carlos III of Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid (Spain)

    2017-02-27

    The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.

  2. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  3. Ultrasonic characterization of microstructure in powder metal alloy

    Science.gov (United States)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  4. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  5. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  6. Microstructure and corrosion of Pd-modified Ti alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Ashworth, M.A.; Davenport, A.J.; Ward, R.M.; Hamilton, H.G.C.

    2010-01-01

    A method for the fabrication of titanium alloy parts with enhanced corrosion resistance by a powder metallurgy route is presented in this paper. Commercial purity titanium powders modified with Pd have been hot isostatically pressed (HIPped) and the microstructure and distribution of the noble metal characterised by optical and scanning electron microscopy. The electrochemistry of the HIPped alloy has been assessed and the effect of powder size fraction evaluated. Results show that the phase composition and electrochemistry of the HIPped Pd-modified alloy is equivalent to that of wrought grade 7 Ti.

  7. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  8. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  9. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  10. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  11. Machinability of zinc-aluminum alloy5; zamzk5; alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Adnan, I.O.; Momani, M.A.A.

    2007-01-01

    Powder metallurgy process (P/M) is repeatedly reported as a near-net or net-shape manufacturing process with the ability of producing parts of complicated or intricate shapes with high required dimensional accuracy and high surface quality. However, some finishing and machining operations are sometimes necessary and must be done to meet dimensional tolerances or accommodate design features that can be achieved during compaction such as transverse holes, undercuts and threads. Therefore, it is necessary to study the machinability of P/M products. ZAMAK5 alloy is widely used in engineering applications in the automobile industry, particularly in the manufacturing of bushes and recently self -lubricated bearings which are manufactured by the P/M process. Therefore it is anticipated that studying the machinability of this alloy as produced by the powder metallurgy process is worthwhile investigating. In this paper, the machinability of ZAMAK5, alloy produced by powder metallurgy, under different cutting conditions of speed, depth of cut and feed rate is carried out. Surface roughness was used as a criterion for assessing machinability at the different conditions. It was found that specimens compacted at 475 MPa and having 1% addition of zinc stearates as a binder and lubricant gave better surface quality than those produced at 550 MPa compacting pressure,whereas at 1.5% addition of zinc stearates produced worse surface quality (i.e. Higher surface roughness than in case of 475 MPa compacting pressure). On the whole, the results of the experimental work revealed that the surface roughness at the different cutting conditions remained within the accepted level in industry, less than 2 microns. (author)

  12. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  13. Development of an alternative route for recycling AA2050 aluminum alloy by powder metallurgy

    International Nuclear Information System (INIS)

    Guido, V.; Oliveira, A.C. de; Travessa, D.N.; Cardoso, K.R.

    2014-01-01

    This paper presents an alternative solid state route to recycling AA2050 aeronautical aluminium alloy chips. The first stage in the recycling process, reported in this work, is the obtainment of the alloy powder by high energy ball milling to subsequent cold pressing and hot extrusion. The process started with the cleaning of chips with the aim of contaminant removing from machining process and transport, followed by the high energy ball milling to result in the AA2050 alloy powder. The powder obtained was characterized by laser size particle analysis, scanning electron microscopy (SEM), X-Ray diffraction (DRX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show the feasibility of obtaining a powder having appropriate particle size and chemical composition in accordance with the specification for alloy. (author)

  14. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  15. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  16. MECHANICAL ALLOYING SYNTHESIS OF FORSTERITE-DIOPSIDE NANOCOMPOSITE POWDER FOR USING IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Sorour Sadeghzade

    2015-03-01

    Full Text Available In present study the pure forsterite-diopside nanocomposite powder was successfully synthesized by the economical method of mechanical alloying and subsequence sintering, for the first time. The starting economical materials were talc (Mg3Si4H2O12, magnesium carbonate (MgCO3 and calcium carbonate (CaCO3 powders. The prepared powder was characterized by thermo gravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The results showed preparation of forsterite- diopside nanocomposite powder after 10 h mechanical alloying and sintering at 1200oC for 1 h. The powder crystallite sizes and agglomerated particle sizes were measured about 73 +/- 4 nm and 0.3 - 4 μm, respectively. Absence of enstatite that causes a reduction in mechanical and bioactivity properties of forsterite ceramic, is an important feature of produced powder.

  17. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  18. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  19. Surface coatings of mixed hard alloy powder metals sintered-on in vacuo

    International Nuclear Information System (INIS)

    Knotek, O.; Reimann, H.

    1980-01-01

    No technological difficulties are to be encountered in the processing of pseudo hard alloys in the form of powder compounds of conventional nickel base hard alloys with carbides. There is a great alloy influence on the resulting structures of the surface layers. Under some processing conditions the tungsten carbide is completely dissolved from molten matrix alloy. Hard phases on chromium carbide basis resulted upon cooling. Induced chromium carbide Cr 3 C 2 retains its structure while absorbing large amounts of iron into its grid. It can be concluded that not only alloying properties, but also eminently structural criterions are decisive for the stability of the applied supplementary hard phases. (orig.) [de

  20. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  1. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  2. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  3. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  4. Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

    Directory of Open Access Journals (Sweden)

    Şelte A.

    2015-06-01

    Full Text Available In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.

  5. Vacuum hot pressing of titanium-alloy powders

    International Nuclear Information System (INIS)

    Malik, R.K.

    1975-01-01

    Full or nearly full dense products of wrought-metal properties have been obtained by vacuum hot pressing (VHP) of several prealloyed Ti--6Al--4V powders including hydride, hydride/dehydride, and rotating electrode process (REP) spherical powder. The properties of billets VHP from Ti--6Al--4V hydride powder and from hydride/dehydride powders have been shown to be equivalent. The REP spherical powder billets processed by VHP or by hot isostatic pressing (HIP) resulted in equivalent tensile properties. The potential of VHP for fabrication of near net aircraft parts such as complex fittings and engine disks offers considerable cost savings due to reduced material and machining requirements

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  7. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-12-05

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  8. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-10-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  9. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  10. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  12. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  13. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Passivation and alloying element retention in gas atomized powders

    Science.gov (United States)

    Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.

    2017-12-05

    A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.

  15. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    Science.gov (United States)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  16. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    magnetic hyperfine field, the average hyperfine field follows the ´T Tcµ3 2 law. The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr ... These alloys offer excellent systems for studying magnetic interactions. Large volumes of studies have been devoted to Heusler alloys bearing the general ...

  17. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  18. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  19. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  20. Chemical and phase composition of powders obtained by electroerosion dispersion from alloys WC-Co

    International Nuclear Information System (INIS)

    Putintseva, M.N.

    2004-01-01

    A consideration is given to the dependence of chemical and phase compositions of dispersed powders on the conditions, the medium of electroerosion dispersing and the content of cobalt in an initial alloy. It is shown that dissociation of carbon from tungsten carbide proceeds even on dispersing in liquid hydrocarbon-containing media (kerosene and machine oil). The phase composition is determined to a large extent by a medium of dispersing and a cobalt content in the initial alloy. In all powders complex tungsten-cobalt carbides and even Co 7 W 6 intermetallic compounds are found [ru

  1. Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys

    Science.gov (United States)

    Putintseva, M. N.

    2004-03-01

    The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.

  2. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  3. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  4. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  5. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  6. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    Directory of Open Access Journals (Sweden)

    ZHU Langping

    2017-06-01

    Full Text Available A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickly. The motion trajectory of particles with different sizes in the lower end of the cooling tube is different obviously, small particles tend to enter the air outlet,while the larger particles are easy to fall down to the bottom of the cooling tube to be collected. Increasing air flow rate can improve the velocity of air flow in the spheroidizing system, causing larger particles to be taken away by the air, resulting in yield reduction. The simulation results of TiAl alloy powder spheroidization are close to the experimental results refer to parameters such as powder size distribution, average particle size and powder yield, and the model is in good accordance with the actual process of the spheroidization.

  7. Performance evaluation and characterisation of EIGA produced titanium alloy powder for additive manufacturing processes

    CSIR Research Space (South Africa)

    Arthur, Nana KK

    2017-11-01

    Full Text Available affect powder quality, and hinder processing. In an investigation by Goso and Kale [3], Ti-6Al-4V alloy powder was produced by the hydride-dehydride (HDH) process in order to make titanium components by blended elemental approach. Chemical analysis.... 2016. Additive manufacturing of metals, Acta Materialia, 117, pp 371-392. 3 [3] Goso, X. and Kale, A. 2010. Production of titanium metal powder by the HDH process, (Paper presented at the South African Institute of Mining and Metallurgy Light...

  8. Dual-Alloy Disks are Formed by Powder Metallurgy

    Science.gov (United States)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  9. Phase transition of Ni-Mn-Ga alloy powders prepared by vibration ball milling

    International Nuclear Information System (INIS)

    Tian, B.; Chen, F.; Tong, Y.X.; Li, L.; Zheng, Y.F.; Liu, Y.; Li, Q.Z.

    2011-01-01

    Research highlights: → The vibration ball milling with a high milling energy introduces the atomic disorder and large lattice distortion in the alloy during milling and makes the formation of disordered fcc structure phase in the alloy. → The transition temperature and activation energy for disordered fcc → disordered bcc are ∼320 o C and 209 ± 8 kJ/mol, respectively. → The alloy powders annealed at 800 o C for 1 h show a one-stage martensitic transformation with quite lower latent heat compared to the bulk alloy. - Abstract: This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 o C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 o C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.

  10. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  11. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  12. Structure and hardness of a hard metal alloy prepared with a WC powder synthesized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.A. da [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: francineac@yahoo.com; Medeiros, F.F.P. de [Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Silva, A.G.P. da [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Gomes, U.U. [Departamento de Fisica Teorica e Experimental, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Filgueira, M. [Laboratorio de Materiais Avancados, UENF, 28015-620 Campos de Goytacazes, RJ (Brazil); Souza, C.P. de [Laboratorio de Termodinamica e Reatores, UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)

    2008-06-25

    The structure and hardness of a WC-10 wt% Co alloy prepared with an experimental WC powder are compared with those of another alloy of the same composition produced under the same conditions and prepared with a commercial WC powder. The experimental WC powder was synthesized by a gas-solid reaction between APT and methane at low temperature and the commercial WC powder was conventionally produced by a solid-solid reaction between tungsten and carbon black. WC-10 wt% Co alloys with the two powders were prepared under the same conditions of milling and sintering. The structure of the sample prepared with the experimental WC powder is homogeneous and coarse grained. The structure of the sample prepared with the commercial powder is heterogeneous. Furthermore the size and shape of the WC grains are significantly different.

  13. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  14. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  15. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    Science.gov (United States)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  16. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Compacting the powder of Al-Cr-Mn Alloy with SPS

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Novák, P.

    2015-01-01

    Roč. 49, č. 1 (2015), s. 129-132 ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : aluminium alloy * intermetallics * powder metalurgy * spark-plasma sintering Subject RIV: JG - Metallurgy Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit151/kubatik.pdf

  18. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  19. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  20. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    Science.gov (United States)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  1. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  2. Laser alloying of Al with Ti and Ni based powders to improve wear resistance and hardness

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-10-01

    Full Text Available /s and 0.012m/s scanning speeds • The was no sufficient melting and infusion of the powder into the substrate obtained at high laser scanning speed • The thickness of the alloyed layer was ~0.52mm Results © CSIR 2008 www...

  3. Microstructural and electrical investigation of Cu-Ni-Cr alloys obtained by powder metallurgy method

    International Nuclear Information System (INIS)

    Carrio, Juan A.G.; Carvalhal, M.A.; Ayabe, L.M.; Monteiro, W.A.

    2009-01-01

    The aim of this work, using the powder metallurgy process, is to synthesize metallic alloys with high mechanical strength and high electric conductivity, after melting optimizing and thermal treatments. The Cu-Ni-Cr (wt%) alloys are characterized in their mechanical and electrical properties as well as the obtained microstructure. Through the process of powder metallurgy, contacts and structural parts can be obtained. The alloys elements are added to copper with the intention to improve their strength, ductility and thermal stability, without causing considerable damages in their form, electrical and thermal conductivity, and corrosion resistance. The metallic powders were mixed for a suitable time and then they were pressed in a cold uniaxial pressing (1000 kPa). Afterwards, the specimens were sintered in temperatures varying from 700 up to 800 deg C under vacuum. At last, the samples were homogenized at 550 deg C under vacuum, for special times. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. The alloys were characterized by optical microscopy, X-rays powder diffraction, electrical conductivity and Vickers hardness. (author)

  4. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  5. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  6. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  7. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Directory of Open Access Journals (Sweden)

    Samar Reda Al-Sayed Ali

    2017-10-01

    Full Text Available Laser cladding process was performed on a commercial Ti-6Al-4V (α + β titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD. The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  8. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  9. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  10. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  11. Microstructure and microanalysis studies of copper-nickel-tin alloys obtained by conventional powder metallurgy processing

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Masson, T.J.; Vitor, E.; Abreu, C.D.; Marques, I.M.

    2009-01-01

    The aim of this paper was to analyze the microstructural development in samples of Cu-Ni-Sn alloys (weight %) obtained by powder metallurgy (P/M). The powders were mixed for 1/2 hour. After this, they were pressed, in a cold uniaxial pressing (1000 kPa). In the next step the specimens were sintered at temperatures varying from 650 up to 780 deg C under vacuum. Secondly, the samples were homogenized at 500 deg C for several special times. The alloys were characterized by optical microscopy, electrical conductivity and Vickers hardness. X-rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. (author)

  12. Hyperfine Interactions and Some Magnetic Properties of Nanocrystalline Co40Fe50Ni10 and Co50Fe45Ni5 Alloys Prepared by Mechanical Synthesis and Subsequently Heat Treated

    International Nuclear Information System (INIS)

    Pikula, T.; Oleszak, D.; Pekala, M.

    2011-01-01

    Co 40 Fe 50 Ni 10 and Co 50 Fe 45 Ni 5 ternary alloys were prepared by mechanical alloying method. To check the stability of their structure thermal treatment was applied subsequently. As X-ray diffraction studies proved the final products of milling were the solid solutions with bcc lattice and the average grain sizes ranged of tens of nanometers. After heating of the Co 50 Fe 45 Ni 5 alloy up to 993 K the mixture of two solid solutions with bcc and fcc lattices was formed. In other cases thermal treatment did not change the type of the crystalline lattice. Moessbauer spectroscopy revealed hyperfine magnetic field distributions which reflected the different possible atomic surroundings of 57 Fe isotopes. Results of the macroscopic magnetic measurements proved that both investigated alloys had relatively good soft magnetic properties. (authors)

  13. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  14. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    Science.gov (United States)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  15. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    Energy Technology Data Exchange (ETDEWEB)

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika, E-mail: pepeng2000@yahoo.com [Research center for Metallurgy and Material, Indonesian Institute of Science (Indonesia); Sitorus, Lyandra S. [Sultan Ageng Tirtayasa University (Indonesia)

    2016-04-19

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  16. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  17. Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy

    International Nuclear Information System (INIS)

    Grossi, L.J.; Damasceno, N.; Muterlle, P.V.

    2016-01-01

    The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)

  18. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  19. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  20. Structural evolution of Fe-50 at.% Al powders during mechanical alloying and subsequent annealing processes

    International Nuclear Information System (INIS)

    Haghighi, Sh. Ehtemam; Janghorban, K.; Izadi, S.

    2010-01-01

    Iron aluminides, despite having desirable properties like excellent corrosion resistance, present low room-temperature ductility and low strength at high temperatures. Mechanical alloying as a capable process to synthesize nanocrystalline materials is under consideration to modify these drawbacks. In this study, the microstructure of iron aluminide powders synthesized by mechanical alloying and subsequent annealing was investigated. Elemental Fe and Al powders with the same atomic percent were milled in a planetary ball mill for 15 min to 100 h. The powder milled for 80 h was annealed at temperatures of 300, 500 and 700 o C for 1 h. The alloyed powders were disordered Fe(Al) solid solutions which were transformed to FeAl intermetallic after annealing. The effect of the milling time and annealing treatment on structural parameters, such as crystallite size, lattice parameter and lattice strain was evaluated by X-ray diffraction. Typically, these values were 15 nm, 2.92 A and 3.1% for the disordered Fe(Al) solid solution milled for 80 h and were 38.5 nm, 2.896 A and 1.2% for the FeAl intermetallic annealed at 700 o C, respectively.

  1. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  2. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I. E., E-mail: andersoni@ameslab.gov; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J. [Ames Laboratory (USDOE), Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  3. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  4. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Shvab, Ruslan [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Bram, Martin; Bitzer, Martin [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), D-52425 Jülich (Germany); Nyborg, Lars [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden)

    2016-12-01

    Highlights: • Powder particles of Ti, NiTi and Ti6Al4V are covered by homogeneous Ti-oxide layer. • Thickness of the Ti-oxide layer is in the range of 2.9 to 4.2 nm in as-atomized state. • Exposure to the air results in immediate oxide thickness increase of up to 30%. • Oxide thickness increase of only 15% during storage for 8 years. • High passivation of the Ti, NiTi and Ti6Al4V powder surface by Ti-oxide layer. - Abstract: High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a

  5. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  6. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruipeng [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Lei, E-mail: lxu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Jie; Yang, Rui [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zong, Bernie Y. [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components.

