WorldWideScience

Sample records for alloy-ti90al6v4

  1. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  2. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  3. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  4. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  6. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  7. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  8. Key improvements in machining of Ti6al4v alloy: A review

    Science.gov (United States)

    Katta, Sivakoteswararao; Chaitanya, G.

    2017-07-01

    Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.

  9. Tribocorrosion Study of Ordinary and Laser-Melted Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Danillo P. Silva

    2016-10-01

    Full Text Available Titanium alloys are used in biomedical implants, as well as in other applications, due to the excellent combination of corrosion resistance and mechanical properties. However, the tribocorrosion resistance of titanium alloy is normally not satisfactory. Therefore, surface modification is a way to improve this specific performance. In the present paper, laser surface-modified samples were tested in corrosion and pin-on-disk tribocorrosion testing in 0.90% NaCl under an average Hertzian pressure of 410 MPa against an alumina sphere. Laser-modified samples of Ti6Al4V were compared with ordinary Ti6Al4V alloy. Electrochemical impedance showed higher modulus for laser-treated samples than for ordinary Ti6Al4V ones. Moreover, atomic force microscopy revealed that laser-treated surfaces presented less wear than ordinary alloy for the initial exposure. For a further exposure to wear, i.e., when the wear depth is beyond the initial laser-affected layer, both materials showed similar corrosion behavior. Microstructure analysis and finite element method simulations revealed that the different behavior between the initial and the extensive rubbing was related to a fine martensite-rich external layer developed on the irradiated surface of the fusion zone.

  10. On the Young's moduli of Ti-6Al-4V alloys

    International Nuclear Information System (INIS)

    Fan, Zhongyun

    1993-01-01

    In this paper, the authors will present an iterative approach to Young's modulus of multi-phase composites developed by Fan et al. The iterative approach will then be applied to Ti-6Al-4V alloys to predict their effective Young's moduli. It is hoped that the theoretical predictions will offer a quantitative explanation to the peculiar shape of the E c -f β curve and will shed some light on controlling the Young's moduli of Ti-6Al-4V alloys by choosing the proper heat treatment procedure

  11. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  12. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy

    Science.gov (United States)

    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.

    2006-03-01

    Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).

  13. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  14. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  15. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  16. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  17. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  18. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  19. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Zhou, W.F.; Liu, F.F.; Ren, Y.P. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Ren, N.F.; Xu, S.D.; Yang, T. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-02-15

    Graphical abstract: The grain refinement process of Ti-6Al-4V alloy under LSP: (a) LDD in original grains; (b) Dislocations in β phase; (c) DTIs in α phase; (d) DTs transform into DCs; (e) DWs develop into sub-GBs; (f) GR accomplishes. - Highlights: • LSP could repair the surface defects and reduce the surface roughness. • Microstructure evolution of α phase in Ti-6Al-4V alloy processed by LSP is distinct from β phase. • Multidirectional twin intersections and subgrain boundaries are the main mechanism of grain refinement of Ti-6Al-4V alloy. • Grain refinement process of the Ti-6Al-4V alloy was illustrated. - Abstract: Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  20. Reactive wetting of Ti-6Al-4V alloy by molten Al 4043 and 6061 alloys at 600-700 C

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qiaoli; Li, Fuxiang; Jin, Peng; Yu, Weiyuan [Lanzhou Univ. of Technology (China). State Key Lab. of Advanced Processing and Recycling of Non-ferrous Metal

    2017-06-15

    Wetting of Ti-6Al-4V alloy by two industrial grade Al alloys (i.e., Al 6061 and 4043 alloys) was studied using the sessile drop method at 600-700 C under high vacuum. Al/Ti-6Al-4V is a typical reactive wetting system with good final wettability accompanied by the formation of precursor film which is actually an extended reaction layer. The formation mechanism for the precursor film is ''subcutaneous infiltration''. The small amount of alloying element Si in the alloys can cause significant segregation at the liquid/solid interface which satisfies the thermodynamic condition. The wetting behavior can be described by the classic reaction product control models, and Ti{sub 7}Al{sub 5}Si{sub 12} decomposition and Al{sub 3}Ti formation correspond to the two spreading stages. The small difference in alloying elements in Al 6061 and 4043 resulted in distinctly different interface structures, formation of precursor film and spreading dynamics, especially for the Si segregation at the interface.

  1. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  2. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  4. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  5. Proton irradiation studies on pure Ti and Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Gupta, A. [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Mukherjee, P., E-mail: paramita@vecc.gov.in [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Gayathri, N.; Bhattacharyya, P.; Bhattacharya, M. [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Sarkar, Apu [Materials Group, Bhabha Atomic Research Centre, Mumbai (India); Sen, S. [Mechanical Engineering, Jadavpur University, Kolkata (India); Mitra, M.K. [Metallurgical and Materials Engineering, Jadavpur University, Kolkata (India)

    2016-11-15

    Post irradiated microstructural characterisation of pure Ti and Ti-6Al-4V has been done as a function of dose using different model based techniques of X-ray diffraction line profile analysis. There is a systematic change of domain size for both the materials with dose but the microstrain within the domain remains almost unaltered. The domain size appears to be lower for pure Ti at all doses as compared to Ti-6Al-4V alloy. XRD peaks became highly asymmetric particularly at a dose of 5 × 10{sup 21} p/m{sup 2} for Ti-6Al-4V samples which is not observed for pure Ti at the same dose. This may be attributed to the segregation of alloying elements as a result of irradiation. Microhardness values increases with dose for pure Ti and then saturates at higher doses whereas microhardness values are found to decrease at higher doses for Ti-6Al-4V.

  6. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  7. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  8. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  9. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  10. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

    Science.gov (United States)

    Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping

    2015-04-01

    Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

  11. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  13. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  14. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  15. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  16. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  17. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Mamoun Fellah

    2014-01-01

    Full Text Available The aim of the study is to evaluate the friction and wear behavior of high-strength alloys Ti-6Al-7Nb used in femoral stem and compare it with a Ti-6Al-4V alloy cylindrical bar corresponding to ISO 5832-3 part 3/01-07-199 standard. The tribological behavior was investigated by wear tests, using ball-on-disc and pin-on-disc tribometers. These tests consisted of measuring the weight loss and the friction coefficient of samples. The oscillating friction and wear tests have been carried out in ambient with oscillating tribotester in accordance with standards ISO 7148, ASTM G99-95a, and ASTM G133-95 under different conditions of normal loads (3, 6, and 10 N and sliding speeds (1, 15, and 25 mm·s−1. As counter pairs, a 100Cr6 steel ball with 10 mm in diameter was used. Results show that the two alloys had similar friction and wear performance, although their grain structures and compositions are different. Occurrence of large frictional occurred, is probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction with larger fluctuation and higher wear rate was observed at the higher siding speed. The Ti-6Al-4V wear mechanism transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear.

  18. Modification of Ti6Al4V surface by diazonium compounds

    Science.gov (United States)

    Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam

    2018-02-01

    Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.

  19. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  20. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  1. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  2. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    Science.gov (United States)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  3. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  4. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  5. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. STUDY OF THERMAL BEHAVIOUR ON TITANIUM ALLOYS (TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    VASUDEVAN D

    2017-08-01

    Full Text Available Titanium is recognized for its strategic importance as a unique lightweight, high strength alloyed structurally efficient metal for critical, high-performance aircraft, such as jet engine and airframe components. Titanium is called as the "space age metal" and is recognized for its high strength-to-weight ratio. Today, titanium alloys are common, readily available engineered metals that compete directly with stainless steel and Specialty steels, copper alloys, nickel based alloys and composites. Titanium alloys are needed to be heat treated in order to reduce residual stress developed during fabrication and to increase the strength. Titanium (Ti-6Al-4V alloy is an alpha, beta alloy which is solution treated at a temperature of 950 ºC to attain beta phase. This beta phase is maintained by quenching and subsequent aging to increase strength. Thermal cycling process was carried out for Ti-6Al-4V specimens using forced air cooling. Heat treated titanium alloy specimen was used to carry out various tests before and after thermal cycling, The test, like tensile properties, co-efficient of thermal expansion, Microstructure, Compression test, Vickers Hardness was examined by the following test. Coefficient of Thermal expansion was measured using Dilatometer. Tensile test was carried out at room temperature using an Instron type machine. Vickers's hardness measurement was done on the same specimen as used for the microstructural observation from near the surface to the inside specimen. Compression test was carried out at room temperature using an Instron type machine. Ti‐6Al‐4V alloy is a workhorse of titanium industry; it accounts for about 60 percent of the total titanium alloy production. The high cost of titanium makes net shape manufacturing routes very attractive. Casting is a near net shape manufacturing route that offers significant cost advantages over forgings or complicated machined parts.

  7. Density of liquid Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Schmon Alexander

    2017-01-01

    Full Text Available Ti-6Al-4V is due to its high strength-density ratio a commonly used alloy in aerospace industry applications. But liquid phase data are scarce as preventing contaminations of the reactive high temperature melt during the investigation process poses a challenge. The thermophysical quantity density is of special interest since it is necessary input parameter in modern numerical casting and solidification simulations. Liquid phase density of Ti-6Al-4V as function of temperature was determined employing a fast resistive pulse-heating technique based on the approach to avoid contaminations of the specimen by extremely reducing the experimental duration of the investigation process. Temperature dependent density of liquid Ti-6Al-4V was determined in a temperature range between 2050 K and 2590 K and is presented.

  8. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  9. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  10. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  11. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  12. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hanchen; Yang, Jingjing; Yin, Jie; Wang, Zemin, E-mail: zmwang@hust.edu.cn; Zeng, Xiaoyan

    2017-05-17

    Near-fully dense Ti-6Al-4V and 304 stainless steel samples have been produced applying selective laser melting (SLM) in the present work. The microstructures, textures and microhardnesses on horizontal and vertical cross sections, as well as the tensile properties of horizontally and vertically SLMed samples are investigated. It is found that the microstructures of the two SLMed alloys are mainly composed of hexagonal close-packed (HCP) martensitic phase or face-centered cubic (FCC) austenitic phase within columnar structures in Ti-6Al-4V alloy and 304 stainless steel, respectively. For both SLMed alloys, the tensile properties and microhardnesses show anisotropic though the textures are weak. Especially, the Ti-6Al-4V samples show even stronger anisotropic mechanical properties compared with 304 stainless steel. The higher length-width ratios of the columnar structures, rather than the weaker textures or the less symmetry of HCP crystal structure in SLMed Ti-6Al-4V are believed to be responsible for the stronger mechanical anisotropies. As expected, heat treatment is an effective method to eliminate columnar structures and leads to nearly isotropic mechanical properties.

  13. Wear behaviour of nitrogen-implanted and nitrided Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Martinella, R.; Giovanardi, S.; Chevallard, G.; Villani, M.; Molinari, A.; Tosello, C.

    1985-01-01

    The comparison between the wear behaviour of nitrogen-implanted Ti-6Al-4V alloy and that of nitrided Ti-6Al-4V alloy is reported. Both treatments were carried out at temperatures from 573 to 973 K on lapped surfaces; in order to compare roughness effects, nitriding was also carried out on rougher samples. An improvement in wear resistance for lapped surfaces was noted after implantation at 573 K or higher temperatures and after nitriding at temperatures over 773 K only; however, at 873 K, nitriding was more effective than implantation. Rough nitrided surfaces showed better wear resistance than lapped nitrided surfaces or lapped implanted surfaces. Most probably the improvement in wear resistance on implanted samples is due to a reduction in friction induced by chemical modification of the surface as a result of oxide and TiN. Scanning electron microscopy observations which show subsurface voids and coalescence are in good agreement with a wear model previously reported. As implantation preserves the surface finish, a possible application is suggested. (Auth.)

  14. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    Science.gov (United States)

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  15. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Rizviul Kabir

    2017-02-01

    Full Text Available A selective laser melting (SLM-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  16. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  17. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  18. Tribological investigations of surface treated Ti6Al4V

    International Nuclear Information System (INIS)

    Rueck, D.M.; Schminke, A.; Schmidt, H.; Soltani-Farshi, M.; Baumann, H.; Fink, U.; Richter, E.

    1998-05-01

    The tribological couple of the titanium alloy Ti6Al4V and ultrahigh molecular weight polyethylene (UHMWPE) is used for hip and knee joint prostheses. It is known that surface treatment of the titanium alloy Ti6Al4V by ion implantation of various elements can improve the wear behavior of such prostheses. The results of tribological tests, performed in Ringer solution with a ring-on-disc tester, show that oxygen in the implanted near surface region has a pronounced influence on the wear performance. Oxygen can be introduced into the surface by different mechanisms: either by direct implantation of oxygen ions or by indiffusion during the implantation of other elements like nitrogen or carbon at higher temperatures. The influence of the oxygen content in the near surface region of implanted and nonimplanted Ti6Al4V on the tribological performance is discussed in detail. (orig.)

  19. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  20. Grinding behavior and surface appearance of (TiCp + TiBw/Ti-6Al-4V titanium matrix composites

    Directory of Open Access Journals (Sweden)

    Ding Wenfeng

    2014-10-01

    Full Text Available (TiCp + TiBw/Ti-6Al-4V titanium matrix composites (PTMCs have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.

  1. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er

    Energy Technology Data Exchange (ETDEWEB)

    Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room

  2. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  3. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  4. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  5. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  6. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  7. Carbon fiber reinforced magnesium alloy in a Ti-6Al-4V shell

    Directory of Open Access Journals (Sweden)

    Astanin Vasily

    2017-01-01

    Full Text Available Continuous carbon fiber reinforced magnesium alloy pieces in SMC Ti-6Al-4V shell have been fabricated using pressure infiltration. Similar temperatures (~700°C for superplastic formation of the shell and melting of the alloy allow this to be done in one step. The quality of infiltration of the molten alloys is found to be proportional to load. A limiting parameter in increasing the infiltration pressure is the strength of the welded bonds. Structure, fracture parameters and mechanical properties are discussed.

  8. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  9. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  10. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  11. An investigation of dynamic mechanical behaviour of Ti6Al4V titanium alloy at room temperature

    Directory of Open Access Journals (Sweden)

    Ran Chun

    2016-01-01

    Full Text Available To study the high strain rate shear behaviour of Ti6Al4V titanium alloy, a series of dynamic compression experiments has been performed by split Hopkinson pressure bar (SHPB using Flat Hat-shaped specimen at room temperature. Macro true shear stress-true strain curves were obtained under different strain rate loading conditions at room temperature. The effects of strain hardening and strain rate hardening on the dynamic mechanical properties of Ti6Al4V titanium alloy were discussed. Results indicate that a The higher the strain rate, the higher the flow stress, therefore, the material has obvious strain rate hardening effect, b It is ductile failure for Ti6Al4V titanium alloy under quasi-static loading condition, c For dynamical tests, the values for true shear stress increase with increasing true strain till the maximum true shear stress, on the contrary, the values for true shear stress decrease with increasing the true strain after the maximum true shear stress and d The flow stress increases with increasing the true strain under quasi-static loading condition during the plastic deformation.

  12. Characterization of laser deposited Ti6Al4V/TiC composite powders on a Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Mahamood, RM

    2014-01-01

    Full Text Available This paper reports the material characterization of Ti6Al4V/TiC composite produced by laser metal deposition. The Ti6Al4V/TiC composites were deposited with a composition ratio of 50 wt.% Ti64l4V and 50 wt.% TiC. The depositions were achieved...

  13. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  14. Study on Ti-6Al-4V Alloy Machining Applying the Non-Resonant Three-Dimensional Elliptical Vibration Cutting

    Directory of Open Access Journals (Sweden)

    Mingming Lu

    2017-10-01

    Full Text Available The poor machinability of Ti-6Al-4V alloy makes it hard to process by conventional processing methods even though it has been widely used in military and civilian enterprise fields. Non-resonant three-dimensional elliptical vibration cutting (3D-EVC is a novel cutting technique which is a significant development potential for difficult-to-cut materials. However, few studies have been conducted on processing the Ti-6Al-4V alloy using the non-resonant 3D-EVC technique, the effect of surface quality, roughness, topography and freeform surface has not been clearly researched yet. Therefore, the machinability of Ti-6Al-4V alloy using the non-resonant 3D-EVC apparatus is studied in this paper. Firstly, the principle of non-resonant 3D-EVC technique and the model of cutter motion are introduced. Then the tool path is synthesized. The comparison experiments are carried out with traditional continuous cutting (TCC, two-dimension elliptical vibration cutting (2D-EVC, and the non-resonant 3D-EVC method. The experimental results shown that the excellent surface and lower roughness (77.3 nm could be obtained using the non-resonant 3D-EVC method; the shape and dimension of elliptical cutting mark also relates to the cutting speed and vibration frequency, and the concave/convex spherical surface topography are achieved by non-resonant 3D-EVC in the Ti-6Al-4V alloy. This proved that the non-resonant 3D-EVC technique has the better machinability compared with the TCC and 2D-EVC methods.

  15. Microstructure of Ti-6Al-4V produced by selective laser melting

    International Nuclear Information System (INIS)

    Simonelli, M; Tse, Y Y; Tuck, C

    2012-01-01

    Ti-6Al-4V is the most widely used titanium alloy. Manufacturing of Ti-6Al-4V components using novel additive processing techniques such as selective laser melting is of great interest. This study focuses on the microstructure characterisation of Ti-6Al-4V components produced by selective laser melting (SLM) with full (Ti-6Al-4V base plate) and partial (Ti-6Al-4V needle-shaped bed) support. The starting material, a plasma atomised powder, and the component products are studied using various microscopy techniques including optical, scanning electron and transmission electron microscopy and electron backscattered diffraction (EBSD). Powder particles are fully dense, possess a spherical shape and are composed of acicular α phase. The as-built material shows oriented acicular martensitic phase with well defined columnar grains. The morphology of martensitic phase and microstructural evolution will be discussed in relation to the SLM processing parameters employed and the different cooling rates experienced by the components.

  16. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huiyang, E-mail: hl209@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Zhang, Deliang, E-mail: zhangdeliang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Gabbitas, Brian, E-mail: briang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Yang, Fei, E-mail: fyang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Matthews, Steven, E-mail: S.Matthews@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Auckland (New Zealand)

    2014-09-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study.

  17. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    International Nuclear Information System (INIS)

    Lu, Huiyang; Zhang, Deliang; Gabbitas, Brian; Yang, Fei; Matthews, Steven

    2014-01-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study

  18. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Topographic and Electrochemical Ti6Al4V Alloy Surface Characterization in Dry and Wet Reciprocating Sliding

    Directory of Open Access Journals (Sweden)

    Z. Doni

    2013-09-01

    Full Text Available This present paper shows the behavior of functional integrity of the state Ti6Al4V alloy under reciprocating sliding wear conditions in acomparative way for two different counter materials, steel and ceramicballs in dry and corrosive environment (3.5% NaCl. The surface integrity analysis of the dry reciprocating wear tests was based on the evolution of The roughness parameters with the applied load. In the case of reciprocating wear tests in corrosive environment the surface integrity analysis was based on electrochemical parameters. Comparative analysis of the evolution of the roughness parameters with the applied load shows a higher stability of the Ti6Al4V/Al2O3 contact pair, while from the point of view of the electrochemical parameters the Tribological properties are worse than Ti6Al4V/steel ball contact pair.

  20. COMPARISON OF THE MECHANICAL RESPONSE OF POROUS TI-6AL-4V ALLOYS PRODUCED BY DIFFERENT COMPACTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G.İpek Selimoğlu

    2017-03-01

    Full Text Available Porous Ti-6Al-4V alloys are attractive candidates as implant materials due to their good biocompatibility combined with the porous structure leading to increased osseointegration and decreased stiffness. Accordingly, different processing techniques were employed for the production of Ti-6Al-4V foams in the literature. Among these techniques, sintering with space holder is used to produce porous Ti-6Al-4V alloys in this study. Magnesium was employed as the space holder material because of its relatively low boiling point as well as high oxygen affinity. Two different compaction techniques, die compaction with hydraulic pressing and cold isostatic pressing (CIP, were employed for obtaining green compacts. Both spherical and nonspherical Ti-6Al-4V powders were used to investigate the effect of powder shape on compaction. Processed foams were characterized in terms of both microstructural and mechanical aspects in order to investigate the effect of pressing conditions in combination with powder characteristics. It was observed that NS-CIP foam, which was produced by compacting nonspherical powders by cold isostatic press, has the highest strength. However, the S-DP foam, which was produced by die-pressing of spherical powders, has the highest toughness.

  1. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  2. The Transverse Rupture Strength in Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lai Pang-Hsin

    2015-01-01

    Full Text Available The objective of this study was to investigate the transverse rupture strength and apparent hardness of selective laser melted Ti-6Al-4V alloys manufactured in the vertical (V and horizontal (H directions. The microstructure and the distribution of alloy elements were examined by optical microscope and electron probe microanalysis, respectively. The results show that the columnar α′ grains are formed along the building direction, and the elemental distributions of Ti, Al, and V are homogeneous in the alloy. The building direction does not sufficiently affect the density and apparent hardness. However, the transverse rupture strengths (TRS are obviously dominated by the building directions investigated in this study. The TRS of an H specimen is significantly superior to that of a V specimen by 48%. This phenomenon can be mainly attributed to the presence of disc-shaped pores.

  3. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 717-724, 2004

  4. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Directory of Open Access Journals (Sweden)

    Azim Ataollahi Oshkour

    2014-01-01

    Full Text Available This study investigated the impact of calcium silicate (CS content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%. The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.

  5. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Science.gov (United States)

    Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  6. The machinability of cast titanium and Ti-6Al-4V.

    Science.gov (United States)

    Ohkubo, C; Watanabe, I; Ford, J P; Nakajima, H; Hosoi, T; Okabe, T

    2000-02-01

    This study investigated the machinability (ease of metal removal) of commercially pure (CP) titanium and Ti-6Al-4V alloy. Both CP Ti and Ti-6Al-4V were cast into magnesia molds. Two types of specimens (with alpha-case and without alpha-case) were made for CP Ti and Ti-6Al-4V. Machinability (n = 5) was evaluated as volume loss (mm3) by cutting/grinding the 3.0 mm surface using fissure burs and silicon carbide (SiC) under two machining conditions: (1) two machining forces (100 or 300 gf) at two rotational speeds (15000 or 30000 rpm) for 1 min, and (2) constant machining force of 100 gf and rotational speed of 15000 rpm for 1, 2, 5, 10, and 30 min. As controls, conventionally cast Co-Cr and Type IV gold alloys were evaluated in the same manner as the titanium. When fissure burs were used, there was a significant difference in the machinability between CP titanium with alpha-case and without alpha-case. On the other hand, there was no appreciable difference in the amount of metal removed for each tested metal when using the SiC points.

  7. Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com; Ji, Longbo

    2017-01-27

    This paper describes an experimental hydrogenating treatment on a Ti-6Al-4V fatigue specimen containing an electron beam welding joint. The effect of trace solute hydrogen on the microstructures and fatigue behavior of welded Ti-6Al-4V alloy joints was investigated using an optical microscope, X-ray diffractometer, scanning electron microscope, transmission electron microscope and other methodologies. The results demonstrated that no hydride formed in the hydrogenated weld joint at a hydrogen concentration of less than 0.140 wt%. Internal hydrogen, which was present in the alloy in the form of solid solution atoms, caused lattice distortion in the β phase. The fatigue properties of the Ti-6Al-4V weld joint hydrogenated with trace solute hydrogen decreased significantly. The solute hydrogen led to an increase in the brittleness of the hydrogenated weld joint. The dislocation densities in the secondary α and β phase were higher. Fatigue cracks nucleated at the α/β interfaces. The effect of solute hydrogen accelerated the separation of the persistent slip bands, which decreased the threshold required for fatigue crack growth. Solute hydrogen also accelerated the fatigue crack growth rate. These two factors contributed to the degradation of the fatigue life in the electron beam welded Ti-6Al-4V alloy joints.

  8. A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V

    Science.gov (United States)

    Cao, Fei; Zhang, Tiantian; Ryder, Matthew A.; Lados, Diana A.

    2018-03-01

    Various additive manufacturing (AM) technologies have been used to fabricate Ti-6Al-4V. The fatigue performance of Ti-6Al-4V varies from process to process. In this review, fatigue properties of Ti-6Al-4V alloys made by different AM technologies and post-fabrication treatments were compiled and discussed to correlate with the materials' characteristic features, primarily surface roughness and porosity. Microstructure anisotropy and porosity effects on fatigue crack growth and fatigue life are also presented and discussed. A modified Kitagawa-Takahashi diagram developed from current available fatigue data was used to quantify the influence of defects on fatigue strength. This review aims to assist in selecting/optimizing AM processes to achieve high fatigue resistance in Ti-6Al-4V, as well as provide a better understanding of the advantages and limitations of current AM techniques in producing titanium alloys.

