WorldWideScience

Sample records for alloy-vt6

  1. Experimental Equipment and Basic Technological Methods of Obtaining Cavitation Protective Coatings on Working Surfaces of Steam Turbine Blades Made of Titanium Alloy VT6 in Order to Replace Imports of Similar Products

    Directory of Open Access Journals (Sweden)

    Bilous, V.A.

    2016-07-01

    Full Text Available The experimental equipment and basic technological methods of obtaining сavitation protective coatings on the working surfaces of blades of steam turbines from titanium alloy VT6 have been created. The selection and the basis of the composition and conditions of synthesis of optimal coating for hardening blades have been justified. The parameters of deposition process of coatings on the blade model have been worked, the experimental technological deposition process of hardening coatings has been created. The tests of titanium alloy VT6 samples with the preferred coatings in simulation conditions close to operational have been conducted. The coatings on the blade model of length up to 130 cm and weight up to 30 kg have been deposited. The velocity of the TiN coating depositing was 10 mkm/h.

  2. Surface hardening alloy VT6 of electric explosion and by electron beam

    International Nuclear Information System (INIS)

    Ivanov, Yu. F.; Kobzareva, T. Yu.; Gromov, V. E.; Soskova, N. A.; Budovskikh, E. A.; Raikov, S. V.

    2014-01-01

    The aim is to study the phase composition, structure and properties of the surface layer of the VT6 titanium alloy, subjected to combined treatment, consisting of alloying by the plasma of an electric explosion of a graphite fiber with a charge of the SiC powder and subsequent exposure by a high-intense electron beam. As a result of such treatment, a multiphase surface layer with a submicron and nanosize structure forms with the microhardness manifold exceeding its value in the sample volume are presented

  3. Structure and Properties of VT6 Alloy Obtained by Layered Selective Sintering of a Powder

    Science.gov (United States)

    Teresov, A. D.; Ivanov, Yu. F.; Petrikova, E. A.; Koval, N. N.

    2017-12-01

    This paper is focused on a clarification and analysis of the regularities of formation of the structure and properties of samples of the titanium-based alloy VT6, obtained by methods of conventional metallurgy and formed by layered selective electron-beam sintering in vacuum (using the Arcam A2X (3D printer) system (Arcam, Sweden)) of VT6 titanium powder with particle size 40-100 μm. Additional modification of the samples was realized by irradiating the surface with an intense pulsed electron beam (15 keV, 45 J/cm2, 200 μs, 10 pulses, 0.3 s-1, 3.5·10-2 Pa). It is shown that the action of a pulsed electron beam on the surface of samples formed by layered selective electron-beam sintering leads to a significant reduction in the porosity of the surface layer of the material and formation in the surface layer of a polycrystalline structure (grain size 15-60 μm) with a substructure in the form of crystallization cells (cell size 0.5-1.2 μm). Electron-beam processing of samples prepared by methods of conventional metallurgy for the indicated electron-beam parameters leads to the formation in the surface layer of a polycrystalline structure (grain size 50-800 μm) with a laminar intragrain substructure. Mechanical tests, performed by stretching flat samples, showed that the highest combination of mechanical strength and plasticity is possessed by samples obtained by layered selective electron-beam sintering with subsequent irradiation by an intense pulsed electron beam.