  7. Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response

    International Nuclear Information System (INIS)

    Guo, Ruipeng; Xu, Lei; Wu, Jie; Yang, Rui; Zong, Bernie Y.

    2015-01-01

    In present work, powder metallurgy (PM) Ti–6Al–4V alloy was produced by hot isostatic pressing (HIPing) from gas atomized powder. Various HIPing conditions and heat treatments were used to investigate the heat response of PM Ti–6Al–4V alloy. The results show that the optimization of HIPing parameters is temperature from 920 to 940 °C, pressure over 120 MPa and holding for 3 h. The microstructure of powder compact changes significantly after different heat treatments, while there was no obvious difference in tensile properties. Temperature induced porosity (TIP) in powder compact occurred after annealing at 930 °C for 1 h plus aging. The TIP has no obvious effects on tensile, impact, and fracture toughness properties of powder compact, but the TIP has an adverse effect on fatigue property, especially at shorter fatigue lives. In order to eliminate the TIP in powder compact, several probable solutions were suggested for the application of titanium powder components

  8. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos. Rodovia Washington Luiz, km 235, 13.565-905, PO Box 676, São Carlos, SP (Brazil)

    2013-11-15

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  9. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Audebert, F.; Galano, M.; Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C.

    2013-01-01

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  10. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on nasa 2b-11 alloy

    International Nuclear Information System (INIS)

    Miner, R.V. Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11. (Author)

  11. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  12. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  13. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    International Nuclear Information System (INIS)

    López-Ruiz, P.; Ordás, N.; Iturriza, I.; Walter, M.; Gaganidze, E.; Lindig, S.; Koch, F.; García-Rosales, C.

    2013-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO 3 . Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr) 5 Si 3 ; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material

  14. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  15. Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Asgharzadeh, H. [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, E.Y. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chae, H.J.; Kim, T.S. [Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, J.W. [Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-02-15

    In this paper, a bulk Mg–Zn–Y alloy reinforced by quasicrystalline particles was produced by hot extrusion of rapidly-solidified powders. MgZn{sub 4.3}Y{sub 0.7} powders with different particle sizes were prepared by an inert gas atomizer and then extruded at 380 °C with extrusion ratios of 10:1, 15:1, and 20:1. Microstructural studies were performed using an optical microscope, scanning electron microscope, transmission electron microscope, and X-ray diffraction. The mechanical strength and hardness of the extruded materials were enhanced by employing finer Mg alloy powders. More uniform deformation of powders in extruded billets with good tensile properties was achieved at higher extrusion ratios, especially for finer powders. The high strength of the MgZn{sub 4.3}Y{sub 0.7} alloy was preserved at elevated temperatures due to the presence of icosahedral phase nanoparticles.

  16. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  17. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  18. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  19. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e

  20. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Moravčík, I.; Čížek, Jan; Kováčová, Z.; Nejezchlebová, J.; Kitzmantel, M.; Neubauer, E.; Kuběna, Ivo; Horník, Vít; Dlouhý, I.

    2017-01-01

    Roč. 701, July (2017), s. 370-380 ISSN 0921-5093 Institutional support: RVO:61389021 ; RVO:68081723 Keywords : tensile test * mechanical alloying * plastic ity * mechanical characterization * powder metallurgy Subject RIV: JG - Metallurgy; JG - Metallurgy (UFM-A) OBOR OECD: Materials engineering; Materials engineering (UFM-A) Impact factor: 3.094, year: 2016 https://www.sciencedirect.com/science/article/pii/S0921509317308535

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  3. Production of a low young modulus titanium alloy by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Dalcy Roberto dos Santos

    2005-12-01

    Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

  4. Identification of phases in zinc alloy powders using electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Martin G. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Kenik, Edward A. [Oak Ridge National Laboratory, 100 Bethel Valley Rd., Bldg. 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831 (United States); O' Keefe, Matthew J. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)]. E-mail: mjokeefe@umr.edu; Miller, F. Scott [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Johnson, Benedict [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-05-25

    Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of <1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were <0.3 {mu}m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases >1 {mu}m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn{sub 2} phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram.

  5. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.

    Science.gov (United States)

    do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  6. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    Durazzo, M.; Leal Neto, R.M.; Rocha, C.J.; Urano de Carvalho, E.; Riella, H.G.

    2014-01-01

    This work forms part of the studies presently ongoing at IPEN investigating the feasibility of powdering ductile U-10wt%Mo alloy by hydriding-milling-de-hydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following de-hydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H 3 . SEM analysis of HMD powder particles revealed equi-axial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested. (authors)

  7. Powder metallurgy of NiTi-alloys with defined shape memory properties

    International Nuclear Information System (INIS)

    Bram, M.; Ahmad-Khanlou, A.; Buchkremer, H.P.; Stoever, D.

    2001-01-01

    The aim of the present work is the development of fabrication processes for NiTi shape memory alloys by powder metallurgical means. The starting materials used were prealloyed powders as well as elemental powder mixtures. Three techniques seem to be very promising for shaping of NiTi compacts. Hot Isostatic Pressing (HIP) has been examined for the production of dense semi-finished components. A promising technique for the production of dense and porous coatings with an increased wear resistance is Vacuum Plasma Spraying (VPS). Metal Injection Moulding (MIM) is especially suitable for near-net shape fabrication of small components with a complex geometry considering that large numbers of units have to be produced for compensating high tool and process costs. Subsequently, thermal treatments are required to establish defined shape memory properties. The reproducibility and stability of the shape memory effect are main aspects thinking about a production of NiTi components in an industrial scale. (author)

  8. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  9. Investigation of powdering ductile gamma U-10 wt%Mo alloy for dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, R.M., E-mail: lealneto@ipen.br [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Rocha, C.J. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Urano de Carvalho, E. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Riella, H.G. [Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil); Durazzo, M. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil)

    2014-02-01

    This work forms part of the studies presently ongoing at Nuclear and Energy Research Institute – IPEN/CNEN-SP investigating the feasibility of powdering ductile U-10 wt%Mo alloy by hydriding–milling–dehydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following dehydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H{sub 3}. SEM analysis of HMD powder particles revealed equiaxial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested.

  10. Development and characterization of Al-Zn alloy by ingot metallurgy and powder metallurgy with improved mechanical properties

    International Nuclear Information System (INIS)

    Waseem, M.; Awais, H.B.; Zauha, M.S.; Tariq, N.H.

    2007-01-01

    Current project focuses on the production of AI-Zn alloy AA7075 used for wide range of applications like Aircraft components, missile and other structural applications. The above alloy was developed by two different routes. One was melting /casting, after which alloy was characterized by microstructural - examination (optical and SEM) and mechanical testing. Other route was the preparation of this alloy by powder metallurgy. This involves preparation of powders, mechanical alloying, compaction, sintering, rolling, solution treatment and aging then analysis. Powders of Aluminum, Zinc and powders of master alloys of AI-Cu, AI-Mg, AI-Mn, and AI-Cr were Mechanical alloyed. Then this powder was compacted by uniaxial press to form pellets. Sintering was carried out at 500 degree C and then hot rolled in Ar atmosphere. After solution and aging treatments samples were characterized. It is observed that there is about 12-21% improvement in mechanical properties such as tensile strength, yield strength, ductility and fracture toughness due to the more fine microstructure and less segregation than ingot metallurgy route. (author)

  11. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  12. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    Science.gov (United States)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  13. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  14. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  15. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  17. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  18. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  19. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  20. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  1. Influence of the particle size on phase transformation temperatures of Ni-49at.%Ti shape memory alloy powders

    International Nuclear Information System (INIS)

    Anselmo, George Carlos. S.; Castro, Walman B. de; Araujo, Carlos Jose de

    2009-01-01

    It is important to control the martensitic transformation start temperature (Ms) of Ti-Ni alloys because it determines the temperature range over which the shape memory effect and superelasticity appear. Powder metallurgy (PM) is known to provide the possibility of material saving and automated fabrication of at least semi-finished products as well as net-shape components for NiTi alloys. In this study powder with different particle sizes was subjected by gas atomization. The evolution of the control the martensitic transformation start temperature (Ms) was studied by differential scanning calorimetry. The effect of the particle size of powders on the transformation temperatures behaviors was discussed. (author)

  2. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    Science.gov (United States)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  3. Stereological analysis of structure formation for solid WC-Co alloys in the process of carbide powder consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyavskij, K S

    1986-03-01

    Evolution of particle size distribution in carbide powders of different technological prehistory is studied in the process of their consolidation as a hard alloy. A successive estimate on identical preparations is used to study a structural powder->alloy transition. Temperature dependences of integral measures of the consolidated structure and characteristics of its heterogeneity are studied. It is shown that all studied structural rearrangements: formation of regular alternation of carbide and binding phases, development of particle-phase interfaces, change in size distribution - more intensely proceed in the high-temperature carbide base alloy.

  4. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  5. Study of the magnetic and structural properties of nanostructured powders of Nd{sub 2}Fe{sub 14}B mechanically alloyed

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, L.E.; Perez Alcazar, G.A. [Department of Physics, University of Valle, A.A. 25360, Cali (Colombia); Rojas, Y.A.; Bustos, H. [Department of Physics, University of Tolima, A.A. 546, Ibague (Colombia); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS6087, 72085 Le Mans Cedex 9 (France); Oyola Lozano, D.

    2007-07-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction, of powder of Nd{sub 2}Fe{sub 14}B prepared by mechanical alloying. The mixtures were ball milled during 48 hours and submitted to heat treatments between 500 and 900 C under an argon atmosphere. Structural parameters were derived from high statistics X-ray patterns. The Moessbauer spectra registered at 300 K for samples without heat treatment were fitted by means of a sextet and a hyperfine field distribution, associated to a residual pure iron phase ({alpha}-Fe) and a disordered iron-based phase, respectively. From the spectra at 300 K the formation of the Fe{sub 3}C phase is observed for samples heat treated at 900 C. A quenching above 900 C accelerates the formation of the Fe{sub 3}C phase. The hysteresis loops allow to conclude that these samples behave as soft ferromagnets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2014-09-01

    Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.

  7. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  9. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  10. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  11. Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production

    International Nuclear Information System (INIS)

    Kondoh, Katsuyoshi; Hamada, EL-Sayed Ayman; Imai, Hisashi; Umeda, Junko; Jones, Tyrone

    2010-01-01

    Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1-4 mm length, having fine α-Mg grains and Al 2 Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg-6%Al-0.5%Mn-2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573-673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45-0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200-500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.

  12. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, P.; Ordás, N.; Iturriza, I. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Walter, M.; Gaganidze, E. [Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Lindig, S.; Koch, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain)

    2013-11-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO{sub 3}. Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr){sub 5}Si{sub 3}; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material.

  13. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  14. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  15. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  16. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  17. Microstructure and properties of powder metallurgy (PM) high alloy tool steels

    International Nuclear Information System (INIS)

    Wojcieszynski, A.L.; Eisen, W.B.; Dixon, R.B.

    1998-01-01

    Particle metallurgy (PM) processing is currently the primary manufacturing method used to produce advanced high alloy tool steel compositions for use in industrial tooling applications. This process involves gas atomization of the pre-alloyed melt to form spherical powders and consolidation by HIP to full density. The HIP product may be used directly in select applications, but is usually subjected to additional forging to improve properties and produce a wide range of bar and plate sizes. Compared to ingot-cast tool steels, PM tool steels have very homogeneous microstructures with very fine carbide and sulfide size distributions, free from carbide banding, which results in improved machinability, grindability, and mechanical properties. In addition, this technology enables the development of advanced tool steel compositions which could not be economically produced by conventional steelmaking. (author)

  18. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  19. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  20. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  1. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  2. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  3. Manufacturing method of hydrogen storage alloy powder for battery; Denchiyo suiso kyuzo gokin funmatsu no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.

    1997-04-04

    To produce hydrogen storage alloy powder for battery, ingot of a hydrogen storage alloy is crushed to coarse grains of a suitable size with a crusher and then, finely pulverized to a certain particle size with a ball mill or some other tools. In this pulverization process, the surface of the pulverized alloy powder is oxidized and the surface activity is partially lost to cause a problem of a decrease of the characteristics of the produced hydrogen storage alloy electrode. In this invention, ingot of hydrogen storage alloy is crushed to coarse alloy grains in a non-oxidizing atmosphere followed by mechanical pulverization in a state contact with a solution of sulfites, hypophosphites, hydrogen phosphates or dihydrogen phosphates. This treatment method prevents surface oxidation of the alloy powder during the pulverization process. As a result, the initial activity of the battery is improved and an increase of the internal pressure of the battery on overcharge is suppressed. The use of an aqueous alkaline solution containing cobalt instead of the above-mentioned solution gives a similar effect. 2 tabs.

  4. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  5. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  6. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    Science.gov (United States)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  7. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  8. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  9. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  10. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  11. Stress relaxation study of water atomized Cu-Cr-Zr powder alloys consolidated by inverse warm extrusion

    International Nuclear Information System (INIS)

    Poblano-Salas, C.A.; Barceinas-Sanchez, J.D.O.

    2009-01-01

    Stress relaxation testing in compression at high temperature was performed on Cu-Cr-Zr alloys produced by consolidation of water atomized powders. Precipitation and recrystallization were monitored during stress relaxation experiments carried out at an ageing temperature of 723 K. Pre-straining imposed to the Cu-Cr-Zr samples prior to stress relaxation testing resulted in reduced hardness compared to that reported for conventionally-aged alloys; it also resulted in shorter times for achieving maximum strengthening on ageing.

  12. A superplastic Al-Li-Cu-Mg-Zr powder alloy with high hardness and modulus

    International Nuclear Information System (INIS)

    Phillips, V.A.

    1986-01-01

    Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P and W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 x 10/sup 6/ g/m/sup 3/. The material was solution-treated, and aged at 149 0 C(300 0 F), 171 0 C(340 0 F), and 193 0 C(380 0 F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516 0 C(961 0 F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193 0 C(380 0 F), with a modulus of elasticity of 11.4 x 10/sup 6/ psi (78.3 GPa). Hardness values reached 90-92 R/sub B/ on aging at 149-193 0 C(300-380 0 F). The as-extruded alloy showed superplastic behavior at 400-500 0 C(752-932 0 F) with elongations of 80-185% on 25.6 mm, peaking at 450 0 C(842 0 F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded allow showed only 18-23% elongation at 400-500 0 C(752-932 0 F)

  13. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  14. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    Science.gov (United States)

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  15. The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović Lenka

    2006-01-01

    Full Text Available Nickel and molybdenum alloy powder was electrodeposited on a titanium cathode from a NiSO4⋅7H2O and (NH46 Mo7O24⋅4H2O ammonium solution. The desired chemical composition, structure, size and shape of particles in the powder samples were achieved by an appropriate choice of electrolysis parameters (current density, composition and temperature of the solution, cathode material and electrolysis duration. Metal coatings form in the current density range 15 mA cm-2powders form. The chemical composition of powder samples depends on the current density of electrodeposition. The molybdenum content in the powder increases with the increase of current density (in the low current density range, while in the higher current density range the molybdenum content in the alloy decreases with the increase of the current density of deposition. Smaller sized particles form at higher current density. X-ray analysis, differential scanning calorimetric and measurements of the temperature dependence of electric resistance and magnetic permeability of the powder samples were all used to establish a predominantly amorphous structure of the powder samples formed at the current density of j≥70mA cm-2. The crystalline particle content in the powder samples increases with the decrease of the current density of deposition. Powder heating causes structural changes. The process of thermal stabilization of nickel and molybdenum amorphous powders takes place in the temperature interval from 463K to 573K and causes a decrease in electrical resistance and increase in magnetic permeability. The crystallization temperature depends on the value of current density of powder electrodeposition. Powder formed at j=180 mA cm-2 begins to crystallize at 573K, while the powder deposited at j=50 mA cm-2 begins to crystallize at 673K. Crystallization of the powder causes a decrease in electric resistivity and magnetic

  16. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  17. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  18. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2017-03-14

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  19. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  20. Microstructure, mechanical and corrosion properties of biodegradable powder metallourgical Fe-2 wt% X (X = Pd, Ag and C) alloys

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, J.