  9. Biocorrosion of TiO2 nanoparticle coating of Ti-6Al-4V in DMEM under specific in vitro conditions

    Science.gov (United States)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-02-01

    A TiO2 nanoparticle coating was prepared on a biomedical Ti-6Al-4V alloy using "spin-coating" technique with a colloidal suspension of TiO2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO2. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti-6Al-4V shows a complete coverage by a Ca-phosphate layer in contrast to the non-coated Ti-6Al-4V alloy. Hence, the TiO2-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO2-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti-6Al-4V alloy is significant for at least 28 days of immersion in DMEM.

  10. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  11. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    López, M.M. Machado, E-mail: machadolopez23@gmail.com [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico); Fauré, J. [Laboratoire Ingénierie et Sciences des Matériaux (LISM EA 4695) - Université de Reims Champagne-Ardenne, 21 rue Clément Ader, Reims, BP 138 Cedex 02, 51685 France (France); Cabrera, M.I. Espitia [Facultad de ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “D”, C.P. 58000, Morelia, Michoacán, México (Mexico); García, M.E. Contreras, E-mail: eucontre@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico)

    2016-04-15

    Graphical abstract: - Highlights: • Bioglass 45S5 nanostructured films were obtained by colloidal electrophoretic deposition (CEDP) method, proposed in this work, on Ti6Al4 V substrates. • Ti6Al4 V corrosion resistance in Hank's solution was increased with bioglass 45S5 coating. • Crystalline phases of 45S5 bioglass xerogels were obtained and characterized by XRD. • The model of chemical anchoring between Ti6Al4 V and bioglass 45S5 is proposed. - Abstract: In the present work, 45S5 bioglass coatings were deposited on the Ti6Al4 V alloy substrate through the cathodic colloidal electrophoretic deposition process (CEDP) proposed in this work. The coatings were thermally treated at temperatures of 500, 600, 700, and 800 °C for 2 h, and their structure was characterized by FESEM and DRX. Nanostructure and phase evolution of the coatings and xerogels was followed as a function of temperature. The corrosion resistance of the Ti6Al4 V alloy and the 45S5/Ti6Al4 V coating was studied by means of Tafel extrapolation in Hank's solution, at 37 °C, simulating the conditions inside the mouth. The 45S5 bioglass coatings displayed an amorphous nanostructure at lower temperatures, and partial crystallization at higher temperatures. An increase in the corrosion resistance was observed in the 45S5/Ti6l4 V coating treated at 700 °C because it reduced the i{sub corr}, and there was a change in the E{sub corr} towards more noble values. A model of the chemical anchorage of the 45S5 bioglass coating on Ti6Al4 V was proposed.

  12. Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-04-01

    Full Text Available In this paper, phase transitions and microstructure evolution in titanium Ti-6Al-4V alloy parts produced by electron beam melting (EBM under hydrogenation was investigated. Hydrogenation was carried out at the temperature of 650 °C to the absolute hydrogen concentrations in the samples of 0.29, 0.58, and 0.90 wt. %. Comparative analysis of microstructure changes in Ti-6Al-4V alloy parts was performed using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Furthermore, in-situ XRD was used to investigate the phase transitions in the samples during hydrogenation. The structure of Ti-6Al-4V parts produced by EBM is represented by the α phase plates with the transverse length of 0.2 μm, the β phase both in the form of plates and globular grains, and metastable α″ and ω phases. Hydrogenation to the concentration of 0.29 wt. % leads to the formation of intermetallic Ti3Al phase. The dimensions of intermetallic Ti3Al plates and their volume fraction increase significantly with hydrogen concentration up to 0.58 wt. % along with precipitation of nano-sized crystals of titanium δ hydrides. Individual Ti3Al plates decay into nanocrystals with increasing hydrogen concentration up to 0.9 wt. % accompanied by the increase of proportion and size of hydride plates. Hardness of EBM Ti-6Al-4V alloy decreases with hydrogen content.

  13. Characterization of the deformation texture after tensile test and cold rolling of a Ti-6Al-4V sheet alloy

    International Nuclear Information System (INIS)

    Mehdi, B; Badji, R; Azzeddine, H; Alili, B; Bradai, D; Ji, V

    2015-01-01

    The deformation texture after cold rolling and tensile test of an industrial Ti-6Al-4V sheet alloy was studied using X-ray diffraction. The alloy was subjected to a cold rolling to different thickness reductions (from 20% to 60%) and then tensile tests have been carried out along three directions relatively to the rolling direction (0°, 45° and 90°). The experimental results were compared to the existing literature and discussed in terms of active plastic deformation mechanisms. (paper)

  14. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    Science.gov (United States)

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fatigue behavior of Ti-6Al-4V alloy modified by plasma immersion ion implantation: temperature effect.

    Directory of Open Access Journals (Sweden)

    Velloso Verônica

    2018-01-01

    Full Text Available This research studied Ti-6Al-4V alloy behavior with two (2 different microstructure subjected to nitrogen addition by PIII treatment, with and without sample heating, under cyclic load. PIII conditions, at 390 °C, were DC voltage of 9.5 kV, frequency of 1.5 kHz and pulse of 40 μs. PIII conditions, with sample heating at 800 °C, were 7 kV, 0.4 kHz and 30 μs. Axial fatigue tests were performed on untreated and treated samples for resistance to fatigue comparison. The untreated Ti-6Al-4V had an annealed microstructure, PIII treatment at 390 °C resulted in a microstructure that has no nitride layer or diffusion zone. In the PIII treatment at 800 °C, the microstructure presented nitride layer and diffusion zone. Resistance to fatigue decreased with PIII treatments in both temperatures. At 390 °C, the treatment created deformation regions and cracks on surface due to nitrogen implantation that formed solid solution with titanium and imposed lattice strains on the crystal lattice. At 800 °C, bulk ductility decrease, increasing of αTi proportion in microstructure due to α case formation and the presence of a ceramic layer dropped fatigue resistance of Ti-6A-4V alloy.

  16. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  17. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  18. Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding

    Energy Technology Data Exchange (ETDEWEB)

    Keddam, Mourad, E-mail: keddam@yahoo.fr [Laboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, USTHB, B.P. No. 32, 16111 El-Alia, Bab-Ezzouar, Algiers (Algeria); Taktak, Sukru [Metallurgical and Materials Engineering, Faculty of Technology, Afyon Kocatepe University, ANS Campus, 03200, Afyonkarahisar (Turkey)

    2017-03-31

    Highlights: • Titanium boride layers were produced by plasma paste boriding on Ti6Al4V at 973–1073 K. • Formation rates of the Ti boride layers have parabolic character at all temperatures. • Boron diffusivities were estimated using a diffusion model including incubation times. • Activation energies of boron in TiB{sub 2} and TiB were 136 and 63 kJ/mol respectively. - Abstract: The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973–1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB{sub 2} top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB{sub 2} and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB{sub 2} and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB{sub 2} and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol{sup −1}, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.

  19. Manipulation of the osteoblast response to a Ti 6Al 4V titanium alloy using a high power diode laser

    Science.gov (United States)

    Hao, L.; Lawrence, J.; Li, L.

    2005-07-01

    To improve the bone integration of titanium-based implants a high power diode laser (HPDL) was used to modify the material for improved osteoblast cell response. The surface properties of un-treated and HPDL treated samples were characterized. Contact angles for the un-treated and the HPDL modified titanium alloy (Ti-6Al-4V) were determined with selected biological liquids by the sessile drop technique. The analysis revealed that the wettability of the Ti-6Al-4V improved after HPDL laser treatment, indicating that better interaction with the biological liquids occurred. Moreover, an in vitro human fetal osteoblast cells (hFOB 1.19) evaluation revealed a more favourable cell response on the HPDL laser treated Ti-6Al-4V alloy than on either un-treated sample or a mechanically roughened sample. It was consequently determined that the HPDL provides more a controllable and effective technique to improve the biocompatibility of bio-metals.

  20. Improving the osteointegration of Ti6Al4V by zeolite MFI coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Jiao, Yilai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016 (China); Li, Xiaokang [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Guo, Zheng, E-mail: guozheng@fmmu.edu.cn [Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-01

    Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M−Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M−Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M−Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis. - Highlights: • Osteointegration is a crucial factor for orthopedic implants. • We coated MFI zeolite on Ti6Al4V substrates and investigated the effects in vitro and in vivo. • The MFI coating displayed good biocompatibility and promoted osteogenic differentiation in vitro. • The MFI coating promoted osteointegration and osteogenesis peri-implant in vivo.

  1. Influence of Material Microstructures in Micromilling of Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-09-01

    Full Text Available In the most recent decades the introduction of unconventional machining processes allowed the development of micromachining techniques. In this work, the influence of material microstructures on the micromilling process was investigated. Ti6Al4V alloy was selected as workpiece material since it is a very common material for micro applications and because its duplex microstructure can be easily changed by proper thermal treatments. Four different microstructures (namely bimodal, fully equiaxed, fully lamellar and mill annealed were obtained through recrystallization annealing treatments carried out at different times and temperatures. The mechanical properties of the samples were assessed by microhardness measurements. Nano-indentations were also performed on single grains to understand how the different hardness of phases and structures present in the Ti6Al4V alloy can affect the micromilling process. Microchannels using two flute flat end mills with a diameter equal to 200 µm were realized on the treated samples. Two different feed-per-tooth values were used during the tests. Cutting force, channel shape and burr dimension were investigated. Morphological and energy dispersive spectroscopy (EDS analyses were performed on tools by means of a scanning electron microscope (SEM: in this way the phenomena mainly influencing the tool status were also identified. Lower cutting forces and reduced tool wear were observed when working fully lamellar microstructures compared to the other ones.

  2. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bingjing; Wang, Hong [Department of Stomatology, General Hospital of the PLA, Beijing (China); Department of Stomatology, The Second Affiliated Stomatological Hospital of Liaoning Medical University (China); Qiao, Ning [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing (China); Wang, Chao [School of Medicine, Nankai University, Tianjin 300071 (China); Hu, Min, E-mail: humin48@vip.163.com [Department of Stomatology, General Hospital of the PLA, Beijing (China)

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (< 1.5 V) and EBM specimen was the best under the high electric potential (> 1.5 V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. - Highlights: • EBM and SLM Ti-6Al-4V alloy have good corrosion resistance, and both of them can be applied in vivo. • SLM Ti-6Al-4V alloy was more suitable for implantation in vivo than that of EBM Ti-6Al-4V alloy. • The crevice corrosion resistance of the EBM specimen is the best. • EBM and SLM specimens can form oxide film.

  3. Synthesis and Characterization of Hydroxyapatite-Collagen-Chitosan (HA/Col/Chi) Composite Coated on Ti6Al4V

    Science.gov (United States)

    Charlena; Bikharudin, Ahmad; Wahyudi, Setyanto Tri

    2018-01-01

    HA-collagen-chitosan (HA/col/chi) composite is developed to increase bioactivity adhesiveness between the metal and the material composite and to improve corrosion resistance. The Ti6Al4V alloy was coated by soaking in HA/col/chi composite at room temperature and then allowed to stand for 5, 6, and 7 days. Diffraction pattern analysis of the coated Ti6Al4V alloy showed that the dominant phase were HA and Ti6Al4V alloy. Corrosion resistance test in media by using 0.9% NaCl showed the corrosion rate at the level of 0.3567 mpy, which was better than that of the uncoated Ti6Al4V alloy (0.4152 mpy). In vitro cytocompatibility assay on endothelial cell of calf pulmonary artery endothelium (CPAE) (ATCC-CCL 209) showed there was no toxicity in the cell culture with the percent inhibition of 33.33% after 72 hours of incubation.

  4. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  5. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  6. Mechanical properties of mill-annealed Ti6Al4V investment cast

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-07-01

    Full Text Available Ti6Al4V alloy, produced by investment casting using yttria stabilized zirconia, was machined and then mill-annealed in vacuum furnace. The ultimate strength, yield strength and percentage elongation were largely improved compared to the same alloy...

  7. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material

    International Nuclear Information System (INIS)

    Arifin, Amir; Sulong, Abu Bakar; Muhamad, Norhamidi; Syarif, Junaidi; Ramli, Mohd Ikram

    2015-01-01

    Highlights: • Fabrication of HA/Ti6Al4V composite using powder injection molding. • Rheological results show that palm stearin is suitable as binder. • Resulted mechanical properties in between titanium alloy and HA values. • Micro porous enable accelerated bioactivity based on in vitro test. - Abstract: Titanium alloy (Ti6Al4V) and hydroxyapatite (HA) are well-known materials applied in implants. Ti6Al4V shows good mechanical properties and corrosion resistance, whereas HA possesses excellent biocompatibility and bioactivity but weak mechanical properties. The combination of the Ti6Al4V and HA properties is expected to produce a superior material for bio-implants. This study aimed to analyze the feasibility of fabricating HA/Ti6Al4V composites through powder injection molding (PIM) using palm stearin as base binder. In this study, 90 wt% Ti6Al4V and 10 wt% HA were mixed with the palm stearin and polyethylene binder system. The HA/Ti6Al4V feedstock showed pseudoplastic properties, suggesting its suitability for PIM. Flexural test revealed that the strength of the sintered composite ranges from 67.12 MPa to 112.97 MPa and its Young’s modulus ranges from 39.28 GPa to 44.25 GPa. The X-ray diffraction patterns and energy-dispersive X-ray spectra of the composite showed that the HA decomposed and formed secondary phases. Isotropic porous structure was observed on the sintered sample because of HA decomposition. Results showed that the palm stearin can be used as based binder in fabricating HA/Ti6Al4V composites via PIM. The mechanical properties of the sintered composites are nearly similar to those of the human bone. In addition, the increase in weight of the sintered composite during in vitro tests indicated the nucleation and growth of the Ca–P phase, which exhibited the biocompatibility of the fabricated HA/Ti6Al4V composite

  8. Investigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing

    International Nuclear Information System (INIS)

    Surmeneva, M; Chudinova, E; Syrtanov, M; Surmenev, R; Koptioug, A

    2015-01-01

    This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film was deposited while its structure with diamond-shaped cells remained unchanged. Hysteresis and water contact angle measurements revealed an effect of the deposited HA films, namely an increased water contact angle and contact angle hysteresis. The increase of the contact angle of the coating-substrate system compared to the uncoated substrate was attributed to the multiscale structure of the resulted surfaces. (paper)

  9. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy

    Science.gov (United States)

    Yu, Shouming; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing

    2015-10-01

    A plasma chromizing treatment was conducted on Ti6Al4V samples by employing the recently developed double glow plasma surface alloying technology. The Cr-alloyed layer consisted of four sub-layers, namely the Cr deposition, Cr2Ti, CrTi4, and Cr-Ti solid-solution layers. The local hardness and moduli were determined via nanoindentation. In addition, the fatigue properties of the samples were evaluated by using a rotating-bending fatigue machine under a given load. The results showed that the hardness or elastic moduli of the adjacent sub-layers differed significantly and the fatigue properties of the Ti6Al4V alloy deteriorated with the plasma chromizing treatment. This deterioration stemmed mainly from cracks initiated at the interfaces between the sub-layers and the microstructural changes of the substrate; these changes were induced by the high temperature used in the plasma chromizing process. However, the fatigue life of the plasma-chromized samples was increased by a shot peening post-treatment. The fatigue life of the samples resulting from this combination of treatments was slightly higher than that of the single-shot-peened Ti6Al4V substrate. In fact, the sample retaining only the Cr-Ti solid-solution layer (that is, the first three sub-layers were removed), when shot-peened, exhibited the highest fatigue life among all the tested samples; this was attributed to that sample having the highest residual compressive stress, the significant work hardening, and the good hardness to toughness balance.

  10. Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides

    Directory of Open Access Journals (Sweden)

    Anelise Marlene Schmidt

    2006-12-01

    Full Text Available This paper reports on an investigation of the electrochemical behavior of Ti grade 2 and Ti6Al4V alloy in aqueous citric acid solutions with pH 2.0 containing halide ions. Voltammetric studies of Ti and the alloy in citric acid, with and without chloride ions, indicate that the Ti and Ti alloy presented a passive behavior in the test solutions used. Pitting was observed at 3.0 and 2.5 V/SCE for Ti and Ti6Al4V, respectively, when bromide ions were added to the solution. In solutions containing fluoride ions, dissolution of the film occurred at potentials close to - 1.0 V/SCE in both electrodes. The iodide ions oxidized on the passive oxide film at potentials close to 1.0 V/SCE. EIS results of the materials in citric acid solutions containing chloride ions revealed that the film's resistance increased as the applied potential rose from 0 to 1.0 V. In bromide-containing solutions, breakdown of the film was confirmed at potentials above 2.0 V/SCE in both electrodes. These results suggest film reformation for Ti and the alloy in solutions containing fluoride at potentials within the passive region.

  11. Influence of the final temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Pedro César Garcia Oliveira

    2007-02-01

    Full Text Available The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430ºC (control group, 480ºC and 530ºC. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430ºC, 480 and 530: CP Ti (486.1 - 501.16 - 498.14 -mean 495.30 MPa and Ti-6Al-4V alloy (961.33 - 958.26 - 1005.80 - mean 975.13 MPa while for the Vickers hardness the values were (198.06, 197.85, 202.58 - mean 199.50 and (352.95, 339.36, 344.76 - mean 345.69, respectively. The values were submitted to Analysis of Variance (ANOVA and Tukey,s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy.

  12. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  13. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    International Nuclear Information System (INIS)

    Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J.

    2012-01-01

    Highlights: ► Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. ► Microstructure, microhardness and corrosion of remelted samples are deeply analysed. ► Microstructural changes of laser remelted TiG2 lead to microhardness increase. ► Remelted Ti6Al4V presents microhardness increase and corrosion improvement. ► Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  14. An Analysis on the Constitutive Models for Forging of Ti6Al4V Alloy Considering the Softening Behavior

    Science.gov (United States)

    Souza, Paul M.; Beladi, Hossein; Singh, Rajkumar P.; Hodgson, Peter D.; Rolfe, Bernard

    2018-05-01

    This paper developed high-temperature deformation constitutive models for a Ti6Al4V alloy using an empirical-based Arrhenius equation and an enhanced version of the authors' physical-based EM + Avrami equations. The initial microstructure was a partially equiaxed α + β grain structure. A wide range of experimental data was obtained from hot compression of the Ti6Al4 V alloy at deformation temperatures ranging from 720 to 970 °C, and at strain rates varying from 0.01 to 10 s-1. The friction- and adiabatic-corrected flow curves were used to identify the parameter values of the constitutive models. Both models provided good overall accuracy of the flow stress. The generalized modified Arrhenius model was better at predicting the flow stress at lower strain rates. However, the model was inaccurate in predicting the peak strain. In contrast, the enhanced physical-based EM + Avrami model revealed very good accuracy at intermediate and high strain rates, but it was also better at predicting the peak strain. Blind sample tests revealed that the EM + Avrami maintained good predictions on new (unseen) data. Thus, the enhanced EM + Avrami model may be preferred over the Arrhenius model to predict the flow behavior of Ti6Al4V alloy during industrial forgings, when the initial microstructure is partially equiaxed.

  15. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  16. Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide

    Science.gov (United States)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681

  17. Characterising μ-AlTiN coating and assessing its performance during Ti-6Al-4V milling

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Moreno Téllez

    2013-05-01

    Full Text Available This study investigated the mechanical properties and performance of μ-AlTiN coating deposited by PVD cathodic arc technique for a specific Al0, 67Ti0, 33N composition deposited on a WC-Co and AISI D2 steel substrate. The structure of the coating was analysed using SEM, EDAX, XRD, AFM and TEM. Nano indentation measurements were used for analysing mechanical properties; the coating’s performance was evaluated during the milling of a titanium alloy (Ti6Al4V. The TiN film was initially deposited to improve adhesion between coating and substrate, where columnar grains ranging in size from 200 to 500 nm were observed having NaCl-type struc-ture. μ-AlTiN grain growth was also columnar but had ~50 nm grain size. The μ-AlTiN coated tool life was compared to an uncoated tool to determine the coating’s influence during Ti6Al4V milling. The μ-AlTiN coating improved tool life by 100% compared to that of an uncoated tool due to aluminium oxide and TiC formation on the surface and a decrease in friction coefficient between the chip and the tool.

  18. Surface modification of Ti-_6Al-_4V titanium alloy by combined ion-plasma treatment

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Shimanskij, V.I.; Laskovnev, A.P.; Basalaj, A.V.; Astashinskij, V.M.; Kuz'mitskij, A.M.

    2015-01-01

    Investigation results of phase and elemental composition, microhardness and friction coefficient of Ti-_6Al-_4V alloy samples precoated by titanium subjected to compression plasma flows treatment have been presented in this work. It has been established that the combined effect of ion-plasma flows diminishes aluminum and vanadium concentration in the surface layer, leads to the growth of its microhardness and decrease of the friction coefficient. (authors)

  19. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Role of microstructure in the mean stress dependence of fatigue strength in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, S.G.; Cohen, F.S.; Biederman, R.R.; Sisson, R.D. Jr.

    1999-07-01

    The high cycle fatigue properties of Ti-6Al-4V alloy with six different microstructure/texture combinations were investigated. Only materials with lamellar and fine bimodal microstructures exhibited linear Goodman relationship on the constant fatigue life diagram. Materials with coarse bimodal and equiaxed microstructures had anomalous mean stress dependency, with HCF strength at intermediate mean stresses being significantly lower than predicted by Goodman relationship, regardless of whether material was forged or cross-rolled. The role of microstructure in mean stress sensitivity behavior of Ti-6Al-4V is studied. Cyclic strain tests were conducted for all microstructures, and the results of strain-controlled and stress-controlled cyclic tests are compared and discussed.

  1. Strengthening mechanisms in Ti-6Al-4V/TiC composites

    International Nuclear Information System (INIS)

    Johnson, A.J. Wagoner; Kumar, K.S.; Briant, C.L.

    2004-01-01

    In this study, the compressive behavior of Ti-6Al-4V/TiC composites considered for ballistic applications was examined at strain rates of 0.1, 1.0, and 10 s-1. As little as 1 vol% of particulate TiC provided nearly a 25% increase in strength in Ti-6Al-4V/TiC composites over that of the monolithic Ti-6Al-4V, while subsequent additions of TiC did not provide proportional benefit. The mechanisms responsible for such a significant increase in strength were investigated for the first time in this study. Microscopy (optical, SEM, TEM) aided in identifying the possible strengthening mechanisms that are typically important to the strength of metal matrix composites. These mechanisms include grain size and subgrain size refinement and an increase in dislocation density, all of which can occur during processing. Two other important mechanisms are thermal mismatch strains and load transfer from the matrix to the particle; the contribution of these mechanisms to the strength of the composite was evaluated using the Eshelby approach. A quantitative comparison of the mechanisms listed clearly showed that none of them was responsible for the large increase in strength with only 1vol%TiC in Ti-6Al-4V. The results from this study show for the first time that carbon in solution is, by far, the most potent strengthening mechanism in the Ti-6Al-4V/TiC particulate composites

  2. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  3. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Science.gov (United States)

    El Hadad, Amir A.; Peón, Eduardo; García-Galván, Federico R.; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-01

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties. PMID:28772455

  4. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Amir A. El Hadad

    2017-01-01

    Full Text Available The aim of this work was to prepare hydroxyapatite coatings (HAp by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs. Thermogravimetric/Differential Thermal Analyses (TG/DTA and X-ray Diffraction (XRD have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM. The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF applying Inductively Coupled Plasma (ICP spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS. The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  5. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  6. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    International Nuclear Information System (INIS)

    Lin Naiming; Huang Xiaobo; Zhang Xiangyu; Fan Ailan; Qin Lin; Tang Bin

    2012-01-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  7. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate

    Science.gov (United States)

    Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud

    2018-03-01

    In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.

  8. Radio-frequency plasma nitriding and nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Wang, S.Y.; Chu, P.K.; Tang, B.Y.; Zeng, X.C.; Wang, X.F.; Chen, Y.B.

    1997-01-01

    Nitrogen ion implantation improves the wear resistance of Ti-6Al-4V alloys by forming a hard TiN superficial passivation layer. However, the thickness of the layer formed by traditional ion implantation is typically 100-200 nm and may not be adequate for many industrial applications. We propose to use radio-frequency (RF) plasma nitriding and nitrogen plasma immersion ion implantation (PIII) to increase the layer thickness. By using a newly designed inductively coupled RF plasma source and applying a series of negative high voltage pulses to the Ti-6Al-4V samples. RF plasma nitriding and nitrogen PIII can be achieved. Our process yields a substantially thicker modified layer exhibiting more superior wear resistance characteristics, as demonstrated by data from micro-hardness testing, pin-on-disc wear testing, scanning electron microscopy (SEM), as well as Auger electron spectroscopy (AES). The performance of our newly developed inductively coupled RF plasma source which is responsible for the success of the experiments is also described. (orig.)