    2016-01-01

    Roč. 181, Sep (2016), 501–511 ISSN 0254-0584 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : biomaterials * powder metallurgy * alloys * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.084, year: 2016

  1. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  2. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    International Nuclear Information System (INIS)

    Park, Gyu-Hyeon; Lee, Gwang-Yeob; Kim, Hyeon-Ah; Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi; Kim, Do-Hyang; Lee, Min-Ha

    2016-01-01

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  3. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyu-Hyeon [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, Gwang-Yeob [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyeon-Ah [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, Do-Hyang [Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Min-Ha, E-mail: mhlee1@kitech.re.kr [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of)

    2016-10-15

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  4. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  5. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  6. Structure and Mechanical Properties of Powdered Quasicrystalline Al94Fe3Cr3 Alloy Consolidated by Quasi-Hydrostatic Compression

    Directory of Open Access Journals (Sweden)

    Alexandra I. Yurkova

    2017-10-01

    Full Text Available Background. Quasicrystalline Al-based alloys belong to the class of the state-of-the-art metal materials for the application in light engineering constructions, primarily in aviation and the motor transport industry. These materials are commonly made in the form of powders, which is due to the high productivity of powder metallurgy methods. Therefore, the powder consolidation methods are of great importance in the production of products, which is associated with certain difficulties, and consequently, they should be chosen considering not only the quasicrystals’ propensity to brittle fracture but also the metastable nature of the quasicrystalline phases. Certain possibilities in this direction are provided by the quasi-hydrostatic compression method, which can provide a non-trivial combination of strength and ductility properties of materials. Objective. The aim of the paper is to investigate the effect of high pressure under quasi-hydrostatic compression on the formation of structure, phase composition and mechanical properties of the quasicrystalline Al94Fe3Cr3 alloy. Methods. 40 μm Al94Fe3Cr3 alloy quasicrystalline powder was fabricated by water-atomisation technique. Consolidation of quasicrystalline powder was performed by quasi-hydrostatic compression technique in high-pressure cells at room temperature at a pressure of 2.5, 4, and 6 hPa. Structure, phase composition and mechanical characteristics of Al94Fe3Cr3 alloy were performed by scanning electron microscopy (SEM, X-ray diffraction andmicromechanical tests. Results. Using the phase X-ray analysis and SEM, the content of the quasicrystalline icosahedral phase (i-phase in the Al94Fe3Cr3 alloy structure was completely preserved after its consolidation at different pressures (2.5, 4, and 6 hPa under quasi-hydrostatic compression at room temperature. Despite the high pressure applied in the consolidation process, the morphology of quasicrystalline phase particles located in the a

  7. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    Science.gov (United States)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  8. Effect of composition and heat treatment on the phase formation of mechanically alloyed Cr-B and Mo-B powders

    International Nuclear Information System (INIS)

    Wu, H M; Hu, C J; Pai, K Y

    2009-01-01

    Blended elemental Cr-B and Mo-B powders in atomic ratio of 67:33, 50:50, and 20:80 were subjected to mechanical alloying up to 60 h and subsequent heat treatment to investigate effect of composition and heat treatment on the phase formation of Cr-B and Mo-B powders. It was studied by X-ray diffraction and differential thermal analysis. Mechanical alloying these powder mixtures for 60 h leads essentially to a amorphous structure except for the Mo 20 B 80 powder, which creates a partially amorphous MoB 4 structure. Annealing at lower temperatures relieves the strains cumulative in the milled powders and creates no new phase. The structures obtained after annealing the milled powders at higher temperature vary and depend on the overall composition of the powder mixtures. Annealing the milled Mo-B powders having greater Mo content ends up with a dissociation reaction at higher temperature.

  9. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  10. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  11. Low temperature study of micrometric powder of melted Fe50Mn10Al40 alloy

    International Nuclear Information System (INIS)

    Zamora, Ligia E.; Pérez Alcazar, G.A.; Tabares, J.A.; Romero, J.J.; Martinez, A.; Gonzalez, J.M.; Palomares, F.J.; Marco, J.F.

    2012-01-01

    Melted Fe 50 Mn 10 Al 40 alloy powder with particle size less than 40 μm was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Mössbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  12. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    Science.gov (United States)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  13. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  14. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    International Nuclear Information System (INIS)

    Ding, W.F.; Xu, J.H.; Shen, M.; Su, H.H.; Fu, Y.C.; Xiao, B.

    2006-01-01

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system

  15. Influence of thermo-mechanical processing on the microstructure of Cu-based shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P.P.; Ibarra, A.; Iza-Mendia, A.; Recarte, V.; Perez-Landazabal, J.I.; San Juan, J.; No, M.L.

    2003-01-01

    Cu-Al-Ni shape memory alloys processed by powder metallurgy show very good thermo-mechanical properties, much better than those found in alloys produced by conventional casting. In this paper, we present the microstructural characterisation of these powder metallurgy alloys in order to find the microscopic mechanisms, linked to the powder metallurgy processing method, which are indeed responsible of such good thermo-mechanical behaviour. Electron microscopy studies [scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM)] show that powder metallurgy processing creates a sub-grain structure characterised by the presence of low angle sub-boundaries. These sub-boundaries are found to be lying on {1 1 0} and {1 1 2} lattice planes and are composed by an arrangement of superdislocations. These sub-boundaries may improve ductility in two ways: acting as a sink of dislocations which promotes plastic deformation and decreasing stress concentration at grain boundaries. Moreover, since sub-boundaries act as weak obstacles for the movement of martensite plates, the improvement on ductility is accomplished by an adequate thermo-mechanical behaviour

  16. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  17. Low-Pressure and Low-Temperature Hydriding-Pulverization-Dehydriding Method for Producing Shape Memory Alloy Powders

    Science.gov (United States)

    Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.

    2018-04-01

    Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.

  18. Study on the formation of cubic texture in Ni-7 at.% W alloy substrates by powder metallurgy routes

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, HongLi; Zhu, YongHua

    2009-01-01

    One of the main challenges for coated conductor applications is to produce sharp cubic textured alloy substrates with high strength and low magnetism. In this work, the cubic textured Ni–7 at.% W substrates were prepared from different powder metallurgy ingots by rolling-assisted biaxially textured...... substrate processing. The fabrication processes of cubic texture in the Ni–7 at.% W tapes by two powder metallurgy routes are described in detail. Through the optimized process, full width at half maximum values of 6.7° and 5.0° were obtained, as estimated by X-ray (1 1 1) phi scan and (2 0 0) rocking curve...

  19. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders

    Directory of Open Access Journals (Sweden)

    Manja Krüger

    2016-10-01

    Full Text Available V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.

  20. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  1. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  2. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  3. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    Science.gov (United States)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  4. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  5. Effect of hydrogenation pressure on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio; Galdino, Gabriel Souza; Bressiani, Ana Helena; Faria Junior, Rubens Nunes de; Takiishi, Hidetoshi

    2009-01-01

    The effects of the hydrogenation stage on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy have been studied. Powder alloys have been produced by hydrogenation with 250 MPa or 1 GPa and via high energy planetary ball milling. Samples were isostatically pressed at 200 MPa and sintered at 1150 deg C for 7, 10 and 13 hours. Elastic modulus and microhardness were determined using a dynamic mechanical analyzer (DMA) and a Vickers microhardness tester. Density of the samples was measured using a liquid displacement system. Microstructure and phases presents were analyzed employing scanning electron microscopy (SEM). Elastic modulus were 81.3 ± 0.8 and 62.6 ± 0.6 GPa for samples produced by 250 MPa and 1 GPa hydrogenation, respectively when sintered for 7h. (author)

  6. Effect of calcium chloride on the preparation of NdFeB alloy powder by calciothermic reduction process

    International Nuclear Information System (INIS)

    Sidhu, R.K.; Verma, A.; Raina, K.K.

    1999-01-01

    The calciothermic reduction process has been identified to be one of the cost effective processes for producing NdFeB from Nd 2 O 3 . Use of CaCl 2 as slag former in calciothermic reduction is well established. This paper describes the effect of CaCl 2 on the various properties of NdFeB alloy powder prepared by calciothermic reduction. The effect of CaCl 2 on ease of disintegration of the reacted product during calcium leaching, particle size distribution, grain size, lattice parameters and residual calcium has been studied and compared with the alloy powder prepared without using calcium chloride. Addition of CaCl 2 has been found to result in easier disintegration, reduction in grain size and more uniform particle size distribution. Substantial decrease in the residual calcium in case of charge consisting of CaCl 2 was observed. The effect of lattice parameters was not found to be very significant. (author)

  7. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  8. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  9. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  10. Thermal stability and creep behaviour of MgNiYCe-rich mischmetal alloys processed by a powder metallurgy route

    Czech Academy of Sciences Publication Activity Database

    Peréz, P.; Milička, Karel; Badia, J. M.; Garcés, G.; Antoranz, J. M.; Gonzáles, S.; Dobeš, Ferdinand; Adeva, P.

    289-292, - (2009), s. 127-136 ISSN 1012-0386. [DIMAT 2008, International Conference on Diffusion in Materials /7./. Lanzarote, Canary Islands, 28.10.2008-31.10.2008] Grant - others:Ministerio de Ciencia y Tecnologia (ES) MAT2006-11731-C02 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnesium alloys * powder metallurgy * microstructure * thermal stability * creep Subject RIV: JG - Metallurgy

  11. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    Science.gov (United States)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  12. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-10-15

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties.

  13. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    International Nuclear Information System (INIS)

    Gheisari, Kh.; Javadpour, S.

    2013-01-01

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties

  14. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  15. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  16. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa Inc., Pittsburgh, PA (United States)

    2017-06-30

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.

  17. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  18. Effects of Post-Sinter Processing on an Al–Zn–Mg–Cu Powder Metallurgy Alloy

    Directory of Open Access Journals (Sweden)

    Matthew David Harding

    2017-09-01

    Full Text Available The objective of this work was to study the effects of several post-sinter processing operations (heat-treatment, sizing, shot peening on a press-and-sinter 7xxx series aluminum powder metallurgy (PM alloy. The characterization of the products was completed through a combination of non-contact surface profiling, hardness measurements, differential scanning calorimetry (DSC, transmission electron microscopy (TEM, X-ray diffraction (XRD, tensile, and three-point bend fatigue testing. It was determined that sizing in the as-quenched state imparted appreciable reductions in surface hardness (78 HRB and fatigue strength (168 MPa relative to counterpart specimens that were sized prior to solutionizing (85 HRB and 228 MPa. These declines in performance were ascribed to the annihilation of quenched in vacancies that subsequently altered the nature of precipitates within the finished product. The system responded well to shot peening, as this process increased fatigue strength to 294 MPa. However, thermal exposure at 353 K (80 °C and 433 K (160 °C then reduced fatigue performance to 260 MPa and 173 MPa, respectively, as a result of residual stress relaxation and in-situ over-aging.

  19. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    Science.gov (United States)

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  20. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  1. Effects of N2 mixed gas atomization on electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder

    International Nuclear Information System (INIS)

    Yanagimoto, K.; Sunada, S.; Majima, K.; Sawada, T.

    2004-01-01

    N 2 gas, N 2 -Ar mixed gas and Ar gas atomization followed by acid surface treatment was applied to improve electrochemical properties of AB 5 type hydrogen storage alloy powder. The shape of Ar atomized powder was spherical and it changed to be irregular with increasing N 2 content of mixed gas. Irrespective of gas kinds, electrodes of atomized powder showed the same discharge capacity as cast-pulverized powder under auxiliary electrical conductivity by nickel powder addition. Without nickel powder, however, N 2 atomized powder showed the best electrochemical properties as well as gas activation behavior. By the combination process of N 2 gas atomization and acid surface treatment, it was considered that irregular shape of N 2 atomized powder promoted electrical conductivity of electrodes and catalytic nickel concentrated surface layer was formed to increase the hydrogen storage rapidity

  2. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  3. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  4. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  5. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Science.gov (United States)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  6. Hyperfine-field distribution in Fe3Si/sub 1-x/Al/sub x/ alloys and a theoretical interpretation

    International Nuclear Information System (INIS)

    Burch, T.J.; Raj, K.; Jena, P.; Budnick, J.I.; Niculescu, V.; Muir, W.B.

    1979-01-01

    In Fe 3 Si/sub 1-x/Al/sub x/ alloys with small x the Si and Al nuclear magnetic resonances are 31.5 and 16.1 MHz, respectively. The concentration dependences of the frequencies of these resonances are linear, the Si resonance shifting to lower frequencies, the Al resonance to higher frequencies. Both the magnitudes and concentration dependences of the Si and Al internal fields are in agreement with the predictions of a simple model which Jena and Geldart, following the approach of Daniel and Friedel, have found successful in calculating the fields of sp elements in Heusler alloys. A positive sign is predicted for the Si internal field, and a negative sign for the Al field. Magnetization and lattice-parameter data required for the comparison of experiment and theory are also reported

  7. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  8. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  9. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  10. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  11. Evaluation of HEBM Mechanical Alloying of Al2O3— 356/7075 Powder Mixture

    CSIR Research Space (South Africa)

    Govender, G

    2012-04-01

    Full Text Available Particle reinforced aluminium alloy metal matrix composites (MMC) have proven to be one of the advanced materials capable of replacing conventional structural alloys. However, the demand for such materials has been confined to high cost applications...

  12. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy

    International Nuclear Information System (INIS)

    Zhang, Dan-yang; Li, Hui-zhong; Liang, Xiao-peng; Wei, Zhong-wei; Liu, Yong

    2014-01-01

    Highlights: • With temperature increasing and strain rate decreasing, the β phase decreases. • With temperature increasing and strain rate decreasing, DRX grains increase. • The high temperature deformation mechanism of TiAl alloy was clearly. - Abstract: Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10 −3 s −1 to 1 s −1 . Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae

  13. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  14. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  15. Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications

    International Nuclear Information System (INIS)

    Wen, Ming; Wen, Cuie; Hodgson, Peter; Li, Yuncang

    2014-01-01

    Highlights: • The Ti–26Nb–5Ag alloy sintered by SPS showed a dense structure without any pores. • Nanostructure Ag was distributed in the Ti–26Nb–5Ag alloy sintered by SPS. • The SPS sample displayed higher strength than that of traditional sintered sample. - Abstract: Ti and some of its alloys are widely used as orthopedic implants. In the present study, Ti–26Nb–5Ag alloys were prepared by mechanical alloying followed by vacuum furnace sintering or spark plasma sintering (SPS). The microstructure and mechanical properties of the Ti–Nb–Ag alloys were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), compressive and micro-hardness tests. The effect of different sintering methods on the microstructure and properties of Ti–Nb–Ag alloy was discussed. The results showed that the titanium alloy sintered by vacuum furnace exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase; whilst the SPS sintered alloy exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase, as well as a nanostructured Ag homogeneously distributed at the boundaries of the β phases. The Ti–Nb–Ag alloy sintered by SPS possessed fracture strength nearly 3 times of the alloy sintered by vacuum furnace

  16. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  17. A study of stability of MgH{sub 2} in Mg-8at%Al alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Tanniru, Mahesh; Ebrahimi, Fereshteh [Materials Science and Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Slattery, Darlene K. [Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2010-04-15

    To investigate the effect of Al addition on the stability of magnesium hydride, the hydrogenation characteristics of a Mg-8at%Al alloy powder synthesized using the electrodeposition technique were evaluated. The characterization of the hydrogenation behavior within the 180 C-280 C temperature range and the subsequent microstructural analysis elucidated that the amount of Al present in the hydride decreased with increasing temperature. This observation suggests that Al has very low solubility in magnesium hydride but Al can be accommodated in MgH{sub 2} by processing under non-equilibrium conditions. Pressure-composition isotherms were developed at different temperatures for the Mg-Al powder as well as pure Mg powder. The results indicate that the enthalpy of formation was slightly lower for the Mg-8at%Al powder while the enthalpy of dissociation did not change. The absence of noticeable influence of Al addition on the stability of magnesium hydride is attributed to its lack of solubility. (author)

  18. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    Science.gov (United States)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  19. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al 3 Sc and/or Al 3 (Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al 3 Sc and/or Al 3 (Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al 6 Mn- and/or Al 6 (Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al 3 Sc particles formation and/or coarsening and that of the Al 6 Mn and/or Al 6 (Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al 3 Sc-phase and the Al 6 Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by

  20. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  1. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of the mechanically alloyed (V,W)C and (V,W)C-co powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2008-01-01

    Full Text Available in XRD patterns because they were of extremely fine grain size.As a result of the loss ofVandWthrough oxidation, free carbonwas also found in the final powder. The lattice parameter of the (V,W)C powder increased with milling time up to a maximum...

  3. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Rincón Soler, A. I. [Universidad Tecnológica de Pereira, Fac. de Ciencias, Depto. de Física (Colombia); Rodríguez Jacobo, R. R., E-mail: rrrodriguez@uao.edu.co [Universidad Autónoma de Occidente, Fac. de Ciencias Básicas, Depto. de Física (Colombia); Medina Barreto, M. H.; Cruz-Muñoz, B. [Universidad Tecnológica de Pereira, Fac. de Ciencias, Depto. de Física (Colombia)

    2017-11-15

    Fe{sub 96−X}Co{sub X}C{sub 4} (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  4. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-01-01

    Fe 96−X Co X C 4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  5. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  6. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kubatík, Tomáš František; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D.

    2014-01-01

    Roč. 52, September (2014), s. 131-137 ISSN 0966-9795 Institutional support: RVO:61389021 Keywords : Nanostructure intermetallics * Ternary alloys systems * Mechanical alloying and milling * Sintering * Diffraction Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0966979514001198#

  7. Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-x Alx powders elaborated by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Akkouche K.

    2012-06-01

    Full Text Available Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at % were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ray diffraction, scanning electron microscopy (SEM, energy dispersive X-ray and Mössbauer spectroscopy. For all Fe100-xAlx samples, the complete formation of bcc phase was observed after 35 h of milling. As Al content increases, the lattice parameter increases, whereas the grain size decreases from 106 to 12 nm. The powder particle morphology for different compositions was observed by SEM. The Mössbauer spectra were adjusted with a singlet line and a sextet containing two components. The singlet was attributed to the formation of paramagnetic A2 disordered structure rich with Al. About the sextet, the first component indicated the formation of Fe clusters/ Fe-rich phases; however, the second component is characteristic of disordered ferromagnetic phase.