  9. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  10. Development of a versatile procedure for the biofunctionalization of Ti-6Al-4V implants

    International Nuclear Information System (INIS)

    Rezvanian, Parsa; Arroyo-Hernández, María; Ramos, Milagros; Daza, Rafael; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José

    2016-01-01

    Highlights: • Surface of Ti-6Al-4V was functionalized by Activated Vapor Silanization (AVS). • AVS is proven to be a reliable procedure for functionalizing Ti-6Al-4V samples. • The functional layer was characterized by AFM and fluorescence microscopy. • The cytocompatibility of the functionalized samples was assessed by cell cultures. • The stability of the functional layer under physiological conditions was confirmed. - Abstract: Titanium (Ti) and titanium alloys are among the most-commonly used metallic materials for implantation in the human body for the purpose of replacing hard tissue. Although Ti and its alloys are widely used for such an aim, in implants of a long duration they exhibit some shortcomings due to the loosening of the very implant. This phenomenon is highly dependent on the interaction between the organic tissues and the surface of the implant. In this study, the authors introduce a surface treatment technique for functionalization of the surface of Ti-6Al-4V alloy with amino groups that could help to control this interaction. The functionalized layer was deposited by activated vapor silanization (AVS), which has been proven as a reliable and robust technique with other materials. The resulting biofunctional layers were characterized by atomic force microscopy and fluorescence microscopy, with the optimal conditions for the deposition of a homogeneous film with a high density of amino groups being determined. Additionally, the non-toxic nature and stability of the biofunctional layer were confirmed by cell culturing. The results show the formation of a homogeneous biofunctional amine layer on Ti-6Al-4V alloy that may be used as a platform for the subsequent covalent immobilization of proteins or other biomolecules.

  11. Development of a versatile procedure for the biofunctionalization of Ti-6Al-4V implants

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanian, Parsa; Arroyo-Hernández, María [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Ramos, Milagros [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Daza, Rafael; Elices, Manuel; Guinea, Gustavo V. [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Pérez-Rigueiro, José, E-mail: jperez@mater.upm.es [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-11-30

    Highlights: • Surface of Ti-6Al-4V was functionalized by Activated Vapor Silanization (AVS). • AVS is proven to be a reliable procedure for functionalizing Ti-6Al-4V samples. • The functional layer was characterized by AFM and fluorescence microscopy. • The cytocompatibility of the functionalized samples was assessed by cell cultures. • The stability of the functional layer under physiological conditions was confirmed. - Abstract: Titanium (Ti) and titanium alloys are among the most-commonly used metallic materials for implantation in the human body for the purpose of replacing hard tissue. Although Ti and its alloys are widely used for such an aim, in implants of a long duration they exhibit some shortcomings due to the loosening of the very implant. This phenomenon is highly dependent on the interaction between the organic tissues and the surface of the implant. In this study, the authors introduce a surface treatment technique for functionalization of the surface of Ti-6Al-4V alloy with amino groups that could help to control this interaction. The functionalized layer was deposited by activated vapor silanization (AVS), which has been proven as a reliable and robust technique with other materials. The resulting biofunctional layers were characterized by atomic force microscopy and fluorescence microscopy, with the optimal conditions for the deposition of a homogeneous film with a high density of amino groups being determined. Additionally, the non-toxic nature and stability of the biofunctional layer were confirmed by cell culturing. The results show the formation of a homogeneous biofunctional amine layer on Ti-6Al-4V alloy that may be used as a platform for the subsequent covalent immobilization of proteins or other biomolecules.

  12. Wear behaviour of the couple polyethylene Ti6Al4V: Effects of the metallic surface preparation and nitrogen implantation

    Science.gov (United States)

    Martinella, R.; Giovanardi, S.; Palombarini, G.; Corchia, M.; Delogu, P.; Giorgi, R.; Tosello, C.

    The wear behaviour improvement of the tribological couple Ti6Al4V-UHMWPE is of great interest to the medical field. Wear tests were carried out in water on a reciprocating UHMWPE annulus on implanted Ti6Al4V disc tribotestcr, with loads and velocities simulating those of hip joints. A comparison of wear behaviours was also carried out between untreated Ti6Al4V samples and Ti6Al4V subjected to a special lapping procedure. UHMWPE worn against ion-implanted and especially lapped Ti alloy showed the lowest wear rate, while, the highest (about one order of magnitude) was shown by the UHMWPE against untreated Ti6Al4V samples. XPS and AES surface analyses were carried out on metallic discs to examine the chemical composition of the surface before wear tests. Moreover depth distribution of nitrogen in implanted samples was determined using the same techniques. SEM observations displayed a polyethylene transfer film on all metallic surfaces, particularly on untreated Ti6Al4V samples. A discussion about uselessness of more conventional surface treatments for the Ti alloy is also reported.

  13. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2018-03-01

    Full Text Available Surface texture (ST has been confirmed as an effective and economical surface treatment technique that can be applied to a great range of materials and presents growing interests in various engineering fields. Ti6Al4V which is the most frequently and successfully used titanium alloy has long been restricted in tribological-related operations due to the shortcomings of low surface hardness, high friction coefficient, and poor abrasive wear resistance. Ti6Al4V has benefited from surface texture-based surface treatments over the last decade. This review begins with a brief introduction, analysis approaches, and processing methods of surface texture. The specific applications of the surface texture-based surface treatments for improving surface performance of Ti6Al4V are thoroughly reviewed from the point of view of tribology and biology.

  14. Evaluation of shot peening on the fatigue strength of anodized Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Costa Midori Yoshikawa Pitanga

    2006-01-01

    Full Text Available The increasingly design requirements for modern engineering applications resulted in the development of new materials with improved mechanical properties. Low density, combined with excellent weight/strength ratio as well as corrosion resistance, make the titanium attractive for application in landing gears. Fatigue control is a fundamental parameter to be considered in the development of mechanical components. The aim of this research is to analyze the fatigue behavior of anodized Ti-6Al-4V alloy and the influence of shot peening pre treatment on the experimental data. Axial fatigue tests (R = 0.1 were performed, and a significant reduction in the fatigue strength of anodized Ti-6Al-4V was observed. The shot peening superficial treatment, which objective is to create a compressive residual stress field in the surface layers, showed efficiency to increase the fatigue life of anodized material. Experimental data were represented by S-N curves. Scanning electron microscopy technique (SEM was used to observe crack origin sites.

  15. Characterization and Bone Differentiation of Nanoporous Structure Fabricated on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Yingmin Su

    2015-01-01

    Full Text Available The optimal temperature for the alkaline treatment and subsequent heat treatment is determined to optimize the nanoporous structures formed on Ti6Al4V titanium alloy plates. Surface characterization of the alkali-heat treated samples was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The effects of heating temperatures on albumin adhesion, rat bone marrow mesenchymal stem cells (BMMSCs adhesion, alkaline phosphatase activity, osteocalcin production, calcium deposition, and Runx2 mRNA expression were evaluated. The nanotopography, surface chemistry, and surface roughness were unchanged even after heat treatments at 200, 400, and 600°C. Only the amorphous sodium titanate phase changed, increasing with the temperature of the heat treatments, which played a crucial role in promoting superior cell adhesion on the nanoporous surface compared with the sodium hydrogen titanate obtained by a single alkali treatment. The heat treatment at 800°C did not enhance cell attachment on the surface because the nanostructure was dramatically destroyed with the reappearance of Al and V. This study reveals that nanoporous structures with amorphous sodium titanate were fabricated on Ti6Al4V surface through an amended alkali-heat treatment process to improve BMMSCs adhesion.

  16. Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder

    Science.gov (United States)

    Gong, Haijun; Dilip, J. J. S.; Yang, Li; Teng, Chong; Stucker, Brent

    2017-12-01

    The particle size distribution and powder morphology of metallic powders have an important effect on powder bed fusion based additive manufacturing processes, such as selective laser melting (SLM). The process development and parameter optimization require a fundamental understanding of the influence of powder on SLM. This study introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of small particles, for SLM. The influence of small particle inclusion is investigated through microscopy of surface topography, elemental and microstructural analysis, and mechanical testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser energy absorption, which may develop imperfections and deteriorate the SLM fatigue performance.

  17. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.

    Science.gov (United States)

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-10-27

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  18. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    Directory of Open Access Journals (Sweden)

    Xiaotong Ye

    2017-10-01

    Full Text Available Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM, having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  19. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Eylon, D.

    2004-01-01

    Due to its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloys are ranked among the most important advanced materials for a variety of aerospace, chemical engineering, biomaterials, marine and commercial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen-trapping interactions is necessary to better understand the trapping mechanisms, the types of the trap sites, the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the aerospace industry. The objective of this paper is to investigate the role of microstructure on hydrogen absorption/desorption behavior in Ti-6Al-4V alloy, with specific emphasis on the nature of the interaction between microstructural traps and hydrogen atoms. The effect of low fugacity hydrogen on the microstructure is studied using X-ray diffraction (XRD), and electron microscopy (SEM and TEM), while the absorption and desorption characteristics are determined by means of a hydrogen determinator and thermal desorption spectroscopy (TDS), respectively. The role of microstructure on hydrogen absorption and desorption behavior is discussed in detail

  20. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin, E-mail: qinlin@tyut.edu.cn; Yi, Hong; Kong, Fanyou; Ma, Hua; Guo, Lili; Tian, Linhai; Tang, Bin

    2017-05-01

    Highlights: • A molybdenized layer was prepared as a buffer layer under TiN film on Ti6Al4V. • The molybdenized layer can enhance adhesion strength of PVD coatings effectively. • The duplex treated samples increase elastic energy ratio in the impact tests. • The enhancement attributes to the hardness improvement and inverted-S shape elastic modulus profile of the modified layer. - Abstract: Effect of molybdenized buffer layer on adhesion strength of TiN film on Ti6Al4V alloy was investigated. The buffer layer composed of a dense molybdenum deposition layer, a rapid drop zone and a slow fall zone was prepared using double glow plasma surface alloying technique. Scratch tests and low energy repeated impact tests were adopted to comparatively evaluate the duplex treated layers and the single TiN samples. The results show that the critical load was increased from 62 N for the single TiN film to over 100 N for the duplex treated layer. The volume of impact pit, formed in impact tests, of the single TiN samples is 9.15 × 10{sup 6} μm{sup 3}, and about 1.5 times than that of the duplex treated samples. The Leeb hardness values reveal that about 70% impact energy was transferred to the single TiN samples to generate permanent deformation, while that was only about 47% for the duplex treated samples. The mechanism of improving adhesion strength is attributed to synergistic effect due to an inverted-S shape elastic modulus distribution produced by the molybdenized layer.

  1. A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun; Shi, Jiamin; Wang, Kuaishe; Wang, Wen; Wang, Qingjuan; Liu, Yingying [Xi' an Univ. of Architecture and Technology, Xi' an (China). School of Metallurgical Engineering; Li, Fuguo [Northwestern Polytechnical Univ., Xi' an (China). School of Materials Science and Engineering

    2017-07-15

    Constitutive analysis for hot working of Ti-6Al-4V alloy was carried out by using experimental stress-strain data from isothermal hot compression tests. A new kind of constitutive equation called a modified parallel constitutive model was proposed by considering the independent effects of strain, strain rate and temperature. The predicted flow stress data were compared with the experimental data. Statistical analysis was introduced to verify the validity of the developed constitutive equation. Subsequently, the accuracy of the proposed constitutive equations was evaluated by comparing with other constitutive models. The results showed that the developed modified parallel constitutive model based on multiple regression could predict flow stress of Ti-6Al-4V alloy with good correlation and generalization.

  2. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  3. The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Cerny, Frantisek [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Drahokoupil, Jan [Department of Metals, Institute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); Sepitka, Josef [Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Tolde, Zdenek [Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic)

    2015-01-25

    Highlights: • The Ti6Al4V samples were implanted with 90 keV nitrogen ions. • The samples were annealed at 500 °C during the ion implantation process. • An elevated temperature increases the mobility of the atoms and the quantity of TiN. • The hardness showed a significant increase compared to room temperature implantation. - Abstract: The effect of an elevated temperature during nitrogen ion implantation on the microstructure and on the surface hardness of Ti6Al4V titanium alloy was examined. The implantation process was carried out at fluences of 1 ⋅ 10{sup 17}, 2.7 ⋅ 10{sup 17} and 6 ⋅ 10{sup 17} cm{sup −2} and at ion energy 90 keV. The implanted samples were annealed at 500 °C during the implantation process. X-ray diffraction analysis was performed to obtain a phase characterization and a phase quantification in the implanted sample surface. The surface hardness was investigated by nanoindentation testing, and the nitrogen depth distribution was measured by Rutherford Backscattering Spectroscopy. Elevated temperature led to increased formation of a TiN compound. It was found that a mixture of TiN and an α-Ti(+N) solid solution had a predominant amount of TiN for samples with fluence of 2.7 ⋅ 10{sup 17} cm{sup −2} or higher. Elevated temperature during ion implantation caused an increase in surface hardening more towards the depth of the substrate in comparison with room temperature implantation. The hardness showed a remarkably significant increase at a fluence of 1 ⋅ 10{sup 17} and 2.7 ⋅ 10{sup 17} cm{sup −2} compared to samples implanted at the same fluences and at room temperature. There is a discussion of such mechanisms that explain the observed hardening more towards the depth of the substrate, and the increase in hardness.

  4. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  5. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  6. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    Science.gov (United States)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  7. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gaddam, R; Sefer, B; Pederson, R; Antti, M-L

    2013-01-01

    At temperatures exceeding 480°C titanium alloys generally oxidises and forms a hard and brittle layer enriched with oxygen, which is called alpha case. This layer has negative effects on several mechanical properties and lowers the tensile ductility and the fatigue resistance. Therefore any alpha-case formed on titanium alloys during various manufacturing processes, such as heat treatment procedures, must be removed before the final part is mounted in an engine. In addition, long time exposure at elevated temperatures during operation of an engine could possibly also lead to formation of alpha-case on actual parts, therefore knowledge and understanding of the alpha-case formation and its effect on mechanical properties is important. Factors that contribute for growth of alpha-case are: presence of oxygen, exposure time, temperature and pressure. In the present study, isothermal oxidation experiments in air were performed on forged Ti-6Al-2Sn-4Zr-2Mo at 500°C and 593°C up to 500 hours. Similar studies were also performed on Ti-6Al-4V plate at 593°C and 700°C. Alpha-case depth for both alloys was quantified using metallography techniques and compared

  8. Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten Hermann

    2015-05-01

    Full Text Available Direct metal laser sintering (DMLS is a selective laser melting (SLM manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactured metals. It presents DMLS-produced Ti-6Al-4V, a titanium alloy often used in biomedical and aerospace applications. This paper also studies the effect of several heat treatments on the microstructure and mechanical properties of Ti-6Al-4V processed by SLM. It reports the achievable mechanical properties of the alloy, including quasi-static, crack growth behaviour, density and porosity distribution, and post-processing using various heat-treatment conditions.

  9. Resistance of direct metal laser sintered Ti6Al4V alloy against growth of fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Bača, A.; Nicoletto, G.

    2017-01-01

    Roč. 185, NOV (2017), s. 82-91 ISSN 0013-7944 Institutional support: RVO:68081723 Keywords : Titanium alloys * Ti6Al4V * Fatigue crack growth * Threshold value of stress intensity factor * Direct metal laser sintering Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013794417300292

  10. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  11. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.

    Science.gov (United States)

    Guitar, A; Vigna, G; Luppo, M I

    2009-04-01

    Thermohydrogen processing (THP), a technique in which hydrogen is used as a temporary alloying element, can refine the microstructure and improve the final mechanical properties of the Ti-6 Al-4V alloy. THP allows microstructural modification of titanium alloys near net shape such as biomaterial components obtained by powder metallurgy and castings, since it does not require mechanical working. Two THP, called THP-A and THP-B, have been evaluated in samples of Ti-6Al-4V with a coarse and lamellar microstructure typical of castings and powder metallurgy. The THP-A is based in the eutectoid decomposition of the beta(H) phase to alpha phase and hydride phase. The THP-B is based in the isothermal decomposition of alpha('') martensite phase, obtained by quenching of hydrogenated samples. The refinement of the microstructure due to THP has been evaluated by means of optical and electron microscopy. Tensile tests showed that while both processes were able to increase the strength of the alloy as compared with the starting material, the ductility in samples subjected to THP-B was severely reduced.

  12. Microstructure and tensile properties of Ti-6Al-4V alloys manufactured by selective laser melting with optimized processing parameters

    Science.gov (United States)

    Wang, L.; Ma, C.; Huang, J.; Ding, H. Y.; Chu, M. Q.

    2017-11-01

    Selective laser melting (SLM) is a precise additive manufacturing process that the metallic powders without binder are melted layer by layer to complex components using a high bright fiber laser. In the paper, Ti-6Al-4V alloy was fabricated by SLM and its microstructure and mechanical properties were investigated in order to evaluate the SLM process. The results show that the microstructure exists anisotropy between the horizontal and vertical section due to the occurrence of epitaxial growth, and the former microstructure seems equal-axis and the latter is column. Moreover, there is little difference in tensile test between the horizontal and vertical sections. Furthermore, the tensile properties of fabricated Ti-6Al-4V alloy by SLM are higher than the forged standard ones. However, the fatigue results show that there are some scatters, which need further investigation to define the fatigue initiation.

  13. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    Science.gov (United States)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  14. Microstructure and Properties of the Ti6Al4V/Inconel 625 Bimetal Obtained by Explosive Joining

    Science.gov (United States)

    Topolski, Krzysztof; Szulc, Zygmunt; Garbacz, Halina

    2016-08-01

    The study is concerned with the bimetallic plate composed of the Ti6Al4V and Inconel 625 alloys. The alloys were joined together using the explosive method with the aim to produce a bimetallic joint. The structure and the mechanical properties of the as-received raw Ti6Al4V and Inconel 625 alloys, the Ti6Al4V/Inconel 625 joint, and the joint after annealing (600 °C for 1 h) were examined. The samples observations were performed using a light microscope and a scanning electron microscope. The mechanical properties were estimated by microhardness measurements, tensile tests, and three-point bending tests. Moreover, the deformation strengthening of the metals and the strength of the joint were analyzed. The explosive process resulted in a good quality bimetallic joint. Both sheets were deformed plastically and the joint surface between the alloys had a wavy shape. In the area of the joint surface, the hardness was increased. For example, the annealing at 600 °C for 1 h resulted in changes of the microhardness in the entire volume of the samples and in changes of the morphology of the joint surface. In three-point bending tests, the samples were examined in two opposite positions (Ti6Al4V on the top or Inconel 625 on the top). The results indicated to depend on the position in which the sample was tested.

  15. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  16. Mechanical and chemical analyses across dental porcelain fused to CP titanium or Ti6Al4V

    International Nuclear Information System (INIS)

    Souza, Júlio C.M.; Henriques, Bruno; Ariza, Edith; Martinelli, Antonio E.; Nascimento, Rubens M.; Silva, Filipe S.; Rocha, Luís A.; Celis, Jean-Pierre

    2014-01-01

    The aim of this study was to evaluate the evolution of mechanical properties and chemical variation across veneering dental porcelain fused to different titanium-based substrates. Test samples were synthesized by fusing dental feldspar-based porcelain onto commercially pure titanium grade II or Ti6Al4V alloy. Samples were cross-sectioned at angles of 10 and 90° to the interface plane. Afterwards, nanoindentation tests and Scanning Electron Microscopy (SEM) imaging coupled to an Energy Dispersive Spectroscopy (EDS) system were carried out across interfaces extending from the metal towards the porcelain area. Elemental diffusion profiles across the porcelain-to-metal interfaces were also obtained by EDS analysis. The mismatch in mechanical properties found in porcelain-to-Ti6Al4V interfaces was lower than that of porcelain-to-CP titanium. Cracking was noticed at low-thickness veneering dental porcelain regions after the nanoindentation tests of samples cross-sectioned at low angles to the interface plane. A wide reaction zone between titanium and porcelain as well as higher incidence of defects was noticed at the porcelain-to-CP titanium interfaces. This study confirmed Ti6Al4V as an improved alternative to CP-titanium as it showed to establish a better interface with the veneering dental porcelain considering the slight chemical interaction and the lower mechanical properties mismatch. The elastic modulus of porcelain-to-Ti6Al4V samples showed to be less sensitive to porcelain thickness variations. - Highlights: • This study reveals mechanical and chemical behaviors across porcelain/titanium interfaces. • Cracks were noticed after nanoindentation on thin porcelain layers. • Ti6Al4V/porcelain showed a better mechanical behavior than that at CP-Ti/porcelain

  17. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-01-01

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  18. SCC and Corrosion Fatigue characterization of a Ti-6Al-4V alloy in a corrosive environment – experiments and numerical models

    Directory of Open Access Journals (Sweden)

    S. Baragetti

    2014-10-01

    Full Text Available In the present article, a review of the complete characterization in different aggressive media of a Ti-6Al-4V titanium alloy, performed by the Structural Mechanics Laboratory of the University of Bergamo, is presented. The light alloy has been investigated in terms of corrosion fatigue, by axial fatigue testing (R = 0.1 of smooth and notched flat dogbone specimens in laboratory air, 3.5% wt. NaCl–water mixture and methanol–water mixture at different concentrations. The first corrosive medium reproduced a marine environment, while the latter was used as a reference aggressive environment. Results showed that a certain corrosion fatigue resistance is found in a salt water medium, while the methanol environment caused a significant drop – from 23% to 55% in terms of limiting stress reduction – of the fatigue resistance of the Ti-6Al-4V alloy, even for a solution containing 5% of methanol. A Stress Corrosion Cracking (SCC experimental campaign at different methanol concentrations has been conducted over slightly notched dog-bone specimens (Kt = 1.18, to characterize the corrosion resistance of the alloy under quasi-static load conditions. Finally, crack propagation models have been implemented to predict the crack propagation rates for smooth specimens, by using Paris, Walker and Kato-Deng-Inoue-Takatsu propagation formulae. The different outcomes from the forecasting numerical models were compared with experimental results, proposing modeling procedures for the numerical simulation of fatigue behavior of a Ti-6Al-4V alloy.

  19. Effect of bimodal grain size distribution on fatigue properties of Ti-6Al-4V alloy with harmonic structure under four-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Hayami, Yosuke; Ishiguri, Takayuki [Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Guennec, Benjamin; Ueno, Akira; Ota, Mie; Ameyama, Kei [Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2017-02-27

    Titanium alloy (Ti-6Al-4V) with a bimodal harmonic structure, which is defined as a coarse-grained structure surrounded by a network structure of fine grains, was fabricated using powder metallurgy to improve both the strength and ductility. The microstructure of the sintered compacts was characterized using electron backscattered diffraction (EBSD). The areal fraction of the fine-grained structure in the harmonic structure tended to increase with the milling time. Tensile tests and four-point bending fatigue tests at a stress ratio of 0.1 were performed in air at room temperature. The tensile strength, 0.2% proof stress and fatigue limit of Ti-6Al-4V alloy with harmonic structure tended to increase as the areal fraction of the fine-grained structure increased. In contrast, elongation decreased due to the formation of a high areal fraction of the fine-grained structure (79.0%), which resulted in a reduction of the fatigue life with a low cycle regime. Thus, titanium alloy with high strength, ductility and fatigue resistance can be formed by optimization of the milling conditions. Furthermore, the mechanism for fatigue fracture of the Ti-6Al-4V alloy with a harmonic structure is discussed with respect to fractography and crystallography. A fatigue crack was initiated from the α-facet of the coarse-grained structure in the harmonic structure.