  8. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  9. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  10. Evidence of magnetic dipolar interaction in micrometric powders of the Fe50Mn10Al40 system: Melted alloys

    International Nuclear Information System (INIS)

    Pérez Alcázar, G.A.; Zamora, L.E.; Tabares, J.A.; Piamba, J.F.; González, J.M.; Greneche, J.M.; Martinez, A.; Romero, J.J.; Marco, J.F.

    2013-01-01

    Powders of melted disordered Fe 50 Mn 10 Al 40 alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 μm showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: ► The effect of particle size in microsized powders of Fe 50 Mn 10 Al 40 melted disordered alloy is studied. ► Dipolar magnetic interaction between particles exists and this changes with the particle size. ► For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. ► RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  11. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  12. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    Science.gov (United States)

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  13. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    Science.gov (United States)

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  14. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Eleonora Atzeni

    2013-03-01

    Full Text Available In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  15. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  16. Fluctuating hyperfine interactions: computational implementation

    International Nuclear Information System (INIS)

    Zacate, M. O.; Evenson, W. E.

    2010-01-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.

  17. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  18. Effect of milling duration on the evolution of shape memory properties in a powder processed Cu-Al-Ni-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mohit; Gupta, Gaurav K.; Shafeeq, Muhamed M.; Modi, Om P.; Prasad, Braj K. [CSIR - Advanced Materials and Processes Research Institute, Bhopal (India)

    2013-09-15

    The present work describes the effect of milling duration on the properties of a powder metallurgy processed Cu-Al-Ni-Ti shape memory alloy employing mechanical alloying. Powder mixtures milled for different durations were sintered in order to investigate the formation of solid solution and evolution of martensitic structure. The idea was to optimize the duration of milling (mechanical alloying) to obtain chemical homogeneity as well as shape memory properties in the processed material without undergoing extensive post homogenization treatment. The martensitic structure was noted to evolve in the powder mix milled for at least 16 hrs, whereas complete transformation to martensite occurred after milling for 40 hrs. Interestingly, the dissolution of alloying elements (to form the {beta} phase prior to the formation of martensite) was noted to complete partially only during mechanical alloying for 40 hrs and remaining during subsequent sintering for 1 hr. The hot pressed compacts of the powders milled for 40 hrs were chemically homogeneous and consisted of fully martensite phase, which is essential for the realization of shape memory properties. They also revealed almost 100% shape recovery at the applied pre-strain levels of 1 and 2%. (orig.)

  19. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    Science.gov (United States)

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  20. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Marcio W.D., E-mail: mwdmendes@ipen.com; Ágreda, Carola G.; Bressiani, Ana H.A.; Bressiani, José C.

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti–27Nb–13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for > 3 days in the SBF solution. - Highlights: • The alloy is classified as α + β and the milling time influences the formation of these phases. • Dissolution of Nb is related to the mechanical properties of the alloy. • It's possible to form apatite on all samples immersed in SBF from 3 days. • The alloy can be used in orthopedic applications or in dental applications.

  1. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  2. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    Science.gov (United States)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  3. Sintered FeCuRe Alloys Produced from Commercially Available Powders

    Directory of Open Access Journals (Sweden)

    Borowiecka-Jamrozek J.

    2017-09-01

    Full Text Available This paper discusses the mechanical properties of materials fabricated from commercially available powders designed for use as a metal matrix of diamond-impregnated composites. The powders with the catalogue numbers CSA and CSA800 produced in China were tested under laboratory conditions. The specimens were fabricated in a graphite mould using hot pressing. The materials were analysed for density, porosity, hardness and static tensile strength. A scanning electron microscope (SEM was employed to observe the microstructure and fracture surfaces of the specimens. The experimental data was used to determine how the chemical composition of the powders and the process parameters affected the microstructure and properties of the materials. The properties of the sintered materials produced from the Chinese powders were compared with the properties reported for specimens fabricated from cobalt powder (Co SMS. Even though the hot pressed CSA and CSA800 powders had inferior mechanical properties to their cobalt analogue, they seem well-suited for general-purpose diamond-impregnated tools with less demanding applications.

  4. Study of twinning behavior of powder metallurgy Ti-Si alloy by interrupted in-situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.X., E-mail: ye-xiaoxin@jwri.osaka-u.ac.jp [Joining and Welding Institute (JWRI), Osaka University (Japan); Imai, H.; Shen, J.H.; Chen, B. [Joining and Welding Institute (JWRI), Osaka University (Japan); Han, G.Q. [College of Materials Science and Engineering, Beijing University of Technology (China); Umeda, J.; Kondoh, K. [Joining and Welding Institute (JWRI), Osaka University (Japan)

    2017-01-02

    Twinning mechanism of powder metallurgy Ti-Si alloy was investigated by interrupted in-situ tensile tests. Extension twins {10−12}<10-1-1> in the fine-grained Ti-Si alloy were found in the uniform deformation period, but no twinning in the coarse pure Ti. Three deformation twinning nucleation mechanisms were proposed: i) local stress concentration by neighboured slip incompatibility, ii) slip/twin oriented relationship in the parent grain and iii) slip/twin transfer by high Luster-Morris oriented relationship. The interior back-stress state, grains rotation and dislocations pile-up drove the occurrence of detwinning phenomenon. Silicon-facilitation twinning verified the hypothesis that the substitutional Si solutes affected the core structures and thus the mobility of screw dislocations. Enhanced driving force and decreased energy barrier of nucleation in the micro/atomic scale were further proposed in the twinning activation. It was expected to deepen the understanding of twinning/detwinning behaviors and supply direct evidences building immature twinning mechanism. In-depth understanding about the relationship among the processing, mechanical properties and microstructure of Ti alloy was facilitated in the present work.

  5. Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Wen-Nong Hsu

    2014-01-01

    Full Text Available The choice of an electrode is the most critical parameter for water electrolysis. In this study, powder metallurgy is used to prepare aluminum-magnesium (Al-Mg alloy electrodes. In addition to pure Mg and Al electrodes, five Al-Mg alloy electrodes composed of Al-Mg (10 wt%, Al-Mg (25 wt%, Al-Mg (50 wt%, and Al-Mg (75 wt% were prepared. In water electrolysis experiments, the pure Al electrode exhibited optimal electrolytic efficiency. However, the Al-Mg (25 wt% alloy was the most efficient when the anticorrosion effect and materials costs were considered. In this study, an ultrasonic field was applied to the electrolysis cell to improve its efficiency. The results revealed that the current increased by approximately 23.1% when placed in a 30 wt% KOH solution under the ultrasonic field. Electrochemical polarization impedance spectroscopy (EIS was employed to evaluate the effect of the ultrasonic field on the reduction of polarization resistance. The results showed that the concentration impedance in the 30 wt% KOH electrolyte decreased markedly by 44%–51% Ω.

  6. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    Science.gov (United States)

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  7. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  8. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  9. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.

    Science.gov (United States)

    Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V

    2015-12-01

    The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated .05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    Science.gov (United States)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  11. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kreitcberg, Alena, E-mail: alena.kreitcberg.1@ens.etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Brailovski, Vladimir, E-mail: vladimir.brailovski@etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Turenne, Sylvain, E-mail: sylvain.turenne@polymtl.ca [École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Montreal, Quebec H3T 1J4 Canada (Canada)

    2017-03-24

    The effect of different heat treatments and hot isostatic pressing on the microstructure and mechanical properties of laser powder bed fusion IN625 alloy was studied. The heat treatments were: stress relief annealing, recrystallization annealing and low-temperature solution treatment. The resulting microstructure and crystallographic textures were studied using optical and scanning electron microscopy. The mechanical properties of the as-built and post-treated IN625 alloy were obtained after tensile testing at room temperature and at 760 °C (1400 °F), and compared to those of an annealed wrought alloy of the same composition.

  13. Hyperfine magnetic fields of disorder systems by 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Lipka, J.

    1994-01-01

    The feasibility of 57 Fe transmission Moessbauer spectroscopy in the study of hyperfine magnetic fields is described with emphasis on amorphous, nanocrystalline and quasicrystalline alloys. Distributions of hyperfine magnetic fields obtained are presented via three-dimensional projects where effects of sample composition, temperature and annealing time on magnetic structure are followed by changes in probability of the field values. This allows magnetic transitions as well as mixed electric-quadrupole and magnetic-dipole interactions to be observed

  14. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  15. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  16. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  17. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  18. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  19. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  20. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Nlebedim, I.C. [Ames Laboratory, Ames, IA 50011 (United States); Ucar, Huseyin; Hatter, Christine B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McCallum, R.W. [Ames Laboratory, Ames, IA 50011 (United States); McCall, Scott K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kramer, M.J. [Ames Laboratory, Ames, IA 50011 (United States); Paranthaman, M. Parans [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  1. Characterization of mechanically alloyed f.c.c. Ti–Mg–based powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2010-05-01

    Full Text Available the reproducibility of the particle size 121distributions. 122The thermal behavior of the powders was determined in the range 123room temperature to 660 ?C in an argon atmosphere using a 124simultaneous thermal analyzer (Netzsch STA 449 F3 Jupiter). The 125...

  2. Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Novák, P.; Mlynár, J.; Vojtěch, D.; Kubatík, Tomáš František; Málek, J.

    2015-01-01

    Roč. 128, č. 4 (2015), s. 597-601 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA) /13./. Prague, 31.08.2014-04.09.2014] Institutional support: RVO:61389021 Keywords : powder metallurgy * mechanical properties * biomedical applications Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.525, year: 2015

  3. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    Science.gov (United States)

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  4. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    International Nuclear Information System (INIS)

    Nlebedim, I.C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R.W.; McCall, Scott K.; Kramer, M.J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  5. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  6. Laser alloying of Al with mixed Ti and Ni powders to improve surface properties

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-07-01

    Full Text Available Aluminium is used in industry for various applications due to its low cost, light weight and excellent workability, but lacks wear resistance and hardness. Laser alloying is used to improve surface properties such as hardness and wear resistance...

  7. Detonation wear-resistant coatings, alloy powders based on Cr-Si

    Directory of Open Access Journals (Sweden)

    А.Г. Довгаль

    2009-03-01

    Full Text Available  Coatings from composition material Cr-Si-B on steel by detonation spraying method are obtained. Composition, structure and tribotechnical characteristics of coatings in comparison with traditional materials on the basis of Ni-Cr and alloy of tungsten and cobalt are investigated.

  8. Laser surface alloying of aluminum (AA1200) with Ni and SiC Powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-12-01

    Full Text Available . The dissociated C reacted with Al to form Al4C3. The addition of Ni resulted in the formation of the Al3Ni phase. A hardness increase of approximately four times that of aluminum AA1200 was achieved in the alloyed layer....

  9. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  10. Histomorphologic evaluation of Ti-13Nb-13Zr alloys processed via powder metallurgy. A study in rabbits

    International Nuclear Information System (INIS)

    Bottino, M.C.; Coelho, P.G.; Yoshimoto, M.; Koenig, B.; Henriques, V.A.R.; Bressiani, A.H.A.; Bressiani, J.C.

    2008-01-01

    This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route

  11. Histomorphologic evaluation of Ti-13Nb-13Zr alloys processed via powder metallurgy. A study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Bottino, M.C. [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254 1530 3rd Avenue South, Birmingham, AL, 35294 (United States); Coelho, P.G. [Department of Biomaterials and Biomimetics, New York University, College of Dentistry, 345 East 24th Street, Room 804S, New York, NY, 10100 (United States)], E-mail: pgcoelho@nyu.edu; Yoshimoto, M. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil); Koenig, B. [Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP) Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-900 (Brazil); Henriques, V.A.R. [Materials Division (AMR/IAE), CTA Brazilian Aerospace Technical Center, Sao Jose dos Campos, SP, 12228-904 (Brazil); Bressiani, A.H.A.; Bressiani, J.C. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil)

    2008-03-10

    This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route.

  12. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Alexandre Nogueira Ottoboni; Silva, Aline da; Rodrigues, Carlos Alberto; Melo, Mirian de Lourdes Noronha Motta; Rodrigues, Geovani; Silva, Gilbert, E-mail: aottoboni@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil)

    2017-05-15

    The aluminum bronze alloy is part of a class of highly reliable materials due to high mechanical strength and corrosion resistance being used in the aerospace and shipbuilding industry. It's machined to produce parts and after its use cycle, it's discarded, but third process is considered expensive and besides not being correct for environment reasons. Thus, reusing this material through the powder metallurgy (PM) route is considered advantageous. The aluminum bronze chips were submitted to high energy ball milling process with 3% of niobium carbide (NbC) addition. The NbC is a metal-ceramic composite with a ductile-brittle behaviour. It was analyzed the morphology of powders by scanning electron microscopy as well as particle size it was determined. X ray diffraction identified the phases and the influence of milling time in the diffractogram patterns. Results indicates that milling time and NbC addition improves the milling efficiency significantly and being possible to obtain nanoparticles. (author)

  13. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  14. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  15. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  16. Consolidation of mechanically alloyed nanocrystalline Cu-Nb-ZrO{sub 2} powder by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Eymann, K., E-mail: Konrad.Eymann@tu-dresden.de [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany); Riedl, T.; Bram, A.; Ruhnow, M.; Boucher, R.; Kirchner, A.; Kieback, B. [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Solid solution of Cu-Nb was achieved by mechanically alloying Cu, Nb and ZrO{sub 2}. Black-Right-Pointing-Pointer In as-milled state the Cu-Nb-ZrO{sub 2} powders show an average Cu grain size of 16 nm. Black-Right-Pointing-Pointer Mechanical and electrical properties are studied in dependence of thermal exposure. Black-Right-Pointing-Pointer Compaction at 1000 Degree-Sign C/1 min using SPS increases Cu grain size to 43 nm. Black-Right-Pointing-Pointer Bulk samples reach a maximum IACS of 16% and 98% relative density. - Abstract: This work presents the synthesis of ultra fine grained high-strength Cu-Nb-ZrO{sub 2} bulk samples via mechanical alloying and spark plasma sintering. Technologically relevant properties such as density, micro-hardness, and electrical conductivity were studied in terms of the compaction parameters, in particular the sintering temperature and holding time. An optimum process parameter combination has been found T = 950 Degree-Sign C, t = 1 min, and 65 MPa, which yield a micro-hardness of 325 HV, 97.5% relative density, and electrical conductivity of 10% IACS. The dependence of these properties on the compaction parameters is explained by analyzing the microstructure, i.e. grain size, presence and distribution of phases, and porosity, with X-ray diffraction, optical and electron microscopy as well as with an Archimedes densitometer.

  17. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  18. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  19. Influence of annealing and nitrogenation on structure and magnetic properties of mechanically alloyed Sm-Fe powders

    International Nuclear Information System (INIS)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H.

    1998-01-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm 2 Fe 17+x and Sm 2 Fe 17+x N y , respectively, formed at the various annealing temperatures T A , XRD with following Rietveld analysis was used. For T A between 600 C and 750 C a modified hexagonal TbCu 7 structure (space group P6/mmm) was found in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(61) site. The approximated composition is SmFe 8.8-9.0 . The nitrogenated alloys crystallize in the same structure for 600 C A A ≤ 900 C a disordered modified Th 2 Zn 17 structure (space group R anti 3m) was found that is formed by introducing additional Fe (6c) and Sm(3a) positions. The degree of order of the Sm- and Fe-atoms in c-direction increases with increasing annealing temperature. The completely ordered stoichiometric Sm 2 Fe 17 structure could not be reached by annealing the ball milled elemental powders. The nitrided alloys already form this intermediate structure at T A = 750 C. The interstitial nitrogen occupies the 9e site. The estimated nitrogen content is higher in the hexagonal phases than in the rhombohedral phase. Optimum magnetic properties, in particular a coercitivity μ 01 H C = 3.7 T and a good squareness of the demagnetization curve, were obtained for T A = 750 C. Here we found a nitrogen content of y = 3 for Sm 2 Fe 17+x N y . (orig.)

  20. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Maity, T.N.; Mukhopadhyay, S. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sarkar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bhowmick, S. [Hysitron Inc., Eden Prairie, MN 55344 (United States); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-02

    Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray diffraction, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich L1{sub 2} phase, α′ and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of L1{sub 2} ordered α′ and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m{sup 1/2}, which is attributed to the presence of brittle nanosized σ phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with

  1. The Role of interfacial layers on the performance of an epoxy / polyester powder coated Aluminium Alloy

    International Nuclear Information System (INIS)

    Mirabedini, M.; Moradian, S.; Scanteburg, D.; Thonpson, G.E.

    2002-01-01

    The influence of polyacrylic acid and a blend of polyacrylic acid with hexa fluorozirconic acid treatments on the performance of an epoxy/polyester powder coating on a 1050 Al substrate has been studied and compared to the performance of the same system using a so-called chromate/phosphate conversion coating. The chemical interactions between pretreatments and Al substrates were examined using FTIR spectroscopy and various accelerated test methods were also employed. Two mechanical adhesion measurement methods were used under wet and dry conditions, namely a vertical pull-off test in the dry state and the tape test under dry conditions. The water permeation of the differently pretreated powder coated samples was studied using a capacitance measurement method. FTIR results showed two modes of interaction; namely ionic and complex formation between COO - and Al 3+ Various experiments revealed that polyacrylic acid improved only the dry adhesion but as a standing alone treatment it did not provide an overall improvement in anti-corrosive performance. The water uptake measurements proved that pretreatment does not considerably affect the properties of the coatings during water permeation stage. The use of various techniques revealed that relatively good performance of powder coating is due to a high ohmic resistance of the coating prior to and after saturation with water, reasonably low water solubility and good adhesion to the substrate

  2. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  3. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    Science.gov (United States)

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  4. Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy; Obtencao da liga Cu13Al4Ni via metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, L.J.; Damasceno, N.; Muterlle, P.V., E-mail: larajgrossi@yahoo.com.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Departamento de Engenharia Mecanica

    2016-07-01

    The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)

  5. Microstructure and physical properties of mechanically alloyed Fe-Mo powder

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Zábranský, Karel; Turek, Ilja; Buršík, Jiří; Jančík, D.

    2009-01-01

    Roč. 477, - (2009), s. 55-61 ISSN 0925-8388 R&D Projects: GA ČR GA202/05/2111; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : Nanostructured materials * Mechanical alloying * Microstructure * Magnetic measurements * Mössbauer spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.135, year: 2009

  6. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  7. Erosion resistance in a stationary arc of powder materials on the base of heat resisting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Minakova, R.V.; Kostenetskaya, L.I.; Krusanova, A.P.; Kukhtikov, V.A.; Smirnov, A.V.; Lugovskaya, E.S. (AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya)

    1983-08-01

    Comparison investigations of some properties of the Mo-Cu, Mo-Ni(Co)-Cu materials and the W-Cu, W-Ni-Cu compositions used at the present time as well as contact pairs prepared from them is conducted. It is shown that electroerosion wear of the contacts is connected not only with the material properties but also with features of structural changes in the working layer under effect of arc discharge. It is shown also that directed alloying with respect to the origin of phase transition in the electrode material and the medium effect during current commutation promotes electroerosion resistance.

  8. Erosion resistance in a stationary arc of powder materials on the base of heat resisting alloys

    International Nuclear Information System (INIS)

    Minakova, R.V.; Kostenetskaya, L.I.; Krusanova, A.P.; Kukhtikov, V.A.; Smirnov, A.V.; Lugovskaya, E.S.

    1983-01-01

    Comparison investigations of some properties of the Mo-Cu, Mo-Ni(Co)-CU materials and the W-CU, W-Ni-CU compositions used at the present time as well as contact pairs prepared from them is conducted. It is shown that electroerosion wear of the contacts is connected not only with the material properties but also with features of structural changes in the working layer under effect of arc discharge. It in shown s also that directed alloying with respect to the origin of phase transition in the electrode material and the medium effect during current commutation promotes electroerosion resistance

  9. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  10. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  11. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  12. Alloying and microstructural changes in platinum–titanium milled and annealed powders

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Phasha, M.J.; Yamabe-Mitarai, Y.

    2012-01-01

    Graphical abstract: (a) SE-SEM micrographs of PtTi martensite formed in powder milled for short time annealed at 1500 °C and quenched in helium gas flow (b) BSE-SEM of structure formed after slow cooling. Highlights: ► A disordered metastable FCC Pt(Ti) solid solution was formed after longer milling period. ► HCP Ti crystals were first deformed and then the atoms were dissolved in strained FCC Pt lattices. ► Longer milling time suppressed the occurrence of martensitic transformation after annealing. ► Martensite phase was formed in products that went through a short milling time then annealed and quenched. ► The width of the martensite features formed was smaller at higher cooling rates. - Abstract: Equiatomic platinum–titanium powder mixtures were processed by high energy ball milling under argon atmosphere and sintered under vacuum. Evolution of the crystal structures and microstructures of the products formed were investigated by XRD and SEM techniques, respectively. The HCP crystals of Ti were first deformed and then a disordered metastable FCC Pt(Ti) solid solution was formed during milling due to semi-coherency of FCC lattices. A nanostructured Pt(Ti) product was formed after long milling time, which contained 44–47 at.% Ti and 53–56 at.% Pt. An ordered PtTi intermetallic was formed by annealing the metastable Pt(Ti) at temperature above 1300 °C. The crystal structure and microstructure of the TiPt phase depended on the milling time, annealing temperature and the cooling rate. The B19 PtTi plate martensite was formed after annealing at 1500 °C and quenching at a cooling rate of 23 °C/min to 200 °C/min for short time milled products. The width of martensite features was smaller at high cooling rate. In PtTi products milled for longer time, no martensitic transformation was observed on cooling the annealed samples. Small amounts of Pt 5 Ti 3 were formed in the powders milled for 16 h or more, followed by annealing at 1500 °C and furnace

  13. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Yue [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xu, Yan, E-mail: xuyan_916@163.com [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xu, Bo [Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, (China); Luo, Junting [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Kaifeng [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2017-01-15

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationship between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.

  14. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    International Nuclear Information System (INIS)

    Jia, Jianbo; Yang, Yue; Xu, Yan; Xu, Bo; Luo, Junting; Zhang, Kaifeng

    2017-01-01

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s −1 and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationship between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.

  15. Development of an alternative route for recycling AA2050 aluminum alloy by powder metallurgy; Desenvolvimento de uma rota alternativa para reciclagem da liga de aluminio AA2050 via metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Guido, V.; Oliveira, A.C. de; Travessa, D.N.; Cardoso, K.R., E-mail: vane.guid@gmail.com [Universidade Federal de Sao Paulo (USP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    This paper presents an alternative solid state route to recycling AA2050 aeronautical aluminium alloy chips. The first stage in the recycling process, reported in this work, is the obtainment of the alloy powder by high energy ball milling to subsequent cold pressing and hot extrusion. The process started with the cleaning of chips with the aim of contaminant removing from machining process and transport, followed by the high energy ball milling to result in the AA2050 alloy powder. The powder obtained was characterized by laser size particle analysis, scanning electron microscopy (SEM), X-Ray diffraction (DRX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show the feasibility of obtaining a powder having appropriate particle size and chemical composition in accordance with the specification for alloy. (author)

  16. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    Science.gov (United States)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  17. STRUCTURE, PHASE COMPOSITION AND PROPERTIES OF GAS-THERMAL COVERINGS OF MECHANICALLY ALLOYED THERMOREACTING COMPOSITE POWDERS OF NICKEL-ALUMINIUM SYSTEM

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The presented results show that coverings from mechanically alloyed thermoreacting powders of system «nickel–aluminum» are nonequilibrium multiphase systems which basis represents solid solution of aluminum in nickel. It has the microcrystalline type of structure which is characterized by an advanced surface of borders of the grains and subgrains stabilized by nanodimensional inclusions of oxides and alyuminid. These coverings surpass by 1,2–1,6 times analogs in durability, hardness and wear resistance.

  18. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    Science.gov (United States)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  19. Influence of annealing and nitrogenation on structure and magnetic properties of mechanically alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-07-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm{sub 2}Fe{sub 17+x} and Sm{sub 2}Fe{sub 17+x}N{sub y}, respectively, formed at the various annealing temperatures T{sub A}, XRD with following Rietveld analysis was used. For T{sub A} between 600 C and 750 C a modified hexagonal TbCu{sub 7} structure (space group P6/mmm) was found in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(61) site. The approximated composition is SmFe{sub 8.8-9.0}. The nitrogenated alloys crystallize in the same structure for 600 C < T{sub A} < 700 C. In this case the interstitial nitrogen randomly occupies the 3f site partially (1/3). For 800 C {<=} T{sub A} {<=} 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional Fe (6c) and Sm(3a) positions. The degree of order of the Sm- and Fe-atoms in c-direction increases with increasing annealing temperature. The completely ordered stoichiometric Sm{sub 2}Fe{sub 17} structure could not be reached by annealing the ball milled elemental powders. The nitrided alloys already form this intermediate structure at T{sub A} = 750 C. The interstitial nitrogen occupies the 9e site. The estimated nitrogen content is higher in the hexagonal phases than in the rhombohedral phase. Optimum magnetic properties, in particular a coercitivity {mu}{sub 01}H{sub C} = 3.7 T and a good squareness of the demagnetization curve, were obtained for T{sub A} = 750 C. Here we found a nitrogen content of y = 3 for Sm{sub 2}Fe{sub 17+x}N{sub y}. (orig.)

  20. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  3. Hyperfine interactions by Moessbauer effect

    International Nuclear Information System (INIS)

    Constantinescu, S.

    1980-01-01

    Moessbauer spectroscopy has been used to investigate hyperfine interactions in materials endowed with complex electromagnetic crystallographic structures. Such structures (Me 3 B 7 O 13 X boracite-type systems, for instance), equally interesting from both scientific and applications viewpoint, are drawing a special attention lately on account of their being examined by means of increasingly refined experimental techniques. In view of the wide prospects of using these materials in various practical fields, this thesis counts among the studies aiming to ameliorate the methods of processing and determining the Moessbauer spectra parameters, characterized by complex hyperfine interactions, as well as among the studies of electric, magnetic and crystallographic investigation of the Moessbauer nucleus neighbourhood, in boracite-type structures. (author)

  4. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  5. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  6. AC magnetic properties of the soft magnetic composites based on Supermalloy nanocrystalline powder prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamtu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Geoffroy, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Grenoble Electrical Engineering, University J. Fourier, BP 46, F-38402 Saint-Martin d' Heres Cedex (France); Chicinas, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Nanocrystalline soft magnetic composites were obtained. Black-Right-Pointing-Pointer The cutting frequency of the produced nanocrystalline SMC exceeds 100 kHz. Black-Right-Pointing-Pointer A long annealing at low temperature leads to an improvement of the permeability (12%). - Abstract: The preparation and characterization of the nanocrystalline soft magnetic composite core based on Supermalloy powder obtained via mechanical alloying route are presented. The AC magnetic properties of the compacts were determined in frequency range from 100 Hz to 100 kHz for flux densities of 0.05 and 0.1 T. Composite materials were obtained by covering the Supermalloy particles with a polymer binder, then compacted into toroidal shape and finally polymerized. It is found that an increase of the compacting pressure from 600 MPa to 800 MPa leads to an increase of the compacts permeability by more than 8%. Also, reducing the polymer content from 2 wt.% to 0.5 wt.% leads to an increase of the magnetic losses (at 100 kHz and 0.1 T) by 380%. The removal of the stresses induced during compaction has been accomplished by a heat treatment at 170 Degree-Sign C for 120 h. This leads to a significant increase (12%) of the relative initial permeability of the compacts.

  7. Surface treatment method for hydrogen adsorbing alloy powder and alkali secondary battery fabricated by applying the method; Suiso kyuzo gokin funmatsu no hyomen shori hoho to sorewo tekiyoshite eraeta arukari niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K. [Furukawa Electric Co. Ltd., Tokyo (Japan); Sawa, H. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-03-07

    Corrosion of alloy proceeds in the conventional hydrogen absorbing alloy because the composing hydrogen absorbing alloy powder contacts with high concentration alkali electrolyte in the battery. Immersion into alkali aqueous solution and pulverization by metal fluoride compound of the electrode have been practiced to solve the problem, but internal resistance of the battery increases and the charge and discharge properties of the battery are deteriorated. This invention relates to a method in which hydrogen absorbing alloy electrode powder or the hydrogen alloy electrode whose main content is the said powder is contacted with alkali aqueous solution to increase the specific surface area of the hydrogen absorbing alloy powder, followed by its contact with pH3-6 acidic aqueous solution containing fluorine ions. As a result, corrosion resistance of the surface of hydrogen absorbing alloy powder after the treatment against high concentration alkali electrolyte is improved to elongate the cycle life. Salts of LiF, NaF, KF, RbF, and CsF or their hydrogen salts can be used as the supply source of fluorine ions. 3 tabs.

  8. Development of solid-state joining technology of dissimilar metals using amorphous metastable alloy powders

    International Nuclear Information System (INIS)

    Lee, Min Ku; Rhee, Chang Kyu; Uhm, Young Rang; Park, Jin Ju; Lee, Jeong Gu; Kim, Gwang Ho; Hong, Sung Mo; Lee, Jong Geuk; Kim, Kyoung Ho

    2007-04-01

    Many nuclear components such as nozzles, steam generator, pipes, condensers, and heat exchangers require a realization of the reliable and high-performance joining or welding between the dissimilar metals or alloys, despite the fact that their melting points, thermal expansion coefficients and physical properties are quite different from each other. The conventional arc welding processes (SMAW, TIG), however, which is currently used as a welding process for NPP components, have not met the requirements of obtaining a reliable and high-quality dissimilar joints, as demonstrated from a number of the previously reported accidents or material failures in the welded joints. This originates from the various weaknesses of the arc welding processes (more than 1700 .deg. C) such as high residual stresses which is sensitive to SCC, porous or deformed joint structures, a formation of grain-coarsened HAZ and an induced degradation of the base metals in the vicinity of the joint. Moreover, they are not applicable to a joining of the dissimilar metals when their melting point or mechanical/physical properties are quite different. In this research, the low-temperature joining (700 .deg. C - 800 .deg. C) and simultaneously strong diffusion bonding technologies between the dissimilar Ti and Cu metals have been developed for the applications to the dissimilar joints of various nuclear tube components

  9. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio

    2009-01-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  10. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  11. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  12. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

    2017-01-01

    In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

  13. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    Science.gov (United States)

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Joguet, D. [Laboratoire d' Etudes et de Recherches sur les Matériaux, les Procédés et les Surfaces LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Robin, G. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Peltier, L. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Ecole Nationale Supérieure d' Arts et Métiers, F-57078 Metz (France); Laheurte, P. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France)

    2016-05-01

    Ti–Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti–Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti–26Nb ingot. - Highlights: • Biomimetic implants can be provided from additive manufacturing with Ti–Nb. • We made parts in a Ti–Nb alloy elaborated in situ from a mixture of elemental powders. • Process parameters have a significant impact on homogeneity and compactness. • Non-columnar elongated beta-grains are stacked with an orientation {001}<100 >. • Low Young's modulus is achieved by this texture.

  15. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  16. In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM (powder metallurgy) methods.

    Science.gov (United States)

    Wolff, M; Luczak, M; Schaper, J G; Wiese, B; Dahms, M; Ebel, T; Willumeit-Römer, R; Klassen, T

    2018-09-01

    The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.

  17. Application of Microscopy and X-ray Diffraction in Optimization of the Production of NiTi Alloy by Powder Metallurgy

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Školáková, A.; Vojtěch, V.; Knaislová, A.; Pokorný, P.; Moravec, H.; Kopeček, Jaromír; Karlík, M.; Kubatík, Tomáš František

    2014-01-01

    Roč. 14, č. 3 (2014), s. 387-392 ISSN 1213-2489. [Mezinárodní konference „Mikroskopie a nedestruktivní zkoušení materiálů/3./. Litoměřice, 22.10.2014-24.10.2014] R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : powder metallurgy * NiTi, * mechanical alloying * reactive sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) http://journal.strojirenskatechnologie.cz/templates/obalky_casopis/XIV_2014-3.pdf

  18. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries

    Science.gov (United States)

    Cai, Hongyan; Han, Kai; Jiang, Heng; Wang, Jingwen; Liu, Hui

    2017-10-01

    Silicon/carbon (Si/C) composite shows great potential to replace graphite as lithium-ion battery (LIB) anode owing to its high theoretical capacity. Exploring low-cost scalable approach for synthesizing Si/C composites with excellent electrochemical performance is critical for practical application of Si/C anodes. In this study, we rationally applied a scalable in situ approach to produce Si-carbon nanotube (Si-CNT) composite via acid etching of commercial inexpensive micro-sized Al-Si alloy powder and CNT mixture. In the Si-CNT composite, ∼10 nm Si particles were uniformly deposited on the CNT surface. After combining with graphene sheets, a flexible self-standing Si-CNT/graphene paper was fabricated with three-dimensional (3D) sandwich-like structure. The in situ presence of CNT during acid-etching process shows remarkable two advantages: providing deposition sites for Si atoms to restrain agglomeration of Si nanoparticles after Al removal from Al-Si alloy powder, increasing the cross-layer conductivity of the paper anode to provide excellent conductive contact sites for each Si nanoparticles. When used as binder-free anode for LIBs without any further treatment, in situ addition of CNT especially plays important role to improve the initial electrochemical activity of Si nanoparticles synthesized from low-cost Al-Si alloy powder, thus resulting in about twice higher capacity than Si/G paper anode. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity of 1100 mAh g-1 even after 100 cycles at 200 mA g-1 current density with a Coulombic efficiency of >99%. It also showed remarkable rate capability improvement compared to Si/G paper without CNT. The present work demonstrates a low-cost scalable in situ approach from commercial micro-sized Al-Si alloy powder for Si-based composites with specific nanostructure. The Si-CNT/graphene paper is a promising anode candidate with high capacity and cycling stability for LIBs, especially for the

  19. Unexpected lines due to hyperfine interaction

    International Nuclear Information System (INIS)

    Andersson, Martin

    2009-01-01

    Hyperfine interaction is often viewed as a small perturbation that only broadens or in some cases splits a line into many closely spaced lines. In this work, we present some cases where this picture is obsolete and where the hyperfine interaction makes drastic changes to spectra. Off-diagonal hyperfine interaction introduces a mixing between states which can differ in the J quantum number. In most cases this mixing is very small, but even so it could have a dramatic influence on the spectra. Some metastable levels are sensitive to the hyperfine interaction and we show this by presenting the results for hyperfine-dependent lifetimes of the 3d 9 4s 3 D 3 level along parts of the higher end of the Ni-like iso-electronic sequence. In the absence of a nuclear spin, this level can only decay through a magnetic-octupole transition, but in the presence of a nuclear spin, the off-diagonal hyperfine interaction introduces a mixing with the 3d 9 4s 3 D 2 level and a new electric-quadrupole transition channel is opened. It is shown that this new transition channel in many cases is the dominant one and that the lifetime of the 3 D 3 level is sensitive to hyperfine interaction all along the sequence. An example of other types of states that are sensitive to hyperfine interaction are those belonging to configurations of the type nsn'l' where l≥3. In such systems the levels are close in energy and the open s-shell gives rise to a strong hyperfine interaction. This in turn introduces a large mixing between the hyperfine levels and shows up in the spectra as a large intensity redistribution among the hyperfine lines. We present detailed results for the 4s4d 3 D 2 -4s4f 3 F 2 transitions in Ga ii, and show that by including the hyperfine interaction in a proper way, we could reproduce experimental spectra that had not been possible earlier.