  20. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Directory of Open Access Journals (Sweden)

    Samar Reda Al-Sayed Ali

    2017-10-01

    Full Text Available Laser cladding process was performed on a commercial Ti-6Al-4V (α + β titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD. The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  1. Improved tribological behavior of boron implanted Ti-6Al-4V

    International Nuclear Information System (INIS)

    Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-03-01

    Boron implanted of Ti6Al4V has been conducted at combinations of 32 and 40 keV to supplement that done previously at 75 keV. Shallower boron depth profiles with higher B-concentrations in the Ti64 surface have been obtained by tailoring the combinations of ion energy and dose. This work used three different ion energy and dose combinations of 4 x 10 17 B-at/cm 2 at 40 keV plus 2 x 10 17 B-at/cm 2 at 32 keV, 4 x 10 17 B-at/cm 2 at 40 keV, and 4 x 10 17 B-at/cm 2 at 32 keV plus 2 x 10 17 B-at/cm 2 at 40 keV. Comparisons are made between Ti6Al4V with a shallow implanted boron depth profile, Ti6Al4V with a deeper boron depth profile and nitrogen implanted using a plasma source ion implantation process. It has been previously shown that while boron implanted Ti64 has a ∼ 30% higher surface hardness than nitrogen implanted Ti64, the N-implantation reduced the wear coefficient of Ti64 by 25--120x, while B-implantation reduced the wear coefficient by 6.5x or less. The results show that no significant improvement is made in the wear resistance of boron implanted Ti6Al4V by increasing the concentration of boron at the surface from approximately 10% to 43%. Transmission electron microscopy (TEM) and selected area diffraction (SAD) indicated the formation of crystalline TiB in the implanted surface layer. Shallower depth profiles result in reductions of the Ti6Al4V wear coefficient by 6.5x or less which is the same result obtained earlier with the deeper boron depth profile. Surface hardness of Ti6Al4V with shallower boron depth profiles was improved approximately 10% compared to the results previously acquired with deeper boron depth profiles

  2. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    Science.gov (United States)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  3. Interfacial reactions in Ti-6Al-4V with laser-embedded SiC particles and the origin of intergranular corrosion susceptibility of an Al-Mg alloy

    NARCIS (Netherlands)

    Kooi, BJ; De Hosson, JTM; Carter, CB; Hall, EL; Nutt,; Briant, CL

    2000-01-01

    In the first part of the paper the microstructure of Ti-6Al-4V with laser embedded SiC particle is explained. The interfacial reaction between Ti and SiC is responsible for the largely improved wear resistance of the Ti alloy. In the second part the phase responsible for the intergranular corrosion

  4. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    Science.gov (United States)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  5. Effect of microstructure and cutting speed on machining behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Telrandhe, Sagar V.; Mishra, Sushil; Saxena, Ashish K. [Indian Institute of Technology Bombay, Mumbai (India)

    2017-05-15

    Machining of aerospace and biomedical grade titanium alloys has always been a challenge because of their low conductivity and elastic modulus. Different machining methods and parameters have been adopted for high precision machining of titanium alloys. Machining of titanium alloys can be improved by microstructure optimization. The present study focuses on the effect of microstructure on ma- chinability of Ti6Al4V alloys at different cutting speeds. Samples were subjected to different annealing conditions resulting in different grain sizes and local micro-strains (misorientation). Cutting forces were significantly reduced after annealing; consequently, sub-surface residual stresses were reduced. Deformation twinning was also observed on samples annealed at a higher temperature due to larger grain size. Initial strain free grains and deformation twinning during machining reduces the cutting force at higher cutting speed.

  6. Morphologies of nanostructured TiO{sub 2} doped with F on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matykina, E.; Hernandez-Lopez, J.M.; Conde, A. [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Damborenea, J.J. de [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Arenas, M.A., E-mail: geles@cenim.csic.e [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2011-02-01

    The formation of nanotubes in sulphuric/hydrofluoric acid electrolyte at controlled voltage is investigated on Ti-6Al-4V alloy used for load-bearing prosthetic applications. The effects of anodizing time and voltage on film morphology, composition and microstructure are studied by scanning and transmission electron microscopy, Rutherford backscattering spectroscopy (RBS), and Raman spectroscopy. Fluorine content in the films was of a particular interest for enhancement of antibacterial properties of the surface. The efficiencies of film formation are determined as about 40% and 80% for anodizing at 20 V and 60 V respectively for shorter anodizing time and as about 1 and 5% for longer anodizing time. For 5 min of anodizing, higher voltage conditions results in a thicker barrier layer. At extended anodizing time a further disruption of the nanotubular morphology and formation of approximately 1.5 {mu}m-thick nanoporous film is promoted. The films grown at 20 V contain from 4 at.% to 6 at.% of fluorine. RBS detects about 13 at.% of fluorine incorporated in the film formed at 60 V for 60 min, possibly associated with a greater film thickness. The oxide film material consists of amorphous titania matrix doped with V{sub 2}O{sub 5} and Al{sub 2}O{sub 3}.

  7. A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Andong National University, Andong (Korea, Republic of)

    2009-08-15

    Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by are melting and heat treatment, was studied in 0.9 wt% NaCl at 37{+-}1 .deg. C, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

  8. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    OpenAIRE

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the ph...

  9. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Obadele, Babatunde Abiodun, E-mail: obadele4@gmail.com [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Olubambi, Peter A. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Andrews, Anthony [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Pityana, Sisa [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); National Laser Center, Council for Scientific and Industrial Research, Pretoria (South Africa); Mathew, Mathew T. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 (United States)

    2015-10-15

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed.

  10. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Olubambi, Peter A.; Andrews, Anthony; Pityana, Sisa; Mathew, Mathew T.

    2015-01-01

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed

  11. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Thermo-hydrogenating treatments in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Guitar, A; Domizzi, G; Luppo, M.I; Vigna, G

    2006-01-01

    The production of components of Ti alloys, specifically Ti-6Al-4V, involves some difficulties in obtaining the final desired microstructure, producing decrease in the material's mechanical properties. In the specific case of materials to be used for surgical implants an equiaxial fine grain microstructure of α phase a with an homogenously precipitated β phase is needed. The modification of certain microstructural features is not possible based on simple thermal treatments. Thermomechanical treatments are effective for transforming the lamellar α phase into equiaxial α, but these methods include major deformations in the (α + β) two-phase field. In order to avoid this stage, thermo-hydrogenating processes were used (THP). The THP involve a treatment of β solubilization before, during or after the hydrogenation, a possible isothermal treatment below the β hydrogenated transus temperature and the final vacuum dehydrogenation. The development of treatments using hydrogen as a temporary alloying element creates a new class of microstructures, which are finer than equiaxial structures and respond well to resistance to traction and fatigue. Since the THP do not include the working of the material to control the microstructure, they are more appropriate for use with shaped components close to the end, like those obtained by powder metallurgy or smelting. Different thermo-hydrogenating treatments in Ti-6Al-4V to modify the microstructure were studied. Final microstructures of α fine phase and β disperse phase were obtained using THP in samples with initial lamellar α phase separated by thin sheets of β phase. The characterization of the initial material and of the transformed material was carried out using optic and scanning electron microscopy (CW)

  13. Roughness Influence on Initiation of Fretting Fatigue Scar of Ti-6Al-4V Alloy

    Science.gov (United States)

    Capitanu, L.; Badita, L. L.; Florescu, V.; Tiganesteanu, C.

    2018-01-01

    This paper reports on the experimental studies undertaken to detect the early stage when appears the fretting wear of the Ti-6Al-4V alloy used for the hip prostheses. Wear is a critical aspect for estimating the fretting fatigue. Studies were performed on samples of special shape, in order to be able to study the influence of in contact surfaces roughness on the durability to fretting. Fretting buffers, with roughnesses Ra of the contact surface of 0.015 and 0.045 μm, and Ti-6Al-4V samples with roughnesses Ra = 0.045 μm, Ra = 0.075 μm and Ra = 0.19 μm, were used. Testing periods of 3 seconds, 1 minute and 5 minutes were selected to capture the moment of the fretting scar appearance, long before these initiate the eventual fretting cracking. Simultaneously with fretting wear of the surface, the friction coefficient was also measured. From the in time evolution determinations of the fretting wear, it resulted that, under the experimental conditions used, the minimum wear occurs at a certain value of the roughness and not at the minimum roughness. Surprisingly, the minimum friction coefficient does not coincide with the minimum fretting wear.

  14. Effect of cryogenic treatment on the plastic property of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gu, K. X. [Key Laboratory of Cryogenics, TIPC, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, J. J.; Yuan, Z.; Zhang, H. [Key Laboratory of Cryogenics, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Li, Z. Q.; Zhao, B. [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China)

    2014-01-27

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. The results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.

  15. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  16. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  17. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  18. Microstructural influence on low-temperature superplasticity of ultrafine-grained Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ko, Young Gun; Kim, Woo Gyeom; Lee, Chong Soo; Shin, Dong Hyuk

    2005-01-01

    Microstructural influence on low-temperature superplastic behavior of ultrafine-grained Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) was investigated. The deformed structures were analyzed with the increment of strain by transmission electron microscopy. Also, a series of tensile tests were carried out on ultrafine-grained (UFG) samples to measure elongation at temperature of 973 K and at strain rates of 10 -4 to 10 -2 s -1 . The results indicated that elongation was significantly increased with increasing ECAP straining from 4 to 8 revealing more high-angle grain boundaries. Deformation mechanisms for UFG structure were analyzed in the context of inelastic deformation theory, which consisted of dislocation glide and grain boundary sliding

  19. Study of creep of Ti-6Al-4V alloy using plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Zepka, Susana; Yogi, Lucila Mayumi; Silva, Maria Margareth da; Reis, Danieli Aparecida Pereira; Moura Neto, Carlos de; Oliveira, Vinicius Souza de; Ueda, Mario

    2010-01-01

    This study aims to investigate the creep resistance of the Ti-6Al-4V alloy after surface modification by plasma immersion ion implantation (PIII). For the PIII treatment it was used nitrogen gas (ion implantation) to the formation of plasma, the material was treated for 100 minutes. After PIII treatment the samples were analyzed using the techniques of X-ray diffraction, spectrometry energy dispersive X-ray and atomic force microscopy. The creep tests were realized at 600°C, at constant load of 250 and 319 MPa. After the creep tests the samples were analyzed by optical microscopy and scanning electron microscopy. By chemical analysis by X-ray and EDS it is possible to determinate the Ti 2 N on the surface. Through the study of the creep curves it is observed an increasing in creep resistance of the alloy after PIII treatment. (author)

  20. Microstructure and sound velocity of Ti-N-O synthetic inclusions in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gigliotti, M.F.X.; Gilmore, R.S.; Perocchi, L.C.

    1994-01-01

    Nitrogen and oxygen stabilize the alpha phase in titanium. Regions within Ti alloy parts containing high local levels of N and O can stabilize a hard-alpha phase. The ultrasonic properties of titanium-nitrogen-oxygen inclusions within Ti-6Al-4V (Ti64) blocks were measured and related to inclusion chemistry. Sound velocities were measured on Ti-N-O alloy samples that had been prepared by powder metallurgy and ingot-melting techniques. The contributions to sound velocity from oxygen and nitrogen contents were determined. Then, Ti64 blocks were hot isostatic pressing (HIP) bonded to contain inclusions of the Ti-N-O alloys. The signal-to-noise ratios of reflections from uncracked inclusions were found to be an increasing function of inclusion interstitial content and were related to changes in sound velocity with inclusion chemistry. Measurements were made of the reflectance of titanium-nitrogen inclusions in titanium and Ti64

  1. The Possibility Of Use Of Laser-Modified Ti6Al4V Alloy In Friction Pairs In Endoprostheses

    Directory of Open Access Journals (Sweden)

    Majkowska B.

    2015-06-01

    Full Text Available The purpose of this paper is to show results of laser treatment at cryogenic conditions of the Ti6Al4V alloy used for orthopedic applications. That modification process ought to bring beneficial changes of microstructure and residual stresses in the surface layer. The paper presents the abrasive wear of the base and laser remelted material in association with ceramics Al2O3. Despite the surface cracking after laser treatment the tribological properties in simulated body fluid have been substantially improved.

  2. The Effect of Thermo-mechanical Processing on the Ballistic Limit Velocity of Extra Low Interstitial Titanium Alloy Ti-6AL- 4V

    National Research Council Canada - National Science Library

    Burkins, Matthew

    2000-01-01

    .... Department of Energy's Albany Research Center (ARC) performed a joint research program to evaluate the effect of thermo-mechanical processing on the ballistic limit velocity for an extra-low interstitial grade of the titanium alloy Ti-6Al-4V...

  3. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  4. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants.

    Science.gov (United States)

    Chandar, Sanchitha; Kotian, Ravindra; Madhyastha, Prashanthi; Kabekkodu, Shama Prasada; Rao, Padmalatha

    2017-01-01

    The aim of this study was to investigate the cytotoxicity in human gingival fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and corrosion behavior by potentiodynamic polarization technique of commercially pure titanium (Ti 12) and its alloy Ti-6Al-4V (Ti 31). In the present in vitro study, cytotoxicity of Ti 12 and Ti 31 in human gingival fibroblast by MTT assay and the corrosion behavior by potentiodynamic polarization technique in aqueous solutions of 0.1 N NaCl, 0.1 N KCl, and artificial saliva with and without NaF were studied. The independent t -test within materials and paired t-test with time interval showed higher cell viability for Ti 12 compared to Ti 31. Over a period, cell viability found to stabilize in both Ti 12 and Ti 31. The effects of ions of Ti and alloying elements aluminum and vanadium on the cell viability were found with incubation period of cells on samples to 72 h. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO 2 and additional metal oxides. The multiphase alloy Ti-6Al-4V showed more surface pitting. The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO 2 over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  5. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  6. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  7. Modification of surface morphology of Ti6Al4V alloy manufactured by Laser Sintering

    Science.gov (United States)

    Draganovská, Dagmar; Ižariková, Gabriela; Guzanová, Anna; Brezinová, Janette; Koncz, Juraj

    2016-06-01

    The paper deals with the evaluation of relation between roughness parameters of Ti6Al4V alloy produced by DMLS and modified by abrasive blasting. There were two types of blasting abrasives that were used - white corundum and Zirblast at three levels of air pressure. The effect of pressure on the value of individual roughness parameters and an influence of blasting media on the parameters for samples blasted by white corundum and Zirblast were evaluated by ANOVA. Based on the measured values, the correlation matrix was set and the standard of correlation statistic importance between the monitored parameters was determined from it. The correlation coefficient was also set.

  8. Characterization of Ti-6Al-4V produced via electron beam additive manufacturing

    Science.gov (United States)

    Hayes, Brian J.

    In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, alpha lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were conducted and the results were related to the microstructural morphology and sample orientation. Lastly, fractured surfaces and defects were investigated. The results of these activities provide insight into the process-structure-properties relationships found in EBAM processed Ti-6Al-4V.

  9. Minimization of the hole overcut and cylindricity errors during rotary ultrasonic drilling of Ti-6Al-4V

    Science.gov (United States)

    Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.

    2018-04-01

    Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.

  10. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Celik, Yahya Hisman; Yildiz, Hakan

    2016-01-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  11. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  12. Mechanical behavior and modelisation of Ti-6Al-4V titanium sheet under hot stamping conditions

    Science.gov (United States)

    Sirvin, Q.; Velay, V.; Bonnaire, R.; Penazzi, L.

    2017-10-01

    The Ti-6Al-4V titanium alloy is widely used for the manufacture of aeronautical and automotive parts (solid parts). In aeronautics, this alloy is employed for its excellent mechanical behavior associated with low density, outstanding corrosion resistance and good mechanical properties up to 600°C. It is especially used for the manufacture of fuselage frames, on the pylon for carrying out the primary structure (machining forged blocks) and the secondary structure in sheet form. In this last case, the sheet metal forming can be done through various methods: at room temperature by drawing operation, at very high temperature (≃900°C) by superplastic forming (SPF) and at intermediate temperature (≥750°C) by hot forming (HF). In order to reduce production costs and environmental troubles, the cycle times reduction associated with a decrease of temperature levels are relevant. This study focuses on the behavior modelling of Ti-6Al-4V alloy at temperatures above room temperature to obtained greater formability and below SPF condition to reduce tools workshop and energy costs. The displacement field measurement obtained by Digital Image Correlation (DIC) is based on innovative surface preparation pattern adapted to high temperature exposures. Different material parameters are identified to define a model able to predict the mechanical behavior of Ti-6Al-4V alloy under hot stamping conditions. The hardening plastic model identified is introduced in FEM to simulate an omega shape forming operation.

  13. Influence of trace boron addition on the directional solidification characteristics of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Srinivasan, Raghavan; Tamirisakandala, Sesh

    2010-01-01

    Trace boron addition to several titanium alloys results in a reduction in the as-cast grain size by an order of magnitude. TiB needles are observed along the prior beta grain boundaries and not the grain interior in these alloys, indicating that TiB needles are not sites for the heterogeneous nucleation of beta grains. This study seeks to understand the influence of the growth rate R on microstructure evolution and grain refinement in Ti-6Al-4V-0.1B alloy using directional solidification experiments and microstructural characterization.

  14. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    Science.gov (United States)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  15. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  16. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    Science.gov (United States)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2017-11-01

    Full Text Available Tribological phenomena and tool wear mechanisms during machining of hard-to-cut TiAl6V4 aerospace alloy have been investigated in detail. Since cutting tool wear is directly affected by tribological phenomena occurring between the surfaces of the workpiece and the cutting tool, the performance of the cutting tool is strongly associated with the conditions of the machining process. The present work shows the effect of different machining conditions on the tribological and wear performance of TiB2-coated cutting tools compared to uncoated carbide tools. FEM modeling of the temperature profile on the friction surface was performed for wet machining conditions under varying cutting parameters. Comprehensive characterization of the TiB2 coated vs. uncoated cutting tool wear performance was made using optical 3D imaging, SEM/EDX and XPS methods respectively. The results obtained were linked to the FEM modeling. The studies carried out show that during machining of the TiAl6V4 alloy, the efficiency of the TiB2 coating application for carbide cutting tools strongly depends on cutting conditions. The TiB2 coating is very efficient under roughing at low speeds (with strong buildup edge formation. In contrast, it shows similar wear performance to the uncoated tool under finishing operations at higher cutting speeds when cratering wear predominates.

  18. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  19. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  20. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    International Nuclear Information System (INIS)

    Vasilescu, C.; Drob, P.; Vasilescu, E.; Demetrescu, I.; Ionita, D.; Prodana, M.; Drob, S.I.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. → For covered alloy the equivalent circuit contains two time constants. → Resistances of films increased in time revealing the improvement of the alloy protection capacity. → Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  1. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al-4V-1Zr alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasilescu, C.; Drob, P. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Vasilescu, E., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania); Demetrescu, I.; Ionita, D.; Prodana, M. [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, Str. Polizu 1-7, 011061 Bucharest (Romania); Drob, S.I. [Institute of Physical Chemistry ' Ilie Murgulescu' of Romanian Academy, Spl. Independentei 202, P.O. Box 12-194, 060021 Bucharest (Romania)

    2011-03-15

    Graphical abstract: Display Omitted Research highlights: {yields} EIS spectra for Ti6Al4V1Zr alloy were fitted with one time constant electric equivalent circuit. {yields} For covered alloy the equivalent circuit contains two time constants. {yields} Resistances of films increased in time revealing the improvement of the alloy protection capacity. {yields} Surface roughness significantly increased by apatite formation, being favourably to cell adhesion. - Abstract: A new titanium base Ti-6Al-4V-1Zr alloy covered with hydroxyapatite or bovine serum albumin/hydroxyapatite was characterized in this paper in order to be used as implant material. Following techniques were used: linear polarization, electrochemical impedance spectroscopy, scanning electronic microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. For HA or BSA/HA covered alloy, the electric equivalent circuit contains two time constants (for the passive film and for coatings). The resistance of the protective films increased in time and BSA/HA coating was slightly rougher than HA coating, this situation being favourably to the cell adhesion.

  2. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Lai, Pang-Hsin

    2016-03-21

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  3. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Wu, Ming-Wei; Lai, Pang-Hsin

    2016-01-01

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  4. Propriedades mecânicas e resistência à corrosão da liga Ti-4Al-4V obtida da reciclagem da liga Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Jesuíno G.A.

    2001-01-01

    Full Text Available The present work aimed to study the transformation from as-cast structure of the Ti4Al-4V alloy, as a result of the Ti-6Al-4V recycling, after some rapid heat treatments based on martensitic reactions. The effects on mechanical properties were evaluated by Vickers hardness measurements, Charpy and monotonic tensile tests. The corrosion strength was tested by immersion during 4 months in artificial physiological solutions, to evaluate its possible use as a biomaterial. The data pointed to: a a reduction on corrosion strength for quenching above beta transus; b significant increasing on hardness and mechanical strength; c a maintenance of impact toughness; d the corrosion strength for immersion in a NaCl 1%+ NaF 0,1% (m/m was lower in all conditions, specially for those including heating to 900 °C.

  5. Environmentally clean micromilling of electron beam melted Ti6Al4V

    DEFF Research Database (Denmark)

    Bruschi, S.; Tristo, G.; Rysava, Z.

    2016-01-01

    The paper is aimed at evaluating the performances of Minimum Quantity Lubrication (MQL), dry cutting and cryogenic cooling when applied to the micro-milling of Ti6Al4V titanium alloy samples obtained by Additive Manufacturing (AM) using the Electron Beam Melting (EBM) technology. The micro...... alterations, in order to prove the impact of clean cutting conditions when applied to micro-machining of a AM titanium alloy of biomedical interest. It is shown that dry cutting assures the same performances of MQL, representing then the most suitable option to decrease the environmental impact...

  6. Effect of ageing treatment on the microstructure and hardness of the Ti6Al4V Alloy

    CSIR Research Space (South Africa)

    Masete, S

    2015-07-01

    Full Text Available Forum Vols. 828-829 (2015) pp 194-199 Effect of Ageing Treatment on the Microstructure and Hardness of the Ti6Al4V Alloy MASETE Stephen1,2,a *, MUTOMBO Kalenda1,2,b SIYASIYA Charles2,c and STUMPF Waldo2,d 1Materials Science and Manufacturing..., Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa 2Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria, South Africa aSMasete@csir.co.za, bKMutombo@csir.co.za, cCharles...

  7. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  8. The Tribological Performance of Surface Treated Ti6A14V as Sliding Against Si3N4 Ball and 316L Stainless Steel Cylinder

    Science.gov (United States)

    Kao, W. H.; Su, Y. L.; Horng, J. H.; Huang, H. C.

    2016-12-01

    Closed field unbalanced magnetron sputtering was used to deposit diamond-like carbon (Ti-C:H) coatings on Ti6Al4V alloy and gas nitrided Ti6Al4V alloy. Four different specimens were prepared, namely untreated Ti6Al4V alloy (Ti6Al4V), gas nitrided Ti6Al4V alloy (N-Ti6Al4V), Ti-C:H-coated Ti6Al4V alloy (Ti-C:H/Ti6Al4V) and Ti-C:H-coated gas nitrided Ti6Al4V alloy (Ti-C:H/N-Ti6Al4V). The tribological properties of the four specimens were evaluated using a reciprocating wear tester sliding against a Si3N4 ball (point contact mode) and 316L stainless steel cylinder (line contact mode). The wear tests were performed in a 0.89 wt.% NaCl solution. The results showed that the nitriding treatment increased the surface roughness and hardness of the Ti6Al4V alloy and improved the wear resistance as a result. In addition, the Ti-C:H coating also improved the tribological performance of Ti6Al4V. For example, compared to the untreated Ti6Al4V sample, the Ti-C:H coating reduced the wear depth and friction coefficient by 340 times and 10 times, respectively, in the point contact wear mode, and 151 times and 9 times, respectively, in the line contact wear mode. It is thus inferred that diamond-like carbon coatings are of significant benefit in extending the service life of artificial biomedical implants.

  9. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Damborenea, J.J. de, E-mail: jdambo@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain); Arenas, M.A. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain); Larosa, Maria Aparecida; Jardini, André Luiz [National Institute of Biofabrication (INCT-BIOFABRIS), State of University of Campinas (UNICAMP), Campinas (Brazil); School of Chemical Engineering, State of University of Campinas (UNICAMP), Campinas (Brazil); Carvalho Zavaglia, Cecília Amélia de [National Institute of Biofabrication (INCT-BIOFABRIS), State of University of Campinas (UNICAMP), Campinas (Brazil); Faculty of Mechanical Engineering, State of University of Campinas (UNICAMP), Campinas (Brazil); Conde, A. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain)

    2017-01-30

    Highlights: • Pins of Ti6Al4V have been produced by DMLS technique. • Corrosion behavior of pins is similar to Ti6Al4V commercial Kirschner wires. • Formation of voluminous white oxide can appear at potentials higher than 2.4 V. • Defects originated during processing may cause this unusual behavior. - Abstract: Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects—that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  10. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Arenas, M.A.; Larosa, Maria Aparecida; Jardini, André Luiz; Carvalho Zavaglia, Cecília Amélia de; Conde, A.

    2017-01-01

    Highlights: • Pins of Ti6Al4V have been produced by DMLS technique. • Corrosion behavior of pins is similar to Ti6Al4V commercial Kirschner wires. • Formation of voluminous white oxide can appear at potentials higher than 2.4 V. • Defects originated during processing may cause this unusual behavior. - Abstract: Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects—that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  11. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.

    Science.gov (United States)

    Campanelli, Leonardo Contri; Bortolan, Carolina Catanio; da Silva, Paulo Sergio Carvalho Pereira; Bolfarini, Claudemiro; Oliveira, Nilson Tadeu Camarinho

    2017-01-01

    An array of self-organized TiO 2 nanotubes with an amorphous structure was produced on the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, and the resulting fatigue and corrosion behaviors were studied. The electrochemical response of the nanotubular oxide surfaces was investigated in Ringer physiological solution through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The absence of transpassivation in the chloride-containing solution, in addition to the micron-scale values of the passivation current density, indicated the excellent corrosion behavior of the coating and the satisfactory protection against the creation of potential stress concentrators in the surface. Axial fatigue tests were performed in physiological solution on polished and coated conditions, with characterization of the treated surfaces by scanning electron microscopy before and after the tests. The surface modification was not deleterious to the fatigue response of both alloys mainly due to the nano-scale dimension of the nanotubes layer. An estimation based on fracture mechanics revealed that a circumferential crack in the range of 5μm depth would be necessary to affect the fatigue performance, which is far from the thickness of the studied coating, although no cracks were actually observed in the oxide surfaces after the tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    Science.gov (United States)

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Further Investigation Into the Use of Laser Surface Preparation of Ti-6Al-4V Alloy for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Crow, Allison; Zetterberg, Anna; Hopkins, John; Wohl, Christopher J.; Connell, John W.; Belcher, Tony; Blohowiak, Kay Y.

    2014-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires robust materials and processing methodologies before it can be incorporated in primary structures for aerospace applications. Surface preparation is widely recognized as one of the key steps to producing robust and predictable bonds. This report documents an ongoing investigation of a surface preparation technique based on Nd:YAG laser ablation as a replacement for the chemical etch and/or abrasive processes currently applied to Ti-6Al-4V alloys. Laser ablation imparts both topographical and chemical changes to a surface that can lead to increased bond durability. A laser based process provides an alternative to chemical-immersion, manual abrasion, and grit blast process steps which are expensive, hazardous, environmentally unfriendly, and less precise. In addition, laser ablation is amenable to process automation, which can improve reproducibility to meet quality standards for surface preparation. An update on work involving adhesive property testing, surface characterization, surface stability, and the effect of laser surface treatment on fatigue behavior is presented. Based on the tests conducted, laser surface treatment is a viable replacement for the immersion chemical surface treatment processes. Testing also showed that the fatigue behavior of the Ti-6Al-4V alloy is comparable for surfaces treated with either laser ablation or chemical surface treatment.

  14. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    Directory of Open Access Journals (Sweden)

    Moćko Wojciech

    2015-01-01

    Full Text Available The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2 and titanium alloy Ti6Al4V (Grade 5 were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  15. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  16. Dynamic behaviour of TM380 mild steel and Ti6Al4V alloy subjected to blast loading

    CSIR Research Space (South Africa)

    Shoke, Lerato

    2016-10-01

    Full Text Available and Base Metals Development Network Conference 2016, 19-20 October 2016, KwaZulu Natal, Maharani Hotel Dynamic behaviour of TM380 mild steel and Ti6Al4V alloy subjected to blast loading L. Shoke,1* K. Mutombo2, I.M. Snyman1 and T. Sono1 1... Landwards Sciences, Defence Peace Safety and Security (DPSS), 2 Material Sciences and Manufacturing (MSM), Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa Lshoke@csir.co.za Abstract This paper deals...

  17. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  18. Effect of anisotropy on mechanical properties of Ti-6Al-4V in superplastic region

    Science.gov (United States)

    Wahed, MA; Gupta, AK; Singh, SK; Kotkunde, N.

    2018-04-01

    This paper presents an experimental investigation on the flow stress behaviour of Ti-6Al-4V alloy at elevated temperatures and very low strain rate. Though Ti-6Al-4V alloy is very hard to deform at room temperature, having only about 16 % elongation, it exhibits super-plasticity at elevated temperatures. To investigate this, the tensile tests were conducted from 700°C to 900°C temperatures at an interval of 50°C and at a very low strain rate 0.0001/s along three different directions: rolling direction, 45° to rolling direction and transverse direction. The experimental study shows more than 50% elongation in all the cases and particularly more than 250% elongation at 0.0001 / s strain rate and at 750°C to 900°C temperature in all directions, which is an indication of super-plasticity in the material. This is also corroborated by the microstructural study of the fractured specimens.

  19. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

    Science.gov (United States)

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2008-01-01

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431

  20. In-vivo degradation mechanism of Ti-6Al-4V hip joints

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2011-01-01

    In-vivo exposed Ti-6Al-4V implants were investigated to determine the degradation mechanism occurring during the articulating movements of the hip joint in the human body. Failed implants were compared to Ti-6Al-4V samples, which were tested in the laboratory for their tribocorrosion performance....... The results strongly indicate that degradation of Ti-6Al-4V has occurred with the same mechanism for both the implants and the laboratory tested samples and, hence, block-on-ring tribocorrosion testing was found to be a useful tool for mimicking the degradation occurring in the body.The degradation mechanism...

  1. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Srinivasan, Balaji; Rao, Balkrishna C; Ramachandra Rao, M S

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min −1 with a lower feed and a lower depth of cut of 0.5 mm rev −1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength. (paper)

  2. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  3. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  4. Macrophages adhesion rate on Ti-6Al-4V substrates: polishing and DLC coating effects

    Directory of Open Access Journals (Sweden)

    Everton Diniz dos Santos

    Full Text Available Abstract Introduction Various works have shown that diamond-like carbon (DLC coatings are able to improve the cells adhesion on prosthesis material and also cause protection against the physical wear. On the other hand there are reports about the effect of substrate polishing, in evidence of that roughness can enhance cell adhesion. In order to compare and quantify the joint effects of both factors, i.e, polishing and DLC coating, a commonly prosthesis material, the Ti-6Al-4V alloy, was used as raw material for substrates in our studies of macrophage cell adhesion rate on rough and polished samples, coated and uncoated with DLC. Methods The films were produced by PECVD technique on Ti-6Al-4V substrates and characterized by optical profilometry, scanning electron microscopy and Raman spectroscopy. The amount of cells was measured by particle analysis in IMAGE J software. Cytotoxicity tests were also carried out to infer the biocompatibility of the samples. Results The results showed that higher the surface roughness of the alloy, higher are the cells fixing on the samples surface, moreover group of samples with DLC favored the cell adhesion more than their respective uncoated groups. The cytotoxity tests confirmed that all samples were biocompatible independently of being polished or coated with DLC. Conclusion From the observed results, it was found that the rougher substrate coated with DLC showed a higher cell adhesion than the polished samples, either coated or uncoated with the film. It is concluded that the roughness of the Ti-6Al-4V alloy and the DLC coating act complementary to enhance cell adhesion.

  5. Chemically milled alpha-case layer from Ti-6Al-4V alloy investment cast

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-06-01

    Full Text Available The as cast Ti6Al4V, obtained after investment casting with yttria stabilized zirconia face-coat, was chemically milled using a mixture of hydrofluoric acid and nitric acid. This process removed completely the alpha-case layer. Lower hardness...

  6. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    Science.gov (United States)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  7. Influence of microstructure and mean stress on the fatique behaviour of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Steele, R.K.; McEvily, A.J.

    1977-01-01

    In previous fatigue studies of Ti-6Al-4V bar stock and forgings a number of findings of interest were encountered. These findings include the sub-surface initiation of fatigue cracks, a strong Bauschinger effect, cyclic softening, an influence of microstructural size on resistance to fatigue (particularly at R=0), and a dependency of cyclic-stress strain behavior on loading path. The present paper extends the work of the earlier investigations to cover a wider range of microstructures as well as cyclic loading conditions. The basic materials are forging and bar stock of the Ti-6Al-4V alloy with microstructural variations being achieved by different heat treating procedures. (Auth.)

  8. Microstructure of Ti6Al4V reinforced by coating W particles through laser metal deposition

    CSIR Research Space (South Africa)

    Ndou, N

    2016-10-01

    Full Text Available properties. Metallurgical and Materials transactions A, 33, 3489- 3498, 2002. [2] E. Atar, E.S. Kayali & H. Cimenoglu, Characteristics and wear performance of borided Ti6Al4V alloy. Surface and Coatings technology, 202, 4583-4590, 2008. [3] C. Lee, A...

  9. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2

    International Nuclear Information System (INIS)

    Xiang, Zhan-Feng; Liu, Xiu-Bo; Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua

    2014-01-01

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF 2 were “in situ” synthesized in the coating. • The coating with the addition of CaF 2 possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF 2 coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF 2 coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF 2 particles. The wear rates of γ-NiCrAlTi/TiC/CaF 2 coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF 2 coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF 2 coating exhibited excellent friction-reducing and anti-wear properties at high temperature

  10. Advantages in imaging results with titanium aneurysm clips (TiAl6V4)

    International Nuclear Information System (INIS)

    Piepgras, A.; Gueckel, F.; Weik, T.; Schmiedek, P.

    1995-01-01

    Aneurysm clips made of a titanium alloy (TiAl6V4) were used in clinical practice for the first time. The design of the clips is identical to the routinely used Yasargil series. In 30 patients, 38 symptomatic and asymptomatic aneurysms were fixed with 45 clips. Metallurgical advantages of the new alloy are better biocompatibility, less magnetic susceptibility, and lower X-ray density. The postoperative imaging results are superior to the conventionally used alloys with respect to artifact reduction in computed tomography, angiography, and magnetic resonance imaging. With a follow-up period of 7 months, a statement on biocompatibility cannot yet be given. (orig.) [de

  11. The development of the rotational friction welding process for the welding of γ-TiAl-casting alloy Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) to Ti6Al4V. Pt. II; Prozessentwicklung zum Rotationsreibschweissen der γ-TiAl-Feingusslegierung Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) mit Ti6Al4V. T. II

    Energy Technology Data Exchange (ETDEWEB)

    Ventzke, Volker; Riekehr, Stefan; Horstmann, Manfred; Kashaev, Nikolai; Brokmeier, Heinz-Guenter; Huber, Norbert [Helmholtz-Zentrum Geesthacht GmbH, Zentrum fuer Material- und Kuestenforschung, Geesthacht (Germany). Inst. fuer Werkstoffforschung, Werkstoffmechanik

    2014-07-01

    At process temperatures of T > T{sub β}, the globular and fine grained microstructure of the Titanium alloy Ti6Al4V supports the occurrence of super-plasticity and deformation within the β phase region. This led to one sided shortening of the welded joints combined with the formation of weld flash. As a result of this no evening out of temperature across the forging surface between the γ-TAB cast alloy and Ti6Al4V alloy sides of the joint was able to take place, as a result of which the friction weld seam produced became symmetrically wedge shaped about the axis of rotation. Thereby the γ-TAB cast alloy side of the joint became only slightly compressed exhibiting no appreciable signs of deformation. In the radial direction on the γ-TAB side of the joint close to the forged surface neither the hardness nor the microstructure were homogeneous. Without pre-heating the fine ground, lapped and homogenised γ-TAB weld specimens at a temperature of 800 C above the brittle - ductile transformation transition temperature it was not possible to prevent the occurrence of boundary surface cracking on the outside, micro-voids and inter-lamellar cracking on the γ-TAB side solely by varying the welding parameters. The pre-heating of the γ-TAB friction weld specimens was a necessary pre-requisite to support the deformation of the γ-TAB side of the welded joint and the formation of weld flash during the friction welding process. (orig.)

  12. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn; Zhang, Jian-Xun

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, so does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.

  13. Mechanical Behavior of a Low-Cost Ti-6Al-4V Alloy

    Science.gov (United States)

    Casem, D. T.; Weerasooriya, T.; Walter, T. R.

    2018-01-01

    Mechanical compression tests were performed on an economical Ti-6Al-4V alloy over a range of strain-rates and temperatures. Low rate experiments (0.001-0.1/s) were performed with a servo-hydraulic load frame and high rate experiments (1000-80,000/s) were performed with the Kolsky bar (Split Hopkinson pressure bar). Emphasis is placed on the large strain, high-rate, and high temperature behavior of the material in an effort to develop a predictive capability for adiabatic shear bands. Quasi-isothermal experiments were performed with the Kolsky bar to determine the large strain response at elevated rates, and bars with small diameters (1.59 mm and 794 µm, instrumented optically) were used to study the response at the higher strain-rates. Experiments were also conducted at temperatures ranging from 81 to 673 K. Two constitutive models are used to represent the data. The first is the Zerilli-Armstrong recovery strain model and the second is a modified Johnson-Cook model which uses the recovery strain term from the Zerilli-Armstrong model. In both cases, the recovery strain feature is critical for capturing the instability that precedes localization.

  14. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)

    International Nuclear Information System (INIS)

    Brandl, Erhard; Schoberth, Achim; Leyens, Christoph

    2012-01-01

    Highlights: ► The microstructure and hardness of deposited Ti-6Al-4V blocks are investigated. ► Hardness is influenced by post heat treatment rather than by process parameters. ► Microstructure within the prior β-grains varies to some extent from grain to grain. ► A 600 °C/4 h treatment significantly increased the average hardness. - Abstract: Additive layer manufacturing offers a potential for time and cost savings, especially for aerospace components made from costly titanium alloys. In this paper, the morphology, microstructure, chemical composition, and hardness of additive manufactured Ti-6Al-4V blocks are investigated and discussed. Blocks (7 beads wide, 7 layers high) were deposited using Ti-6Al-4V wire and a Nd:YAG laser. Two different sets of parameters are used and three different post heat treatment conditions (as-built, 600 °C/4 h, 1200 °C/2 h) are investigated. The experiments reveal elementary properties of additive manufactured Ti-6Al-4V material in correlation to process parameters and heat treatments, which are discussed comprehensively.

  15. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  16. Interfacial reaction in SiC_f/Ti-6Al-4V composite by using transmission electron microscopy

    International Nuclear Information System (INIS)

    Huang, Bin; Li, Maohua; Chen, Yanxia; Luo, Xian; Yang, Yanqing

    2015-01-01

    The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC_f/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC_f/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC_f/Ti-6Al-4V composites can be described as SiC||TiC||Ti_5Si_3 + TiC||Ti-6Al-4V and SiC||TiC||Ti_5Si_3||TiC||Ti_5Si_3||TiC||Ti_5Si_3||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti_3SiC_2 and Ti_3Si are absent at the interfaces. For the SiC_f/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC_F||TiC_C||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti_5Si_3||TiC||Ti-6Al-4V. Furthermore, in SiC_f/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC_f/Ti-6Al-4 V composites as well as in the SiC_f/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC_f/Ti-6Al-4 V composites, Ti_3SiC_2 and Ti_3Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.

  17. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  18. Multiresponse optimization of cryogenic drilling on Ti-6Al-4V alloy using topsis method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, L. Shakeel; Kumar, M. Pradeep [Anna University, Chennai (India)

    2016-04-15

    Multiresponse optimization of process parameters in drilling is focused in this article using the TOPSIS technique to obtain minimum cutting temperature (T), thrust force (Ft), torque (Mt) and surface roughness (Ra), Circularity (Cir), Cylindricity (Cyl). The experiments were performed on Titanium alloy Ti-6Al-4V in different cooling environments: Wet cooling and cryogenic cooling conditions. Liquid nitrogen (LN{sub 2} ) as a coolant is used in cryogenic machining. The control factors selected were machining environments, cutting speed (Vc) and feed rate (f). Eighteen experiments were conducted in wet and cryogenic LN2 conditions based on L{sub 1}8 orthogonal array, respectively. The optimization results indicate drilling at V{sub c} = 40 m/min and f = 0.02 mm/rev which is of the lowest value in cryogenic LN{sub 2} condition. A better performance is achieved too. The optimum multiresponses show that TOPSIS method is the most effective performance in the drilling process.

  19. Multiresponse optimization of cryogenic drilling on Ti-6Al-4V alloy using topsis method

    International Nuclear Information System (INIS)

    Ahmed, L. Shakeel; Kumar, M. Pradeep

    2016-01-01

    Multiresponse optimization of process parameters in drilling is focused in this article using the TOPSIS technique to obtain minimum cutting temperature (T), thrust force (Ft), torque (Mt) and surface roughness (Ra), Circularity (Cir), Cylindricity (Cyl). The experiments were performed on Titanium alloy Ti-6Al-4V in different cooling environments: Wet cooling and cryogenic cooling conditions. Liquid nitrogen (LN 2 ) as a coolant is used in cryogenic machining. The control factors selected were machining environments, cutting speed (Vc) and feed rate (f). Eighteen experiments were conducted in wet and cryogenic LN2 conditions based on L 1 8 orthogonal array, respectively. The optimization results indicate drilling at V c = 40 m/min and f = 0.02 mm/rev which is of the lowest value in cryogenic LN 2 condition. A better performance is achieved too. The optimum multiresponses show that TOPSIS method is the most effective performance in the drilling process

  20. Liquid phase surface nitriding of Ti-6Al-4V pre-placed with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Vahedi Nemani, Alireza, E-mail: alireza_vahedi@ut.ac.ir; Sohi, M. Heydarzadeh; Amadeh, A.A.; Ghaffari, Mahya

    2016-08-01

    In this study, liquid phase surface nitriding of Ti-6Al-4V was carried out by pre-placing of chromium powder on the substrate and subsequent Tungsten Inert Gas (TIG) surface melting. The effect of the application of low and high heat inputs on the microstructure, microhardness and wear resistance of the treated layers were studied. Surface alloying with chromium in a nitrogen containing atmosphere resulted in the formation of hard intermetallic compounds such as TiN, Cr{sub 2}N and TiCr{sub 2}. Moreover, the presence of beta stabilizer chromium together with the application of high heat input during surface treatment resulted in the presence of beta phase at room temperature. However, applying low heat input could not prevent transformation of beta to martensite. The hardness of the layers fabricated at high and low heat inputs were respectively 1050 and 1200 HV{sub 0.3} compared to average 280 HV{sub 0.3} for the as-received material. Liquid phase surface treatment of titanium at the aforementioned conditions improved the wear resistance. The lowest weight loss belonged to the specimen with the beta phase matrix. The formation of the fairly ductile bcc-β phase hindered crack nucleation during wear. The weight loss in this condition was 7 times lower than that of the base material. - Highlights: • Liquid phase surface nitriding of Ti-6Al-4V was carried out by TIG surface melting. • Cr powder was pre-placed on the surface as the beta stabilizer alloying element. • The treated layers were characterized by OM, SEM and X-ray diffraction pattern. • Hardness of the layers increased up to 3 times higher than that of the base alloy. • Liquid phase surface alloying improved the wear resistance.

  1. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Riedel, Nicholas A.; Smith, Barbara S.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO 2 peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: ►Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. ►Oxygen etched substrates showed fewer adhered platelets. ►Platelet activation was reduced by the improved oxide surface. ►Oxygen etched substrates exhibited increased whole blood clotting times. ►Although clotting reductions were seen, protein adsorption remained similar.

  2. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.

    Science.gov (United States)

    Panjwani, Bharat; Sinha, Sujeet K

    2012-11-01

    Tribological properties of perfluoropolyether (PFPE) coated 3-glycidoxypropyltrimethoxy silane (GPTMS) SAMs (self-assembled monolayers) onto Ti6Al4V alloy substrate were studied using ball-on-disk experiments. GPTMS SAMs deposition onto a Ti6Al4V alloy surface was carried out using solution phase method. Ultra-thin layer of PFPE was dip-coated onto SAMs modified specimens. Tribological tests were carried out at 0.2 N normal load and rotational speed of 200 rpm using track radius of 2 mm. Wear track and counterface surface conditions were investigated using optical microscopy. PFPE modified specimens were baked at 150 °C for 1h to investigate the effect of thermal treatment on tribological properties. Surface characterization tests such as contact angle measurement, AFM morphology and X-ray photoelectron spectroscopy were carried out for differently modified specimens. PFPE overcoat meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. PFPE top layer lowered the coefficient of friction and increased wear durability for different specimens (with and without GPTMS intermediate layer). PFPE overcoat onto GPTMS showed significant increase in the wear resistance compared with overcoat onto bare Ti6Al4V specimens. The observed improvement in the tribological properties can be attributed to the change in the interaction of PFPE molecules with the substrate surface due to the GPTMS intermediate layer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Characteristics microstructure and microhardness of cast Ti-6Al-4V ELI for biomedical application submitted to solution treatment

    Science.gov (United States)

    Damisih, Jujur, I. Nyoman; Sah, Joni; Agustanhakri, Prajitno, Djoko Hadi

    2018-05-01

    Ti 6Al-4V ELI (Extra Low Interstitial)alloy containing 6wt% of aluminum, 4wt% of vanadium with controlled level of iron and oxygen is one of most popular alloy employed in biomedical applications as implant material. Heat treatment process for titanium alloys becomes important and could be performed by some of different ways in order to develop microstructure as well as its properties. The objective of this paper is to study the effects of solution treatment temperature on microstructure and mechanical properties of as-cast Ti-6Al-4V ELI especially microhardness value. The alloy was melted by single arc melting furnace with a water-cooled copper crucible hearth under argon atmosphere and then casted. It was heat treated through solution treatment at 3 (three) different temperaturesi.e. 850°C, 950°C and 1050°C in an argon gas atmosphere for around 30 minutes. After solution treatment, samples were water quenched and then aged at temperature of 500°C for 4 hours. To investigate its microstructure, the alloy was investigated under optical microscope and scanning electron microscope (SEM). It was observed Widmanstätten microstructure consisting of mixture α and β phase with basket-weave pattern. The Vickers microhardness test was performed and the results exhibited the optimum value was obtained at temperature of 950°C of solution treatment. From the observation, it revealed that the heat treatment has substantial effect on microstructural properties where microhardness increased due to formation of α' martensite structure. It was showed also that solution treatment followed by aging could improve mechanical properties especially microhardness value of Ti-6Al-4V ELI alloy. These results were suggesting the optimized conditions of heat treatment to obtain the best microstructure properties and microhardness value.

  4. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  5. Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation

    Science.gov (United States)

    Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.

    2012-01-01

    Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.

  6. Correction of Flow Curves and Constitutive Modelling of a Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2018-04-01

    Full Text Available Isothermal uniaxial compressions of a Ti-6Al-4V alloy were carried out in the temperature range of 800–1050 °C and strain rate range of 0.001–1 s−1. The effects of friction between the specimen and anvils as well as the increase in temperature caused by the high strain rate deformation were considered, and flow curves were corrected as a result. Constitutive models were discussed based on the corrected flow curves. The correlation coefficient and average absolute relative error for the strain compensated Arrhenius-type constitutive model are 0.986 and 9.168%, respectively, while the values for a modified Johnson-Cook constitutive model are 0.924 and 22.673%, respectively. Therefore, the strain compensated Arrhenius-type constitutive model has a better prediction capability than a modified Johnson-Cook constitutive model.

  7. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys

    Science.gov (United States)

    Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.

    2018-04-01

    Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.

  8. The Importance Of Surface Topography For The Biological Properties Of Nitrided Diffusion Layers Produced On Ti6Al4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Wierzchoń T.

    2015-09-01

    Full Text Available Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography of the surface of TiN+Ti2N+αTi(N nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.

  9. Microstructural evolution during hot pressing of the blended elemental Ti-6%Al-7%Nb alloy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Sandim, H.R.Z.; Coelho, G.C.; Silva, C.R.M. da

    2003-01-01

    The Ti-6%Al-7%Nb (wt.%) α-β alloy was developed aiming the replacement of the traditional Ti-6%Al-4%V alloy in surgical implants owing to its larger biocompatibility. Samples of this alloy were obtained using the blended elemental (BE) technique. The isochronal hot pressing of the compacts was carried out in the range 700-1500 deg. C with a compaction pressure of 20 MPa and a heating rate of 20 deg. C min -1 . In this work, the behavior of the elementary powders during the hot pressing and the corresponding microstructural evolution were investigated. The alloy was characterized by means of scanning electron microscopy (SEM) in the backscattered mode (BSE), X-ray diffraction (XRD), and density measurements. The results indicate that the homogenization of the alloy is diffusion-controlled and Ti.Al intermediary compounds (TiAl and Ti 3 Al) are formed at lower temperatures. With increasing temperature, homogenization of the alloy takes place and a coarse plate-like α+intergranular β structure is found throughout the microstructure in temperatures above 1300 deg. C. The process variables were defined aiming to minimize interstitial pick-up (C, O, and N) and avoiding intensive grain growth

  10. Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process

    Energy Technology Data Exchange (ETDEWEB)

    Hongxi, Liu [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qian, Xu, E-mail: vipliuhx@yahoo.com.cn [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Xiaowei, Zhang; Chuanqi, Wang [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Baoyin, Tang [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-10-30

    In order to improve the wear resistance and anti-corrosion behaviors of Ti6Al4V (TC4) alloy, polished samples were implanted with silver (Ag) ions by plasma immersion ion implantation (PIII) technique. The phase composition and element concentration-depth distribution in modified layer were characterized by X-ray diffraction (XRD) and Auger electron spectrum (AES). Corrosion resistance, microhardness, friction and wear behaviors of PIII-TC4 alloy changed with the Ag ion implantation dose. XRD analysis reveals that the surface modified layer consists of Ag and a small amount of TiAg phases. AES results show that Ag atomic peak concentration is 9.88%, about 14.4 nm from the surface. The maximum nanohardness and elastic modulus of PIII-TC4 alloy increases by 62.5% and 54.5%, respectively. The lowest friction coefficient reduces from 0.78 to 0.2. The test result of potentiodynamic polarization in 3.5% NaCl saturated solution indicates that the sample of Ag ion dose at 1.0 Multiplication-Sign 10{sup 17} ions/cm{sup 2} has the best corrosion resistance with the lowest corrosion current density and the least porosity.

  11. Interpretation of the Friction Coefficient During Reciprocating Sliding of Ti6Al4V Alloy Against Al2O3

    Directory of Open Access Journals (Sweden)

    S. Mitrovic

    2011-03-01

    Full Text Available Tribological behaviour of Ti6Al4V alloy, during linear reciprocating sliding against alumina, at nanotribometer (ball-on-flat type of contact was investigated. Experiments were carried out for sliding in Ringer's solution, over a range of loads (100 - 1000 mN and speeds (4 - 12 mm/s. Friction behaviour of the contact pairs was investigated by analysis of the dynamic friction coefficient plots and effective root mean square (rms coefficient of friction, COFrms. Presented mathematical envelopes of dynamic coefficient of friction curves and averaged envelope signals provided additional explanation of one calculated COFrms value. Envelopes of dynamic coefficient of friction enabled easier determination of different periods during sliding, which were further related to wear mechanisms.

  12. Growth order and activation energies for grain growth of Ti-6Al-4V alloy in β phase

    International Nuclear Information System (INIS)

    Gil, F.J.; Planell, J.A.

    1991-01-01

    This paper reports that one of the reasons usually stated for avoiding annealing treatments and hot working of Ti-6Al-4V alloy at temperatures over the β transus is the large grain growth which takes place at such temperatures. The aim of the present work is to quantify the grain growth kinetics when the alloy is heat treated in its β phase. It is well known that the driving force for grain growth comes from the surface energy of the grain boundaries. When thermal energy is given to the material, diffusion takes place which leads to grain selection. This means that the number of grains decreases, their size increases, the area of the grain boundaries decreases with the total energy stored in them and consequently a state of higher thermodynamic stability is reached

  13. Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-09-01

    Full Text Available Ti6Al4V is the most widely used titanium alloy in the aerospace industry because of its excellent properties. However, the wear resistance behaviour of this material is not very impressive and surface damage occurs in applications involving contact...

  14. An analysis of the flow stress of a two-phase alloy system, Ti-6Al-4V

    International Nuclear Information System (INIS)

    Reed-Hill, R.E.; Iswaran, C.V.; Kaufman, M.J.

    1996-01-01

    An analysis of the tensile deformation behavior of a two-phase body-centered cubic (bcc)-hexagonal close-packed (hcp) alloy, Ti-6Al-4V, has been made. This has shown that the temperature dependence of the flow stress, the logarithm of the effective stress, and the strain-rate sensitivities can be described by simple analytical equations if the thermally activated strain-rate equation contains the Yokobori activation enthalpy H = H 0 ln (σ* 0 /σ*), where H 0 is a constant, σ* the effective stress, and σ* 0 its 0 K value. The flow stress-temperature plateau region (500 to 600 K) also can be rationalized analytically in terms of oxygen dynamic strain aging in the alpha phase

  15. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  16. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  17. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Erhard, E-mail: erhard.brandl@eads.net [EADS Innovation Works, Metallic Technologies and Surface Engineering, D-81663 Munich (Germany); Schoberth, Achim, E-mail: achim.schoberth@eads.net [EADS Innovation Works, Metallic Technologies and Surface Engineering, D-81663 Munich (Germany); Leyens, Christoph, E-mail: christoph.leyens@tu-dresden.de [Technical University of Dresden, Institute of Materials Science, Chair of Materials Technology, Berndt-Bau, Helmholtzstr. 7, D-01062 Dresden (Germany)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The microstructure and hardness of deposited Ti-6Al-4V blocks are investigated. Black-Right-Pointing-Pointer Hardness is influenced by post heat treatment rather than by process parameters. Black-Right-Pointing-Pointer Microstructure within the prior {beta}-grains varies to some extent from grain to grain. Black-Right-Pointing-Pointer A 600 Degree-Sign C/4 h treatment significantly increased the average hardness. - Abstract: Additive layer manufacturing offers a potential for time and cost savings, especially for aerospace components made from costly titanium alloys. In this paper, the morphology, microstructure, chemical composition, and hardness of additive manufactured Ti-6Al-4V blocks are investigated and discussed. Blocks (7 beads wide, 7 layers high) were deposited using Ti-6Al-4V wire and a Nd:YAG laser. Two different sets of parameters are used and three different post heat treatment conditions (as-built, 600 Degree-Sign C/4 h, 1200 Degree-Sign C/2 h) are investigated. The experiments reveal elementary properties of additive manufactured Ti-6Al-4V material in correlation to process parameters and heat treatments, which are discussed comprehensively.

  18. X-ray radiography of Ti6Al4V welded by plasma tungsten arc (PTA) welding

    Energy Technology Data Exchange (ETDEWEB)

    Dikbas, Halil; Caligulu, Ugur; Taskin, Mustafa; Turkmen, Mustafa [Firat Univ., Elazig (Turkey). Metallurgy Dept.

    2013-03-01

    In this study, X-ray radiographic tests of Ti6Al4V alloys welded by plasma tungsten arc welding (PTA) were investigated. PTA welding experiments were carried out under argon shielding gas atmosphere, at 1400-1600 W and 1800 W welding powers as well as 1 m/min, 0.75 m/min, and 0.50 m/min welding speeds. After this process, radiography of the welded joints was performed by X-ray diffraction. The result of the radiographic tests indicated that by increasing welding power the widths of deep penetration increased in all specimens. On the contrary, increasing welding speeds decreases the widths deep penetration. The best properties of Ti6Al4V joints were observed for specimens welded at 1800 W welding power and at 0.50 m/min welding speed. (orig.)

  19. Microstructure and Corrosion Behavior of Laser Synthesized Cobalt Based Powder on Ti-6Al-4V

    Science.gov (United States)

    Adesina, O. S.; Popoola, A. P. I.; Pityana, S. L.; Oloruntoba, D. T.

    2018-05-01

    The corrosion behavior of titanium alloys when used for various dynamic offshore components has been a major concern of titanium drilling risers in deepwater energy extraction. A way of achieving specified requirement is the development of coatings suitable to protect the base material against corrosion. In this work, laser cladding technique which is known as a leading edge due to its distinctive properties and outcomes was used in synthesizing Co-based powder on titanium alloy. The processing parameters used were laser power of 900W; scan speed of 0.6 to 1.2 m/min; powderfeedrate1.0g/min;beamspotsize3mm;gasflowrate1.2L/min.The effects of cobalt addition and laser parameters on corrosion behavior of laser clad Ti6AL4V coating in 0.5M sulfuric medium were investigated using linear potentiodynamic polarization. The changes in microstructure and corrosion behavior were analyzed using scanning electron microscopy (SEM) while the X –ray diffraction (XRD) indicates the intermetallics in the coatings. Results showed that the coatings displayed good metallurgical bonding with dendritic formations between the coatings and the substrate. The anodic current density increased with lower scan speed. However, the corrosion current densities of laser-clad samples were lower than Ti6Al4V alloy.

  20. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  1. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  2. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Deniz, Ömer Faruk; Kutbay, Işıl; Usta, Metin

    2013-01-01

    Highlights: ► Ti6Al4V alloys were coated by PEO in calcium acetate and β-calcium glycerophosphate. ► Hydroxyapatite and calcium apatite based phases were directly formed on Ti6Al4V. ► Hydroxyapatite coatings were characterized systematically for different times. ► After 5 min, hydroxyapatite and calcium based phases begin to form on the coating. ► HAp on the coating is amorphous due to the rapid solidification during PEO. - Abstract: In this study, Ti6Al4V alloy was coated in the solution consisting of calcium acetate (CA) and β-calcium glycerophosphate (β-Ca-GP) by plasma electrolytic oxidation (PEO) to produce hydroxyapatite and calcium apatite-based composite used as of bioactive and biocompatible materials in biomedical applications. The phase structures, surface morphologies, functional groups of molecules, chemical compositions of the surfaces and the binding energies of atoms in the coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Anatase, rutile, calcium oxide, titanium phosphide, whitlockite, tri-calcium phosphate (TCP), perovskite calcium titanate and hydroxyapatite phases on the coating were detected by XRD analysis. The surface of coatings produced by PEO method has a porous structure. The amount of amorphous hydroxyapatite is the highest value for the coating produced at 5 min in XPS and ATR-FTIR results, whereas the amount of crystalline hydroxyapatite has the highest value for coating produced at 120 min in XRD results.

  3. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping

    2017-01-01

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation

  4. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping [School of Technology, Beijing Forestry University, Beijing (China)

    2017-01-15

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation.

  5. Ultrasonic hot powder compaction of Ti-6Al-4V.

    Science.gov (United States)

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-07-01

    Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The transient creep of vapor deposited Ti-6Al-4V

    International Nuclear Information System (INIS)

    Warren, J.; Wadley, H.N.G.

    1996-01-01

    Titanium matrix composites can be synthesized by the consolidation of ceramic fibers (for example, alumina and silicon carbide monofilaments) coated with titanium alloy deposited on the fiber by physical vapor deposition (PVD). Consolidation involves deformation of the matrix coating by both transient and steady-state creep. In a recent paper the mechanisms responsible for steady-state creep in PVD Ti-6Al-4V, between 600 and 900 C, were determined. The analysis of the data first presented has been extended here to consider the transient creep behavior of the material and identify an analogous constitutive law for use in simulating the transient creep contribution to consolidation

  7. Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti-6Al-4V alloy.

    Science.gov (United States)

    Ye, Xiaoxin; Wang, Lingsheng; Tse, Zion T H; Tang, Guoyi; Song, Guolin

    2015-04-01

    The effect of electro-pulsing treatment (EPT) on the microstructure, mechanical properties and corrosion behavior of cold-rolled Ti-6Al-4V alloy strips was investigated in this paper. It was found that the elongation to failure of materials obtains a noticeable enhancement with increased EPT processing time while slightly sacrificing strength. Fine recrystallized grains and the relative highest elongation to failure (32.5%) appear in the 11second-EPT samples. Grain coarsening and decreased ductility were brought in with longer EPT duration time. Fracture surface analysis shows that transition from intergranular brittle facture to transgranular dimple fracture takes place with an increase in processing time of EPT. Meanwhile, corrosion behavior of titanium alloys is greatly improved with increased EPT processing time, which is presented by polarization test and surface observation with the beneficial effect of forming a protective anatase-TiO2 film on the surface of alloys. The rapid recrystallization behavior and oxide formation of the titanium alloy strip under EPTs are attributed to the enhancement of nucleation rate, atomic diffusion and oxygen migration resulting from the coupling of the thermal and athermal effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    Science.gov (United States)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  9. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V

    Science.gov (United States)

    Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.

    2017-12-01

    Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.

  10. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  11. Influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Léopold Gaëlle

    2014-06-01

    Full Text Available The influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy is investigated. The most common of these defects are: pinhole, linear defect and inclusion. Each of them is currently defined by its size, morphology and position from the surface but is different from each other for a same type. An experimental campaign is defined with different types of defect. The first part of the campaign is focused on the influence of an artificial and spherical defect, considering two different surface conditions. It is shown that fatigue behaviour of this alloy is very sensitive to the surface condition of this artificial defect despite stress concentrations at the tip of the defect. The second part of the campaign is focused on casting defects: reduction of fatigue life is quantified and it is shown that an electro-discharge machined defect cannot be representative of pinhole.

  12. Influence of slight microstructural gradients on the surface properties of Ti6Al4V irradiated by UV

    International Nuclear Information System (INIS)

    Gallardo-Moreno, A.M.; Multigner, M.; Pacha-Olivenza, M.A.; Lieblich, M.; Jimenez, J.A.; Gonzalez-Carrasco, J.L.; Gonzalez-Martin, M.L.

    2009-01-01

    Ti6Al4V alloy is one of the most widely used materials for biomedical implants. Among its properties, it is remarkable the photoactivity displayed by its passive layer, which is mainly composed by titanium dioxide. However, variations in the processing conditions may yield to differences in the microstructure which can be reflected on the surface properties of the machined product. From contact angle measurements taken on different zones of samples removed from a commercial bar of Ti6Al4V, it has been shown that the modifications of the surface Gibbs energy suffered by the alloy under UV irradiation have a radial dependence. This behaviour is related to slight microstructural changes of the alloy, particularly with an increase in the volume fraction of the β-phase when moving to the interior of the sample, which alters the composition and/or microstructure of the passive layer along its radius. This study shows that gradients in the microstructure and physical properties are sample size dependent and are likely related to thermal gradients during processing.

  13. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Nicholas A. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Smith, Barbara S. [School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 (United States)

    2012-07-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO{sub 2} peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: Black-Right-Pointing-Pointer Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates showed fewer adhered platelets. Black-Right-Pointing-Pointer Platelet activation was reduced by the improved oxide surface. Black-Right-Pointing-Pointer Oxygen etched substrates exhibited increased whole blood clotting times. Black-Right-Pointing-Pointer Although clotting reductions were

  14. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique

    International Nuclear Information System (INIS)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-01-01

    Failure of the bone–implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone–implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6–89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone–implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. - Highlights: • Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites were fabricated by microwave sintering. • Ti6Al4V/TiC/HA exhibited mechanical properties close to human cortical bone. • Ti6Al4V/TiC/HA could provide a biocompatible environment for bone cell growth. • Ti6Al4V/TiC/HA showed a better bone–implant interface than Ti6Al4V/TiC. • Ti6Al4V/TiC/HA could be used for bone replacement under load-bearing conditions

  15. Sustainability assessment for dry, conventional and cryogenic machining in face milling of ti-6al-4v

    International Nuclear Information System (INIS)

    Masood, I.; Jahanzaib, M.; Wasim, A.

    2017-01-01

    Sustainability achievement in difficult-to-machine materials is major concern now-a-days. This paper presents sustainability assessment of machining titanium alloy Ti-6Al-4V. Face milling of Ti-6Al-4V hardened to 55 HRC with PVD (Physical Vapour Deposition) coated inserts was analyzed for dry, conventional and cryogenic cooling modes. Experiments were designed using CCD (Central Composite Design) for modeling and analysis of surface roughness. Feed, speed and depth of cut were used as input parameters. For a specific surface finish, the three cooling modes were compared for cutting power, machining time and material removal rate. The results indicate that cryogenic cooling was more sustainable as compared to dry and conventional cooling process. This sustainable model will help to select sustainable input parameters. (author)

  16. Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD

    Energy Technology Data Exchange (ETDEWEB)

    Kral, Petr, E-mail: pkral@ipm.cz [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Dvorak, Jiri [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic); Blum, Wolfgang [Inst. f. Werkstoffwissenschaften, University of Erlangen-Nürnberg, D-91058 Erlangen (Germany); Kudryavtsev, Egor; Zherebtsov, Sergey; Salishchev, Gennady [Belgorod State University, Laboratory of Bulk Nanostructured Materials, Pobeda Str. 85, 308015 Belgorod (Russian Federation); Kvapilova, Marie; Sklenicka, Vaclav [Institute of Physics of Materials, ASCR, Zizkova 22, CZ -61662 Brno (Czech Republic); CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno (Czech Republic)

    2016-06-15

    The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10{sup −7} to 10{sup −2} s{sup −1}. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing w{sub qs} of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than w{sub qs} allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays a large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. - Highlights: • The UFG Ti-6Al-4V alloy behaves superplastically at low temperature of 873 K. • Grain coarsening at low stresses limits superplasticity of UFG Ti alloy. • Solute strengthening plays an important role in low-temperature superplasticity. • Acceleration of creep in UFG Ti alloy is caused by processes related to hab.

  17. A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti-6Al-4V Alloy in α + β Phase

    Science.gov (United States)

    Cai, Jun; Wang, Kuaishe; Han, Yingying

    2016-03-01

    True stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s-1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli-Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti-6Al-4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti-6Al-4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti-6Al-4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.

  18. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng

    2014-01-01

    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  19. Dissimilar laser welding of AISI 316L stainless steel to Ti6Al46V alloy via pure vanadium interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  20. Explosive Cladding of Titanium and Aluminium Alloys on the Example of Ti6Al4V-AA2519 Joints / Wybuchowe Platerowanie Stopów Tytanu I Aluminium Na Przykładzie Połączenia Ti6Al4V-AA2519

    Directory of Open Access Journals (Sweden)

    Gałka A.

    2015-12-01

    Full Text Available Explosive cladding is currently one of the basic technologies of joining metals and their alloys. It enables manufacturing of the widest range of joints and in many cases there is no alternative solution. An example of such materials are clads that include light metals such as titanium and aluminum. ach new material combination requires an appropriate adaptation of the technology by choosing adequate explosives and tuning other cladding parameters. Technology enabling explosive cladding of Ti6Al4V titanium alloy and aluminum AA2519 was developed. The clads were tested by means of destructive and nondestructive testing, analyzing integrity, strength and quality of the obtained joint.

  1. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  2. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  3. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.

    Science.gov (United States)

    Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng

    2015-03-18

    Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.

  4. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Seo, Yong Seok; Lee, Yong Shin; Woo, Sung Choong; Kim, Tae Won

    2015-01-01

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s"-"1 ∼ 6400 s"-"1, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness. The

  5. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Seok; Lee, Yong Shin [Chungnam National University, Daejeon (Korea, Republic of); Woo, Sung Choong; Kim, Tae Won [Hanyang University, Seoul (Korea, Republic of)

    2015-11-15

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s{sup -1} ∼ 6400 s{sup -1}, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness

  6. The Effect of Friction Stir Welding on Corrosion Behavior of Ti-6Al-4V

    Science.gov (United States)

    Nasresfahani, Ali Reza; Soltanipur, Abdol Reza; Farmanesh, Khosro; Ghasemi, Ali

    2017-09-01

    Fusion welding can deteriorate corrosion behavior of Ti-6Al-4V alloy. However, the use of friction stir welding leads to a more appropriate corrosion resistance. In this study, the corrosion resistance of welded zones of Ti-6Al-4V alloy using friction stir welding technique is evaluated. For these purposes, the study of structural characteristics using SEM and FESEM equipped with EDS micro-analyses was conducted. Micro-hardness test was also employed to estimate the hardness of welded zones. Corrosion behavior was investigated by a potentiostat instrument. SEM micrographs, EDS and XRD analyses confirmed non-uniformity of chemical composition within the welded zones. The results reveal that the stir zone contains typical alpha and prior beta phases. Nevertheless, thermomechanical zone included equiaxed and bimodal lamellae structure. Furthermore, the presence of different types of phases and microstructure in the thermomechanical zone led to reduced corrosion resistance. The corresponding values of corrosion current density in the stir zone, thermomechanical zone and base metal were 0.048, 0.55 and 0.032 µA, respectively. Corresponding corrosion potential for these zones was estimated as -207, -110 and -157 mV. Evidently, the results show that corrosion resistance of thermomechanical zone is less than that of the stir zone and both zones have lower value than the base metal.

  7. Formation of Ca/P ceramic coatings by Plasma Electrolytic Oxidation (PEO) on Ti6Al4V ELI alloy

    Science.gov (United States)

    Rodriguez-Jaimes, Y.; Naranjo, D. I.; Blanco, S.; García-Vergara, S. J.

    2017-12-01

    The formation of PEO ceramic coatings on Ti6Al4V ELI alloy was investigated using a phosphate/calcium containing electrolyte at 300 and 400V at 310K for different times. The Plasma Electrolytic Oxidation (PEO) coated specimens were then heat treated at 873 and 1073K for 2 hours. Scanning electron microscopy, Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction analysis were used to study the composition and the morphology of the ceramic coatings. The corrosion behaviour of the coatings was studied by Electrochemical Impedance Spectroscopy (EIS) in Simulated Body Fluid (SBF). The PEO-treated specimens primarily revealed a porous structure with thickness between 4 and 12μm, according to the voltage and process time used. The coatings are mainly composed of hydroxyapatite; however, as the voltage and anodizing time increase, the Ca/P ratio decreases. Generally, the corrosion resistance of the alloy was improved by the PEO-treated coatings, although the specimens treated at 1073K showed the presence of cracks that reduced the protective effect of the coatings.

  8. [Study on the geometric characteristics and distribution of porosities in three-dimensional printed Ti-6Al-4V titanium alloy].

    Science.gov (United States)

    Wan, Zhipeng; Jiang, Wentao; Wang, Chong; Wang, Qingyuan; Li, Yalan

    2017-10-01

    Three dimensional (3D) printing is considered as an advanced manufacturing technology because of its additive nature. Electron beam melting (EBM) is a widely used 3D printing processes for the manufacturing of metal components. However, the products printed via this process generally contain micro porosities which affect mechanical properties, especially the fatigue property. In this paper, two types of EBM printed samples of the Ti-6Al-4V alloy, one with a round cross section and the other with a triangle cross section, were employed to investigate the existence of porosities using computed tomography (CT). Statistical analyses were conducted on the number, volume, shape, and distribution of pores. The results show that small pores (less than 0.000 2 mm 3 ) account for 80% of all pores in each type of samples. Additionally, to some extent, the shape of sample has influence on the number of micro porosities in EBM made Ti-6Al-4V. The sphericity of the pores is relatively low and is inversely proportional to pore volume. It is found that re-melting on the free surface effectively reduce pore density near the surface. This study may help produce a medical implant with better fatigue resistance.

  9. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  10. Effect of CeO₂ on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding.

    Science.gov (United States)

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-12-31

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.

  11. Peculiarities of single track formation from TI6AL4V alloy at different laser power densities by selective laser melting

    Directory of Open Access Journals (Sweden)

    Yadroitsava, I.

    2015-11-01

    Full Text Available This paper describes the geometrical characteristics of single tracks manufactured by selective laser melting (SLM at different laser powers (20-170 W and scanning speeds (0.1-2.0 m/s. Simulation of temperature distribution during processing is carried out. A conclusion about the optimal process parameters and peculiarities of selective laser melting of Ti6Al4V alloy at low and high laser powers and scanning speeds is reached. The analysis of temperature fields creates opportunities to build parts with the desired properties by using SLM.

  12. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    Science.gov (United States)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  13. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Science.gov (United States)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  14. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy.

    Science.gov (United States)

    Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey

    2018-05-10

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .

  15. Numerical Simulation of Adiabatic Shear Bands in Ti-6Al-4V Alloy Due to Fragment Impact

    National Research Council Canada - National Science Library

    Fermen-Coker, Muege

    2004-01-01

    ... and lethality technologies for the Army's Future Combat Systems. Onset and propagation of adiabatic shear bands are investigated both experimentally and computationally by studying the ballistic impact of 20-mm steel fragments against Ti-6Al-4V plates...

  16. The Effect of Al and V on Microstructure and Transformation of β Phase during Solution Treatments of Cast Ti-6Al-4V Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seong-Tak; Woo, Kee-Do; Kwak, Seung-Mi [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Jae-Hwang [Korea Institute of Industrial Technology, Jeonju (Korea, Republic of)

    2017-03-15

    In this study, the effect of α and β those stabilizers on the microstructure and phase transformation of cast Ti-6wt%Al-4wt%V alloy at various solution treatment temperatures was investigated. The dependence of the transformation behavior of the β phase during the solution treatment and its dependence was determined by the partitioning of α and β stabilizing elements. Solution treatments were conducted at 850 ~ 1050 ℃ for 0.5 h and, followed by water quenching. Aging treatments at 550 ℃ for 24 h were then performed. The α' martensite was transformed from the β phase when the concentration of vanadium in the β phase was less than 4.27 at %, while the metastable β phase did not transform to α' martensite when the concentration of vanadium in the β phase was over 5.14 at.

  17. Dimensional stability of Ti--6Al--6V--2Sn

    International Nuclear Information System (INIS)

    Rack, H.J.

    1978-08-01

    The dimensional stability of Ti-6Al-6V-2Sn has been examined. It is shown that in the duplex annealed condition Ti-6Al-6V-2Sn is dimensionally stable at temperatures up to 448 0 K for 512 hrs. Solution treated Ti-6Al-6V-2Sn undergoes large dimensional changes during both initial aging between 673 and 973 0 K and subsequent exposure to low temperatures ( 0 K). These results indicate that if close dimensional tolerances must be maintained, duplex annealed Ti-6Al-6V-2Sn should be selected. Selection of treated and aged Ti-6Al-6V-2Sn should only be considered if accompanied by full scale environmental testing

  18. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V

    NARCIS (Netherlands)

    Ahmadi, S.M.; Ashok Kumar Jain, R. K.; Zadpoor, A.A.; Ayas, C.; Popovich, V.

    2018-01-01

    Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be

  19. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  20. Anisotropy influence on the failure of Ti6Al4V sheets deformed at room and elevated temperature

    Science.gov (United States)

    Wang, Q. L.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    Ti6Al4V sheets are usually difficult-to-form at room temperature as a consequence of their strong basal texture and hcp crystal lattice. The heating of the alloy below the beta transus temperature is recognized to enhance its formability, reducing the flow stress and increasing the ductility. However, the influence of the sheet anisotropy on the material failure hasn't been studied yet. To this aim, the paper presents the anisotropy influence on the failure characteristics of Ti6Al4V titanium alloy sheets making use of tensile tests carried out at room temperature and 600°C on smooth, notched and shear samples in order to have various stress states. The fracture strain is measured and the effect of the sample orientation and stress state is identified. To determine the actual stress state for each sample geometry, a numerical model is set up and calibrated using elasto-plastic data from uni-axial tensile tests on smooth samples. Finally, the fracture surfaces are observed through SEM analysis to explain the failure characteristics.

  1. Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire

    International Nuclear Information System (INIS)

    Wang, F.; Mei, J.; Wu Xinhua

    2007-01-01

    Ti6Al4V reinforced with TiC has been fabricated as compositionally graded material by direct laser fabrication using TiC powder and Ti6Al4V wire which were fed simultaneously into the laser focal point. The microstructure along the length of the sample has been characterised using X-ray diffraction and scanning electron microscopy. The results show that the composition along the length changes as expected from the imposed changes in feed rate when allowance is made for the different capture efficiency for the powder and the wire. Some unmelted TiC has been observed in regions where the TiC fraction was high, but along most of the length of the samples TiC was completely melted and formed primary TiC, eutectic TiC and secondary TiC. Some preliminary tribological properties of the compositionally graded material were obtained using a sliding wear test which showed that the tribological properties of Ti6Al4V are improved by the reinforced TiC particles with the optimum frictional behaviour being found with approximately 24 vol% of TiC

  2. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications

    International Nuclear Information System (INIS)

    Guo, Miao; Li, Xiang

    2016-01-01

    A novel composite scaffold consisting of porous Ti6Al4V part filled with chitosan sponge was fabricated using a combination of electron beam melting and freeze-drying. The mechanical properties of porous Ti6Al4V part were examined via compressive test. The ultimate compressive strength was 85.35 ± 8.68 MPa and the compressive modulus was 2.26 ± 0.42 GPa. The microstructure of composite scaffold was characterized using scanning electron microscopy. The chitosan sponge filled in Ti6Al4V part exhibited highly porous and well-interconnected micro-pore architecture. The osteoblastic cells were seeded on scaffolds to test their seeding efficiency and biocompatibility. Significantly higher cell seeding efficiency was found on composite scaffold. The biological response of osteoblasts on composite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to porous Ti6Al4V part. These results suggest that the Ti6Al4V/chitosan composite scaffold is potentially useful as a biomedical scaffold for orthopedic applications. - Highlights: • A novel composite scaffold with sufficient mechanical properties and favorable cell affinity environment was developed. • Significantly higher cell seeding efficiency was found on composite scaffold. • The osteoblasts on composite scaffolds showed well-spread morphology, improved cell attachment and higher proliferation.

  3. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    Science.gov (United States)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  4. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    Science.gov (United States)

    Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218

  5. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    Science.gov (United States)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  6. The Effect of Nitrogen Ion Implantation on the Surface Properties of Ti6Al4V Alloy Coated by a Carbon Nanolayer

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2013-01-01

    Full Text Available The ion beam assisted deposition (IBAD method was chosen for preparing a carbon thin film with a mixing area on a substrate of Ti6Al4V titanium alloy. Nitrogen ions with energy 90 keV were used. These form a broad ion beam mixing area at the interface between the carbon film and the substrate. We investigated the chemical composition by the glow discharge optical emission spectroscopy (GD-OES method and the phases by the X-ray diffraction (XRD method. The measured concentration profiles indicate the mixing of the carbon film into the substrate, which may have an effect on increasing the adhesion of the deposited film. The nanohardness and the coefficient of friction were measured. We found that the modified samples had a markedly lower coefficient of friction even after damage to the carbon film, and they also had higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases that arose with ion implantation of nitrogen ions.

  7. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-05-01

    Full Text Available Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85 on microstructure and hydrogen sorption behavior of electron beam melted (EBM Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA. Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

  8. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  9. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  10. Brasagem da zircônia metalizada com titânio à liga Ti-6Al-4V Brazing of metalized zirconia with titanium to Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    J. S. Pimenta

    2012-06-01

    Full Text Available Zircônia tetragonal estabilizada com ítria foi mecanicamente metalizada com titânio e a condição de molhamento avaliada com as ligas convencionais Ag-28Cu e Au-18Ni. Estas dissolveram o revestimento de titânio para uma completa distribuição deste metal ativo na superfície cerâmica, gerando uma liga ativa in situ e possibilitando adequadas ligações químicas ao metal base na temperatura de união. Os melhores resultados de molhamento foram selecionados para brasagem indireta em forno de alto-vácuo nas juntas ZrO2/Ti-6Al-4V. Testes de detecção de vazamento de gás hélio foram realizados na interface de união das juntas; amostras removidas na seção transversal de juntas estanques foram examinadas por técnicas de análise microestrutural. Formou-se uma camada escura adjacente à cerâmica metalizada, responsável pelo molhamento ocasionado pela liga Ag-28Cu. Entretanto, o uso da liga Au-18Ni resultou em precipitação de intermetálicos e microtrincamento interfacial. Perfis de microdureza através da interface resultante até onde a zircônia mostrou típico escurecimento não indicaram alternância significativa entre medições consecutivas; os resultados dos ensaios de resistência mecânica à flexão-3p foram considerados satisfatórios.Yttria tetragonal zirconia polycrystal was mechanically metallized with titanium and the wetting behavior on the ceramic surface was analyzed using the conventional fillers Ag-28Cu and Au-18Ni. These alloys had dissolved the active metal coating, which acts to zirconia reduction on its surface and promoting suitable chemical bonding to the metallic member. Better wetting results were selected for indirect brazing in a high-vacuum furnace for ZrO2/Ti-6Al-4V simple butt joints. Helium gas leak detection was made at the joints interface; samples were removed from the tight joints cross-section and examined by microstructural analysis techniques and EDX analysis. There was formation of a dark

  11. Effects of Nd:YAG laser pulse frequency on the surface treatment of Ti 6Al 4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gursel, Ali [International University of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2016-07-01

    The desirable properties of titanium and titanium alloys, including excellent corrosion resistance, high strength to weight ratio and high operating temperature, have led to their successful application in various fields such as the medical and aerospace industries. Among the reliable treatment techniques, laser welding can provide significant advantages for the titanium alloys because of its precision, rapid processing capability and ability to control the welding parameters and their effects. The morphology and the quality of pulsed seam welds are directly or synergistically influenced by the Nd:YAG laser parameters of pulse shape, energy, duration, travel speed, peak power and frequency of repetition. In this study, a 1.5 mm thick Ti-6Al-4V alloy sheet surface was treated by SigmaLaser {sup registered} 300 Nd:YAG pulsed laser. The influence of the pulse frequency on seam morphology and surface effects was then investigated. The seam and surface quality were characterized in terms of weld morphology and microhardness. The results showed that, for Nd:YAG laser seams used for surface treatment, pulse repetition was more effective on the cooling rate than had been expected.

  12. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    International Nuclear Information System (INIS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong

    2010-01-01

    The corrosion behaviors of the TiO 2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO 2 nanoparticles (50-100 nm). It was found that the TiO 2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  13. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Science.gov (United States)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  14. The Bioactivity and Photocatalytic Properties of Titania Nanotube Coatings Produced with the Use of the Low-Potential Anodization of Ti6Al4V Alloy Surface

    Science.gov (United States)

    Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Szubka, Magdalena; Talik, Ewa; Pleth Nielsen, Lars; Piszczek, Piotr

    2017-01-01

    Titania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3–20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets. The bioactivity of the TNT coatings was established on the basis of the biointegration assay (L929 murine fibroblasts adhesion and proliferation) and antibacterial tests against Staphylococcus aureus (ATCC 29213). The photocatalytic efficiency of the TNT films was studied by the degradation of methylene blue under UV irradiation. Among the studied coatings, the TiO2 nanotubes obtained with the use of 5 V potential (TNT5) were found to be the most appropriate for medical applications. The TNT5 sample possessed antibiofilm properties without enriching it by additional antimicrobial agent. Furthermore, it was characterized by optimal biocompatibility, performing better than pure Ti6Al4V alloy. Moreover, the same sample was the most photocatalytically active and exhibited the potential for the sterilization of implants with the use of UV light and for other environmental applications. PMID:28933732

  15. The Bioactivity and Photocatalytic Properties of Titania Nanotube Coatings Produced with the Use of the Low-Potential Anodization of Ti6Al4V Alloy Surface.

    Science.gov (United States)

    Radtke, Aleksandra; Topolski, Adrian; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Szubka, Magdalena; Talik, Ewa; Pleth Nielsen, Lars; Piszczek, Piotr

    2017-07-26

    Titania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3-20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets. The bioactivity of the TNT coatings was established on the basis of the biointegration assay (L929 murine fibroblasts adhesion and proliferation) and antibacterial tests against Staphylococcus aureus (ATCC 29213). The photocatalytic efficiency of the TNT films was studied by the degradation of methylene blue under UV irradiation. Among the studied coatings, the TiO₂ nanotubes obtained with the use of 5 V potential (TNT5) were found to be the most appropriate for medical applications. The TNT5 sample possessed antibiofilm properties without enriching it by additional antimicrobial agent. Furthermore, it was characterized by optimal biocompatibility, performing better than pure Ti6Al4V alloy. Moreover, the same sample was the most photocatalytically active and exhibited the potential for the sterilization of implants with the use of UV light and for other environmental applications.

  16. Influence of damping coefficient from permanent magnets on chatter formation during end milling of titanium alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Sulaiman, S A; Amin, A N

    2015-01-01

    In machining operations, chatter is undesirable due to its adverse effects on the product quality, operation cost, machining accuracy and machine tool life. It is also responsible for reducing output. Chatter is a self-excitation phenomenon occurring in machine tools, in which the cutting process tends to lower the damping capacity of the machine structural components ending in an unstable behavior of the system. Chatter arises due to resonance when the vibrations of the instability of chip formation and the natural vibration modes of the machine-system components coincide. This paper focuses on the influence of damping coefficient from permanent magnets on chip serration frequency as an approach of minimizing chatter in end milling of Titanium alloy (Ti6Al4V). The method consists of two ferrite permanent magnet bars (dimensions: 1' × 6' × 3'), mounted 5mm from the cutting tool using a specially designed fixture which provided a uniform magnetic field of 2500-2700 Gausses. A titanium alloy Ti6Al4V block was then end milled using uncoated WC-Co inserts. A sequence of 15 experimental runs was conducted based on a small Central Composite Design (CCD) model in Response Surface Methodology (RSM). The primary (independent) parameters were: cutting speed, feed, and depth of cut. The data acquisition system comprised a vibration sensor (accelerometer) and a signal conditioning unit was used to measure the vibration data. The resultant vibrations were then analyzed using the DASYLab 5.6 software. Machining tests were conducted for two different conditions - with and without the application of magnets. Scanning Electron Microscope (SEM) was used to measure the chip segmentations. The SEM analysis of chip serrations demonstrated that the chip serration frequency were more stable while cutting under the presence of permanent magnets due to lower intensity of chatter. (paper)

  17. Influence of damping coefficient from permanent magnets on chatter formation during end milling of titanium alloy (Ti-6Al-4V)

    Science.gov (United States)

    Sulaiman, S. A.; Amin, A. N.

    2015-12-01

    In machining operations, chatter is undesirable due to its adverse effects on the product quality, operation cost, machining accuracy and machine tool life. It is also responsible for reducing output. Chatter is a self-excitation phenomenon occurring in machine tools, in which the cutting process tends to lower the damping capacity of the machine structural components ending in an unstable behavior of the system. Chatter arises due to resonance when the vibrations of the instability of chip formation and the natural vibration modes of the machine-system components coincide. This paper focuses on the influence of damping coefficient from permanent magnets on chip serration frequency as an approach of minimizing chatter in end milling of Titanium alloy (Ti6Al4V). The method consists of two ferrite permanent magnet bars (dimensions: 1" × 6" × 3"), mounted 5mm from the cutting tool using a specially designed fixture which provided a uniform magnetic field of 2500-2700 Gausses. A titanium alloy Ti6Al4V block was then end milled using uncoated WC-Co inserts. A sequence of 15 experimental runs was conducted based on a small Central Composite Design (CCD) model in Response Surface Methodology (RSM). The primary (independent) parameters were: cutting speed, feed, and depth of cut. The data acquisition system comprised a vibration sensor (accelerometer) and a signal conditioning unit was used to measure the vibration data. The resultant vibrations were then analyzed using the DASYLab 5.6 software. Machining tests were conducted for two different conditions - with and without the application of magnets. Scanning Electron Microscope (SEM) was used to measure the chip segmentations. The SEM analysis of chip serrations demonstrated that the chip serration frequency were more stable while cutting under the presence of permanent magnets due to lower intensity of chatter.

  18. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    Science.gov (United States)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  19. Self-Consolidation Mechanism Of Porous Ti-6Al-4V Implant Prototypes Produced By Electro-Discharge-Sintering Of Spherical Ti-6Al-4V Powders

    Directory of Open Access Journals (Sweden)

    Lee W.H.

    2015-06-01

    Full Text Available Electro-Discharge-Sintering (EDS was employed to fabricate Ti-6Al-4V porous implant prototypes from atomized powders (100 – 150 μm, that were subjected to discharges of 0.75 to 2.0 kJ/0.7g-powder from 150, 300, and 450 μF capacitors. Both fully porous and porous-surfaced Ti-6Al-4V compacts with various solid core sizes were self-consolidated in less than 86 – 155 μsec. It is known that EDS can simultaneously produce the pinch pressure to squeeze and deform powder particles and the heat to weld them together. The formation of a solid core in these prototypes depends on the amounts of both the pinch pressure and heat generated during a discharge. The size of the solid core and the thickness of the porous layer can be successfully controlled by manipulating the discharge conditions such as input energy and capacitance.

  20. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties

    Science.gov (United States)

    Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M.

    2015-03-01

    The Achilles' heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α' martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α' martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200-300 nm) lamellar ( α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar ( α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α' martensite.

  1. Hydrogen depth distribution and fatigue properties of TiAl6V4 with implanted nitrogen; Wasserstoff-Tiefenverteilung und Ermuedungseigenschaften von Stickstoff-implantiertem TiAl6V4

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Technische Univ. Darmstadt (Germany). Fachbereich Materialwissenschaft; Rueck, D.M. [Gesellschaft fuer Schwerionenforschung mbH (GSI), Darmstadt (Germany). Abt. fuer Materialforschung; Soltani-Farshi, M.; Baumann, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    1998-12-31

    Depth distributions and cracking initiation were analysed in TiAl6V4 with implanted nitrogen by means of high-energy backscattering spectroscopy, nuclear reaction analysis and fatigue tests under rotary bending loads. The hydrogen content in the substrate is approx. 0.4 at.%. The hydrogen content in the materials layer with implanted nitrogen is up to 2.6 at%. The highest hydrogen concentration was found in material consisting of titanium nitride (TiN) and {alpha}-titanium. In areas with high nitrogen accumulation, where a consistent TiN layer is formed, the hydrogen content is lower than 1.5 at.%. Nitrogen ion implantation was not found to significantly reduce the fatigue strength of the specimens tested under rotary bending loads, although fatigue-induced cracking primarily occurs in specimen zones where the maximum concentrations of hydrogen and nitrogen are close to the surface. (orig./CB) [Deutsch] Tiefenverteilungen und die Rissbildung von Stickstoff-implantiertem TiAl6V4 wurden mittels Hochenergie-Rueckstreu-Spektroskopie, Kernreaktionsanalyse und Umlaufbiegetests untersucht. Der Wasserstoffgehalt im Substrat betraegt etwa 0,4 at.%. In der Stickstoff-implantierten Schicht wird eine Wasserstoffakkumulation bis zu 2,6 at% beobachtet. Die hoechste Wasserstoffkonzentration tritt auf, wenn eine Mischung aus Titannitrid (TiN) und mit Stickstoff angereichertem {alpha}-Titan vorliegt. In Bereichen hoher Stickstoffanreicherung, in denen eine zusammenhaengende TiN-Schicht gebildet wird, sinkt der Wasserstoffanteil unter 1,5 at.% ab. Die Stickstoff-Implantation senkt die Lebensdauern im Umlaufbiegeversuch nicht signifikant ab, obwohl die Ermuedungsrisse bevorzugt von Probenbereichen ausgehen, in denen die Maximalgehalte von Stickstoff und Wasserstoff nahe an der Oberflaeche liegen. (orig.)

  2. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    Science.gov (United States)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  4. Interaction between Yttria fully stabilized Zirconia or Yttria-Zirconia blended face-coat with Ti6Al4V during investment casting

    CSIR Research Space (South Africa)

    Mutombo, K

    2014-10-01

    Full Text Available The interaction between the Ti6Al4V alloy and the mould materials was investigated. The alpha-case was characterized by Vickers hardness tester, optical and scanning electron microscopy equipped with electron dispersive X-ray spectrometry (EDX). X-ray...

  5. Exploring the influence of constitutive models and associated parameters for the orthogonal machining of Ti6Al4V

    Science.gov (United States)

    Pervaiz, S.; Anwar, S.; Kannan, S.; Almarfadi, A.

    2018-04-01

    Ti6Al4V is known as difficult-to-cut material due to its inherent properties such as high hot hardness, low thermal conductivity and high chemical reactivity. Though, Ti6Al4V is utilized by industrial sectors such as aeronautics, energy generation, petrochemical and bio-medical etc. For the metal cutting community, competent and cost-effective machining of Ti6Al4V is a challenging task. To optimize cost and machining performance for the machining of Ti6Al4V, finite element based cutting simulation can be a very useful tool. The aim of this paper is to develop a finite element machining model for the simulation of Ti6Al4V machining process. The study incorporates material constitutive models namely Power Law (PL) and Johnson – Cook (JC) material models to mimic the mechanical behaviour of Ti6Al4V. The study investigates cutting temperatures, cutting forces, stresses, and plastic strains with respect to different PL and JC material models with associated parameters. In addition, the numerical study also integrates different cutting tool rake angles in the machining simulations. The simulated results will be beneficial to draw conclusions for improving the overall machining performance of Ti6Al4V.

  6. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaithilingam, Jayasheelan, E-mail: Jayasheelan.Vaithilingam@nottingham.ac.uk [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Prina, Elisabetta [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Goodridge, Ruth D.; Hague, Richard J.M. [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Edmondson, Steve [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Rose, Felicity R.A.J. [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Christie, Steven D.R. [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM–AF surface was observed to be porous with an average surface roughness (Ra) of 17.6 ± 3.7 μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. - Highlights: • Surface chemistry of selective laser melted (SLM) Ti6Al4V parts was compared with conventionally forged Ti6Al4V parts. • The surface elemental compositions of the SLM as-fabricated surfaces were significantly different to the forged surface. • Surface oxide-layer of the SLM as-fabricated was thicker than the polished SLM surfaces and the forged Ti6Al4V surfaces.

  7. Heat treatment of TI-6AL-4V produced by lasercusing

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten

    2015-08-01

    Full Text Available LaserCUSING® is a selective laser melting (SLM process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the material performance of the resulting material. Studies of the material’s performance are often complicated by dependence on several factors, including starting powder properties, laser parameters, and post-processing heat treatments. This study aims to investigate the mechanical properties of LaserCUSING-produced Ti-6Al-4V and its performance relative to the conventional wrought counterpart. A combination of conventional and LaserCUSING-tailored heat treatments is performed. The resulting microstructures are studied and linked to the properties obtained from hardness tests. The findings highlight that LaserCused Ti-6Al-4V is competitive with traditional materials, provided that optimal parameters are chosen and parts are subject to tailored post-processing. In the as-built condition, LaserCused Ti-6Al-4V displays superior strength and hardness as a result of a martensitic microstructure, and a poorer performance in ductility. However, the material performance can be improved using tailored heat treatments. Careful consideration must be given to suitable post-processing before application in critical components in the aerospace or biomedical industry can occur

  8. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Jovanovic, M.T.; Tadic, S.; Zec, S.; Miskovic, Z.; Bobic, I.

    2006-01-01

    Production of investment castings of titanium alloys was considerably increased during last years due to the significant cost savings compared to complicated machined parts. However, the disadvantage of as-cast titanium alloys is that the heat-treatment remains only a limited option for improvement of their properties. The object of this paper was to study the effect of heat-treatment of investment cast Ti-6Al-4V alloy performing X-ray diffraction analysis, light microscopy and quantitative metallography together with hardness and room temperature tensile tests. The effect of annealing temperatures (above and below β transus temperature) and cooling rates on microstructure and mechanical properties was discussed in terms of the β → α transformation. The results of this paper also show that, besides heat treatment parameters, melting and casting practice together with mold technology strongly influence the properties of castings

  9. Particle variations and effect on the microstructure and microhardness of Ti6al4V hybrid metal matrix system

    CSIR Research Space (South Africa)

    Akinlabi, ET

    2017-01-01

    Full Text Available obtained as follow: 3.0 Ti6Al4 V, B4C and BN, 3.2 Ti6Al4 V, B4C and BN, and 3.4 Ti6Al4 V, B4C and BN systems. Laser coating experiment was done at 1400W. The influence of difference in variation of powder on the microstructure and hardness values...

  10. The growth of hydroxyapatite on alkaline treated Ti-6Al-4V soaking in higher temperature with concentrated Ca2+/HPO42- simulated body fluid

    International Nuclear Information System (INIS)

    Lin, F.-H.; Hsu, Y.-S.; Lin, S.-H.; Chen, T.-M.

    2004-01-01

    In this study, calcium and phosphorous ions in the simulated body fluid (SBF) was be increased to increase the rate of precipitation of hydroxyapatite (HA). The soaking temperature in concentrated calcium and phosphorous ion-SBF (CP-SBF) was increased to reduce the nucleation energy of the HA, which lead to an early precipitation to shorten the treatment process. When the metallic substrates treated with 10 M NaOH aqueous solution and subsequently heated at 600 deg. C, a thin sodium titanium oxide layer was formed on the surfaces as the linking layer for HA and Ti-6Al-4V alloys. After Ti-6Al-4V alloys treated with alkali solution, it would soak into a simulated body fluid with higher concentration of calcium and phosphorous ions (CP-SBF) to increase the possibility of nucleation of HA. When Ti-6Al-4V alloys treated with alkali solution, subsequently heated at 600 deg. C, and then soaked into CP-SBF at a temperature of 80 deg. C, it could form a dense and thick (50 μm) bone-like hydroxyapatite layer on the surface. The HA layer was appeared on the surface of the Ti-alloy at the first week soaking, which was greatly shorten the coating process. In the research, the characteristics of the coating layer will be analyzed by the results of X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier transformation infrared (FT-IR)

  11. Behaviour of laser metal deposited Ti6Al4V/ Cu composites in Hank’s solution in terms of biocompatibility properties

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available Ti6Al4V alloy is a well-known material for biomedical application due to the very excellent corrosion resistance it possessed. Cu has an excellent antimicrobial property and stabilizes the immune system of the body activities. In this present study...

  12. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  13. Influences of argon gas shielding on diffusion bonding of Ti-6Al-4V alloy to aluminum

    International Nuclear Information System (INIS)

    Akcaa, A.; Gursela, A.

    2017-01-01

    This study presents a diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy. Prepared samples were exposed to temperature of 560, 600 and 640 °C for the bonding time of 30, 45 and 60 min at the atmosphere of argon gas and non-argon. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. The processed samples were also metallographically prepared, optically examined followed by Vickers microhardness test in order to determine joint strength. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used in this work to investigate the compositional changes in order to observe the influence of atmosphere shielding in the transition zone. The result of tests and analyses were tried to be compared with the effect of argon shielding. The significant influences have been observed in the argon shielding during diffusion bonding process. [es

  14. Analysis Of Deformation And Microstructural Evolution In The Hot Forgingof The Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Kukuryk M.

    2015-09-01

    Full Text Available The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.

  15. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    Science.gov (United States)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  16. Výzkum a vývoj přípravy a hodnocení anodické vrstvy na titanové slitině Ti6Al4V

    Czech Academy of Sciences Publication Activity Database

    Gabor, R.; Vlčková, I.; Malaník, K.; Michenka, V.; Marvan, J.; Doubková, Martina; Pařízek, Martin; Bačáková, Lucie

    2015-01-01

    Roč. 68, č. 6 (2015), s. 84-92 ISSN 0018-8069 R&D Projects: GA TA ČR(CZ) TA04011214 Institutional support: RVO:67985823 Keywords : anodic oxidation * electrochemical process * electrolyte * surface modification * Ti6Al4V alloy * oxide layer * mechanical pretreatment Subject RIV: EI - Biotechnology ; Bionics

  17. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    Science.gov (United States)

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pcorrosion current density) and Ipass (pcorrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  18. RESIDUAL STRESS MEASUREMENTS AND STRUCTURAL INTEGRITY IMPLICATIONS FOR SELECTIVE LASER MELTED TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Knowles, C. R.

    2012-11-01

    Full Text Available Selective laser melting (SLM of Ti-6Al-4V has significant potential in the aerospace and biotechnology industries. SLM employs a focused laser beam to melt successive layers of metallic powder into complex components. This process can result in the generation of high thermally-induced residual stresses. These residual stresses, together with micro-flaws/ pores from the inherent fabrication process, may lead to premature fatigue crack initiation and propagation at relatively low cyclic stresses. The hole-drilling strain gauge method was used to evaluate residual stresses within SLM Ti-6Al-4V specimens, with the intention of understanding the associated mechanisms for the successful application of SLM Ti-6Al-4V in industry.

  19. Biocorrosion of TiO2 nanoparticle coating of Ti–6Al–4V in DMEM under specific in vitro conditions

    International Nuclear Information System (INIS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-01-01

    Highlights: • Possibility to fabricate a TiO 2 NP-coating on Ti–6Al–4V by a simple spin-coating method. • The NP-coating enhances biomimetic apatite formation on the surface immersed in DMEM. • The TiO 2 coating can efficiently reduce Al release from the alloy during immersion in DMEM. • TiO 2 NP-coating makes the surface more bioactive. - Abstract: A TiO 2 nanoparticle coating was prepared on a biomedical Ti–6Al–4V alloy using “spin-coating” technique with a colloidal suspension of TiO 2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO 2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO 2 . Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti–6Al–4V shows a complete coverage by a Ca–phosphate layer in contrast to the non-coated Ti–6Al–4V alloy. Hence, the TiO 2 -NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO 2 -NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti–6Al–4V alloy is significant for at least 28 days of immersion in DMEM

  20. On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing

    International Nuclear Information System (INIS)

    Crespo, Lara; Saldaña, Laura; Gomez-Barrena, Enrique; Vilaboa, Nuria; Hierro-Oliva, Margarita; Vadillo-Rodríguez, Virginia; González-Martín, María Luisa; Barriuso, Sandra; González-Carrasco, José Luis; Montealegre, M Ángeles

    2016-01-01

    We investigated a Ti6Al4V alloy modified by means of laser peening in the absence of sacrificial coatings. As a consequence of the temperature rise during laser focusing, melting and ablation generated an undulated surface that exhibits an important increase in the content of titanium oxides and OH− ions. Human mesenchymal stem cells and osteoblasts cultured on the oxidized alloy develop noticeable filopodia and lamellipodia. Their paxillin-stained focal adhesions are smaller than in cells attached to the untreated alloy and exhibit a marked loss of colocalization with the ends of actin stress fibers. An important imbalance of phosphorylation and/or dephosphorylation of the focal adhesion kinase is detected in cells grown on the oxidized alloy. Although these mechanisms of adhesion are deeply altered, the surface treatment does not affect cell attachment or proliferation rates on the alloy. Human mesenchymal stem cells cultured on the treated alloy in media containing osteogenic inducers differentiate towards the osteoblastic phenotype to a higher extent than those on the untreated surface. Also, the specific functions of human osteoblasts cultured on these media are enhanced on the treated alloy. In summary, laser peening tailors the Ti6Al4V surface to yield an oxidized layer with increased roughness that allows the colonization and activities of bone-lineage cells. (paper)

  1. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  2. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  3. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Suhaimi, M. A. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Kim, Dong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  4. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo; Suhaimi, M. A.; Kim, Dong Won

    2015-01-01

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  5. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  6. Biocorrosion studies of TiO{sub 2} nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong, E-mail: Anhong.Zhou@usu.ed [Utah State University, Biological Engineering Program (United States)

    2010-06-15

    The corrosion behaviors of the TiO{sub 2} nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO{sub 2} nanoparticles (50-100 nm). It was found that the TiO{sub 2} nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  7. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  8. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Xu Wenji; Liu Xin; Song Jinlong; Wu Libo; Sun Jing

    2012-01-01

    Highlights: ► Cold plasma jet can effectively reduce the friction coefficients of Ti6Al4V/WC-Co friction pairs. ► Cold plasma jet can easily form nitrides on the surface of Ti6Al4V and on new surfaces generated by tool wear. ► The nitrides can reduce the friction coefficients and protect the friction surface. - Abstract: The friction and wear properties of Ti6Al4V/WC-Co friction pair were studied using an autonomous atmospheric pressure bare electrode cold plasma jet generating device and block-on-ring friction/wear tester, respectively. The study was conducted under air, air jet, nitrogen jet, air cold plasma jet, and nitrogen cold plasma jet atmospheres. Both nitrogen cold and air cold plasma jets effectively reduced the friction coefficients of the friction pairs and decreased friction temperature. The friction coefficient in the nitrogen cold plasma jet decreased to almost 60% compared with that in the air. The scanning electron microscope, energy-dispersive X-ray spectroscope, and X-ray diffraction analyses illustrated that adhesive wear was relieved and the friction surfaces of Ti6Al4V were smoother, both in the nitrogen cold and air cold plasma jets. The roughness value R a of the Ti6Al4V friction surfaces can reach 1.107 μm. A large number of nitrogen particles in the ionic and excited states contained by cold plasma jets reacts easily on the friction surface to produce a large amount of nitrides, which can excellently reduce the wear of Ti6Al4V/WC-Co friction pairs in real-time.

  9. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    Science.gov (United States)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  10. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  11. EFECT OF PLASMA IMMERSION ION IMPLANTATION TREATEMENT IN THE WEAR RESISTANCE OF Ti-6Al-4V ALLOY

    Directory of Open Access Journals (Sweden)

    Zepka, Susana

    2015-07-01

    Full Text Available The objective of this work was the evaluation of wear resistance of Ti-6Al-4V alloy after plasma immersion ion implantation (PIII in different immersion times. The goal of this process was the modification of surface properties of the alloy to obtain better tribology properties. In this process, atoms can be injected on the material´s surface changing the mechanical properties in the region near the surface independently of thermodynamics variables, as solubility and difusivity. The samples were submitted to 120 e 180 minutes of implantation at 250°C in the three samples for each condition. The wear analyses were made by pin-on-disk process, where the lost volumes and wear coefficients were compared in the samples. It was observed the decreasing of attrite coefficient and the lost volume of the material during wear test. The implanted sample by 180 minutes has showed the wear coefficient 35.12% lower in comparison of the sample without treatment, and 11.09% lower in comparison of implanted sample by 120 minutes. It can be observed that the sample implanted by 180 minutes showed lower wear coefficient.

  12. 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behaviour

    International Nuclear Information System (INIS)

    Barranco, V.; Escudero, M.L.; Garcia-Alonso, M.C.

    2007-01-01

    The blasting process to increase the roughness of the surface of metallic biomaterials is widely used. As a consequence, one can produce a renewed surface with different topography and chemical composition compared to the original one, which can alter the general corrosion behaviour of the samples. With this idea, the aim of this work is not only the topographical and compositional characterization of blasted surfaces of Ti6Al4V alloy but mainly its influence on the corrosion behaviour of these modified surfaces. The surfaces of Ti6Al4V alloys were blasted with SiO 2 /ZrO 2 and Al 2 O 3 particles of different size in order to obtain different roughnesses. To carry out the microstructural and topographical characterization of the blasted surfaces, the scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX), the contact profilometry method and the 3D characterization by means of stereo-Fe-SEM have been used. By means of stereo-Fe-SEM, the roughness and the real surface area of the rough surfaces have been calculated. The microstructural, topographical and compositional results have been correlated with the corrosion behaviour of the samples immersed in Hank's solution and studied by means of electrochemical impedance spectroscopy (EIS). The blasting process alters topographical and chemically the surface of the samples. These modifications induce to an increase in the capacitance values of the roughened samples due to the prevalence of the effect of electrochemically active areas of Ti6Al4V surface over the effect of the presence of Al 2 O 3 and ZrO 2 particles on the blasted surfaces. However, the general corrosion behaviour of the samples is not drastically changed

  13. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  14. Biocorrosion of TiO{sub 2} nanoparticle coating of Ti–6Al–4V in DMEM under specific in vitro conditions

    Energy Technology Data Exchange (ETDEWEB)

    Höhn, Sarah, E-mail: sarah.hoehn@fau.de; Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de

    2015-02-28

    Highlights: • Possibility to fabricate a TiO{sub 2} NP-coating on Ti–6Al–4V by a simple spin-coating method. • The NP-coating enhances biomimetic apatite formation on the surface immersed in DMEM. • The TiO{sub 2} coating can efficiently reduce Al release from the alloy during immersion in DMEM. • TiO{sub 2} NP-coating makes the surface more bioactive. - Abstract: A TiO{sub 2} nanoparticle coating was prepared on a biomedical Ti–6Al–4V alloy using “spin-coating” technique with a colloidal suspension of TiO{sub 2} nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO{sub 2} nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO{sub 2}. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti–6Al–4V shows a complete coverage by a Ca–phosphate layer in contrast to the non-coated Ti–6Al–4V alloy. Hence, the TiO{sub 2}-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO{sub 2}-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti–6Al–4V alloy is significant for at least 28 days of immersion in DMEM.

  15. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  16. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed

    International Nuclear Information System (INIS)

    Wang, F.; Mei, J.; Jiang, H.; Wu, X.

    2007-01-01

    Composites of Ti-6Al-4V containing different volume fractions of TiC were manufactured using direct laser fabrication. Ti-6Al-4V wire and TiC powder were fed into the laser with the rate of powder feed being changed so that samples containing different volume fractions of TiC could be manufactured. Optical microscopy, scanning electron and transmission electron microscopy were used to characterise the microstructure of these samples. The room temperature tensile properties were measured also on some selected compositions together with their Young's moduli. In addition the change in wear resistance was studied as a function of TiC volume fraction using a standard wear test. These observations are discussed in terms of the advantages and difficulties of using simultaneous wire and powder feed systems and in terms of the value of this approach in obtaining data over a wide range of compositions for such a composite

  17. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  18. Laser metal deposition of Ti6Al4V: A study on the effect of laser power on microstructure and microhardness

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available The effect of laser power on the resulting microstructure and microhardness of laser metal deposited Ti6Al4V powder on Ti6Al4V substrate has been investigated. The tracks were deposited using 99.6 % pure Ti6Al4V powder of particle size ranging...

  19. Parametric effects of turning Ti-6Al-4V alloys with aluminum oxide nanolubricants with SDBS

    Science.gov (United States)

    Ali, M. A. M.; Azmi, A. I.; Khalil, A. N. M.

    2017-09-01

    Applications of nanolubricants have been claimed to improve machinability of aerospace metals due to reduction of friction as a results of the rolling action of billions of nanoparticles at the tool-chip interface. In addition, the need to pursue for an eco-friendly machining has pushed researchers toward implementing alternative lubrication methods through minimal quantity lubrication (MQL). However, the gap in the current literature regarding the performance of nanolubricants via MQL has restricted the widespread use of this lubricant and technique in industries. The present work aims to understand the parametric effects of nanoparticles concentration, cutting speed, feed rate and nozzle angle during machining of titanium alloy, Ti-6AL-4V. Multiple performance of machinability outputs such as surface roughness, tool wear and power consumption were simultaneously determined via Taguchi orthogonal array and grey relational analyses. Prior to machining tests, the nanolubricants stabilities were investigated through the addition of surfactant; sodium dodecyl benzene sulfonate (SDBS). The results clearly indicated that inclusion of SDBS surfactant managed to reduce agglomeration in the base lubricant. Meanwhile, grey relational analyses revealed that the combination of 0.6 % nanoparticles concentration, cutting speed of 85 m/min, feed rate of 0.1 mm/rev and nozzle angle of 60o as desired setting for all the three machining outputs.

  20. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    Science.gov (United States)

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pdextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (pdextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  1. Analysis Of Deformation And Microstructural Evolution In The Hot Forging Of The Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Kukuryk M.

    2015-06-01

    Full Text Available The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.

  2. Characterization of Ti-6%Al-4%V and VascoMax C-350

    International Nuclear Information System (INIS)

    Sunwoo, A J

    2005-01-01

    The α-β Ti-6% Al-4% V (Ti64) alloy can be heat treated to meet the specified requirements of the applications. The as-received material from SLAC was given a solution heat treatment (SHT) to have a good strength and ductility combination. The SHT was done at 200 C below the Beta transus of 990 C for 15 min and air-cooled to 20 C. The designed microstructure consists of β phase precipitates within the α phase matrix. The characterization of the as-received Ti64 alloy sheet microstructure reveals equiaxed, 10 (micro)m-sized grains on the flat surface and finer, 8 (micro)m-sized grains in the through thickness. Figures 1 and 2 show the microstructure of the alloy. The typical Ti64 microstructure is lamellar structure, consisting of alternating α and β phases. In order for the alloy to have the micron sized, equiaxed grains, it had to undergo extensive wrought processing. The Vicker's microhardness numbers (VHN) showed that the slightly larger grained flat surface had a higher averaged value than the through thickness; 33 kg/mm 2 vs. 30 kg/mm 2 . The residual effect of wrought processing is still present even after the SHT to cause the small difference in the hardness values. The results of tensile tests conducted at LLNL and at BNL are given in Tables 2 and 1 in Appendices 1 and 2, respectively. The effects of the irradiation dosage damage on the tensile properties of the Ti64 are presented in Appendix 2. The as-received tensile specimens are not the standard specimens for testing. As shown in Attachment, Figure 1, only the 6 mm length is used in the reduced gage section of the specimens. As a result, a small change in the gage length will translate to a higher percentage change in elongation, giving higher elongation values than using the 30 mm length of the specimen. Since most of the deformation is concentrated in the reduced gage section, the present results are more accurate measurement of ductility. The Ti64 specimens failed in the center of the gage

  3. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    International Nuclear Information System (INIS)

    He, Daihua; Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei; Du, Jiandi; Wang, Pu; Zhao, Jun

    2016-01-01

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  4. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ya, Bin; Zhou, Bingwen; Yang, Hongshuo; Huang, Bingkun; Jia, Fei; Zhang, Xingguo, E-mail: zxgwj@dlut.edu.cn

    2015-07-15

    Highlights: • Adding MWCNTs in situ casting fabricating TiC/Ti6Al4V composites is first reported. • The solidification process of in situ casting TiC/Ti6Al4V composites is discussed. • Microstructure shows remarkable correlations with adding MWCNTS. • Strength and plasticity show remarkable correlations with adding MWCNTs. - Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were added as carbon sources to fabricate in situ casting TiC/Ti6Al4V (TC4) composites. The effects of MWCNTs on the microstructure and mechanical properties are studied. The composites are analyzed by X-ray diffraction, field-emission scanning electron microscope and electron probe microanalysis. The fracture behavior of TiC/TC4 composites are also studied. Smaller size of TiC particles and grain compared with TC4-graphite composites can be observed. The tensile strength of TC4-MWCNTs composites is about 1110.1 MPa, which is higher than that of TC4-graphite composites, about 1003.6 MPa. Fracture behavior also was changed by adding MWCNTs in situ casting TiC/TC4 composites.

  5. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  6. Quasi-Static and Dynamic Tensile Properties of Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Wojtaszek M.

    2013-12-01

    Full Text Available Stop Ti-6A1-4V jest szeroko stosowany głównie w przemyśle lotniczym ze względu na niski ciężar właściwy, dużą odpor- ność na korozję oraz wysokie własności mechaniczne. Ze względu na stosunkowo małą podatność do odkształceń plastycznych stopu Ti-6A1-4V. kształtowanie części o skomplikowanej geometrii z tego stopu wymaga bardzo dokładnego doboru warun- ków przeróbki cieplno-mechanicznej. W warunkach przemysłowych stop ten jest najczęściej kształtowany w procesach kucia lub wyciskania, które charakteryzują się różnymi zakresami prędkości odkształcania wsadu. Zastosowanie stopu Ti-6A1-4V obejmuje w dużej mierze wytwarzanie odpowiedzialnych elementów konstrukcji lotniczych, które są eksponowane na zmienne obciążenia w warunkach wysokich lub cyklicznie zmiennych prędkości, oraz które często muszą charakteryzować się doskona- łymi parametrami balistycznymi. Dlatego istotna w przypadku przedmiotowego materiału jest znajomość charakterystyk jego zachowania w warunkach obciążeń dynamicznych. Zauważyć można, że w odróżnieniu od danych otrzymanych w statycznych warunkach, ilość publikowanych informacji na ten temat jest niewielka. W pracy przeprowadzono próby jednoosiowego roz- ciągania próbek ze stopu Ti-6A1-4V, które prowadzono przy dużych prędkościach odkształcenia oraz, celem porównania, w warunkach quasi-statycznych. Do analizy wykorzystano system do bezkontaktowych trójwymiarowych pomiarów odkształceń ARAMIS. Badano wpływ prędkości odkształcenia na wybrane własności mechaniczne stopu, obserwacji i analizie poddano także powstałe podczas realizacji próby rozciągania powierzchnie zniszczenia.

  7. Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2016-01-01

    Full Text Available The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicular α′ martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicular α′ martensite microstructure.

  8. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.

    Science.gov (United States)

    Ter Haar, Gerrit M; Becker, Thorsten H

    2018-01-17

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α'/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  9. Multilinear stress-strain and failure calibrations for Ti-6Al-4V.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo concerns calibration of an elastic-plastic J2 material model for Ti-6Al-4V (grade 5) alloy based on tensile uniaxial stress-strain data obtained in the laboratory. In addition, tension tests on notched specimens provided data to calibrate two ductile failure models: Johnson-Cook and Wellman's tearing parameter. The tests were conducted by Kim Haulen- beek and Dave Johnson (1528) in the Structural Mechanics Laboratory (SML) during late March and early April, 2017. The SML EWP number was 4162. The stock material was a TIMETALR® 6-4 Titanium billet with 9 in. by 9 in. square section and length of 137 in. The product description indicates that it was a forging delivered in annealed condition (2 hours @ 1300oF, AC at the mill). The tensile mechanical properties reported in the material certi cation are given in Table 1, where σo represents the 0.2% strain offset yield stress, σu the ultimate stress, εf the elongation at failure and R.A. the reduction in area.

  10. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-01-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO 2 composite is investigated. • The effect of ZrO 2 on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO 2 addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H 2 SO 4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO 2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO 2 particles. The results obtained show that addition of ZrO 2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO 2 addition, combination of high hardness of Ti 2 Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions

  11. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  12. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    Science.gov (United States)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  13. Metallurgical evaluation of laser additive manufactured Ti6Al4V components

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-10-01

    Full Text Available of contact between single deposited layer and Ti6Al4V base as well as the tensile properties of the component were evaluated. Powdered metal globularization, size segregation, un-melted or semi-melted particles and chemical surface contamination were revealed...

  14. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2008-01-01

    It is very desirable to replace the KBF 4 salt in the popular 'halide salt' process to reduce the volume of fluoride salts to be added to molten aluminium in the production of Al-Ti-B grain refiners. Being over 2 times richer in B, Na 2 B 4 O 7 is a promising replacement for KBF 4 , and is used in the present work to produce Al-Ti-B grain refiner master alloys. A fraction of the aluminide particles were entrapped in the spent salt giving a relatively lower Ti recovery when KBF 4 was replaced by Na 2 B 4 O 7 . The grain refining performance of the Al-Ti-B grain refiner alloy thus produced was nevertheless acceptable. The spent salt became too viscous with the oxides, aluminides and borides to be removed by decanting when Na 2 B 4 O 7 .5H 2 O was used to supply boron. The viscous spent salt, entrained in the grain refiner alloy, did not only impair its performance, but also hurt the fluidity of the molten alloy and made pouring difficult

  15. Internal strain evolution during heating of Ti-6Al-4V/SCS-6 composite

    International Nuclear Information System (INIS)

    Choo, H.; Rangaswamy, P.; Bourke, M.A.M.

    1999-01-01

    The characteristics of the residual stresses and their effects on the properties in continuous SiC fiber reinforced Ti-6Al-4V matrix composites (TMCs) have been extensively studied. However, to date, few experimental studies (e.g. Ti-14Al-21Nb/SCS-6) have characterized the thermal residual strain in TMCs at elevated temperatures. Therefore, the authors investigated the evolution of the thermal residual strain during heating of Ti-6Al-4V/35vol% SiC composite. In this study the authors used in situ high temperature neutron diffraction to measure strains: (1) in the matrix (α and β phases) and in the fiber, (2) for several lattice reflections in each phase and (3) from both axial and the transverse directions. One distinguishing feature is the wide temperature range (from room temperature up to 1,170K) over which the study was performed. Although the proposed application temperature is typically less than 800K, TMCs are subject to higher temperatures during fabrication and may experience high temperature excursions while in service. Therefore, the authors extended the study to the high temperature regime where the matrix starts to undergo a phase transformation between αminus and βminusTi. Measurements from this regime (800approximately1,170K) provide insights on; (1) the inelastic relaxation of the residual strains through matrix yielding and creep, (2) the effect of the phase transformation on the residual strains and (3) the effect of the presence of SiC on the matrix phase evolution

  16. Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen.

    Science.gov (United States)

    Rezvanian, Parsa; Daza, Rafael; López, Patricia A; Ramos, Milagros; González-Nieto, Daniel; Elices, Manuel; Guinea, Gustavo V; Pérez-Rigueiro, José

    2018-02-20

    This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4V samples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.

  17. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  18. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  19. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.

    Science.gov (United States)

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Young, Philippe

    2015-11-01

    Triply periodic minimal surface (TPMS) structures have already been shown to be a versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95% and pore sizes in the range of 560-1600 μm and 480-1450 μm respectively were manufactured by selective laser melting (SLM) for bone implants. The manufacturability, microstructure and mechanical properties of the Ti-6Al-4V TPMS lattices were evaluated. Comparison between 3D micro-CT reconstructed models and original CAD models of the Ti-6Al-4V TPMS lattices shows excellent reproduction of the designs. The as-built Ti-6Al-4V struts exhibit the microstructure of columnar grains filled with very fine and orthogonally oriented α' martensitic laths with the width of 100-300 nm and have the microhardness of 4.01 ± 0.34 GPa. After heat treatment at 680°C for 4h, the α' martensite was converted to a mixture of α and β, in which the α phase being the dominant fraction is present as fine laths with the width of 500-800 nm and separated by a small amount of narrow, interphase regions of dark β phase. Also, the microhardness is decreased to 3.71 ± 0.35 GPa due to the coarsening of the microstructure. The 80-95% porosity TPMS lattices exhibit a comparable porosity with trabecular bone, and the modulus is in the range of 0.12-1.25 GPa and thus can be adjusted to the modulus of trabecular bone. At the same range of porosity of 5-10%, the moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range. Therefore, the modulus and porosity of Ti-6Al-4V TPMS lattices can be tailored to the levels of human bones and thus reduce or avoid "stress shielding" and increase longevity of implants. Due to the biomorphic designs, and high interconnected porosity and stiffness comparable to human bones, SLM-made Ti-6Al-4V TPMS lattices can be a promising material for load bearing bone implants. Copyright © 2015 Elsevier

  20. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  1. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  2. Recobrimento da liga Ti-6Al-4V com hidroxiapatita pelo método sol-gel e sua aplicação a hastes femorais não-cimentadas Coating of Ti-6Al-4V alloy with hydroxyapatite by using sol-gel method and its application to non-cemented femoral stem

    Directory of Open Access Journals (Sweden)

    E. P. Avés

    2008-12-01

    Full Text Available O recobrimento de ligas metálicas com cerâmicas bioativas visa acelerar a formação óssea ao redor do implante, contribuindo para a sua estabilização. Neste trabalho estudou-se a fase cerâmica de hidroxiapatita depositada pelo processo sol-gel em chapas da liga metálica Ti-6Al-4V. A camada de recobrimento foi caracterizada por microscopia eletrônica de varredura, por difração de raios X e sua adesão ao substrato foi avaliada pelo teste de cisalhamento O teste de citocompatibilidade mostrou que o processo de recobrimento por sol-gel não promoveu morte celular significativamente maior que o controle (p > 0,05. Além disso, hastes femorais removidas de pacientes (explantes foram adequadamente recobertas utilizando-se o processo sol-gel.The coating of metallic alloys with bioactive ceramics aims to accelerate bone formation around the implant, contributing to its fixation. In this paper, the deposition of hydroxyapatite ceramic on Ti-6Al-4V alloy sheets by the sol-gel method was studied. The coating layer was characterized by scanning electron microscopy, X-ray diffraction and its adhesion to substrate was evaluated by shear testing. The citocompatibility test shows that the sol-gel coating did not provoke the cell death significantly higher than the control (p > 0.05. Moreover, femoral stems removed from patient (explants were adequately coated using the sol-gel process.

  3. High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František

    2016-01-01

    Roč. 50, č. 2 (2016), s. 257-261 ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : TiAl6V4 * silicides * high-temperature oxidation * liquid-phase silicon izing Subject RIV: JG - Metallurgy Impact factor: 0.436, year: 2016

  4. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  5. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    Directory of Open Access Journals (Sweden)

    Gerrit M. Ter Haar

    2018-01-01

    Full Text Available Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cool