  20. Quark color-hyperfine interactions in baryons

    International Nuclear Information System (INIS)

    Anselmino, M.; Lichtenberg, D.B.

    1990-01-01

    We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)

  1. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  2. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    Science.gov (United States)

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  4. Microstructural Evolution during Pressureless Sintering of Blended Elemental Ti-Al-V-Fe Titanium Alloys from Fine Hydrogenated-Dehydrogenated Titanium Powder

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-07-01

    Full Text Available A comprehensive study was conducted on microstructural evolution of sintered Ti-Al-V-Fe titanium alloys utilizing very fine hydrogenation-dehydrogenation (HDH titanium powder with a median particle size of 8.84 μm. Both micropores (5–15 μm and macropores (50–200 μm were identified in sintered titanium alloys. Spherical micropores were observed in Ti-6Al-4V sintered with fine Ti at the lowest temperature of 1150 °C. The addition of iron can help reduce microporosity and improve microstructural and compositional homogenization. A theoretical calculation of evaporation based on the Miedema model and Langmuir equation indicates that the evaporation of aluminum could be responsible for the formation of the macropores. Although reasonable densification was achieved at low sintering temperatures (93–96% relative density the samples had poor mechanical properties due mainly to the presence of the macroporosity and the high inherent oxygen content in the as-received fine powders.

  5. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  6. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi' an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Cai, Xin zhi, E-mail: xzcwust@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Han, Xue wu, E-mail: hanxuewu1990@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Zhang, Cheng cheng, E-mail: zcc516990418@live.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); and others

    2016-01-15

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials

  7. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    International Nuclear Information System (INIS)

    Fan, Xi'an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng

    2016-01-01

    Bi 2 Te 3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi 2 Te 3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb) 2 Te 3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb) 2 Te 3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi 0.44 Sb 1.56 Te 3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi 0.36 Sb 1.64 Te 3 and Bi 0.4 Sb 1.6 Te 3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi 2 Te 3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi 2 Te 3 based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed.

  8. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  9. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  10. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    Science.gov (United States)

    Fan, Xi‧an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng; Rong, Zhen zhou; Yang, Fan; Li, Guang qiang

    2016-01-01

    Bi2Te3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi2Te3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb)2Te3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb)2Te3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi0.44Sb1.56Te3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi0.36Sb1.64Te3 and Bi0.4Sb1.6Te3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi2Te3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers.

  11. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  12. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    CERN Document Server

    Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.

    2015-02-04

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  13. Numerical simulations of hyperfine transitions of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)

    2015-08-15

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  14. A study of Al-Mo powder processing as a possible way to corrosion resistent aluminum-alloys

    Directory of Open Access Journals (Sweden)

    Wilson Corrêa Rodrigues

    2009-06-01

    Full Text Available Elementary Al and Mo powder mixtures have been processed by high energy ball milling up to milling times of 100 hours. The shift of the pitting potential and the X ray analysis of green milled samples showed that part of the Mo has formed a supersaturated solid solution of Mo in Al. Elementary Mo powder, however, was still present after 100 hours of milling. Sintering led to the formation of the intermetallic Al12Mo phase.

  15. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    Science.gov (United States)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  16. The Effect of Heat Treatments on Alloying of Pre-mixed Al + 4.5 wt. % Cu Powders

    Directory of Open Access Journals (Sweden)

    Kübra KÖPRÜLÜ

    2018-06-01

    Full Text Available In this study, 4.5 wt. % Cu powder was added to Al powder and mixed for 45 minutes to produce premixed metal powders. Premixed powders were compacted by cold pressing at 20 MPa. After that these samples were pressed at 500℃ under 200 MPa for 30 minutes by hot pressed method. Hot pressed block samples were subjected to diffusion annealing at 540 ℃ for 2, 4, 8, 16, 32 hours. These samples, produced by powder metallurgy, are used at metallographic and microscopic researches to investigate the diffusion process. During the diffusion annealing, it was determined that significant amount of copper powder particles was dissolved in the Al matrix by diffusion. Diffusion annealing was followed by aging heat treatment, characterized by metallographic and mechanical tests. According to the increasing the annealing time, the homogeneity of the chemical composition is not provided, however the increasing of the heat treatment (T6 capability of the produced parts, and partial porosity which is believed to be due to atomic diffusion, have been observed. Moreover, in the XRD analyses, it was determined that the phases of -Al,  and  were formed in the microstructure.

  17. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  18. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  19. The role of silicon on the microstructure and magnetic behaviour of nanostructured (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hocine, M. [Département de Génie Mécanique, Faculté de Technologies, Université de M' sila, B.P 166 Ichbelia, M' sila (Algeria); UR-MPE, M' hamed Bougara University, Boumerdes, 35000 Algeria (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, Mieres, 33600 Spain (Spain); Gorria, P. [Department of Physics, EPI, University of Oviedo, Gijón, 33203 Spain (Spain); Rahal, B. [Nuclear Research Centre of Algiers, 02Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Blanco, J.A. [Department of Physics, University of Oviedo, CalvoSotelo St., Oviedo, 330 07 Spain (Spain); Sunol, J.J. [Departament de Fisica, Universitat de Girona, Campus de Montillivi, Girona, 17071 Spain (Spain); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes, 35000 Algeria (Algeria)

    2017-01-15

    Single-phase(Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} nanostructured powders (x=0,5, 10, 15 and 20) have been elaborated by mechanical alloying in order to investigate the effect of silicon on the microstructure and magnetic properties of these alloys. A disordered Fe(Co, Si) solid solution with body centred cubic (bcc) crystal structure is formed after 72 h of milling for all the compositions. The addition of Si gives rise to a progressive decrease of the lattice parameter, from about 2.865 Å for the binary Fe{sub 70}Co{sub 30} compound down to 2.841 Å for the powder with x=20. The sample with the uppermost Si content exhibits the lowest value for the mean grain size (≈10 nm) as well as the largest microstrain (above 1.1%). All the samples are ferromagnetic at room temperature, although the saturation magnetization value reduces almost linearly by adding Si to the composition. A similar trend is observed for the hyperfine magnetic field obtained from the analysis of the room temperature Mössbauer spectra. The hyperfine field distributions show a broad double-peak shape for x>0, which can be ascribed to multiple local environments for the Fe atoms inside a disordered solid solution. - Highlights: • Single-phase (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} nanostructured powders (x=0, 5, 10, 15 and 20) have been elaborated by mechanical alloying. • The sample with the uppermost Si content exhibits the lowest value for the mean grain size. • The magnetic and hyperfine parameters of (Fe{sub 0.7}Co{sub 0.3}){sub 100−x}Si{sub x} depended intimately on Si content.

  20. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method

    Directory of Open Access Journals (Sweden)

    Murahari Kolli

    2015-12-01

    Full Text Available In this paper, Taguchi method was employed to optimize the surfactant and graphite powder concentration in dielectric fluid for the machining of Ti-6Al-4V using Electrical Discharge Machining (EDM. The process parameters such as discharge current, surfactant concentration and powder concentration were changed to explore their effects on Material Removal Rate (MRR, Surface Roughness (SR, Tool wear rate (TWR and Recast Layer Thickness (RLT. Detailed analysis of structural features of machined surface was carried out using Scanning Electron Microscope (SEM to observe the influence of surfactant and graphite powder on the machining process. It was observed from the experimental results that the graphite powder and surfactant added dielectric fluid significantly improved the MRR, reduces the SR, TWR and RLT at various conditions. Analysis of Variance (ANOVA and F-test of experimental data values related to the important process parameters of EDM revealed that discharge current and surfactant concentration has more percentage of contribution on the MRR and TWR whereas the SR, and RLT were found to be affected greatly by the discharge current and graphite powder concentration.

  1. Self-Consolidation and Surface Modification of Mechanical Alloyed Ti-25.0 at.% Al Powder Mixture by Using an Electro-Discharge Technique

    Directory of Open Access Journals (Sweden)

    Chang S.Y.

    2017-06-01

    Full Text Available Electrical discharges using a capacitance of 450 μF at 0.5, 1.0, and 1.5 kJ input energies were applied in a N2 atmosphere to obtain the mechanical alloyed Ti3Al powder without applying any external pressure. A solid bulk of nanostructured Ti3Al was obtained as short as 160 μsec by the Electrical discharge. At the same time, the surface has been modified into the form of Ti and Al nitrides due to the diffusion process of nitrogen to the surface. The input energy was found to be the most important parameter to affect the formation of a solid core and surface chemistry of the compact.

  2. Enhanced ductility of Mg–3Al–1Zn alloy reinforced with short length multi-walled carbon nanotubes using a powder metallurgy method

    Directory of Open Access Journals (Sweden)

    Muhammad Rashad

    2015-08-01

    Full Text Available Mg–3Al–1Zn–CNTs composites, with different weight fractions (0.25–1.0 wt% of carbon nanotubes (CNTs were successfully fabricated via a powder metallurgy method. The processing parameters were adopted in such a way to have uniform dispersion of short length CNTs without any damage, as well as refined and dissolved β phases structures throughout the composite matrix. The composite exhibited impressive increase in microhardness (about +23% and tensile failure strain value (about +98% without significant compromise in tensile strength, compared to the un-reinforced Mg–3Al–1Zn alloy. The synthesized composites can be used in automotive and aerospace industries due to their low density and high specific strength.

  3. Effect of process control agent (PCA) on the characteristics of mechanically alloyed Ti-Mg powders [Journal article

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2011-03-01

    Full Text Available This paper reports the results of a study to determine the effect of process control agent (PCA) on the characteristics of Ti-Mg powders during milling. It has been shown that a 2% increase in PCA content leads to up to a 40% increase in yield...

  4. Zr powder and Zr-16% Al alloy as getters for O sub 2 , H sub 2 , H sub 2 O, CO and CO sub 2 gases

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S P [CRM Jat Coll., Hisar (India); Gulbransen, E A [Pittsburgh Univ., PA (USA); Vijendran, P [Bhabha Atomic Research Centre, Bombay (India)

    1990-01-01

    Both zirconium and its 16 wt% aluminium alloy react with the common gases O{sub 2}, H{sub 2}, H{sub 2}O, CO and CO{sub 2} to form zirconium oxide, hydride and carbide or carbon and a thermochemical and stoichiometric analysis has been made of the several reactions. The capacity and reactivity of 30-40 {mu} zirconium powder and pellets of a 16 wt% aluminium-zirconium alloy, ST 101 getter, were studied using a sensitive vacuum microbalance, a mass spectrometer and Debye-Scherrer X-ray diffraction. The direct hydrogen reaction at 400{sup 0}C and 10 torr pressure and a slow oxidation reaction at 250-600{sup 0}C were used to measure the availability of the materials (capacity) for getter reactions. Special care must be taken to remove water vapour and any other reactive gas from the vacuum system in using the hydrogen method. The hydrogen-getter reaction must be carried out well below 400{sup 0}C if hydrogen is to be removed completely. The reactivity of water vapour in the presence of 10 torr of hydrogen gas was studied at 400{sup 0}C. Fourteen micrograms of water vapour in the reaction system could be detected. The carbon monoxide and carbon dioxide-getter reactions were studied at 500{sup 0}C and 600{sup 0}C at 10 torr pressure. Zirconium powder reacts much faster with both gases as compared to that with St 101 getter, activity of which with oxygen has been stabilized by adding aluminium. Carbon monoxide is produced in the carbon dioxide-getter reaction under conditions of excess gas in the reaction. Carbon and carbide were not observed in the carbon monoxide-getter reaction under excess gas conditions. (author).

  5. Evidence of magnetic dipolar interaction in micrometric powders of the Fe{sub 50}Mn{sub 10}Al{sub 40} system: Melted alloys

    Energy Technology Data Exchange (ETDEWEB)

    Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Zamora, L.E. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Tabares, J.A.; Piamba, J.F. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans Cedex 9 (France); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Spain); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain); Marco, J.F. [Instituto de Quimica Fisica Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-02-15

    Powders of melted disordered Fe{sub 50}Mn{sub 10}Al{sub 40} alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 {mu}m showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: Black-Right-Pointing-Pointer The effect of particle size in microsized powders of Fe{sub 50}Mn{sub 10}Al{sub 40} melted disordered alloy is studied. Black-Right-Pointing-Pointer Dipolar magnetic interaction between particles exists and this changes with the particle size. Black-Right-Pointing-Pointer For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. Black-Right-Pointing-Pointer RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  6. Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al–Zn–Mg–Cu powders

    International Nuclear Information System (INIS)

    Azimi, A.; Fallahdoost, H.; Nejadseyfi, O.

    2015-01-01

    Highlights: • Nanocrystalline Al7050 alloy was synthesized by mechanical alloying. • Longer milling time led to increasing porosity in hot-pressed samples. • Significant improvement in strength and wear resistance was obtained by increasing the milling time up to 40 h. - Abstract: This research focuses on the preparation of Al7050 alloy via mechanical alloying and hot pressing techniques. The effect of milling time on the microstructure and densification response was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Furthermore, the mechanical properties of the samples including microhardness, compression strength, and wear resistance were examined as a function of milling time. The results of the experiments proved that by increasing the milling time the crystallite size was reduced, which has a significant effect on improving the mechanical properties. In addition, porosity formation increased when the milling time was increased due to reduction of the compressibility of finer particles. By increasing the milling time to more than 40 h, a relatively invariable crystallite size was obtained and it was observed that the porosities expanded in the samples. Therefore, the compressive strength, hardness, and wear resistance were enhanced up to 40 h milling time and then the strengthening effect was relatively diminished. On observing surfaces with SEM, the dominant wear mechanism was recognized as abrasion, delamination and adhesion

  7. The effect of annealing temperature on the properties of powder metallurgy processed Ti-35Nb-2Zr-0.5O alloy.

    Science.gov (United States)

    Málek, Jaroslav; Hnilica, František; Veselý, Jaroslav; Smola, Bohumil; Medlín, Rostislav

    2017-11-01

    Ti-35Nb-2Zr-0.5O (wt%) alloy was prepared via a powder metallurgy process (cold isostatic pressing of blended elemental powders and subsequent sintering) with the primary aim of using it as a material for bio-applications. Sintered specimens were swaged and subsequently the influence of annealing temperature on the mechanical and structural properties was studied. Specimens were annealed at 800, 850, 900, 950, and 1000°C for 0.5h and water quenched. Significant changes in microstructure (i.e. precipitate dissolution or grain coarsening) were observed in relation to increasing annealing temperature. In correlation with those changes, the mechanical properties were also studied. The ultimate tensile strength increased from 925MPa (specimen annealed at 800°C) to 990MPa (900°C). Also the elongation increased from ~ 13% (800°C) to more than 20% (900, 950, and 1000°C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2015-09-01

    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  9. Low temperature study of micrometric powder of melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Tabares, J.A. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, Las Rozas, 28230 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz, 28049 Cantoblanco, Madrid (Spain); Marco, J.F. [Instituto de Quimica-Fisica Rocasolano, CSIC, c/Serrano 119, 28006 Madrid (Spain)

    2012-06-15

    Melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy powder with particle size less than 40 {mu}m was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Moessbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  10. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti Powder Compacts

    Science.gov (United States)

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-01

    To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946

  11. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al-Ti Powder Compacts.

    Science.gov (United States)

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-15

    To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.

  12. Hyperfine interaction and some thermomagnetic properties of amorphous and partially crystallized Fe70−xMxMo5Cr4Nb6B15 (M = Co or Ni, x = 0 or 10 alloys

    Directory of Open Access Journals (Sweden)

    Rzącki Jakub

    2015-03-01

    Full Text Available As revealed by Mössbauer spectroscopy, replacement of 10 at.% of iron in the amorphous Fe70Mo5Cr4Nb6B15 alloy by cobalt or nickel has no effect on the magnetic structure in the vicinity of room temperature, although the Curie point moves from 190 K towards ambient one. In the early stages of crystallization, the paramagnetic crystalline Cr12Fe36Mo10 phase appears before α-Fe or α-FeCo are formed, as is confirmed by X-ray diffractometry and transmission electron microscopy. Creation of the crystalline Cr12Fe36Mo10 phase is accompanied by the amorphous ferromagnetic phase formation at the expense of amorphous paramagnetic one.

  13. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Li Shufeng, E-mail: shufenglimail@gmail.com [Joining and Welding Research Institute, Osaka University (Japan); Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu metals Co. Ltd., 1892, OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer Ti is readily segregated in primary particle boundaries in BS40-1.0Ti. Black-Right-Pointing-Pointer Sn was proposed as an additive to inhibit segregation of Ti in BS40-1.0Ti. Black-Right-Pointing-Pointer The introduction of Sn to BS40-1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40-1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40-1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40-0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn{sub 3}Ti{sub 5} in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40-0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40-0.6Sn1.0Ti sintered at 600 Degree-Sign C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40-1.0Ti brass.

  14. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    International Nuclear Information System (INIS)

    Li Shufeng; Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi; Kojima, Akimichi; Kosaka, Yoshiharu; Yamamoto, Koji; Takahashi, Motoi

    2012-01-01

    Highlights: ► Alloying elements Ti and Sn are proposed as additives in 60/40 brass. ► Super-saturated Ti in powder creates high chemical potential for precipitation. ► Ti is readily segregated in primary particle boundaries in BS40–1.0Ti. ► Sn was proposed as an additive to inhibit segregation of Ti in BS40–1.0Ti. ► The introduction of Sn to BS40–1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40–1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40–1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40–0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn 3 Ti 5 in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40–0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40–0.6Sn1.0Ti sintered at 600 °C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40–1.0Ti brass.

  15. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Mixed hyperfine interaction in amorphous Fe-Zr sputtered films in external magnetic field - a 57Fe Moessbauer study

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.

    1986-01-01

    Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)

  17. The hyperfine spectrum of hydrogen dimers

    International Nuclear Information System (INIS)

    Verberne, J.F.C.

    1979-01-01

    The authors' aim was to obtain the level scheme for the hydrogen dimers and to investigate the angle dependent interactions by analyzing the zero magnetic field hyperfine spectrum of the ortho-ortho and ortho-para species. The results were tested by several recent semi-empirical and ab initio potentials. (Auth.)

  18. Hyperfine splitting in ordinary and muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2018-01-15

    We provide an accurate evaluation of the two-photon exchange correction to the hyperfine splitting of S energy levels in muonic hydrogen exploiting the corresponding measurements in electronic hydrogen. The proton structure uncertainty in the calculation of α{sup 5} contribution is sizably reduced. (orig.)

  19. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    Energy Technology Data Exchange (ETDEWEB)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, CZ-12116 Prague 2 (Czech Republic)

    2016-06-20

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  20. Hyperfine interactions, the key to multiquark physics

    Energy Technology Data Exchange (ETDEWEB)

    Likpink, H.J.

    1988-08-08

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs.

  1. Hyperfine interactions, the key to multiquark physics?

    International Nuclear Information System (INIS)

    Likpink, H.J.

    1988-01-01

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs

  2. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  3. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  4. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  5. Powder metallurgy of refractory metals

    International Nuclear Information System (INIS)

    Eck, R.

    1979-01-01

    This paper reports on the powder metallurgical methods for the production of high-melting materials, such as pure metals and their alloys, compound materials with a tungsten base and hard metals from liquid phase sintered carbides. (author)

  6. Influence of nitrogenation on structure development and magnetic properties of mechanically alloyed and annealed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Gruner, W.; Mueller, K.-H. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1999-11-15

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm{sub 2}Fe{sub 17+y}N{sub x}, formed at various annealing temperatures T{sub A} for 1 h, X-ray diffraction with following Rietveld analysis was used. A volume expansion of 6.2% was observed after nitrogenation. As for the non-nitrided Sm-Fe alloys a modified TbCu{sub 7}-type structure (space group P6/mmm) and a modified Th{sub 2}Zn{sub 17}-type structure (space group R anti 3m) have been observed. However, for nitrogenated Sm-Fe samples the modified Th{sub 2}Zn{sub 17}-type structure forms already for annealing at T{sub A}=750 C prior to nitrogenation. For samples annealed, prior to nitrogenation, between T{sub A}=600 and 700 C the modified TbCu{sub 7}-type structure was found, in which the nitrogen occupies randomly the 3f position with an occupancy larger than 1/3. The partially ordered, modified Th{sub 2}Zn{sub 17}-type structure formed for 750 C

  7. Influence of nitrogenation on structure development and magnetic properties of mechanically alloyed and annealed Sm-Fe powders

    International Nuclear Information System (INIS)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Gruner, W.; Mueller, K.-H.

    1999-01-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm 2 Fe 17+y N x , formed at various annealing temperatures T A for 1 h, X-ray diffraction with following Rietveld analysis was used. A volume expansion of 6.2% was observed after nitrogenation. As for the non-nitrided Sm-Fe alloys a modified TbCu 7 -type structure (space group P6/mmm) and a modified Th 2 Zn 17 -type structure (space group R anti 3m) have been observed. However, for nitrogenated Sm-Fe samples the modified Th 2 Zn 17 -type structure forms already for annealing at T A =750 C prior to nitrogenation. For samples annealed, prior to nitrogenation, between T A =600 and 700 C the modified TbCu 7 -type structure was found, in which the nitrogen occupies randomly the 3f position with an occupancy larger than 1/3. The partially ordered, modified Th 2 Zn 17 -type structure formed for 750 C A 2 Zn 17 -type structure by introducing additional Fe(6c) and Sm(3a) positions. The degree of order of the Sm atoms and Fe-dumbbells increases with increasing T A . The nitrogen occupies the octahedral interstitial positions 9e in the latter cases. The nitrogen content is higher in the hexagonal phase than in the rhombohedral phase. Optimum magnetic properties were obtained for T A =750 C. Here we found a coercivity μ 0J H c =3.7 T and a good squareness of the demagnetization curve. (orig.)

  8. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  9. Moessbauer study of amorphous Fe-P alloys

    International Nuclear Information System (INIS)

    Takacs, L.; Toth-Kadar, E.

    1981-01-01

    Preliminary Moessbauer results are represented on electrodeposited Fe-P amorphous alloys. Very broad hyperfine field distributions and relatively large isomer shifts have been found. Problems worth of further investigation are discussed in details. (author)

  10. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  11. The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2018-04-01

    Full Text Available The fabrication of engineered lattice structures has recently gained momentum due to the development of novel additive manufacturing techniques. Interest in lattice structures resides not only in the possibility of obtaining efficient lightweight materials, but also in the functionality of pre-designed architectured structures for specific applications, such as biomimetic implants, chemical catalyzers, and heat transfer devices. The mechanical behaviour of lattice structures depends not only the composition of the base material, but also on the type and size of the unit cells, as well as on the material microstructure resulting from a specific fabrication procedure. The present work focuses on the static and fatigue behavior of diamond cell lattice structures fabricated from an AlSiMg alloy by laser powder bed fusion technology. In particular, the specimens were fabricated with three different orientations of lattice cells—[001], [011], [111]—and subjected to static tensile testing and force-controlled pull–pull fatigue testing up to 1 × 107 cycles. In parallel, the mechanical behavior of dense tensile plain and notched specimens was also studied and compared to that of their lattice counterparts. Results showed a significant effect of the cell orientation on the fatigue lives: specimens oriented at [001] were ~30% more fatigue-resistant than specimens oriented at [011] and [111].

  12. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiawen [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin, E-mail: binliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Cao, Yuankui; Li, Tianchen; Zhou, Rui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-24

    Dynamic recrystallization (DRX) refine grains of high entropy alloys (HEAs) and significant improve the mechanical property of HEAs, but the effect of high melting point element molybdenum (Mo) on high temperature deformation behavior has not been fully understood. In the present study, flow behavior and microstructures of powder metallurgical CrFeCoNiMo{sub 0.2} HEA were investigated by hot compression tests performed at temperatures ranging from 700 to 1100 °C with strain rates from 10{sup −3} to 1 s{sup −1}. The Arrhenius constitutive equation with strain-dependent material constants was used for modeling and prediction of flow stress. It was found that at 700 °C, the dynamic recovery is the dominant softening mechanism, whilst with the increase in compression testing temperature, the DRX becomes the dominant mechanism of softening. In the present HEA, the addition of Mo results in the high activation energy (463 kJ mol{sup −1}) and the phase separation during hot deformation. The formation of Mo-rich σ phase particles pins grain boundary migration during DRX, and therefore refines the size of recrystallized grains.

  13. On the role of heat and mass transfer into laser processability during selective laser melting AlSi12 alloy based on a randomly packed powder-bed

    Science.gov (United States)

    Wang, Lianfeng; Yan, Biao; Guo, Lijie; Gu, Dongdong

    2018-04-01

    A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.

  14. Hyperfine structure of muonic lithium ions

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-06-01

    Full Text Available On the basis of perturbation theory in fine structure constant $\\alpha$ and the ratio of electron to muon masses we calculate recoil corrections of order $\\alpha^4 (M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2\\ln(M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2$, $\\alpha^5(m_e/m_\\mu\\ln(m_e/m_\\mu$ to hyperfine splitting of the ground state in muonic lithium ions $(\\mu e ^6_3\\mathrm{Li}^+$ and $(\\mu e ^7_3\\mathrm{Li}^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu e ^6_3\\mathrm{Li}^+$ $\\Delta\

  15. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  16. The hyperfine Paschen–Back Faraday effect

    International Nuclear Information System (INIS)

    Zentile, Mark A; Andrews, Rebecca; Weller, Lee; Adams, Charles S; Hughes, Ifan G; Knappe, Svenja

    2014-01-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen–Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10 −4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87 Rb is found to be ∼40 kHz °C −1 . (paper)

  17. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  18. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  19. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys.

    Science.gov (United States)

    Bottino, Marco C; Coelho, Paulo G; Henriques, Vinicius A R; Higa, Olga Z; Bressiani, Ana H A; Bressiani, José C

    2009-03-01

    This article presents details of processing, characterization and in vitro as well as in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr samples with different levels of porosity. Sintered samples were characterized for density, crystalline phases (XRD), and microstructure (SEM and EDX). Samples sintered at 1000 degrees C showed the highest porosity level ( approximately 30%), featuring open and interconnected pores ranging from 50 to 100 mum in diameter but incomplete densification. In contrast, samples sintered at 1300 and 1500 degrees C demonstrated high densification with 10% porosity level distributed in a homogeneous microstructure. The different sintering conditions used in this study demonstrated a coherent trend that is increase in temperature lead to higher sample densification, even though densification represents a drawback for bone ingrowth. Cytotoxicity tests did not reveal any toxic effects of the starting and processed materials on surviving cell percentage. After an 8-week healing period in rabbit tibias, the implants were retrieved, processed for nondecalcified histological evaluation, and then assessed by backscattered electron images (BSEI-SEM) and EDX. Bone growth into the microstructure was observed only in samples sintered at 1000 degrees C. Overall, a close relation between newly formed bone and all processed samples was observed. (c) 2008 Wiley Periodicals, Inc.

  20. Hyperfine excitation of OH+ by H

    Science.gov (United States)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  1. Liquid phase surface melting of AA8011 aluminum alloy by addition of Al/Al{sub 2}O{sub 3} nano-composite powders synthesized by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Sohi, M. Heydarzadeh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Hojjatzadeh, S.M.H., E-mail: Hojatzadeh@yahoo.com [Department of Welding, Science and Research Branch, Azad University, Tehran (Iran, Islamic Republic of); Moosavifar, Sh. S.; Heshmati-Manesh, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Aluminum matrix composite layers reinforced with alumina particles were fabricated. • Non milled powders caused porosity in the microstructures because of poor wettability. • The ball milling of powders was significantly improved the wettability of nano ceramic particles. • The micro hardness of the layers was approximately 3 times greater than that of the base metal. - Abstract: Poor wettability of particles is an obstacle in formation of sound composite layer via surface melting. Pre-coating of particles with metallic material by different techniques, such as ball milling may enhance the wettability of the particles with molten metal. In this study, composite surface layers containing Al{sub 2}O{sub 3} particles were fabricated on the surface of AA8011 aluminum substrates by tungsten inert gas (TIG) surface melting using preplaced layers of Al/Al{sub 2}O{sub 3} powder mixtures in two different forms: (1) a mixture of 40 wt% Al and 60 wt% of 50 nm Al{sub 2}O{sub 3} powders and (2) a mixture obtained by mechanical alloying of 40 wt% Al and 60 wt% of 60 μm Al{sub 2}O{sub 3} powders. Morphology evolution of powders during ball milling and the microstructure of the fabricated composite layers were studied through conventional characterization techniques, such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Microhardness measurements were also performed across the alloyed zone. The results indicated that the layer fabricated by the second route showed a defect free structure with a more uniform distribution of Al{sub 2}O{sub 3} particles in comparison with the layer obtained by the first route. It was also noticed that the uniform dispersion of Al{sub 2}O{sub 3} particles in the fabricated layer increased the hardness to 133 HV which was over 3 times of that of the base metal.

  2. Hyperfine fields at 89Y nuclei in Y(Fesub(1-x)Tsub(x))2 (T=V, Mn, Co, Ni, Al) with low concentrations x

    International Nuclear Information System (INIS)

    Ichinose, Kazuyoshi; Yoshie, Hiroshi; Nagai, Hiroyuki; Tsujimura, Akira; Fujiwara, Katsuyuki.

    1983-01-01

    NMR of 89 Y nuclei in Y(Fesub(1-x)Tsub(x)) 2 (T=V, Mn, Co, Ni, Al) has been observed at 4.2K. Well-resolved satellite structures of Y resonance appear in these compounds. This shows that the Y hyperfine field is mainly due to the magnetic nearest neighbor atoms. The magnetic moment of T atoms is estimated by two methods: (i) the contribution of T atoms to the hyperfine field is proportional to the magnetic moments of Fe and T atoms and (ii) the well known empirical relation between the hyperfine field and the mean magnetic moment of alloys is used. These results are in good agreement with those in dilute T-Fe alloys except for T=Mn. The intensity ratio of satellite peaks is discussed based upon a statistical distribution of Fe and T atoms. (author)

  3. Methods for production of aluminium powders and their application fields

    Energy Technology Data Exchange (ETDEWEB)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S. (Vsesoyuznyj Nauchno-Issledovatel' skij i Proektnyj Inst. Alyuminievoj, magnievoj i ehlektrodnoj promyshlennosti (USSR))

    1984-12-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short.

  4. Methods for production of aluminium powders and their application fields

    International Nuclear Information System (INIS)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S.

    1984-01-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short

  5. Proceedings of 4 conference on hyperfine interaction spectroscopic investigations

    International Nuclear Information System (INIS)

    Shpinel', V.S.

    1992-01-01

    Results of theoretical and experimental investigations on nuclear-spectroscopy of hyperfine interactions are presented. Possibility of the data use for technological and materials sceince problems is demonstrated

  6. Mössbauer study of alloy Fe{sub 67.5}Ni{sub 32.5}, prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Rodríguez, Edson Daniel, E-mail: edbenitezr@ut.edu.co; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio [University of Tolima, Department of Physics (Colombia); Pérez Alcázar, German Antonio [University of Valle, Department of Physics (Colombia)

    2015-06-15

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe{sub 67.5}Ni{sub 32.5} alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  7. Observation of the hyperfine spectrum of antihydrogen

    Science.gov (United States)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  8. Observation of the hyperfine spectrum of antihydrogen.

    Science.gov (United States)

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-08-02

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  9. Magnetic hyperfine field at caesium in iron

    International Nuclear Information System (INIS)

    Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.

    1990-01-01

    We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)

  10. Hyperfine structure studies with the COMPLIS facility

    CERN Document Server

    Crawford, J E; Le Blanc, F; Lunney, M D; Obert, J; Oms, J; Putaux, J C; Roussière, B; Sauvage, J; Zemlyanoi, S G; Verney, D; Pinard, J; Cabaret, L A; Duong, H T; Huber, G; Krieg, M; Sebastian, V; Girod, M; Peru, S; Genevey, J; Ibrahim, F; Lettry, Jacques

    1998-01-01

    COMPLIS is an experimental facility designed to carry out spectroscopic studies on radioisotopes produced by disintegration of elements available at CERN's Booster-ISOLDE on-line isotope separator. During recent series of experimental runs, hyperfine structure measurements have yielded information on nuclear moments and deformations of platinum and iridium isotopes, For the first time, population by alpha -decay from Hg was exploited to investigate /sup 178/-/sup 181/Pt-the most neutron-deficient Pt isotopes yet studied. Successful measurements have recently been carried out on /sup 182-189/Ir. (10 refs).

  11. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  12. Particle size effect on microwave absorbing of La0.67Ba0.33Mn0.94Ti0.06O3 powders prepared by mechanical alloying with the assistance of ultrasonic irradiation

    International Nuclear Information System (INIS)

    Saptari, Sitti Ahmiatri; Manaf, Azwar; Kurniawan, Budhy

    2016-01-01

    Doped manganites have attracted substantial interest due to their unique chemical and physics properties, which makes it possible to be used for microwave absorbing materials. In this paper we report synthesizes and characterization of La 0.67 Ba 0.33 Mn 0.94 Ti 0.06 O 3 powders prepared by mechanical alloying with the assistance of a high power ultrasonic treatment. After solid state reaction, the presence of single phase was confirmed by X-ray Diffraction (XRD). Refinement results showed that samples are single phase with monoclinic structure. It was found that powder materials derived from mechanical alloying results in large variation in the particle size. A significant improvement was obtained upon subjecting the mechanically milled powder materials to an ultrasonication treatment for a relatively short period of time. As determined by particle size analyzer (PSA), the mean particle size gradually decreased from the original size of 5.02 µm to 0.36 µm. Magnetic properties were characterized by VSM, and hysteresis loops results showed that samples are soft magnetic. It was found that when the mean particle size decreases, saturation was increases and coersitivity was decreases. Microwave absorption properties were investigated in the frequency range of 8-12 GHz using vector network analyzer. An optimal reflection loss of 24.44 dB is reached at 11.4 GHz.

  13. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  14. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    International Nuclear Information System (INIS)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N.; Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M.

    2011-01-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO 2 doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive 111 In probe nuclei in the sample of SnO 2 doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at 111 Cd sites in SnO 2 doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive 111 In in the sample are the ion-implantation using radioactive ion beam of 111 In and the chemical process in which 111 InCl 3 solution is added during the preparation of SnO 2 doped with Co using sol gel method. The ion-implantation of 111 In in SnO 2 doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF 2 detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO 2 powder samples using 111 In- 111 Cd probe. (author)

  15. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik

    2011-07-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)

  16. Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy

    International Nuclear Information System (INIS)

    Yan, M.; Liu, Y.; Liu, Y.B.; Kong, C.; Schaffer, G.B.; Qian, M.

    2012-01-01

    A detailed transmission electron microscopy analysis has revealed that small additions of yttrium hydride to a powder metallurgy Ti–2.25Mo–1.5Fe alloy resulted in the formation of both chlorine-free yttrium oxides and essentially oxygen-free yttrium chlorides. The oxides and chlorides showed distinctly different morphologies and spatial distribution. Yttrium acted as a potent getter for both oxygen and chlorine. Additionally, the β-Ti phase was free of nanoscaled α-Ti in the presence of yttrium. These microstructural changes contribute to the substantially increased ductility (∼90%).

  17. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  18. Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn Additively Manufactured by Laser Beam Melting in Powder Bed

    Directory of Open Access Journals (Sweden)

    Michael Cornelius Hermann Karg

    2017-01-01

    Full Text Available Additive manufacturing is especially suitable for complex-shaped 3D parts with integrated and optimized functionality realized by filigree geometries. Such designs benefit from low safety factors in mechanical layout. This demands ductile materials that reduce stress peaks by predictable plastic deformation instead of failure. Al–Cu wrought alloys are established materials meeting this requirement. Additionally, they provide high specific strengths. As the designation “Wrought Alloys” implies, they are intended for manufacturing by hot or cold working. When cast or welded, they are prone to solidification cracks. Al–Si fillers can alleviate this, but impair ductility. Being closely related to welding, Laser Beam Melting in Powder Bed (LBM of Al–Cu wrought alloys like EN AW-2219 can be considered challenging. In LBM of aluminium alloys, only easily-weldable Al–Si casting alloys have succeeded commercially today. This article discusses the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography. Load direction was varied relative to LBM build-up direction. T6 heat treatment was applied to half of the samples. Pronounced anisotropy was observed. Remarkably, elongation at break of T6 specimens loaded along the build-up direction exceeded the values from literature for conventionally manufactured EN AW-2219 by a factor of two.

  19. Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)

    2016-12-15

    We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.

  20. Hyperfine interaction measurements on ceramics: PZT revisited

    International Nuclear Information System (INIS)

    Guarany, Cristiano A.; Araujo, Eudes B.; Silva, Paulo R.J.; Saitovitch, Henrique

    2007-01-01

    The solid solution of PbZr 1- x Ti x O 3 , known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46≤x≤0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range

  1. Hyperfine interaction measurements on ceramics: PZT revisited

    Energy Technology Data Exchange (ETDEWEB)

    Guarany, Cristiano A. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Araujo, Eudes B. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Silva, Paulo R.J. [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil); Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil)]. E-mail: henrique@cbpf.br

    2007-02-01

    The solid solution of PbZr{sub 1-} {sub x} Ti {sub x} O{sub 3}, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46{<=}x{<=}0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.

  2. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  3. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  4. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  5. Hyperfine structure of S-states of muonic tritium

    Directory of Open Access Journals (Sweden)

    Martynenko F.A.

    2017-01-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  6. The hyperfine properties of a hydrogenated Fe/V superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2012-03-15

    We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.

  7. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  8. Electrical detection of hyperfine interactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Felix

    2012-12-15

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of {sup 31}P donors in Si:P with {sup 29}Si nuclear spins. We then apply EDESEEM to P{sub b0} defects at the Si/SiO{sub 2} interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by {sup 29}Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of {sup 31}P nuclear spin hyperfine transitions and the coherent manipulation and readout of the {sup 31}P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity <3000 nuclear spins. We apply EDENDOR to the {sup 31}P-P{sub b0} spin system and the {sup 31}P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the {sup 31}P{sup +} nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 {mu}s for the {sup 31}P{sub 0} nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of {sup 31}P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a {sup 31}P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a

  9. Electrical detection of hyperfine interactions in silicon

    International Nuclear Information System (INIS)

    Hoehne, Felix

    2012-01-01

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of 31 P donors in Si:P with 29 Si nuclear spins. We then apply EDESEEM to P b0 defects at the Si/SiO 2 interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by 29 Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of 31 P nuclear spin hyperfine transitions and the coherent manipulation and readout of the 31 P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity 31 P-P b0 spin system and the 31 P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the 31 P + nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 μs for the 31 P 0 nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of 31 P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a 31 P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a lock-in detection scheme for pEDMR, which improves the signal-to-noise ratio by one order of magnitude by removing low

  10. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  11. Measurement of the hyperfine magnetic field on rhodium in chromium

    International Nuclear Information System (INIS)

    Peretto, P.; Teisseron, G.; Berthier, J.

    1978-01-01

    Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr

  12. Measurement of the hyperfine structure of antihydrogen in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, E., E-mail: ew@antihydrogen.at; Diermaier, M. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Juhasz, B. [Lufthansa Systems Hungaria Kft. (Hungary); Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Suzuki, K.; Wuenschek, B.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Federmann, S. [CERN (Switzerland); Kuroda, N. [University of Tokyo, Institute of Physics (Japan); Ulmer, S.; Yamazaki, Y. [RIKEN Advanced Science Institute (Japan)

    2013-03-15

    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.

  13. An application of powder metallurgy to dentistry.

    Science.gov (United States)

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed.

  14. Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

    International Nuclear Information System (INIS)

    Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.

    2006-01-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits

  15. Plasma spheroidization and cladding of powders

    Energy Technology Data Exchange (ETDEWEB)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-02-01

    With reference to experimental results for nickel and chromium alloys, it is shown that complex alloy powders can be spheroidized in plasma discharges using an argon plasma with hydrogen. The spheroidizing process is accompanied by the reduction of surface oxides, with uniform element distribution within the particles; the granulometric composition of the particles is preserved. It is also shown that plasma technology can be used for producing metal-clad oxide and carbide powders, which improve the performance of cermets and coatings.

  16. Proceedings of the 2nd KUR symposium on hyperfine interactions

    International Nuclear Information System (INIS)

    Mekata, M.; Minamisono, T.; Kawase, Y.

    1991-10-01

    Hyperfine interactions between a nuclear spin and an electronic spin discovered from hyperfine splitting in atomic optical spectra have been utilized not only for the determination of nuclear parameters in nuclear physics but also for novel experimental techniques in many fields such as solid state physics, chemistry, biology, mineralogy and for diagnostic methods in medical science. Experimental techniques based on hyperfine interactions yield information about microscopic states of matter so that they are important in material science. Probes for material research using hyperfine interactions have been nuclei in the ground state and radioactive isotopes prepared with nuclear reactors or particle accelerators. But utilization of muons generated from accelerators is recently growing. Such wide spread application of hyperfine interaction techniques gives rise to some difficulty in collaboration among various research fields. In these circumstances, the present workshop was planned after four years since the last KUR symposium on the same subject. This report summarizes the contributions to the workshop in order to be available for the studies of hyperfine interactions. (J.P.N.)

  17. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    Science.gov (United States)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  18. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  19. Very low temperature studies of hyperfine effects in metals. [Progress report

    International Nuclear Information System (INIS)

    Weyhmann, W.

    1985-01-01

    We are using nuclei through the hyperfine coupling as a probe of magnetic interactions in metallic systems, emphasizing the role conduction electrons play. Three types of systems are of interest to us: nuclear singlet ground state intermetallic compounds, very dilute magnetic impurities in non-magnetic metals, and itinerant ferromagnets. The nuclear ordering in singlet ground state alloys of praseodymium appears to be analogous to electronic ordering in rare earth metals, with the RKKY interaction moderating the indirect exchange in both cases. We are measuring the static and dynamic properties of these materials both to study rare earth ordering, since only first order effects should play a role in the nuclear case, and to develop the sub-millikelvin refrigeration capabilities of these materials. Using this cooling power, we propose studying the local moment of Mn based Kondo systems at millikelvin and sub-millikelvin temperatures. Kondo systems with a Kondo temperature below 0.1 K have the advantage that magnetic saturation can be achieved with available magnets. We propose studying both the local magnetization as measured with nuclear orientation and the macroscopic magnetization measured with SQUID magnetometry. We also propose searching for electron polarization effects in itinerant ferromagnets using nuclear orientation. Induced hyperfine fields of less than 1 k0e can be detected at 1 mK

  20. Amorphous bimetallic alloys prepared by steam condensation

    International Nuclear Information System (INIS)

    Drago, V.

    1988-01-01

    Amorphous alloys of MnSn are prepared by steam condensation, in a substratum with a temperature near of the liquid helium. The magnetic and paramagnetic hyperfine spectrum and the ordination temperature by Moessbauer effect 119Sn are measured. A diagram of magnetic phase is proposed, basing on the measures of Moessbauer effect. (C.G.C.) [pt

  1. Mercury free zinc alloy powder for alkaline manganese battery. 2. Effect of additive species to zinc particle on suppressing hydrogen gas evolution; Arukari mangan denchiyo mukoka aen gokin funmatsu. 2. Suiso gas hassei ni oyobosu aen ryushi eno tenka genso no yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Fujitani, S.; Nishio, K. [Sanyo electric Co. Ltd., Osaka (Japan); Akai, Y.; Kurimura, M. [Sanyo Excell Co. Ltd., Tottori (Japan)

    1997-08-05

    In order to make alkaline manganese batteries mercury-free and suppress hydrogen gas generation, investigations were given on the effect of additive species on modification of zinc particles present on negative electrode surface. Mercury with high hydrogen overvoltage has been added conventionally, but the mercury can cause an environmental problem. Surface modification by using indium exhibited hydrogen gas generation suppressing effect. With the surface modification amount of 0.10% by weight or more, the suppressing effect is saturated, reducing the effect to 50% of that of mercury. Surface-modifying the bismuth added zinc particles with indium showed greater suppressing effect than the case where each element is used independently. Zinc-indium (0.10% by weight) - bismuth (0.025% by weight) based alloy powder showed the same hydrogen generation suppressing effect as zinc-mercury (0.15% by weight) alloy powder. A sealed test battery using this alloy powder in negative active material exhibited a discharge capacity of 1700 mAh similarly to the initial stage even after having been stored for 20 days at 60 degC. Self-discharge characteristics equivalent to that of zinc-mercury (0.15% by weight) based alloy powder were obtained. An environment compatible dry cell battery containing no mercury whatsoever was developed successfully. 18 refs., 6 figs., 1 tab.

  2. Powder-Metallurgy Process And Product

    Science.gov (United States)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  3. On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Johansen, K.; Voggenreiter, H.; Eggeler, G.

    1999-01-01

    The present study investigates the tensile properties of a nickel titanium (NiTi) shape memory alloy (SMA) produced by powder metallurgy (PM) with and without TiC-particles. It discusses the effect of the addition of particles on the mechanical behavior in tension and studies the intrinsic two way effect (ε 2W ) after thermomechanical training. Special emphasis is placed on the stability of ε 2W after subsequent thermal cycling. The results are discussed on the basis of an analysis of the thermomechanical data and microstructural results. The present study shows that the PM route can produce NiTi SMAs with tensile properties which match those of materials produced by classical ingot metallurgy. Adding TiC particles to NiTi SMAs alters the phase transition temperatures (PTTs) and affects the SMA performance. Adding more than ten volume percent TiC particles results in early and brittle rupture during tensile loading. (orig.)

  4. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  5. Prospects for the Development of Innovative Technology of Supersonic Gas-Powder Surfacing Coatings from Alloys of the System Ni-Cr-B-Si

    Science.gov (United States)

    Radchenko, Mikhail V.; Kiselev, Vadim S.; Shevtsov, Yuri O.; Radchenko, Tatyana B.

    2017-10-01

    The article is devoted to the research and development of technological recommendations of supersonic gas-powder surfacing, an example of the practical use of the developed technology is given. Market research indicates that demand for these products is stable due to the growing quality requirements of components and parts produced by the largest machine-building enterprises of Russia.

  6. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  7. Hyperfine fields for B and N in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nakai, K [Tokyo Univ. (Japan). Faculty of Science; Nojiri, Y; Tanihata, I; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1976-11-01

    Hyperfine fields for non-magnetic impurity atoms of /sup 12/B and /sup 12/N in nickel have been investigated using a nuclear resonance method involving ..beta.. decay. The temperature dependence of the hyperfine fields and nuclear spin lattice relaxation time were also studied for /sup 12/B in Ni. Resonances were observed for recoil nuclei produced in the reactions /sup 11/B(d,p)/sup 12/B or /sup 10/B(/sup 3/He,n)/sup 12/N, implanted in polycrystalline Ni foils. A small correction to the Lorentz field was made because of a Co impurity in the Ni foils used. The sign of the hyperfine field was negative for B in Ni and positive for N. This result is in qualitative agreement with hyperfine field systematics for such impurities. Spin lattice relaxation time was determined from the time spectra of the ..beta..-decay asymmetry. Hyperfine fields measured in the given temperature range deviated significantly from the magnetization curve of Ni. At low temperatures spin lattice was long in comparison with /sup 12/B half life (11 ms), but became shorter around Curie temperature Tsub(c) (631 K), increasing again above this temperature. This is due to slowing down of spin fluctuations at a critical point of the ferromagnetic-paramagnetic phase transition.

  8. Formation of modified TbCu{sub 7} and Th{sub 2}Zn{sub 17} type structures during annealing of mechanical-alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Inst. fuer Festkoerper- und Werkstofforschung, Dresden (Germany)

    1998-06-26

    Compounds with the nominal composition near Sm{sub 2}Fe{sub 17} were prepared by mechanical alloying starting from the elemental powders and subsequent annealing at temperatures, T{sub A}, between 600 C and 900 C. For crystal structure investigations of the non-equilibrium phases formed at various temperatures, XRD methods with following Rietveld analysis were applied. For T{sub A} between 600 C and 750 C a modified TbCu{sub 7}-type structure of space group P6/mmm was found, in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(6l) site. Its approximate composition is SmFe{sub 8.8-9.0}. For T{sub A} between 800 C to 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional randomly occupied Fe (6c) and Sm(3a) positions, respectively. The degree of order of Sm atoms and Fe-dumbbells along the c-direction increases with increasing T{sub A}. A decrease in the Fe concentration in the cell is observed for increasing T{sub A}. The completely ordered stoichiometric Th{sub 2}Zn{sub 17}-type structure could not be reached by annealing samples prepared from the ball-milled elemental powders. (orig.) 20 refs.

  9. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  10. Hyperfine structure of S-states of muonic deuterium

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-09-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\\alpha^5$ and $\\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\\Delta E^{hfs}(1S=50.2814$ meV ($1S$ state and $\\Delta E^{hfs}(2S=6.2804$ meV ($2S$ state represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\\Delta_{12}=8\\Delta E^{hfs}(2S- \\Delta E^{hfs}(1S=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.

  11. Fe dimers: a theoretical study of the hyperfine interactions

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.

    1981-01-01

    The electronic structures of diatomic molecules Fe 2 and FeM, where M = Mn, Co, Ni and Cu, are investigated by molecular orbitals calculations using a discrete variational method and a local approximation for the exchange interaction. The one-electron wave functions obtained are used to calculate electric field gradients, electronic charge and spin densities at the Fe nucleus and spin-dipolar hyperfine fields, which are related to measured hyperfine parameters reported from experiments in solid inert-gas matrices. Molecular orbitals energy schemes and population analysis are presented. These and other aspects of the electronic structure of the FeM molecules are used in a qualitative interpretation of the hyperfine data; in some cases, are given suggestions for the ground-state configuration. (Author) [pt

  12. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  13. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen;