WorldWideScience

Sample records for alloy-ti88mo8al3

  1. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  2. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  3. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  4. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  5. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  6. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  7. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  8. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  9. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  10. Effect of Al-5Ti-0.62C-0.2Ce Master Alloy on the Microstructure and Tensile Properties of Commercial Pure Al and Hypoeutectic Al-8Si Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding

    2017-06-01

    Full Text Available Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions of Al-5Ti-0.62C-0.2Ce master alloy were investigated. The results show that the Al-5Ti-0.62C-0.2Ce alloy was composed of α-Al, granular TiC, lump-like TiAl3 and block-like Ti2Al20Ce. Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min can significantly refine macro grains of commercial pure Al into tiny equiaxed grains. The Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 30 min still has a good refinement effect. The tensile strength and elongation of commercial pure Al modified by the Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min increased by roughly 19.26% and 61.83%, respectively. Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min can significantly refine both α-Al grains and eutectic Si of hypoeutectic Al-8Si alloy. The dendritic α-Al grains were significantly refined to tiny equiaxed grains. The morphology of the eutectic Si crystals was significantly refined from coarse needle-shape or lath-shape to short rod-like or grain-like eutectic Si. The tensile strength and elongation of hypoeutectic Al-8Si alloy modified by the Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min increased by roughly 20.53% and 50%, respectively. The change in mechanical properties corresponds to evolution of the microstructure.

  11. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  12. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  13. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  14. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  15. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  16. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  17. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  18. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  19. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti-Hf-Mo-Sn Alloy

    Science.gov (United States)

    Ion, Raluca; Drob, Silviu Iulian; Ijaz, Muhammad Farzik; Vasilescu, Cora; Osiceanu, Petre; Gordin, Doina-Margareta; Cimpean, Anisoara; Gloriant, Thierry

    2016-01-01

    A new superelastic Ti-23Hf-3Mo-4Sn biomedical alloy displaying a particularly large recovery strain was synthesized and characterized in this study. Its native passive film is very thick (18 nm) and contains very protective TiO2, Ti2O3, HfO2, MoO2, and SnO2 oxides (XPS analysis). This alloy revealed nobler electrochemical behavior, more favorable values of the corrosion parameters and open circuit potentials in simulated body fluid in comparison with commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy taken as reference biomaterials in this study. This is due to the favorable influence of the alloying elements Hf, Sn, Mo, which enhance the protective properties of the native passive film on alloy surface. Impedance spectra showed a passive film with two layers, an inner, capacitive, barrier, dense layer and an outer, less insulating, porous layer that confer both high corrosion resistance and bioactivity to the alloy. In vitro tests were carried out in order to evaluate the response of Human Umbilical Vein Endothelial Cells (HUVECs) to Ti-23Hf-3Mo-4Sn alloy in terms of cell viability, cell proliferation, phenotypic marker expression and nitric oxide release. The results indicate a similar level of cytocompatibility with HUVEC cells cultured on Ti-23Hf-3Mo-4Sn substrate and those cultured on the conventional CP-Ti and Ti-6Al-4V metallic materials. PMID:28773939

  20. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  1. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  2. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  3. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  4. Effects of O in a binary-phase TiAl-Ti3Al alloy: from site occupancy to interfacial energetics

    International Nuclear Information System (INIS)

    Wei Ye; Xu Huibin; Zhou Hongbo; Zhang Ying; Lu Guanghong

    2011-01-01

    We have investigated site occupancy and interfacial energetics of a TiAl-Ti 3 Al binary-phase system with O using a first-principles method. Oxygen is shown to energetically occupy the Ti-rich octahedral interstitial site, because O prefers to bond with Ti rather than Al. The occupancy tendency of O in TiAl alloy from high to low is α 2 -Ti 3 Al to the γ-α 2 interface and γ-TiAl. We demonstrate that O can largely affect the mechanical properties of the TiAl-Ti 3 Al system. Oxygen at the TiAl-Ti 3 Al interface reduces both the cleavage energy and the interface energy, and thus weakens the interface strength but strongly stabilizes the TiAl/Ti 3 Al interface with the O 2 molecule as a reference. Consequently, the mechanical property variation of TiAl alloy due to the presence of O not only depends on the number of TiAl/Ti 3 Al interfaces but also is related to the O concentration in the alloy.

  5. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  6. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  7. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  8. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    Science.gov (United States)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  9. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  10. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Canto, C.E., E-mail: carloscanto2012@yahoo.com.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Rocha, M.F. [ESIME-Z, IPN, U.P. ALM, Gustavo A. Madero, C.P. 07738 México D.F. (Mexico); Alemón, B. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Huegel, J.C. [Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico)

    2016-03-15

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  11. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    International Nuclear Information System (INIS)

    Canto, C.E.; Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C.; Rocha, M.F.; Alemón, B.; Flores, M.; Huegel, J.C.

    2016-01-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  12. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  13. Investigation of the structure and properties of the titanium alloy of the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system

    International Nuclear Information System (INIS)

    Moiseev, V.N.; Dolzhanskij, Yu.M.; Zakharov, Yu.I.; Znamenskaya, E.V.

    1979-01-01

    The alloys of martensitic type in the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system after heat treatment are investigated. To determine the composition of the titanium alloy methods of mathematical planning of the experiment are applied. Results of mechanical tests of the alloys are presented, as well as coefficients of models for the properties, calculated according to these data. The investigation establishes the composition of a high-strength titanium alloy of a martensitic type, containing 4.5-60 % Al, 2.0-4.0 % Mo, 0.5-1.9 % V, 0.3-1.5 % Fe, 0.3-1.5 % Cu, 1.5-3.0 % Sn, 2.0-4.0 % Zr. The semiproducts, produced by deformation in β-field, after heat treatment have an ultimate strength >=120 kg/mm 2 , satisfactory ductility and reliability. The alloy possesses rather a high heat resistance and can be operated at 400-500 deg C

  14. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  15. Hydrodesulfurization of Iraqi Atmospheric Gasoil by Ti-Ni-Mo/γ-Al2O3 Prepared Catalyst

    Directory of Open Access Journals (Sweden)

    Abdul Halim Abdul Karim Mohammed

    2017-11-01

    Full Text Available This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA occurs simultaneously with hydrodesulfurization (HDS process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of metals as oxide; titanium oxide 3 wt. %, nickel oxide 5 wt. % and molybdenum oxide 12 wt. %. The performance of the synthesized catalyst for removing sulfur and aromatic saturation were tested at various temperatures 275 to 350°C, LHSV 1 to 4h-1, constant pressure 40 bar and H2/HC ratio 500 ml/ml.Results showed that the sulfur and aromatic content were reduced at all operating conditions. Maximum sulfur removal was 75.52 wt. % in gas oil on Ti-Ni-Mo/γ-Al2O3 at temperature 350˚C, LHSV 1h-1, while minimum aromatic content achieved was 15.6 wt. % at the same conditions.

  16. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Liu Xiangfa; Ding Haimin

    2009-01-01

    Because flake-like TiAl 3 particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl 3 particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of α-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption

  17. Microstructure of two phases alloy Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}; Microestructura de una aleacion de dos fases Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C; Rosas, G; Perez, R [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The titanium-aluminium system presents three intermetallic compounds from those Al{sub 3}Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al{sub 3}Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al{sub 2}Ti phase over Al{sub 3}Ti intermetallic compound increases its ductility. (Author)

  18. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  19. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn; Ding Haimin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-03-05

    Because flake-like TiAl{sub 3} particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl{sub 3} particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of {alpha}-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption.

  20. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  1. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  2. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  3. The effects of boron in TiAl/Ti3Al

    International Nuclear Information System (INIS)

    Feng, C.R.; Michel, D.J.; Crowe, C.R.

    1989-01-01

    The authors discuss the TiAl/Ti 3 Al interfacial misfit dislocations structures investigated by TEM in Ti-45Al alloy and Ti-45Al/TiB 2 composite. For TiAl with c/a = 1.02, only a single set of misfit dislocation arrays are crystallographically possible; these were observed in Ti-45Al alloy. However, the observation of three sets of misfit dislocation arrays in the Ti-45Al/TiB 2 composite suggests that the occupation of octahedral sites in the TiAl structure by excess boron was responsible for a decrease in the c/a ratio leading to an increased fcc character of the TiAl at the TiAl/Ti 3 Al interface

  4. Grain refining efficiency of Al-Ti-C alloys

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2006-01-01

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al 3 Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate α-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al 3 Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified

  5. Grain refining efficiency of Al-Ti-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birol, Yuecel [Materials Institute, Marmara Research Center, TUBITAK, 41470 Gebze, Kocaeli (Turkey)]. E-mail: yucel.birol@mam.gov.tr

    2006-09-28

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al{sub 3}Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate {alpha}-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al{sub 3}Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified.

  6. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  7. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    Science.gov (United States)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  8. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  9. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  10. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    International Nuclear Information System (INIS)

    Komar Varela, C.; Mirandou, M.; Arico, S.; Balart, S.; Gribaudo, L.

    2009-01-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 deg. C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 deg. C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20 Mo 2 U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43 Mo 4 U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3 Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5 Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  11. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  12. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  13. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  14. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  15. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  16. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy; Analise comparativa da adicao de NB e TI nas ligas Cu-11,8Al-0,5Be e Cu-11,8Al-3,0Ni passiveis do efeito memoria de forma

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, M.Q. da; Oliveira, G.D. de, E-mail: manoel.quirino@ufersa.edu.br [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)

    2014-07-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  17. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  18. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  19. Solid solution limits and selected mechanical properties of the quaternary L12 trialuminide Al-Ti-Mn-Mo

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1994-01-01

    Intermetallics based on the trialuminide Al 3 Ti, or on Al 11 Ti 5 , have been extensively researched in recent years. Alloying with approximately 10 at.% of first-row transition elements, such as Cr or Mn, converts the DO 22 structure of Al 3 Ti to L1 2 . Although this transition to the L1 2 structure increases the number of independent slip systems to five and causes substantial softening, room-temperature tensile ductilities and fracture toughnesses remain low. Typical values for the room-temperature ductilities of Al-25Ti-8Cr and Al-25Ti-9Mn are 0.2% and room-temperature fracture toughnesses of trialuminides range from 2 to 5 MPa m 1/2 . Reasons for the low fracture toughness of trialuminides have been discussed by Turner et al. and George et al. On a phenomenological basis, it appears that fracture toughnesses might improve, if either Poisson's ratio or the ratio of the bulk and shear moduli can be increased. In principle, this might be achieved by macroalloying ternary L1 2 trialuminides, while at the same time maintaining the L1 2 crystal structure. Focusing on first-row transition elements, Kumar and Brown investigated a range of such quaternary compounds. They did not observe any improvement in ductility, as compared to the ternary compounds. In the present work, it was decided to focus on a second-row transition element, namely, 2 molybdenum. As compared to Cr and Mn, which are only slightly soluble in Al 3 Ti, up to 20 at. % Mo dissolves in Al 3 Ti at 1,198 K. This raises the question whether substantial amounts of Mo also dissolve in the cubic ternary trialuminides such as Al-Ti-Mn. In order to verify this possibility, the extent of the single-phase region of cubic Al-Ti-Mn-Mo intermetallic was mapped out at 1,473 K. In addition, a limited characterization of room-temperature mechanical properties was carried out

  20. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  1. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  3. Mechanical characterization of Ti-12Mo-13Nb alloy for biomedical application hot swaged and aged

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema; Rezende, Monica Castro; Almeida, Luiz Henrique de, E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Dille, Jean [Universite Libre de Bruxelles, Brussels (Belgium); Mei, Paulo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Departamento de Engenharia Mecanica; Baldan, Renato; Nunes, Carlos Angelo [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Departamento de Engenharia de Materiais

    2015-07-01

    Beta titanium alloys were developed for biomedical applications due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance, good ductility and with excellent corrosion resistance. With this perspective a metastable beta titanium alloy Ti-12Mo-13Nb was developed with the replacement of both vanadium and aluminum from the traditional alloy Ti-6Al-4V. This paper presents the microstructure, mechanical properties of the Ti-12Mo-13Nb hot swaged and aged at 500 deg C for 24 h under high vacuum and then water quenched. The alloy structure was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of a fine dispersed α phase in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-12Mo-13Nb alloy can be a promising alternative for biomedical application. (author)

  4. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  5. Orientation of Al3Ti platelets in Al-Al3Ti functionally graded material manufactured by centrifugal method

    International Nuclear Information System (INIS)

    Watanabe, Y.; Fukui, Y.

    1997-01-01

    Al-Al 3 Ti functionally graded materials (FGMs) were manufactured by the centrifugal method with a commercial ingot of Al-5 mass% Ti master alloy. The alloy was melted at a liquid/solid coexisting temperature, at which Al 3 Ti remains as a solid, and then it was cast into a thick-walled ring. It was found that the Al-Al 3 Ti functionally graded material can be successfully fabricated by the centrifugal method. It was also found that the volume fraction of the Al 3 Ti can be increased by repetition of the centrifugal method. Since the shape of Al 3 Ti particles in a commercial alloy ingot is that of a platelet, the Al 3 Ti particles are arranged with their platelet planes nearly perpendicular to the radial direction. The orientation effects become stronger when the G number becomes larger. Although the final centrifugal casting was conducted under a very large centrifugal force for the specimen cast three times, the orientation effects were weaker than those in the specimen cast one time. From these observations, it is concluded that the origin of orientation of Al 3 Ti platelets can be attributed to the angular velocity gradient of the melt along the radial direction produced by the difference in the viscosity. (orig.)

  6. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  7. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  8. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er

    Energy Technology Data Exchange (ETDEWEB)

    Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room

  9. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  10. Interface behaviour of Al2O3/Ti joints produced by liquid state bonding

    International Nuclear Information System (INIS)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J.

    2014-08-01

    The main objective of this work was to determine various aspects during brazing of Al 2 O 3 samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al 2 O 3 ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al 2 O 3 samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al 2 O 3 -Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al 2 O 3 to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al 2 O 3 to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al 2 O 3 -Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti 3 Au and Ti Au. (author)

  11. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  12. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    , using ferrocene-methanol as redox mediator. Both z-approach curves and amperometric images were taken over the surface of the samples both at their open circuit potential and polarized. It has been found that Ti8Nb10Mo and Ti16Nb8Mo exhibit the lowest activity towards electron transfer. The new Ti-Nb-Mo ternary alloys are regarded to be potential candidates for biomedical application on the basis of both their microstructural characteristics and their corrosion resistance in saline solution with chloride content equivalent to body fluids

  13. Microstructure and refinement performance of Al-Ti-C master alloy: Effect of excess Ti on the growth and nucleating ability of TiC particles

    Science.gov (United States)

    Svynarenko, Kateryna; Zhang, Yubo; Jie, Jinchuan; Kutsova, Valentyna; Li, Tingju

    2017-09-01

    Al-5Ti-0.2C, Al-0.8Ti-0.2C, Al-8Ti-2C, and Al-10Ti master alloys were prepared and used to investigate the influence of excess Ti on the growth of TiC particles and its ability to nucleate Al-grains. The results of a microstructure analysis of TiC-containing alloys and refined CPAl were interrelated to the results of a refinement test. It was found that the presence of excess Ti is essential at the stage of master alloy preparation, as it facilitates the growth and uniform distribution of TiC within the structure. In Al-5Ti-0.2C alloy containing excess Ti, carbide particles grow faster and to a higher extent (from 0.29 μm to 0.44 μm) compared to Al-0.8Ti-0.2C alloy produced without excess Ti (from 0.29 μm to 0.32 μm). The results support the "Ti-transition zone theory" as the mechanism of grain refinement by TiC-containing master alloys. The refinement performance of Al-5Ti-0.2C is superior compared to the one achieved by adding Al-8Ti-2C and Al-10Ti master alloys in corresponding concentrations. For the TiC particles to become favourable nucleating sites, they must undergo certain interaction with excess Ti at the stage of master alloy preparation.

  14. Phase composition of Al-Ti-Nb-Mo γ alloys in the heat-treatment temperature range: Calculation and experiment

    Science.gov (United States)

    Belov, N. A.; Dashkevich, N. I.; Bel'tyukova, S. O.

    2015-07-01

    The phase composition of TNM-type Al-Ti-Nb-Mo γ alloys at heat-treatment temperatures is quantitatively studied using the Thermo-Calc program package and experimental methods. Isothermal cross sections are calculated and the joint influence of two alloying elements on the phase composition of the alloy is determined at the mean concentration of a third component. Based on the calculations of vertical cross sections, the boundaries of the four-phase eutectoid reaction α → α2 + β + γ are found. The temperature is shown to significantly influence the phase compositions of the γ alloys, among them the mass fractions of various phases (α, β, γ,α2) and the element concentration in them.

  15. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  16. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  17. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  18. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  19. Microstructure and creep behavior of an orthorhombic Ti-25Al-17Nb-1Mo alloy

    International Nuclear Information System (INIS)

    Zhang, J.W.; Zou, D.X.; Li, S.Q.; Lee, C.S.; Lai, J.K.L.

    1998-01-01

    Microstructural evolution during three heat-treatment schedules and the terminal microstructures in an orthorhombic alloy of Ti-25Al-17Nb-1Mo were observed and analyzed with optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The creep behavior of the alloy with three different microstructures (a coarse-lath, fine-lath, and fine equiaxed microstructure) was studied over a temperature range of 600 C to 750 C and over a stress range of 150 to 400 MPa in air. The steady-state creep rates, apparent stress exponents, and apparent creep activation energies of the various samples have been determined. The results show that creep behaviors in the alloy are strongly influenced by microstructure. The effect on creep by some of the microstructural features, such as the multivariants within the coarse laths and the interfaces of the laths and the equiaxed grains, is also discussed

  20. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  1. Transformation from Al3BC phase to doped TiB2 or TiC particles in Al–Ti melts

    International Nuclear Information System (INIS)

    Tian, Wenjie; Li, Pengting; Gao, Tong; Nie, Jinfeng; Liu, Xiangfa

    2013-01-01

    Highlights: ► The reaction of phase Al 3 BC with Ti was investigated. ► The transformation leads to the formation of C-doped TiB 2 and B-doped TiC. ► The doped particles show macroporous and lamellar morphologies. ► A model was proposed to illustrate the transformation mechanism. ► Grain refinement performance of the Al–5Ti–0.8B–0.2C on A356 alloy is excellent. -- Abstract: An Al–8B–2C master alloy was added into Al–Ti melts to study the reaction of Al 3 BC phase with Ti. As a result, a new Al–5Ti–0.8B–0.2C master alloy was fabricated. The microstructures were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The analysis indicates that C-doped TiB 2 and B-doped TiC which show macroporous and lamellar morphologies are transformed from Al 3 BC. The transformation mechanism is also discussed in this work. Furthermore, the grain refinement performance of the Al–5Ti–0.8B–0.2C on A356 alloy was investigated

  2. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  3. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    Science.gov (United States)

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti 20 Zr 20 Nb 20 Ta 20 Mo 20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σ y =1390MPa and apparent plastic strain of ε p ≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  5. Impact of Alloying on Stacking Fault Energies in γ-TiAl

    Directory of Open Access Journals (Sweden)

    Phillip Dumitraschkewitz

    2017-11-01

    Full Text Available Microstructure and mechanical properties are key parameters influencing the performance of structural multi-phase alloys such as those based on intermetallic TiAl compounds. There, the main constituent, a γ -TiAl phase, is derived from a face-centered cubic structure. Consequently, the dissociation of dislocations and generation of stacking faults (SFs are important factors contributing to the overall deformation behavior, as well as mechanical properties, such as tensile/creep strength and, most importantly, fracture elongation below the brittle-to-ductile transition temperature. In this work, SFs on the { 111 plane in γ -TiAl are revisited by means of ab initio calculations, finding their energies in agreement with previous reports. Subsequently, stacking fault energies are evaluated for eight ternary additions, namely group IVB–VIB elements, together with Ti off-stoichiometry. It is found that the energies of superlattice intrinsic SFs, anti-phase boundaries (APBs, as well as complex SFs decrease by 20–40% with respect to values in stoichiometric γ -TiAl once an alloying element X is present in the fault plane having thus a composition of Ti-50Al-12.5X. In addition, Mo, Ti and V stabilize the APB on the (111 plane, which is intrinsically unstable at 0 K in stoichiometric γ -TiAl.

  6. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    Science.gov (United States)

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  8. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    Angeles Ch, C.

    1999-01-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10 3 -10 4 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al 3 Ti and others phases of L1 2 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO 22 to the cubic phases L1 2 . The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1 2 phase tends to increase to hardness depending of the content of this phase

  9. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  10. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  11. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  12. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  13. Grain refinement of Al wrought alloys with newly developed AlTiC master alloys; Kornfeinung von Al-Knetlegierungen mit neu entwickelten AlTiC-Vorlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W. [Vereinigte Aluminium-Werke AG, Bonn (Germany). Forschung und Entwicklung

    2000-10-01

    AlTiC master alloys are a new grain refiner type to produce an equiaxed grain structure of cast extrusion and rolling ingots. These master alloys contain Ti carbides which act as nucleants of the {alpha} solid solution during solidification. The TiC content is lower than the TiB{sub 2} content of the industrial proved AlTiB master alloys. Benefits of the AlTiC master alloys are the low agglomeration tendency of the Ti carbides in the melt and that no Zr poisoning takes place. Despite of the low Ti carbide content the grain refinement performance can be very efficient, if low melt temperatures during casting will be used and as result of this a sufficient constitutional supercooling at the solidification front is achieved. (orig.)

  14. Microstructures and phase relationships in the Ti3Al + Nb system

    International Nuclear Information System (INIS)

    Kestner-Weykamp, H.T.; Kaufman, M.J.

    1989-01-01

    Alloys based on the α 2 -Ti 3 Al compound (hexagonal) DO 19 are currently experiencing limited use as advanced aerospace materials. To date, the alloys with the most desirable properties contain additions of β stabilizers, such as Nb, Mo and V, which promote the formation of a two-phase mixture of α 2 +β or α 2 +B2 (where B2 refers to the ordered CsCl structure). Unfortunately, the phase relationships in these systems have not been established in sufficient detail to allow their more widespread application. Recently, there has been a series of investigations aimed at alleviating this deficiency in the ternary Ti-Al-Nb system. These studies have clearly indicated the existence of the ordered B2 phase, which, in the higher Nb alloys, can be retained at room temperature by rapid cooling from the liquid or solid state. The authors describe (TiNb) 3 Al alloys (from 0 to 30 at. pct. Nb) were studies after conventional and nonequilibrium (i.e., rapid solidification) processing with an emphasis on providing further insight into the transformation sequences and phase equilibria in these alloys

  15. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  16. A study on corrosion resistance of the Ti-10Mo experimental alloy after different processing methods

    International Nuclear Information System (INIS)

    Alves, A.P.R.; Santana, F.A.; Rosa, L.A.A.; Cursino, S.A.; Codaro, E.N.

    2004-01-01

    The purpose of this work was to evaluate the microstructure and corrosion resistance of the experimental Ti-10Mo (wt.%) alloy as-cast and treated. These alloys were divided into three groups for analysis: as-cast, after solution heat treatment at 1000 deg. C in argon atmosphere and remelting in centrifugal machine (investment casting). The microstructure formed from each condition was studied using optical microscopy. Corrosion behavior of titanium-molybdenum alloys in fluoridated physiological serum (0.15 M NaCl+0.03 M NaF [pH=6]) was studied and compared with Ti-6Al-4V alloy. In all electrodes systems, similar electrochemical response was obtained. In naturally aerated physiological serum, the corrosion rate is mainly controlled by dissolution process of a complex passive film. This film appears to be formed by titanium species with different oxidation states. Experimental Ti-10Mo alloy exhibit the lowest passive current densities, in particular, samples after heat treatment

  17. Interface behaviour of Al{sub 2}O{sub 3}/Ti joints produced by liquid state bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J., E-mail: jlruiz@umich.mx [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones Metalurgicas, Ciudad Universitaria, Edificio U, 58060 Morelia, Michoacan (Mexico)

    2014-08-15

    The main objective of this work was to determine various aspects during brazing of Al{sub 2}O{sub 3} samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al{sub 2}O{sub 3} ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al{sub 2}O{sub 3} samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al{sub 2}O{sub 3}-Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al{sub 2}O{sub 3} to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al{sub 2}O{sub 3} to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al{sub 2}O{sub 3}-Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti{sub 3}Au and Ti Au. (author)

  18. 微量TiC对Mo-Ti-Zr-TiC合金性能与显微组织的影响%Effect of Trace TiC on Property and Microstructure of Mo-Ti-Zr-TiC Alloy

    Institute of Scientific and Technical Information of China (English)

    钱昭; 范景莲; 成会朝; 田家敏

    2012-01-01

    采用粉末冶金方法制备Mo-Ti-Zr-TiC合金,研究微量TiC的添加对Mo-Ti-Zr-TiC合金的拉伸性能和显微组织的影响.结果表明,在Mo-Ti-Zr合金中添加微量TiC(0.1%~0.5%,质量分数)后,合金的相对密度和室温抗拉强度得到了提高,当TiC添加量为0.4%时,合金强度最高,较Mo-Ti-Zr合金提高了28.1%.微量TiC的添加,阻碍了合金烧结过程中的晶粒长大,合金晶粒尺寸随TiC添加量的增加而降低.添加的细小TiC粒子在高温烧结过程中或与坯体中的微量氧发生反应形成了由Mo、Ti、C及O 4种元素组成的(Mo,Ti)xOyCz细小复合第二相粒子,或发生团聚结成大颗粒,对合金起到净化晶界氧和弥散强化的作用,因而合金的性能相比Mo-Ti-Zr合金有了较明显的提高.%Mo-Ti-Zr-TiC alloy was prepared via powder metallurgy method. The effects of trace TiC additive on the mechanical properties and microstructure of TiC reinforced Mo-Ti-Zr-TiC alloy were studied. The results indicate that the relative density and the tensile strength at room temperature of Mo-Ti-Zr-TiC alloy is effectively enhanced by adding trace TiC (0.1wt%~0.5wt%). The tensile strength achieves the highest value when the content of TiC is 0.4wt%, which is 28.1% higher than that of Mo-Ti-Zr alloy. The adding of trace TiC can inhibit the grain growth during alloy sintering process, which leads to the decrease of grain sizes with the rise of TiC content. A part of the fine TiC particles react with trace oxygen in molybdenum matrix to form (Mo,Ti)xOyC2 compound second phase particles during high temperature sintering, while the other part are agglomerated into large particles, which play a role in grain boundaries purification and dispersion-strengthening.

  19. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toshiyasu, E-mail: NISHIMURA.Toshiyasu@nims.go.jp [Structural metals Center, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Aging heat-treated Mo-Fe-Ti alloy showed lower corrosion resistance than solution treated one, but much higher than pure Ti in EIS measurement. Black-Right-Pointing-Pointer As {alpha}-phases showed lower Mo content by TEM, they were preferentially dissolved from base metal in the corrosion test. Black-Right-Pointing-Pointer As Fe was involved in {beta} (b)-phase with Mo which increased the corrosion resistance, the addition of Fe did not decrease the corrosion resistance. - Abstract: In order to examine the application of Mo-Fe-Ti alloy for overpak, the corrosion resistance of heat-treated its alloys was investigated by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The sample subjected to solution heat treatment (ST) had a single {beta} phase and samples subjected to aging heat treatment at 600-700 Degree-Sign C had {alpha} phase precipitation in {beta} phase. EIS results showed that the corrosion resistance of the aging heat-treated samples was lower than that of the ST sample, but much higher than that of pure Ti in 10% NaCl solution of pH 0.5 at 97 Degree-Sign C which simulating the crevice solution. Laser micrographs of the aging heat-treated samples indicated that {alpha} phase was caused selective dissolution in test solution. The TEM combined with EDAX (energy dispersive X-ray) analyses showed that {beta} phase matrix composed of 2.7 wt.% Mo and 4.8 wt.% Fe, and {alpha} phase composed of 0.7 wt.% Mo and 0.1 wt.% Fe in sample aged at 600 Degree-Sign C. Thus, Mo-poor {alpha} phase was selectively dissolved in a test solution. In EIS, the ST sample of only {beta} phase showed the highest resistance, and aging heat-treated samples containing {alpha} phase (0.7 wt.% Mo) showed higher values than pure Ti in the corrosion test. As Fe was involved in {beta} phase with Mo which increased remarkably the corrosion resistance, the addition of Fe did not decrease the corrosion resistance

  20. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature

    International Nuclear Information System (INIS)

    Nag, Anil Kumar; Praveen, K.V.U.; Singh, Vakil

    2006-01-01

    Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (α+ β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δε t /2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions. (author)

  1. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.

  2. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  3. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    Science.gov (United States)

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  5. Interdiffusion between U-Mo alloys and Al or Al alloys at 340 deg. C. Irradiation plan

    International Nuclear Information System (INIS)

    Fortis, A.M.; Mirandou, M.; Ortiz, M.; Balart, S.; Denis, A.; Moglioni, A.; Cabot, P.

    2005-01-01

    Out of reactor interdiffusion experiments between U-Mo alloys and Al alloys made close to fuel operation temperature are needed to validate the results obtained above 500 deg. C. A study of interdiffusion between U-Mo and Al or Al alloys, out and in reactor, has been initiated. The objective is to characterize the interdiffusion layer around 250 deg. C and study the influence of neutron irradiation. Irradiation experiments will be performed in the Argentine RA3 reactor and chemical diffusion couples will be fabricated by Friction Stir Welding (FSW) technique. In this work out-of-pile diffusion experiments performed at 340 deg. C are presented. Friction Stir Welding (FSW) was used to fabricate some of the samples. One of the results is the presence of Si, in the interaction layer, coming from the Al alloy. This is promising in the sense that the absence of Al rich phases may also be expected at low temperature. (author)

  6. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  7. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  8. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  9. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  10. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  11. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  12. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  14. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    International Nuclear Information System (INIS)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V.

    2015-01-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe 2 and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al 2 O 3 and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al 2 O 3 counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H 2 SO 4 solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on counterpart material. This was attributed

  15. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2015-02-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe{sub 2} and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al{sub 2}O{sub 3} and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al{sub 2}O{sub 3} counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H{sub 2}SO{sub 4} solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on

  16. Reactive wetting of Ti-6Al-4V alloy by molten Al 4043 and 6061 alloys at 600-700 C

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qiaoli; Li, Fuxiang; Jin, Peng; Yu, Weiyuan [Lanzhou Univ. of Technology (China). State Key Lab. of Advanced Processing and Recycling of Non-ferrous Metal

    2017-06-15

    Wetting of Ti-6Al-4V alloy by two industrial grade Al alloys (i.e., Al 6061 and 4043 alloys) was studied using the sessile drop method at 600-700 C under high vacuum. Al/Ti-6Al-4V is a typical reactive wetting system with good final wettability accompanied by the formation of precursor film which is actually an extended reaction layer. The formation mechanism for the precursor film is ''subcutaneous infiltration''. The small amount of alloying element Si in the alloys can cause significant segregation at the liquid/solid interface which satisfies the thermodynamic condition. The wetting behavior can be described by the classic reaction product control models, and Ti{sub 7}Al{sub 5}Si{sub 12} decomposition and Al{sub 3}Ti formation correspond to the two spreading stages. The small difference in alloying elements in Al 6061 and 4043 resulted in distinctly different interface structures, formation of precursor film and spreading dynamics, especially for the Si segregation at the interface.

  17. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  18. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  19. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  20. Hydrogen storage properties of the Zintl phase alloy SrAl{sub 2} doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yunfeng, E-mail: yfzhu@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhang Wei; Liu Zhibing; Li Liquan [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2010-03-04

    In this paper, the structural and hydrogenation characteristics of TiF{sub 3}-doped Zintl phase alloy SrAl{sub 2} were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and hydrogenation measurements. The results show that the hydrogenation kinetics of the Zintl phase alloy SrAl{sub 2} is improved greatly after doping with TiF{sub 3}. By adjusting the doping amount and ball milling time, the optimal doping conditions were obtained. The catalytic mechanism of TiF{sub 3} for the hydrogenation of SrAl{sub 2} was also investigated. SrAl{sub 2} does not react with TiF{sub 3} during the ball milling process. However, it reacts with TiF{sub 3} to form SrAl{sub 2}H{sub 2}, SrF{sub 2}, SrAl{sub 4} and Ti during the hydrogenation process, among which Ti plays an important role in the hydrogenation kinetics of SrAl{sub 2}.

  1. Liquid phase interaction in TiC0,5N0,5-TiNi-Mo and TiC0,5N0,5-TiNi-Ti-Mo

    International Nuclear Information System (INIS)

    Askarova, L.Kh; Grigorov, I.G.; Zajnulin, Yu.G.

    1998-01-01

    Using the methods of X ray diffraction analysis, electron microscopy and X ray spectrum microanalysis a study was made into specific features of phase and structure formation in alloys TiC 0,5 N 0,5 -TiNi-Mo and TiC 0,5 N 0,5 -TiNi-Mo in the presence of a liquid phase at temperatures of 1380-1600 deg C. It is revealed that the physical and chemical processes taking place during the liquid-phase sintering result in the formation of a three-phase alloy consisting of nonstoichiometric titanium carbonitride TiC 0.5-x N 0.5-x , a molybdenum base solid solution of titanium, nickel and carbon Mo(Ti, Ni, C) and one of two intermetallic compounds, either TiNi or Ni 3 Ti. Metallic element concentration in individual phase constituents of the alloy is determined by means of X ray spectrum microanalysis

  2. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    International Nuclear Information System (INIS)

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  4. Orientation and temperature dependence of yield stress and slip geometry of Ti3Al and Ti3Al-V single crystals

    International Nuclear Information System (INIS)

    Umakoshi, Y.; Nakano, T.; Takenaka, T.; Sumimoto, K.; Yamane, T.

    1993-01-01

    Single crystals of binary Ti 3 Al and ternary Ti 3 Al-V alloys with the D0 19 structure were deformed in compression at 20-900 C. Slip systems of the (10 bar 10) -type and the (11 bar 21) -type were observed in these alloys throughout the entire temperature range depending on orientation, but the (11 bar 21) -slip was limited to orientations near [0001]. The basal (0001) -slip was also activated in quenched Ti 3 Al. The CRSS for the (10 bar 10) -slip in the binary and ternary alloys decreases monotonically with increasing temperature. In the ternary alloy the CRSS for the (10 bar 10) -slip shows a violation of Schmid's law, while the binary alloy obeys the CRSS law. When Ti 3 Al is deformed by (11 bar 21) -slip the CRSS for the slip exhibits an anomalous peak in the temperature-CRSS curve but the addition of vanadium suppresses the extent of the anomalous strengthening

  5. Reaction layer between U-7WT%Mo and Al alloys in chemical diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.; Granovsky, M.; Ortiz, M.; Balart, S.; Arico, S.; Gribaudo, L.

    2005-01-01

    Several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments. These failures have been assigned to the formation of a large (U-Mo)/Al interaction product under high operating conditions. The modification of the matrix by alloying Al to change the interaction layer and improve its irradiation behavior, has been proposed. This paper reports diffusion experiments performed between U-7wt%Mo and various Al alloys containing Mg and / or Si. By the use of Optical Microscopy, SEM and X-Ray diffraction, it was found that with a concentration of 5.2wt% or 7.1 wt%Si the interaction layer is constituted mainly by (U,Mo)(Si,Al) 3 and no (U,Mo)Al 4 is detected. As part of the studies of properties of the U-Mo alloys the time for isothermal transformation start at different temperatures of the γ phase is being evaluated for the present U-7wt%Mo alloy. These results are used to plan the future diffusion program that will include diffusion under irradiation at CNEA RA3 reactor. (author)

  6. Highly active sulfided CoMo catalysts supported on (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, José, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, México, D.F. 07730 (Mexico); De Los Reyes, José A., E-mail: jarh@xanum.uam.mx [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Ulín, Carlos A. [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Barrera, María C., E-mail: mcbdgavilan@gmail.com [Facultad de Ciencias Químicas, Universidad Veracruzana, Av. Universidad km. 7.5, Col. Santa Isabel, Coatzacoalcos, Veracruz, México, D.F. 96538 (Mexico)

    2013-12-16

    (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxide at 20 mol% Al{sub 2}O{sub 3} (80% ZrO{sub 2}–TiO{sub 2}, in turn at 40–60 mol ratio) prepared by controlled co-precipitation (by urea thermal decomposition) of zirconium (ZrOCl{sub 2}·8H{sub 2}O) and titanium (TiCl{sub 4}) chlorides over a ground alumina substrate constitutes a promising material to be used as carrier of sulfided hydrodesulfurization (HDS) catalysts. After calcining (at 500 °C), the ternary oxide presented textural properties (S{sub g} = 387 m{sup 2} g{sup −1}, V{sub p} = 0.74 ml g{sup −1}, mean pore diameter = 7.6 nm) suitable to its utilization as carrier of catalysts applied in the oil-derived middle distillates HDS. As determined by temperature programmed-reduction and Raman and UV–vis spectroscopies ZrO{sub 2}–TiO{sub 2} deposition over alumina substrate resulted in decreased proportion of Mo{sup 6+} species in tetrahedral coordination on the oxidic impregnated material. As those species constitute hardly reducible precursors, their diminished concentration could be reflected in enhanced amount of Mo species susceptible of activation by sulfiding (H{sub 2}S/H{sub 2} at 400 °C) over our ternary carrier. Limiting the concentration of zirconia-titania (at 40–60 mol ratio) to 20 mol% in the mixed oxides support allowed the preparation of highly active promoted (by cobalt, at Co/(Co + Mo) = 0.3) MoS{sub 2} phase (at 2.8 atoms/nm{sup 2}), that formulation showing excellent properties in hydrodesulfurization (HDS) of both dibenzothiophene and highly-refractory 4,6-dimethyl-dibenzothiophene. Due to alike yields to various HDS products over CoMo/(ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} and the corresponding Al{sub 2}O{sub 3}-supported formulation, presence of similar actives sites over those catalysts was strongly suggested. It seemed that enhanced concentration of octahedral Mo{sup 6+} over the oxidic impregnated precursor with (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3

  7. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  8. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  9. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  10. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  11. Self propagating high temperature synthesis (SHS) of the Fe(TiMo)C master alloy using ferroalloys

    International Nuclear Information System (INIS)

    Erauskin, J. I.; Sargyan, A.; Arana, J. L.

    2009-01-01

    Titanium monocarbide TiC is very hard, stable both at high and low temperatures and relatively easy to synthesize from its constituent elements by SHS. Nevertheless, it is difficult to use, as alloying element, in the reinforcement of steels manufactured by liquid metallurgy due to its low wettability by molten steel. To achieve this purpose and due to its better wettability, it is more appropriate to use a master alloy formed by the complex carbide (TiMo)C bonded in Fe. The simplest and most economic way to fabricate such a master alloy Fe(TiMo)C is, again, by SHS, with the added advantage that it can be manufactured using the commercial ferroalloys FeTi and FeMo instead of the individual elements Fe, Ti and Mo. In this work, we describe such a process as well as the characteristics of the master alloy obtained. (Author) 13 refs

  12. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  13. Pressure Prediction of Electronic, Anisotropic Elastic, Optical, and Thermal Properties of Quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-01-01

    Full Text Available The electronic, mechanical, anisotropic elastic, optical, and thermal properties of quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti under different pressure are systematically investigated by first-principles calculations. The bonding characteristics of these compounds are the mixture of metallic and covalent bonds. With an increase of pressure, the heights of total density of states (TDOS for these compounds decrease at Fermi level. The highest volume compressibility among three compounds is Mo2TiAlC2 for its smallest relative volume decline. The relative bond lengths are decreasing when the pressure increases. The bulk and shear modulus of the one doped with Cr or Mo are larger than those of Ti3AlC2 with pressure increasing. With an increase of pressure, the anisotropy of these compounds also increases. Moreover, Mo2TiAlC2 has the biggest anisotropy among the three compounds. The results of optical functions indicate that the reflectivity of the three compounds is high in visible-ultraviolet region up to ~10.5 eV under ambient pressure and increasing constantly when under pressure. Mo2TiAlC2 has the highest loss function. The calculated sound velocity and Debye temperature show that they all increase with pressure. CV of the three compounds is also calculated.

  14. Preferential site occupancy of alloying elements in TiAl-based phases

    Energy Technology Data Exchange (ETDEWEB)

    Holec, David, E-mail: david.holec@unileoben.ac.at; Reddy, Rajeev K.; Klein, Thomas; Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2016-05-28

    First principles calculations are used to study the preferential occupation of ternary alloying additions into the binary Ti-Al phases, namely, γ-TiAl, α{sub 2}-Ti{sub 3}Al, β{sub o}-TiAl, and B19-TiAl. While the early transition metals (TMs, group IVB, VB, and VIB elements) prefer to substitute for Ti atoms in the γ-, α{sub 2}-, and B19-phases, they preferentially occupy Al sites in the β{sub o}-TiAl. Si is, in this context, an anomaly, as it prefers to sit on the Al sublattice for all four phases. B and C are shown to prefer octahedral Ti-rich interstitial positions instead of substitutional incorporation. The site preference energy is linked with the alloying-induced changes of energy of formation, hence alloying-related (de)stabilisation of the phases. We further show that the phase-stabilisation effect of early TMs on β{sub o}-phase has a different origin depending on their valency. Finally, an extensive comparison of our predictions with available theoretical and experimental data (which is, however, limited mostly to the γ-phase) shows a consistent picture.

  15. Metallography of a pulsed Nd:YAG laser weld in a RS/PM Al-8Fe-2Mo alloy

    International Nuclear Information System (INIS)

    Krishnaswamy, S.; Baeslack, W.A. III

    1990-01-01

    This paper reports the microstructure of a pulsed Nd:YAG laser weld in a rapid solidification/powder metallurgy (RS/PM) Al-8.0 wt.% Fe-2.3 wt.% Mo (Al-8Fe-2Mo) alloy investigated using light microcopy, canning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. This analysis revealed significant microstructure variations across the weld fusion zone (FZ). Near the fusion boundary, a light-etching FZ microstructure was observed to contain submicron dispersoids entrapped in a matrix of fine-sized dendritic alpha aluminum. At the center of the FZ, the presence of relatively coarse-sized intermetallic particles that served as growth centers for coarser dendritic alpha aluminum promoted a dark-etching microstructure. In the boundary between successive melt zones, both a heat-affected zone (HAZ) containing acicular dispersoids and a fusion boundary region (FBR) containing irregular-shaped particles in a coarse-grained dendritic alpha aluminum matrix were observed

  16. The Effects of Al and Ti Additions on the Structural Stability, Mechanical and Electronic Properties of D8m-Structured Ta5Si3

    Directory of Open Access Journals (Sweden)

    Linlin Liu

    2016-05-01

    Full Text Available In the present study, the influence of substitutional elements (Ti and Al on the structural stability, mechanical properties, electronic properties and Debye temperature of Ta5Si3 with a D8m structure were investigated by first principle calculations. The Ta5Si3 alloyed with Ti and Al shows negative values of formation enthalpies, indicating that these compounds are energetically stable. Based on the values of formation enthalpies, Ti exhibits a preferential occupying the Ta4b site and Al has a strong site preference for the Si8h site. From the values of the bulk modulus (B, shear modulus (G and Young’s modulus (E, we determined that both Ti and Al additions decrease both the shear deformation resistance and the elastic stiffness of D8m structured Ta5Si3. Using the shear modulus/bulk modulus ratio (G/B, Poisson’s ratio (υ and Cauchy’s pressure, the effect of Ti and Al additions on the ductility of D8m-structured Ta5Si3 are explored. The results show that Ti and Al additions reduce the hardness, resulting in solid solution softening, but improve the ductility of D8m-structured Ta5Si3. The electronic calculations reveal that Ti and Al additions change hybridization between Ta-Si and Si-Si atoms for the binary D8m-structured Ta5Si3. The new Ta-Al bond is weaker than the Ta-Si covalent bonds, reducing the covalent property of bonding in D8m-structured Ta5Si3, while the new strong Ti4b-Ti4b anti-bonding enhances the metallic behavior of the binary D8m-structured Ta5Si3. The change in the nature of bonding can well explain the improved ductility of D8m-structured Ta5Si3 doped by Ti and Al. Moreover, the Debye temperatures, ΘD, of D8m-structured Ta5Si3 alloying with Ti and Al are decreased as compared to the binary Ta5Si3.

  17. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  18. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  19. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  20. Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru [National Research Tomsk State University (Russian Federation); Hu, Q. M.; Yang, R. [Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Institute of Metal Research (China)

    2016-12-15

    Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.

  1. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  2. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  3. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  4. Effect of hot rolling on the microstructure and mechanical properties of Ti3Al based dual phase alloys

    International Nuclear Information System (INIS)

    Wu, J.; Zhang, L.; Hua, W.; Qiu, G.

    1999-01-01

    Development of α 2 -Ti 3 Al based dual phase alloys have shown some promising potentials in property improvement by introducing Ti 5 Si 3 silicide phase into the matrix via Si alloying. However, the presence of coarse network of Ti 5 Si 3 phase formed by eutectic reaction in the as-cast state also embrittles the alloy. Both hot rolling and powder metallurgy are considered to be the possible ways to refine the Ti 5 Si 3 phase in the matrix. Two Ti-Al-Si-Nb alloys whose Si contents are 2 and 5 at.% respectively were arc melted into ingots and then hot rolled to sheets in this investigation. Optical metallographic examination correlates the microstructures of the as-cast and as-rolled alloys with the different rolling amounts, showing that the coarse silicide network is broken into small particles after hot rolling. Mechanical property testing from room temperature to 800 C indicates that the strength and plastic elongation of the hot-rolled alloys are much higher than those of the as-cast ones. The data obtained in this investigation are comparable with those obtained in the P/M processed specimens. Fracture surfaces of the alloys are also examined

  5. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  6. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gaddam, R; Sefer, B; Pederson, R; Antti, M-L

    2013-01-01

    At temperatures exceeding 480°C titanium alloys generally oxidises and forms a hard and brittle layer enriched with oxygen, which is called alpha case. This layer has negative effects on several mechanical properties and lowers the tensile ductility and the fatigue resistance. Therefore any alpha-case formed on titanium alloys during various manufacturing processes, such as heat treatment procedures, must be removed before the final part is mounted in an engine. In addition, long time exposure at elevated temperatures during operation of an engine could possibly also lead to formation of alpha-case on actual parts, therefore knowledge and understanding of the alpha-case formation and its effect on mechanical properties is important. Factors that contribute for growth of alpha-case are: presence of oxygen, exposure time, temperature and pressure. In the present study, isothermal oxidation experiments in air were performed on forged Ti-6Al-2Sn-4Zr-2Mo at 500°C and 593°C up to 500 hours. Similar studies were also performed on Ti-6Al-4V plate at 593°C and 700°C. Alpha-case depth for both alloys was quantified using metallography techniques and compared

  7. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  8. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  9. The core structures of transformation dislocations at TiAl/Ti3Al interfaces

    International Nuclear Information System (INIS)

    Penisson, J.M.; Loubradou, M.; Derder, C.; Bonnet, R.

    1993-01-01

    A Ti-40%Al alloy is investigated using High Resolution Electron Microscopy. The alloy structure consists mainly of alternate lamellae of γ(TiAl, L1 0 structure) and α 2 (Ti 3 Al, DO 19 structure) phases. These lamellae are parallel to each other and the interfaces between them are flat and parallel to the densest planes of the crystals. It is found that, among the variety of interfacial dislocations relieving the misfit, some have cores involving four (111) planes in height. The elastic displacement fields around these interfacial ledges, compared with the experimental atomic positions determined from HREM images, are in agreement with Burgers vector contents 1/6 left angle 112 right angle . (orig.)

  10. Modeling of TiAl Alloy Grating by Investment Casting

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2015-12-01

    Full Text Available The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experiments, which were carried out on Vacuum Skull Furnace using an investment block mold. The investment casting of TiAl grating was conducted for verifying the correctness and feasibility of the proposed method. The tensile test results indicated that, at room temperature, the tensile strength and elongation were approximately 675 MPa and 1.7%, respectively. The microstructure and mechanical property of the investment cast TiAl alloy were discussed.

  11. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  12. Modeling of TiAl Alloy Grating by Investment Casting

    OpenAIRE

    Yi Jia; Shulong Xiao; Jing Tian; Lijuan Xu; Yuyong Chen

    2015-01-01

    The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experimen...

  13. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  14. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  15. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Zhang, L.; Tsuzaki, K.

    2008-01-01

    The effect of 1% Fe and/or 5% Zr (mass%) additions on ω phase formation was investigated for the Ti-15Mo alloy by means of X-ray diffraction analysis and hardness testing. Upon water quenching following solution treatment in the β phase region, the athermal ω phase formation could not be observed in all the alloys, regardless of Fe and Zr additions. The lattice parameter of the β phase decreases with Fe addition, while it increases with Zr addition. Solid solution strengthening by Fe and Zr is not recognized for the β phase. The isothermal ω phase formed after aging at 723 K and 773 K for 3.6 ks, which results in a decrease in the lattice parameter of the β phase and an increase in the hardness. The isothermal ω phase formation is suppressed with Fe and/or Zr additions. This is interpreted as the consequence of the increase in the average value of the bond order (Bo) for the Ti-15Mo-5Zr and Ti-15Mo-5Zr-1Fe alloys, and of the decrease in the average value of the metal d-orbital energy level (Md) for the Ti-15Mo-1Fe alloy. In addition, the degree of the suppression of isothermal ω phase can be predicted by the average values of Bo and Md

  16. Bulk glass formation and crystallization in Zr54.5Cu20Al10Ni8Ti7.5 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Kumar, V.; Ranganathan, S.

    2006-01-01

    The present work was aimed at fabrication, characterization and crystallization of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 7.5 bulk metallic glass. The glass forming alloy was made by arc melting and then subjected to copper mold casting into 3 mm diameter bulk glass rods. The as-cast microstructure was characterized by optical microscopy and transmission electron microscopy (TEM)

  17. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  18. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and ...

  19. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy

    International Nuclear Information System (INIS)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R.

    2010-01-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal ω phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  20. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  1. Stress-assisted discontinuous precipitation during creep of Ti3Al-Nb alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Hall, E.L.

    1991-01-01

    Stress-assisted discontinuous precipitation was observed during creep of Ti-25Al-12.5Nb at. pct and associated with microstructures in which large primary creep strains were observed earlier. It was found that a large shift between the equilibrium beta(0) (B2) phase composition at the heat treatment temperature and disordered beta (bcc) phase at the creep temperature provided a driving force for discontinuous precipitation of disordered beta phase. Applied stress accelerated the growth of discontinuous beta phase at grain boundaries perpendicular to the principal stress axis, but did not produce a significant shift in composition. The difference between beta and ordered beta phase boundaries in the Ti-Al-Nb system at 650 C and 1040 C suggests that discontinuous precipitation or related dissolution should occur in all Ti3Al-Nb alloys. 11 refs

  2. Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process

    International Nuclear Information System (INIS)

    Yoshida, R; Tsuda, T; Fujiwara, H; Miyamoto, H; Ameyama, K

    2014-01-01

    The Ti-Al alloy/pure Ti harmonic-structured composite was produced by mechanical milling and spark plasma sintering process for improvement of low ductility at room temperature of Ti-Al alloy. The harmonic-structured composite with the dispersed area having coarse grained titanium and the network area having fine-grained Ti-48mol%Al alloy demonstrates high strength and high ductility at room temperature. The annealing effect of the microstructure on the mechanical properties in the Ti-Al alloy/pure Ti harmonic-structured composite are investigated. The microstructure of the Ti-Al alloy/pure Ti harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the Ti-Al network structure and pure Ti dispersed regions, the average grain size of pure Ti dispersed region is only coarsen by annealing. The harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the high hardness. The tensile results reveal that the Ti-Al alloy/pure Ti harmonic- structured composite annealed at 873 K exhibits high strength and especially high ductility

  3. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  4. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  5. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit.

    Science.gov (United States)

    Yan, M; Qian, M; Kong, C; Dargusch, M S

    2014-02-01

    The formation of grain boundary (GB) brittle carbides with a complex three-dimensional (3-D) morphology can be detrimental to both the fatigue properties and corrosion resistance of a biomedical titanium alloy. A detailed microscopic study has been performed on an as-sintered biomedical Ti-15Mo (in wt.%) alloy containing 0.032 wt.% C. A noticeable presence of a carbon-enriched phase has been observed along the GB, although the carbon content is well below the maximum carbon limit of 0.1 wt.% specified by ASTM Standard F2066. Transmission electron microscopy (TEM) identified that the carbon-enriched phase is face-centred cubic Ti2C. 3-D tomography reconstruction revealed that the Ti2C structure has morphology similar to primary α-Ti. Nanoindentation confirmed the high hardness and high Young's modulus of the GB Ti2C phase. To avoid GB carbide formation in Ti-15Mo, the carbon content should be limited to 0.006 wt.% by Thermo-Calc predictions. Similar analyses and characterization of the carbide formation in biomedical unalloyed Ti, Ti-6Al-4V and Ti-16Nb have also been performed. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Study of the properties of internal oxidized Cu - Al - Ti - Hf alloys

    International Nuclear Information System (INIS)

    Solopov, V.I.; Daneliya, E.P.; Daneliya, G.V.; Lebasova, O.P.

    1982-01-01

    Investigation results of mechanical properties and electric conductivity of rods of internally oxidized alloys Cu-Al-Ti-Hf depending on chemical composition, varying in the limits ensuring the formation of disperse enough and evenly distributed over the volume oxide phase. (0-1%Al, 0-0.5%Ti, 0-0.3%Hf, the restcopper), in the process of internal oxidation are presented. Internally oxidized alloys Cu-Al-Ti-Hf have increased strength properties with insignificant increase of specific electric resistance as compared with the known internally oxidized alloys Cu-Al. At that, the best combination of physicomechanical properties is achieved at small contents of titanium (0.01-0.05%) and hafnium (0.01-0.1%)

  7. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  8. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Lawrence, Samantha K.; Bahr, David F. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Schroeder, Jeremy L.; Birch, Jens [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  9. The effect of tungsten on mechanical properties of the Ti-9% Al-3% Zr alloy

    International Nuclear Information System (INIS)

    Nartova, T.T.; Grigor'ev, I.P.; Stepanov, Yu.N.; Tarasova, O.B.

    1979-01-01

    The effect of tungsten (from 0 to 10 %) on mechanical properties of the ternary Ti-9 %, Al-3 % Zr alloy, has been studied. The microstructure, tensile properties at 20 and 600 deg C and Vickers hardness in as-forged and as-annealed states have been studied. The experiments have shown that the ultimate strength increases with tungsten content. Titanium alloys with 9 % Al and 3 % Zr in the case of varying tungsten content at 20 deg C fracture by brittle mechanism. The dUctility of the annealed alloy does not rise at 20 deg C, but at the test temperature of 600 deg C the alloy becomes ductile

  10. Compressive performance and crack propagation in Al alloy/Ti{sub 2}AlC composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, D.A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Hu, L. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Kan, W.H.; Proust, G. [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Foley, M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Karaman, I.; Radovic, M. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-08-30

    Composite materials comprising a porous Ti{sub 2}AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti{sub 2}AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti{sub 2}AlC phase interfaces are key considerations in the design of high performance metal/Ti{sub 2}AlC phase composites.

  11. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling

    International Nuclear Information System (INIS)

    Espinoza, Rodrigo A.; Palma, Rodrigo H.; Sepulveda, Aquiles O.; Fuenzalida, Victor; Solorzano, Guillermo; Craievich, Aldo; Smith, David J.; Fujita, Takeshi; Lopez, Marta

    2007-01-01

    The microstructure, electrical conductivity and hot softening resistance of two alloys (G-10 and H-20), projected to attain Cu-2.5 vol.% TiC-2.5 vol.% Al 2 O 3 nominal composition, and prepared by reaction milling and hot extrusion, were studied. The alloys were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several chemical analysis techniques. The first alloy, G-10, showed the formation of Al 2 O 3 nanodispersoids and the presence of particles from non-reacted raw materials (graphite, Ti and Al). A second alloy, H-20, was prepared employing different fabrication conditions. This alloy exhibited a homogeneous distribution of Al 2 O 3 and Ti-Al-Fe nanoparticles, with the microstructure being stable after annealing and hot compression tests. These nanoparticles acted as effective pinning sites for dislocation slip and grain growth. The room-temperature hardness of the H-20 consolidated material (330 HV) was approximately maintained after annealing for 1 h at 1173 K; the electrical conductivity was 60% IACS (International Annealing Copper Standard)

  12. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  13. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  14. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Fan; Kou, Hongchao; Li, Jinshan

    2017-02-15

    The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging at 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.

  15. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  16. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  17. Experimental characterization of behavior laws for titanium alloys: application to Ti5553

    OpenAIRE

    Wagner , Vincent; Baili , Maher; Dessein , Gilles; Lallement , Daniel

    2010-01-01

    International audience; The aim of this paper is to study the machinability of a new titanium alloy: Ti-5AL-5Mo-5V-3CR used for the production of new landing gear. First, the physical and mechanical properties of this material will be presented. Second, we show the relationship between material properties and machinability. Third, the Ti5553 will be compared to Ti64. Unless Ti64 is α+β alloy group and Ti5553 is a metastable, we have chosen to compare these two materials. Ti64 is the most popu...

  18. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  19. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  20. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  1. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  2. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  3. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  4. MICROSTRUCTURE AND TENSILE PROPERTIES OF Fe3Al-BASED ALLOYS WITH VC AND TiC ADDITIONS

    Institute of Scientific and Technical Information of China (English)

    W.L.Xu; Y.S.Sun; S.S.Ding

    2001-01-01

    Microstructure and tensile properties of Fe3Al-based alloys with additions of TiC andVC particles have been investigated.Results show that the formation of TiC particlesresults in the refinement of the macrostructure of as-cast ingots.Although the additionof VC particles does not cause significant change of the as-cast microstructure,themicrostructure of the alloy after hot-working and recrystallization has been found tobe refined.The formation of both VC and TiC particles results in the increase of yieldstrength,especially at high temperature of 600℃.

  5. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging

    International Nuclear Information System (INIS)

    Oliveira, Nathalia Rodrigues; Baldan, Renato; Gabriel, Sinara Borborema

    2014-01-01

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  6. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  7. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    Hamzah, E.; Ong, W.R.; Tamin, M.N.

    2007-01-01

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  8. Investigation into the use of CaZrO3 as a facecoat material in the investment casting of TiAl alloys

    International Nuclear Information System (INIS)

    Yuan, C.; Cheng, X.; Withey, P.A.

    2015-01-01

    Research was carried out to determine the interactions between the filler and stucco materials in CaZrO 3 based facecoats during shell firing as well as between the facecoat and a TiAl alloy during the casting process. A ‘flash re-melting’ technique, which gives a similar heating profile to the actual investment casting process, was used to study the phase transformations in the shell moulds. The chemical inertness of the facecoat was then investigated using a sessile drop test using a Ti–45Al–2Nb–2Mn–0.2TiB alloy. In this study, the facecoat compositions and the interaction products between metal and shells were characterized using x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A severe interaction was found between CaZrO 3 filler and Al 2 O 3 stucco, which rapidly damaged the shell surface. As well as oxygen, zirconium and silicon ions from the shell moulds were also observed to penetrate into the TiAl metal to form (Ti, Zr) 5 (Al, Si) 3 phases in the metal/shell interfacial areas. - Highlights: • To determine the interactions between CaZrO 3 filler and stucco materials during shell firing. • To study the reaction between the CaZrO 3 facecoat and TiAl alloy during casting. • The Al 2 O 3 stucco can react with CaZrO 3 filler to form (Zr, Ca)O 2 and CaAl x O y at 1650 °C. • O, Zr and Si ions from the ceramic moulds were observed to penetrate into the TiAl metal. • The reaction products include (Ti, Zr) 5 (Al, Si) 3 and ZrAl 2 phase with high Ti ions solid solution

  9. Tailoring ultrafine grained and dispersion-strengthened Ti 2 AlC/TiAl ...

    Indian Academy of Sciences (India)

    In situ Ti 2 AlC/TiAl composite was fabricated by hot-pressing method via the reaction system of Ti 3 AlC 2 and Ti-Al pre-alloyed powders at low temperature of 1150 ∘ C. The composite mainly consisted of TiAl, Ti 3 Al and Ti 2 AlC phases. Fine Ti 2 AlC particles were homogeneously distributed and dispersed in the matrix.

  10. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  11. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    Science.gov (United States)

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  12. Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl{sub 3} during spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Haley, J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Kulkarni, K. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, UP (India); Aindow, M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Lavernia, E.J., E-mail: lavernia@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States)

    2015-11-05

    The synthesis of γ-TiAl from elemental metals via solid-state reactive diffusion processing routes involves multiple reaction steps with the formation of various intermediate intermetallic compounds, starting with TiAl{sub 3} because this phase is favored kinetically. To understand the processes by which the TiAl{sub 3} intermediate is eliminated during synthesis of γ-TiAl alloy via spark plasma sintering (SPS), the reaction between Ti and TiAl{sub 3} during SPS was studied with emphasis on the effects of the applied electric current and starting TiAl{sub 3} microstructure on the reaction kinetics and the underlying diffusion mechanisms. The intermediate intermetallic phases Ti{sub 3}Al, TiAl and TiAl{sub 2} were formed between the Ti and TiAl{sub 3} upon SPS processing at 900 °C. The applied electric current did not alter the character of the phases formation in the Ti/TiAl{sub 3} system, but thermodynamic calculations suggest that the activation energy for the nucleation of TiAl{sub 2} is reduced significantly with an electric current flowing. Moreover, the kinetics of the reactions between Ti and TiAl{sub 3} were enhanced when the starting TiAl{sub 3} microstructure was refined. The electric field also had a more significant influence on the grain growth kinetics for TiAl{sub 2} and TiAl in powder blend compacts with refined microstructures. - Highlights: • Reaction between Ti and TiAl{sub 3} during spark plasma sintering was studied. • Refined starting TiAl{sub 3} microstructure enhanced the reactions kinetics. • The nucleation barrier of TiAl{sub 2} was reduced by the applied electric field. • The applied electric field restrained the grain growth of TiAl and TiAl{sub 2}.

  13. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  14. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    Science.gov (United States)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  15. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  16. Microplasticity and fracture in a Ti-15V-3Cr-3Al-3Sn alloy

    International Nuclear Information System (INIS)

    Rabeeh, B.M.; Rokhlin, S.I.; Soboyejo, W.O.

    1996-01-01

    Linear Elasticity is generally considered to occur in most standard textbooks by the strengthening of chemical bonds in the regime below the proportional limit in most materials. In some cases, however, a number of researchers have recognized the possible role of localized microplasticity (microplasticity in this paper refers to localized plasticity on a microstructural level at stresses below the so-called bulk yield stress) in the so-called elastic deformation regime. There is, therefore, a need for careful studies of the micromechanisms of microplasticity in the so-called elastic regime. Micromechanisms of microplasticity will be presented in this paper for a metastable β Ti-15V-3Cr-3Al-3Sn (Ti-15-3) alloy deformed in incremental stages to failure under monotonic loading. Micromechanisms of tensile deformation and fracture will be elucidated for a Ti-15-3 plate with single phase β and Widmanstaetten α+β microstructures

  17. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Yu, Zhiguo; Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Qu, Wentao; Yuan, Bifei [School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Wang, Zhenguo [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China)

    2017-01-02

    The microstructures, phase transformations, mechanical properties and shape memory effect of Ti-20Zr-10Nb-xAl (x=1, 2, 3, 4 at%) alloys were investigated. The X-ray diffraction results show that the alloys are composed of a single martensitic α″-phase and that the corresponding unit cell volume decreases with increasing Al content. The reverse martensitic transformation start temperature (A{sub s}) of the Ti-20Zr-10Nb-Al alloy is 534 K and decreases with increasing Al content. The addition of Al results in solid solution strengthening and grain refinement strengthening, thus improving the mechanical properties and the shape memory effect of the Ti-20Zr-10 Nb-xAl alloys. The Ti-20Zr-10Nb-3Al alloy shows the greatest shape memory strain (3.2%) and the largest tensile strain (17.6%) as well as a very high tensile strength (886 MPa).

  18. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  19. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    Science.gov (United States)

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  20. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  1. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  2. Study on characterization of interaction layer between U-10wt%Mo alloy and LT24Al

    International Nuclear Information System (INIS)

    Chen Jiangang; Yin Changgeng; Sun Changlong; Pang Xiaoxuan; Liu Yunming

    2009-01-01

    The characterization of interaction layer(IL) between U-10wt%Mo alloy and LT24 Al was studied in detail in this paper. Sandwich structured U-Mo/LT24 Al diffusion couples were hot pressed at different temperature and pressure for different time. Then they were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM) to observe the width of the IL. The distribution of the diffusion elements and the phases in the IL were determined by Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD). Analysis results are as follows: the diffusion manner was reaction diffusion, and diffusion direction mainly was that Al atoms diffused to U-Mo alloy; diffusion mechanism was vacancy diffusion and growth kinetics showed reaction was controlled by the diffusion speed; the IL containing single phase was constituted mainly by (U, Mo) Al 3 ; the IL containing two phases or more was constituted mainly by (U, Mo) Al 3 and (U, Mo) Al 4 and Al 20 Mo 2 U; and Si impurity in the LT24 Al was easy to enrich in the IL which showed Si added to Al could play positive role on improve compatibility between U-Mo and Al. (authors)

  3. Investigation into the use of CaZrO{sub 3} as a facecoat material in the investment casting of TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C., E-mail: c.yuan@bham.ac.uk [School of Metallurgy and Materials, The University of Birmingham, B152TT (United Kingdom); Cheng, X. [School of Metallurgy and Materials, The University of Birmingham, B152TT (United Kingdom); School of Material Science and Engineering, Beihang University, No, 37 Xueyuan Street, Haidian District, Beijing 100191 (China); Withey, P.A. [School of Metallurgy and Materials, The University of Birmingham, B152TT (United Kingdom); Rolls-Royce plc. (United Kingdom)

    2015-04-01

    Research was carried out to determine the interactions between the filler and stucco materials in CaZrO{sub 3} based facecoats during shell firing as well as between the facecoat and a TiAl alloy during the casting process. A ‘flash re-melting’ technique, which gives a similar heating profile to the actual investment casting process, was used to study the phase transformations in the shell moulds. The chemical inertness of the facecoat was then investigated using a sessile drop test using a Ti–45Al–2Nb–2Mn–0.2TiB alloy. In this study, the facecoat compositions and the interaction products between metal and shells were characterized using x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A severe interaction was found between CaZrO{sub 3} filler and Al{sub 2}O{sub 3} stucco, which rapidly damaged the shell surface. As well as oxygen, zirconium and silicon ions from the shell moulds were also observed to penetrate into the TiAl metal to form (Ti, Zr){sub 5}(Al, Si){sub 3} phases in the metal/shell interfacial areas. - Highlights: • To determine the interactions between CaZrO{sub 3} filler and stucco materials during shell firing. • To study the reaction between the CaZrO{sub 3} facecoat and TiAl alloy during casting. • The Al{sub 2}O{sub 3} stucco can react with CaZrO{sub 3} filler to form (Zr, Ca)O{sub 2} and CaAl{sub x}O{sub y} at 1650 °C. • O, Zr and Si ions from the ceramic moulds were observed to penetrate into the TiAl metal. • The reaction products include (Ti, Zr){sub 5}(Al, Si){sub 3} and ZrAl{sub 2} phase with high Ti ions solid solution.

  4. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  5. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys

    International Nuclear Information System (INIS)

    Senkov, O.N.; Senkova, S.V.; Woodward, C.

    2014-01-01

    The microstructure, phase composition and mechanical properties of the AlMo 0.5 NbTa 0.5 TiZr and Al 0.4 Hf 0.6 NbTaTiZr high-entropy alloys are reported. The AlMo 0.5 NbTa 0.5 TiZr alloy consists of two body-centered cubic (bcc) phases with very close lattice parameters, a 1 = 326.8 pm and a 2 = 332.4 pm. One phase was enriched with Mo, Nb and Ta and another phase was enriched with Al and Zr. The phases formed nano-lamellae modulated structure inside equiaxed grains. The alloy had a density of ρ = 7.40 g cm −3 and Vickers hardness H v = 5.8 GPa. Its yield strength was 2000 MPa at 298 K and 745 MPa at 1273 K. The Al 0.4 Hf 0.6 NbTaTiZr had a single-phase bcc structure, with the lattice parameter a = 336.7 pm. This alloy had a density ρ = 9.05 g cm −3 , Vickers microhardness H v = 4.9 GPa, and its yield strength at 298 K and 1273 K was 1841 MPa and 298 MPa, respectively. The properties of these Al-containing alloys were compared with the properties of the parent CrMo 0.5 NbTa 0.5 TiZr and HfNbTaTiZr alloys and the beneficial effects from the Al additions on the microstructure and properties were outlined. A thermodynamic calculation of the solidification and equilibrium phase diagrams was conducted for these alloys and the calculated results were compared with the experimental data

  6. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  7. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  8. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  9. Microstructural evolution during hot pressing of the blended elemental Ti-6%Al-7%Nb alloy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Sandim, H.R.Z.; Coelho, G.C.; Silva, C.R.M. da

    2003-01-01

    The Ti-6%Al-7%Nb (wt.%) α-β alloy was developed aiming the replacement of the traditional Ti-6%Al-4%V alloy in surgical implants owing to its larger biocompatibility. Samples of this alloy were obtained using the blended elemental (BE) technique. The isochronal hot pressing of the compacts was carried out in the range 700-1500 deg. C with a compaction pressure of 20 MPa and a heating rate of 20 deg. C min -1 . In this work, the behavior of the elementary powders during the hot pressing and the corresponding microstructural evolution were investigated. The alloy was characterized by means of scanning electron microscopy (SEM) in the backscattered mode (BSE), X-ray diffraction (XRD), and density measurements. The results indicate that the homogenization of the alloy is diffusion-controlled and Ti.Al intermediary compounds (TiAl and Ti 3 Al) are formed at lower temperatures. With increasing temperature, homogenization of the alloy takes place and a coarse plate-like α+intergranular β structure is found throughout the microstructure in temperatures above 1300 deg. C. The process variables were defined aiming to minimize interstitial pick-up (C, O, and N) and avoiding intensive grain growth

  10. As-cast microstructures of Ti-11 Al- xC alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the investigation of as-cast microstructures of high temperature α + α2 titanium alloys matrix composites reinforced by particles and fabricated using a reaction synthesis method by XRD, OM and SEM which reveals that the matrix transformed into single phase α2 from two phases α + α2 and reinforcing phases become Ti3A1C and TiC from single phase TiC as C content increases to a critical value, and Ti3AlC precipitates during solidification processing and points out that the norphologies of TiC and Ti3AlC are of short-lath shape and near spherical shape, respectively, and lattice parameters of matrix α2 increase with the increasing of C content, but the lattice parameter of reinforcing phase TiC is lower than standard lattice parameter of TiC due to the C defection in TiC.

  11. Investment casting of beta titanium alloys for aerospace applications

    International Nuclear Information System (INIS)

    Wheeler, D.A.; Cianci, M.S.; Vogt, R.G.

    1993-01-01

    The process of investment casting offers the ability to produce complex titanium components with minimal finish machining, thereby reducing their overall manufacturing cost. While aerospace applications for cast titanium have focused primarily on alpha+beta alloys, recent interest in higher strength beta alloys has prompted an examination of their suitability for investment casting. In this paper, the processing characteristics and mechanical proper-ties of Ti-1 5V-3Cr-3Al-3Sn, Ti-3Al-8V-6Cr-4Mo-4Zr, and Ti-15Mo-3Nb-3Al-0.2Si (wt.%) will be discussed. It will be shown that all three alloy compositions are readily processed using only slight modifications from current Ti-6Al-4V (wt.%) production operations. In addition, the mechanical properties of the cast product form can be manipulated through heat treatment and compare quite favorably with typical properties obtained in wrought beta titanium products. Finally, several demonstration castings are reviewed which illustrate the shape-making capabilities of the investment casting approach for beta titanium alloys

  12. Transmission electron microscopy of aged Ti-10Mo-20Nb alloy after hot swaging; Microscopia eletronica de transmissao da liga Ti-10Mo-20Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema, E-mail: sinarab@msn.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Baldan, Renato, E-mail: renatobaldan@gmail.com [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Torres, Juliana; Oliveira, Nathalia Rodrigues, E-mail: juliana_torres_5@hotmail.com, E-mail: nathalia_roliveira@yahoo.com.br [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Mei, Paulo Roberto, E-mail: cnunes@demar.eel.usp.br, E-mail: pmei@fem.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2014-08-15

    Ti alloys are widely used in biomedical applications. Within this class, metastable β -Ti alloys stand, because through thermomechanical processing it is possible to obtain mechanical properties and in particular one suitable Young's modulus for biomedical applications. These alloys require high mechanical strength and a low Young's modulus to avoid stress shielding. Preliminary studies showed that the microstructure of the Ti-10Mo- 20Nb alloy after cold forging and aging 500 °C/24 h consisted in bimodal distribution of α phase in the β matrix. The aim of this study was to characterize the microstructure of Ti-10Mo-20Nb alloy after hot forging and aging at 500 °C for 24 hours. Microstructural characterization consisted of analyzes by X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in a bimodal α distribution in the β matrix, hot forging resulted in a thin and homogeneous α precipitation in the β matrix. (author)

  13. Multi-step wrought processing of TiAl-based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1997-04-01

    Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified

  14. Coarsening behaviours of coherent γ' and γ precipitates in elastically constrained Ni-Al-Ti alloys

    International Nuclear Information System (INIS)

    Maebashi, T.; Doi, M.

    2004-01-01

    The coarsening behaviours of γ' and γ precipitates in elastically constrained Ni-Al-Ti alloys were investigated by means of transmission electron microscopy. When the Ni-8 at.% Al-6 at.% Ti alloy is aged at 1023 K, coherent γ' particles having L1 2 structure appear and coarsen in the γ matrix having disordered A1 structure. At first the mean particle size increases in proportion to the cube root of ageing time t ( ∝ t 1/3 ), and then the coarsening remarkably decelerates. The shape of γ' precipitate changes from the sphere to the cube as the coarsening progresses. When the Ni-13 at.% Al-9 at.% Ti alloy is aged at 973 K, coherent γ particles appear and coarsen in the γ' matrix. At first the relation of ∝ t 1/3 holds good, and then the coarsening accelerates, so that the increases in proportion to the square root of t ( ∝ t 1/2 ). The shape of γ precipitate changes to the plate having {1 0 0} planes as the coarsening progresses. Such coarsening behaviours of γ' and γ precipitates are good examples of the elasticity effects in elastically constrained systems

  15. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  16. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  17. Study of microstructure evolution and strengthening mechanisms in novel TiZrAlB alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.G.; Feng, Z.H.; Xia, C.Q.; Zhang, Z.G.; Zhang, X.; Zhang, X.Y., E-mail: xyzhang@ysu.edu.cn; Ma, M.Z.; Liu, R.P., E-mail: riping@ysu.edu.cn

    2017-04-24

    In this paper, the microstructural evolution and mechanical properties of the as-cast Ti-χZr-4Al-0.005B (TχZAB and χ=0, 10, 20, 30, 40 wt%) alloys were systematically investigated. Only the α phase was detected from the X-ray diffraction patterns of the as-cast TχZAB quaternary alloy series. As the Zr content increased, the average size and length-diameter ratio of the α grains were decreased from 69.8 μm to 17.1 µm and 37.5 to 8.4, respectively. The analysis of the results from the tensile and microhardness tests demonstrated that both the strength and hardness increased significantly as the Zr content increased (from 0 wt% to 40 wt%). Nevertheless, the ductility exhibited an opposite trend. The fracture mode of the ductile-brittle transfer was consistent with the ductility alteration. The as-cast Ti-40Zr-4Al-0.005B alloys demonstrated the highest tensile strength (σ{sub b}=1134 MPa), which increased by 53% compared to the Ti-4Al-0.005B alloys, whereas the lowest elongation-to-failure was of 6.77%. The mechanical properties of the TχZAB alloy series were discussed based on the microstructural evolution and the solid solution strengthening mechanisms.

  18. Density of liquid NiCrAlMo quarternary alloys measured by a modified sessile drop method

    International Nuclear Information System (INIS)

    Fang, L.; Wang, Y.F.; Xiao, F.; Tao, Z.N.; MuKai, K.

    2006-01-01

    The densities of liquid NiCrAlMo quaternary alloys with a fixed molar ratio of Ni:Cr:Al (approximately as 73:14:13) and molybdenum concentration from 0 to 10 mass% were measured by a modified sessile drop method (MSDM). It was found that the density of the liquid NiCrAlMo quaternary alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration. The molar volume of liquid NiCrAlMo quaternary alloys increases with the increase of temperature and molybdenum concentration. The density of liquid NiCrAlMo quaternary alloys calculated from the partial molar volumes of nickel, chromium, aluminum and molybdenum in the corresponding Ni-based binary alloys are in good agreement with the experimental results, means, within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state

  19. Development of a TiAl Alloy by Spark Plasma Sintering

    Science.gov (United States)

    Couret, Alain; Voisin, Thomas; Thomas, Marc; Monchoux, Jean-Philippe

    2017-12-01

    Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

  20. Ti-3Al-2.5V for seawater piping applications

    International Nuclear Information System (INIS)

    Caplan, I.L.

    1984-01-01

    Copper-nickel alloys and steel are the materials most commonly used for piping applications in a seawater environment. For situations where reduced weight, incraesed flexibility, and excellent corrosion-erosion resistance are desired, titanium is an extremely attractive alternate material. Commercially pure grades of titanium can be used for seawater piping, but are rather low in strength. However, by taking advantage of the high specific strength possible with alloys of titanium, substantial weight savings can be achieved. Based upon screening studies, Ti-3Al-2.5V was selected for investigation as a candidate alloy for this application. Plate 25.4-mm (1-in.) thick, extruded from Ti-3Al-2.5V billet at a 10:1 reduction ratio, was used for heat treatment and property studies. In addition, double-vee butt weldments of this plate were prepared by the automatic cold-wire gas tungsten arc welding process. The results of mechanical property tests are presented for both Ti-3Al-2.5V plate and weldments. Results to date indicate that the Ti-3Al-2.5V alloy possesses a highly desirable suite of properties that make it a very attractive candidate for piping and machinery applications in the seawater environment

  1. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  2. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  3. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  4. Phase stability and decomposition processes in Ti-Al based intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kiyomichi [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ono, Toshiaki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohtsubo, Hiroyuki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohmori, Yasuya [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan)

    1995-02-28

    The high-temperature phase equilibria and the phase decomposition of {alpha} and {beta} phases were studied by crystallographic analysis of the solidification microstructures of Ti-48at.%Al and Ti-48at.%Al-2at.%X (X=Mn, Cr, Mo) alloys. The effects on the phase stability of Zr and O atoms penetrating from the specimen surface were also examined for Ti-48at.%Al and Ti-50at.%Al alloys. The third elements Cr and Mo shift the {beta} phase region to higher Al concentrations, and the {beta} phase is ordered to the {beta}{sub 2} phase. The Zr and O atoms stabilize {beta} and {alpha} phases respectively. In the Zr-stabilized {beta} phase, {alpha}{sub 2} laths form with accompanying surface relief, and stacking faults which relax the elastic strain owing to lattice deformation are introduced after formation of {alpha}{sub 2} order domains. Thus shear is thought to operate after the phase transition from {beta} to {alpha}{sub 2} by short-range diffusion. A similar analysis was conducted for the Ti-Al binary system, and the transformation was interpreted from the CCT diagram constructed qualitatively. ((orig.))

  5. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  6. Structure and mechanical properties of TiZr binary alloy after Al addition

    International Nuclear Information System (INIS)

    Jiang, X.J.; Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Microstructure and mechanical properties of hot-rolled TiZrAl alloys were studied. The results showed that the microstructure of all alloys mainly consisted of lamellar α phase. The thickness of the lamellar α phase gradually increased with increasing aluminum content. Moreover, large numbers of stacking faults was observed in Ti–25Zr–15Al (at%) alloy. The aluminum addition strongly affected the mechanical properties of the TiZrAl alloys. With increased aluminum contents, the strength increased evidently, whereas, the elongation decreased. Ti–25Zr–15Al (at%) with the highest aluminum contents in all alloys, possessed the highest tensile strength (σ b =1319 MPa), i.e. strengthened by 41% compared with Ti–25Zr (at%) alloy, and still retained the elongation of 5.5%. According to the classical size and/or modulus misfits model, the effect of aluminum addition was significant in TiZr alloys because of the considerable misfits between aluminum and zirconium

  7. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  8. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  9. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  10. Thermodynamic aspects of grain refinement of Al-Si alloys using Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Mirkovic, Djordje [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2005-03-25

    A thermodynamic assessment of ternary Al-Si-Ti phases was performed. Published datasets for the other subsystems were checked and adapted. Based on that, a consistent thermodynamic description of quaternary Al-Si-Ti-B alloys was generated. This was applied in a calculation of Al-Si-Ti-B phase diagram sections for practically relevant temperatures and compositions of Al-Si alloys from Al-rich to typical Al-Si foundry alloys. These stable and metastable phase diagrams could be correlated to many detailed aspects of possible reactions observed or suggested in experimental studies of grain refining. Understanding the mechanisms of grain refining of Al wrought alloys and Al-Si foundry alloys using titanium and boron requires a fundamental knowledge of both thermodynamic and kinetic aspects of this complex process. This work focuses exclusively on the thermodynamic aspects and the phase diagrams, which were not available for the quaternary alloys and partly incomplete and inconsistent for the ternary subsystems.

  11. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  12. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    Science.gov (United States)

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  13. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  14. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  15. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  16. Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-11-01

    Full Text Available Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10 composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering.

  17. Density of thermal vacancies in γ-Ti-Al-M, M = Si, Cr, Nb, Mo, Ta or W

    International Nuclear Information System (INIS)

    Woodward, C.; Kajihara, S.

    1999-01-01

    Modifications to alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of creep in intermetallic alloys must account for the influence of chemistry on the available intrinsic creep mechanisms. As in simple metals the presence of vacancies strongly influences bulk diffusion processes in these materials. Limiting the density of constitutional and thermal vacancies by alloying may produce materials with enhanced creep properties. The energy of intrinsic and substitutional point defects in L1 0 TiAl is calculated within a first principles, local density functional theory framework. Relaxed structures and energies for vacancies, antisites and solid solutions are calculated using a plane-wave-pseudopotential method. Calculated defect energies are used within a canonical ensemble formalism to estimate the point defect densities as a function of temperature and composition. The density of vacancies is found to be sensitive to the underlying stoichiometry of TiAl. The dependence of the vacancy concentration for solid solutions of Si, Cr, Nb, Mo, Ta and W is also predicted

  18. Interdiffusion among U-Mo-Zr and alloys of Al to 550oC

    International Nuclear Information System (INIS)

    Komar Varela, C.L; Arico, S.F; Gribaudo, L.M

    2006-01-01

    The international community, by means of the project 'Reduced Enrichment for Research and Test Reactors' is interested in the development of a new nuclear fuel of very high density of uranium and low enrichment (≤ 20% de U 235 ) for reactors of investigation and production of radioisotopes, that permit to reach greater neutron flows, with good capacity to be reprocessed One of these assemblies are the alloys of U with Mo contents between 7 and 10% in weight. In the fuels 'dispersed type plate' the particles of U-Mo are mixed with dust of aluminum and are co - laminated between two plates of an alloy of the same material. The existing contact among the particles permits the interdiffusion of the materials with the consequent apparition of new phases. Studies pursuit-irradiation have shown a badly behavior of these new phases. It is for this that is necessary to control the presence of these products of interaction. The aggregate of a third element to the alloys U - Mo has begun to be practiced with this purpose. In this work the modification of the start of the disorder of the phase γU in the alloy U-7%Mo-1%Zr was studied and the interdiffusion between pure aluminum and the same alloy to 550 o C. The results obtained are compared with other obtained for peers U-Mo/Al. The techniques of characterization utilized were: optical microscopy, analysis by diffraction of X-rays and microanalysis quantitative by microprobe electronic. It was observed that the aggregate of Zr refines the grain for a processing of homogenized in composition of Mo to 1000 o C and accelerates the start of the disorder of the phase γU to 550 o C. As for the zone of interaction, was found that the composed identifying do not they differ to them reported in the in peers U-Mo/Al. These are: (U,Mo)Al 4 y UAl 3 (AG)

  19. Crevice-corrosion kinetics on titanium and a Ti-Ni-Mo alloy in chloride solutions at elevated temperature

    International Nuclear Information System (INIS)

    McKay, P.

    1987-01-01

    The results of an electrochemical investigation of the crevice-corrosion kinetics on titanium and a dilute Ti-Ni-Mo alloy (0.8% Ni, 0.3% Mo), in concentrated chloride solutions at 150 0 C, are presented. The current-time transients, obtained on creviced electrodes under both potentiostatic and galvanic (coupling to a large area of uncreviced titanium) conditions, are interpreted in terms of crevice acidification leading to the formation of an active-passive cell, maintained by iR gradient in the electrolyte. The passivating effect of the Ni and Mo additions on the crevice corrosion of titanium are described, together with the results of an electrochemical study, carried out in bulk acid chloride solutions, that were used to substantiate a proposed mechanism of crevice passivation. (author)

  20. Thermal analysis of precipitation reactions in a Ti-25Nb-3Mo-3Zr-2Sn alloy

    International Nuclear Information System (INIS)

    Kent, Damon; Wang, Gui; Dargusch, Matthew S.; Pas, Steven; Zhu, Suming

    2012-01-01

    A study was undertaken on a Ti-25Nb-3Mo-3Zr-2Sn alloy using differential scanning calorimetry (DSC) in order to improve understanding of the precipitation reactions occurring during aging heat treatments. The investigation showed that isothermal ω phase can be formed in the cast and solution treated alloy at low aging temperatures. An exothermic peak in the temperature range of 300 to 400 C was detected for precipitation of the ω phase, with approximate activation energy of 176 kJ/mol. The ω phase begins to dissolve at temperatures around 400 C and precipitation of the α phase is favoured at higher temperatures between 400 C and 600 C. An exothermic peak with activation energy of 197 kJ/mol was measured for precipitation of the α phase. Deformation resulting in the formation of the stress induced α'' phase altered the DSC heating profile for the solution treated alloy. The exothermic peak associated with precipitation of the ω phase was not detected during heating of the deformed material and increased endothermic heating associated with recovery and recrystallisation was observed. (orig.)

  1. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering.

    Science.gov (United States)

    Liu, L H; Yang, C; Kang, L M; Qu, S G; Li, X Q; Zhang, W W; Chen, W P; Li, Y Y; Li, P J; Zhang, L C

    2016-03-31

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications.

  2. Structure and properties of heat-treated Ti-(40-4X)%Nb-X%Mo alloys with IE (SME)

    International Nuclear Information System (INIS)

    Silva, Marcia Almeida; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Paes Junior, Herval Ramos; Goncharenko, Boris Andreevich

    2010-01-01

    Whereas the inelastic effects (IE) are related with reversible martensitic transformation, in this work, was analyzed the structure and properties of heat treated Ti-(40-4x)%Nb-x%Mo alloys, where the contents of niobium and molybdenum are between 24-40%Nb and 0-4%Mo (% weight). The structural and phase analysis were done through optical microscopy and X-rays diffraction. The properties measured in this study were electrical resistivity and density. The Ti-40%Nb alloy shows a structure consisting of the β phase and αα’’ martensite with a minor participation of the α’ and ω. The alloys with 1 to 4%Mo have similar structures consisting of the β phase and traces of the α’’ phase. Thus, was observed greater capacity of Mo as a β stabilizer. The increase in Mo content in the composition of the alloys causes an increase in electrical resistivity of these. The samples may have undergone change in volume, caused by phase transformation, what possibly caused the difference between the density values calculated (theoretical) and experimental. (author)

  3. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  4. Direct observation of solute segregation to voids in a fast-neutron irradiated (Mo/1.0 at. % Ti alloy

    International Nuclear Information System (INIS)

    Wagner, A.; Seidman, D.N.

    1978-11-01

    The atom-probe field-ion microscope was used to study segregation effects to voids in a Mo--Ti alloy which had been irradiated with fast neutrons. The Ti does not segregate significantly to voids, concentration of Ti in solid solution and the spacial distribution of Ti was not affected by irradiation, carbon was not detected, resolution of TiC or MoC precipitates did not occur

  5. Design and properties of advanced {gamma}(TiAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appel, F; Clemens, H; Oehring, M [Institute for Materials Research, GKSS Research Centre, Max-Planck-Strasse, D-21502 Geesthacht (Germany)

    2001-07-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  6. Design and properties of advanced γ(TiAl) alloys

    International Nuclear Information System (INIS)

    Appel, F.; Clemens, H.; Oehring, M.

    2001-01-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  7. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  8. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging; Microscopia eletronica de transmissao da liga Ti-12Mo-13Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nathalia Rodrigues [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Baldan, Renato [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Nunes, Carlos Angelo; Mei, Paulo Roberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Gabriel, Sinara Borborema [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-06-15

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  9. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts

    International Nuclear Information System (INIS)

    Zhang Yumei; Zhao Yimin; Chai Feng; Hildebrand, Hartmut F; Hornez, Jean-Christophe; Li, Chang Liang; Traisnel, Michel

    2009-01-01

    Corrosion behaviour of biomedical alloys is generally determined in mineral electrolytes: unbuffered NaCl 0.9% (pH 7.4) or artificial saliva (pH 6.8). The assays with exclusive utilization of these electrolytes are of low relevance for the biological condition, to which the alloys will be exposed once implanted in the human organism. As an approach to the biological situation regarding the interaction of proteins, electrolytes and metals, we added the RPMI cell culture medium containing foetal calf serum as a biological electrolyte (pH 7.0). The analysis of corrosion behaviour was also performed in the presence of human lymphoid cells (CEM). The rest potential (E r ) and the global polarization were determined on cp-Ti, micro-arc oxidized cp-Ti (MAO-Ti), four different Ti-alloys (Ti6Al4V, Ti12Zr, Ti(AlMoZr), Ti(NbTaZr)) and 316L stainless steel. The 316L exhibited an appropriate E r and a good passive current density (I p ), but a high corrosion potential (E c ) and a very low breakdown potential (E b ) in all electrolytes. All Ti-alloys exhibited a much better electrochemical behaviour: better E r and E c and very high E b . No significant differences of the above parameters existed between the Ti-alloys, except for Zr-containing alloys that showed better corrosion behaviour. A remarkable difference, however, was stated with respect to the electrolytes. NaCl 0.9% induced strong variations between the Ti-alloys. More homogeneous results were obtained with artificial saliva and RPMI medium, which induced a favourable E c and an increased I p . The presence of cells further decreased these values. The unbuffered NaCl solution seems to be less appropriate for the analysis of corrosion of metals. Additional in vitro biological assessments with CEM cell suspensions and MC3T3-E1 osteoblasts confirmed the advantages of the Ti(AlMoZr) and Ti(NbTaZr) alloys with an improved cell proliferation and vitality rate.

  10. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts.

    Science.gov (United States)

    Zhang, Yu Mei; Chai, Feng; Hornez, Jean-Christophe; Li, Chang Liang; Zhao, Yi Min; Traisnel, Michel; Hildebrand, Hartmut F

    2009-02-01

    Corrosion behaviour of biomedical alloys is generally determined in mineral electrolytes: unbuffered NaCl 0.9% (pH 7.4) or artificial saliva (pH 6.8). The assays with exclusive utilization of these electrolytes are of low relevance for the biological condition, to which the alloys will be exposed once implanted in the human organism. As an approach to the biological situation regarding the interaction of proteins, electrolytes and metals, we added the RPMI cell culture medium containing foetal calf serum as a biological electrolyte (pH 7.0). The analysis of corrosion behaviour was also performed in the presence of human lymphoid cells (CEM). The rest potential (Er) and the global polarization were determined on cp-Ti, micro-arc oxidized cp-Ti (MAO-Ti), four different Ti-alloys (Ti6Al4V, Ti12Zr, Ti(AlMoZr), Ti(NbTaZr)) and 316L stainless steel. The 316L exhibited an appropriate Er and a good passive current density (Ip), but a high corrosion potential (Ec) and a very low breakdown potential (Eb) in all electrolytes. All Ti-alloys exhibited a much better electrochemical behaviour: better Er and Ec and very high Eb. No significant differences of the above parameters existed between the Ti-alloys, except for Zr-containing alloys that showed better corrosion behaviour. A remarkable difference, however, was stated with respect to the electrolytes. NaCl 0.9% induced strong variations between the Ti-alloys. More homogeneous results were obtained with artificial saliva and RPMI medium, which induced a favourable Ec and an increased Ip. The presence of cells further decreased these values. The unbuffered NaCl solution seems to be less appropriate for the analysis of corrosion of metals. Additional in vitro biological assessments with CEM cell suspensions and MC3T3-E1 osteoblasts confirmed the advantages of the Ti(AlMoZr) and Ti(NbTaZr) alloys with an improved cell proliferation and vitality rate.

  11. The development of the rotational friction welding process for the welding of γ-TiAl-casting alloy Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) to Ti6Al4V. Pt. II; Prozessentwicklung zum Rotationsreibschweissen der γ-TiAl-Feingusslegierung Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) mit Ti6Al4V. T. II

    Energy Technology Data Exchange (ETDEWEB)

    Ventzke, Volker; Riekehr, Stefan; Horstmann, Manfred; Kashaev, Nikolai; Brokmeier, Heinz-Guenter; Huber, Norbert [Helmholtz-Zentrum Geesthacht GmbH, Zentrum fuer Material- und Kuestenforschung, Geesthacht (Germany). Inst. fuer Werkstoffforschung, Werkstoffmechanik

    2014-07-01

    At process temperatures of T > T{sub β}, the globular and fine grained microstructure of the Titanium alloy Ti6Al4V supports the occurrence of super-plasticity and deformation within the β phase region. This led to one sided shortening of the welded joints combined with the formation of weld flash. As a result of this no evening out of temperature across the forging surface between the γ-TAB cast alloy and Ti6Al4V alloy sides of the joint was able to take place, as a result of which the friction weld seam produced became symmetrically wedge shaped about the axis of rotation. Thereby the γ-TAB cast alloy side of the joint became only slightly compressed exhibiting no appreciable signs of deformation. In the radial direction on the γ-TAB side of the joint close to the forged surface neither the hardness nor the microstructure were homogeneous. Without pre-heating the fine ground, lapped and homogenised γ-TAB weld specimens at a temperature of 800 C above the brittle - ductile transformation transition temperature it was not possible to prevent the occurrence of boundary surface cracking on the outside, micro-voids and inter-lamellar cracking on the γ-TAB side solely by varying the welding parameters. The pre-heating of the γ-TAB friction weld specimens was a necessary pre-requisite to support the deformation of the γ-TAB side of the welded joint and the formation of weld flash during the friction welding process. (orig.)

  12. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  13. The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare application

    International Nuclear Information System (INIS)

    Sugano, Daisuke; Ikeda, Masahiko

    2005-01-01

    As life expectancy steadily increases, developing reliable functional materials for healthcare applications gains importance. Titanium and its alloys, while attractive for such applications, are expensive. The present investigation suggests that it may be possible to reduce costs by using new, low-cost beta Ti alloys. To assess their reliability, the heat treatment behavior of beta Ti alloys, Ti-7 mass% Cr with varying Al content (0%, 1.5%, 3.0% and 4.5%), was investigated through electrical resistivity and Vickers hardness measurements. In the Ti-7Cr-0Al alloy quenched from 1173 K, only the beta phase was identified by X-ray diffraction (XRD). In Ti-7Cr-1.5 to 4.5 Al alloys, XRD detected both beta and orthorhombic martensite. On isochronal heat treatment behavior of Ti-7Cr-3.0, 4.5 Al alloys, resistivity at liquid nitrogen temperature and resistivity ratio increased between 423 and 523 K.These increases are due to reverse transformation of orthorhombic martensite to the metastable beta phase

  14. Effect of Y2O3 on microstructure and mechanical properties of hypereutectic Al-20% Si alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-feng; XU Chang-lin; WANG Hui-yuan; LIU Chang; JIANG Qi-chuan

    2006-01-01

    The effect of Y2O3 on the microstructure and mechanical properties of the hypereutectic Al-20%Si(mass fraction) alloy was investigated. The results show that, with the addition of Y2O3 into the Al-P-Ti-TiC modifier, the average size of primary silicon in th.e Al-20%Si alloy modified by Al-P-Ti-TiC-Y2O3 modifier (approximately 15μm or less) is significantly reduced, and the morphology of eutectic silicon changes from coarse acicular and plate like to refined fibrous. The Brinell hardness (HB189) and tensile strength (301 MPa) of Al-20%Si alloy modified by the Al-P-Ti-TiC-Y2O3 increase by 11.6% and 10.7%, respectively, for the alloys afrer heat treatment.

  15. Synthesis and hydrogen storage of La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloys

    Directory of Open Access Journals (Sweden)

    Priyanka Meena

    2018-04-01

    Full Text Available The present work investigates structural and hydrogen storage properties of first time synthesized La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy by arc melting process and ball milled to get it in nano structure form. XRD analysis of as-prepared alloy showed single phased hexagonal LaNi5-type structure with 52 nm average particle size, which reduces to about 31 nm after hydrogenations. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructured alloy. EDX analysis confirmed elemental composition of the as-prepared alloy. Activation energy for hydrogen desorption was studied using TGA analysis and found to be −76.86 kJ/mol. Hydrogenation/dehydrogenation reactions and absorption kinetics were measured at temperature 100 °C. The equilibrium plateau pressure was determined to be 2 bar at 100 °C giving hydrogen storage capacity of about 2.1 wt%. Keywords: Hydrogen storage, La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy, SEM, EDS, TGA, Hydrogenation/dehydrogenation

  16. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  17. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Mamoun Fellah

    2014-01-01

    Full Text Available The aim of the study is to evaluate the friction and wear behavior of high-strength alloys Ti-6Al-7Nb used in femoral stem and compare it with a Ti-6Al-4V alloy cylindrical bar corresponding to ISO 5832-3 part 3/01-07-199 standard. The tribological behavior was investigated by wear tests, using ball-on-disc and pin-on-disc tribometers. These tests consisted of measuring the weight loss and the friction coefficient of samples. The oscillating friction and wear tests have been carried out in ambient with oscillating tribotester in accordance with standards ISO 7148, ASTM G99-95a, and ASTM G133-95 under different conditions of normal loads (3, 6, and 10 N and sliding speeds (1, 15, and 25 mm·s−1. As counter pairs, a 100Cr6 steel ball with 10 mm in diameter was used. Results show that the two alloys had similar friction and wear performance, although their grain structures and compositions are different. Occurrence of large frictional occurred, is probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction with larger fluctuation and higher wear rate was observed at the higher siding speed. The Ti-6Al-4V wear mechanism transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear.

  19. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy; Efeito da adicao de Sn na estabilidade de fases e propriedades de ligas Ti-10Mo resfriadas rapidamente e envelhecidas

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R., E-mail: flaviamec@fem.unicamp.b [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal {omega} phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  20. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.

    Science.gov (United States)

    Cardoso, Flavia F; Ferrandini, Peterson L; Lopes, Eder S N; Cremasco, Alessandra; Caram, Rubens

    2014-04-01

    The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of β Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the β phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h. © 2013 Published by Elsevier Ltd.

  1. Microstructural studies on chemical interactions in U-Mo with Al

    International Nuclear Information System (INIS)

    Martins, Ilson Carlos

    2010-01-01

    This research refers to the study of U-Mo alloy as an alternative material for producing nuclear fuel elements with high density of uranium, for research reactors of high performance. The international non-proliferation of nuclear weapons has enrichment level limited to 20% U 23 '5. U-Mo alloys with 6-10 wt% Mo can lead to a density up to 9 gU/cm 3 , inside the fuel core. The MTR fuel element plates are made from briquettes (U-Mo powder + Al) encapsulated in Al plates, then welded and rolled However, the U-Mo alloy is very reactive in the presence of Al. The reaction products of this interaction are undesirable from the standpoint of nuclear usage, since they cause a chemical interaction layer (IL) formed during thermal cycling and exposure to nuclear fission neutrons. As the IL has low thermal conductivity, they may cause structural failure in the fuel element during operation. The present study provides a new preparation technique for interdiffusion pairs made by hot rolling. The U-Mo alloy, in tablet format, is involved by matrix Al-plates, which is sealed and then hot rolled. This way to prepare the diffusion couples is an ideal condition to avoid the oxidation at the contact interface at U-Mo/Al. The hot rolling preparation also simulates the first reduction pass during MTR fuel plate manufacture. We chose to work with a Mo content of 10 wt% in U-Mo alloy to ensure greater phase formation, since this level favors a greater chemical stability in this phase. The Al alloy matrix was used as the AA1050 since it contains small impurity amounts. The interdiffusion couples U-10Mo/AA1050 were thermally treated in two temperature ranges (1500C and 5500C) and three soaking times (5h, 40h and 80h) to simulate the interdiffusion process and formation of chemical interaction layer. The analysis of the interaction layer U-10Mo/AA1050 was made by SEM/EDS and X-ray diffraction. It revealed a general trend of low interdiffusion of Al (about 8 atomic %) inside U-Mo. There was

  2. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  3. Development and applications of beta and near beta titanium alloys

    International Nuclear Information System (INIS)

    Takemura, A.; Ohyama, H.; Nishimura, T.; Abumiya, T.

    1993-01-01

    In this report the authors introduced application of beta and near beta titanium alloys also development and processing of these alloys at Kobe Steel LTD. Ti-15Mo-5Zr-3Al is an alloy developed by Kobe Steel which has been applied for variety of sporting goods, also used as an erosion shield of steam turbine blades. Ti-15Mo-5Zr-3Al high strength wire for valve springs is under development. New beta alloys(Ti-V-Nb-Sn-Al) are under development which have lower flow stress at room temperature than Ti 15V-3Cr-3Sn-3Al, expected to improve productivity of cold forging. NNS forging and thermo mechanical treatment of Ti-10V-2Fe-3Al were studied. Ti-10V-2Fe3Al steam turbine blades and structural parts for aircraft were developed. Fine grain cold strips of Ti 15V-3Cr-3Sn-3Al are produced by annealing and pickling process. These cold strips are used for parts of a fishing rod

  4. Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation

    Science.gov (United States)

    Kar, Sujoy Kumar; Dheeradhada, Voramon S.; Lipkin, Don M.

    2013-08-01

    Alloys in the Mo-rich corner of the Mo-Ti-Zr-C system have found broad applications in non-oxidizing environments requiring structural integrity well beyond 1273 K (1000 °C). Alloys such as TZM (Mo-0.5Ti-0.08Zr-0.03C by weight %) and TZC (Mo-1.2Ti-0.3Zr-0.1C by weight) owe much of their high temperature strength and microstructural stability to MC and M2C carbide phases. In turn, the stability of the respective carbides and the subsequent mechanical behavior of the alloys are strongly dependent on the alloying additions and thermal history. A CALPHAD-based thermodynamic modeling approach is employed to develop a quaternary thermodynamic database for the Mo-Ti-Zr-C system. The thermodynamic database thus developed is validated with diffusion multiple experiments and the validated database is exercised to elucidate the effects of alloying and thermal history on the phase equilibrium in Mo-rich alloys.

  5. Microstructural defects modeling in the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Fernandez, Julian R.; Monti, Ana M.

    2006-01-01

    In this work we have utilized computer simulation techniques to study microstructural defects, such as point defects and interfaces, in the Al-Mo alloy. Such alloy is taken as a model to study the Al(fcc)/U-Mo(bcc) interface. The EAM interatomic potential used has been fitted to the formation energy and lattice constant of the AlMo 3 intermetallic. Formation of vacancies for both components Al and Mo and anti-sites, Al Mo and Mo Al , as well as vacancy migration was studied in this structure. We found that the lowest energy defect complex that preserves stoichiometry is the antisite pair Al Mo +Mo Al , in correspondence with other intermetallics of the same structure. Our results also suggest that the structure of the Al(fcc)/Mo(bcc) interface is unstable, while that of the Al(fcc)/Al 5 Mo interface is stable, as observed experimentally. (author) [es

  6. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  7. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  8. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  9. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  10. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  11. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  12. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process

    International Nuclear Information System (INIS)

    Chen Shuhai; Li Liqun; Chen Yanbin; Huang Jihua

    2011-01-01

    Research highlights: → The microstructures of interfacial zones were confirmed in detail by transmission electron microscope (TEM). Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, obvious stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately below 1 μm). → Metallurgical characteristics for laser welding-brazing process in the environment of far from equilibrium was expounded by microstructures of the joints, the characteristics of thermal process and element diffusion behavior. - Abstract: Joining mechanism of Ti/Al dissimilar alloys was investigated during laser welding-brazing process with automated wire feed. The microstructures of fusion welding and brazing zones were analysed in details by transmission electron microscope (TEM). It was found that microstructures of fusion welding zone consist of α-Al grains and ternary near-eutectic structure with α-Al, Si and Mg 2 Si. Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, apparent stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately less than 1 μm). Furthermore, crystallization behavior of fusion zone and mechanism of interfacial reaction were discussed in details.

  13. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  14. Glass formation and crystallization of Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.; Ranganathan, S.

    2010-01-01

    In the present study, transmission electron microscopy techniques, like micro-diffraction, high resolution and fluctuation microscopy, have been employed to carry out detailed investigation of as-solidified and crystallized microstructures of the Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy synthesized using melt spinning, suction casting and copper mould casting techniques. Samples produced by copper mould casting technique showed partially crystalline microstructure whereas the other techniques resulted in complete amorphous microstructures. High-resolution microscopy established that the dendrites of the big cube phase in partially crystalline glass grew by atomistic ledges. The other crystalline bct Zr 2 Ni phase, present in partially crystalline glass and also in all the crystallized microstructures, showed various types of internal faults depending upon the crystallite size. Fluctuation microscopy established that oxygen plays a major role in determining the degree of medium range order in glassy phases. In addition, variation in oxygen content changed the crystallization behaviour of glasses from a single to multiple events

  15. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  16. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  17. Studies on the sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners

    Energy Technology Data Exchange (ETDEWEB)

    Gazanion, F.; Chen, X.G.; Dupuis, C. [Alcan International Ltd., Jonquiere, PQ (Canada). Arvida Research and Development Centre

    2002-07-01

    The sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners in liquid aluminum has been investigated using the LiMCA and PoDFA analysis techniques in combination with metallographic examination. The widely used Al-5%Ti-1%B and Al-3%Ti-0.15%C master alloys were chosen. Two aluminum alloys, an AAlxxx (commercially pure metal) and an AA5182 (Al-4.5%Mg) alloy, were prepared with different additions of grain refiners. The difference in particle behavior in liquid aluminum for both refiners is described and briefly analyzed in terms of sensitivity to agglomeration and grain refiner performance. Experimental results indicate that, in comparison with the Al-Ti-B refiner, the Al-Ti-C refiner is detrimentally affected by long holding periods due to the decomposition of TiC particles within the melt. (orig.)

  18. Formation of long-period stacking ordered structures in Mg88M5Y7 (M = Ti, Ni and Pb) casting alloys

    International Nuclear Information System (INIS)

    Jin, Qian-Qian; Fang, Can-Feng; Mi, Shao-Bo

    2013-01-01

    Highlights: •Apart from 18R-LPSO, 14H-LPSO structure was determined in the Mg-Ni-Y alloys. •The appearance of twin-related structure in 18R-LPSO structure results from the stacking faults in the stacking sequence of the closely packed planes. •A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure was determined in the Mg-Pb-Y alloy. •No LPSO structures were found in the Mg-Pb-Y and Mg-Ti-Y casting alloys. -- Abstract: Formation of long-period stacking ordered (LPSO) structures is investigated in Mg 88 M 5 Y 7 (M = Ti, Ni and Pb) casting alloys by means of electron microscopy and X-ray diffraction. In the Mg 88 Ni 5 Y 7 casting alloy, 14H-LPSO structure is observed in a small amount, which coexists with 18R-LPSO structure. The appearance of stacking faults in 18R-LPSO structure results in twin-related structure in the stacking sequence of the closely packed planes. A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure is determined in the Mg 88 Pb 5 Y 7 alloy. No LPSO structures are found in the Mg 88 Pb 5 Y 7 and Mg 88 Ti 5 Y 7 casting alloys. In terms of the atomic radius and heat of mixing, the formation ability of LPSO structure in the present alloys is discussed

  19. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    Science.gov (United States)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  20. In search of zero thermal expansion anisotropy in Mo{sub 5}Si{sub 3} by strategic alloying

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardhana, C.C., E-mail: ccdxz8@mail.umkc.edu; Sakidja, R., E-mail: sakidjar@umkc.edu; Aryal, S.; Ching, W.Y.

    2015-01-25

    Highlights: • For the first time, theoretical prediction of achieving isotropic thermal expansion anisotropy (TEA) for T1 phase Mo{sub 5}Si{sub 3} by alloying with a mere 17.5% Al substitution on the Si sites. Most effective alloying proposed for the said system up to date. • The theoretical approach is verified by simulating the experimentally observed unusual TEA behaviour for (Mo,V){sub 5}Si{sub 3} alloys as a function of percent alloying. • The 2nd order and 3rd order elastic constants we explain the origin of the TEA in T1 phase for Mo{sub 5}Si{sub 3} system and how Al effect in reducing the TEA. • We use directional dependent phonon density of state, a novel approach, to identify the origin of the anisotropy and show this method of analysis could be used for other intermetallic alloys as well. - Abstract: Reducing the thermal expansion anisotropy (TEA) of alloy compounds is one of the most important issues for their potential applications in high temperature environment. The Mo{sub 5}Si{sub 3} (T1 phase) is known to be an important intermetallic compound with high melting temperature. Unfortunately, its large TEA renders it unsuitable for high temperature structural/coating applications. Many attempts have been made in the past to reduce TEA by substituting Mo by other transition metal ions such as V with little success and some unexpected observations. Here we use accurate ab initio molecular dynamics (AIMD) simulations to obtain the TEA from thermal expansion coefficients for two T1 phase alloy systems (Mo,V){sub 5}Si{sub 3} and Mo{sub 5}(Si,Al){sub 3}. We demonstrate that strategic alloying with Al substituting Si can achieve zero TEA for T1 phase. The microscopic origin of this outstanding thermomechanical properties in this alloy is explained by the calculation of higher order elastic constants in conjunction with atom and direction-resolved phonon density of states.

  1. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  2. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  3. Study on Tribological Properties of CoCrMo Alloys against Metals and Ceramics as Bearing Materials for Artificial Cervical Disc

    Science.gov (United States)

    Xiang, Dingding; Song, Jian; Wang, Song; Liao, Zhenhua; Liu, Yuhong; Tyagi, Rajnesh; Liu, Weiqiang

    2018-02-01

    CoCrMo alloys are believed to be a kind of potential material for artificial cervical disc. However, the tribological properties of CoCrMo alloys against different metals and ceramics are not systematically studied. In this study, the tribological behaviors of CoCrMo alloys against metals (316L, Ti6Al4V) and ceramics (Si3N4, ZrO2) were focused under dry friction and 25 wt.% newborn calf serum (NCS)-lubricated conditions using a ball-on-disc apparatus under reciprocating motion. The microstructure, composition and hardness of CoCrMo alloys were characterized using x-ray diffraction, scanning electron microscopy (SEM) and hardness testers, respectively. The contact angles of the CoCrMo alloys with deionized water and 25 wt.% NCS were measured by the OCA contact angle measuring instrument. The maximum wear width, wear depth and wear volume were measured by three-dimensional white light interference. The morphology and the EDX analysis of the wear marks on CoCrMo alloys were examined by SEM to determine the basic mechanism of friction and wear. The dominant wear mechanism in dry friction for CoCrMo alloys against all pairings was severe abrasive wear, accompanied with a lot of material transfer. Under 25 wt.% NCS-lubricated condition, the wear mechanism for CoCrMo alloys against ceramics (Si3N4, ZrO2) was also mainly severe abrasive wear. However, severe abrasive wear and electrochemical corrosion occurred for the CoCrMo-316L pairing under lubrication. Severe abrasive wear, adhesive wear and electrochemical corrosion occurred for the CoCrMo-Ti6Al4V pairing under lubrication. According to the results, the tribological properties of CoCrMo alloys against ceramics were better than those against metals. The CoCrMo-ZrO2 pairing displayed the best tribological behaviors and could be taken as a potential candidate bearing material for artificial cervical disc.

  4. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy

    Institute of Scientific and Technical Information of China (English)

    王振卿; 刘相法; 柳延辉; 张均燕; 于丽娜; 边秀房

    2003-01-01

    Heredity of microstructure in AlTiC master alloy, grain refiners, was analyzed. It is found that, for morphologies and distributions of TiC particles, there are visible heredity which originates from raw materials or processing methods of Al melt, and will ultimately be transferred to the solid state structure through the melt stage, and this phenomenon can cause hereditary influences on refinement: formation of chain-like TiC morphology results in rapid refinement fading behavior; distribution of TiC along grain boundaries greatly reduces refinement efficiency. Controlling of structural heredity through proper selections of raw materials and processing parameters is of great importance in obtaining ideal microstructures and improving refinement behaviors of AlTiC master alloys.

  5. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys

    International Nuclear Information System (INIS)

    Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S.

    2005-01-01

    Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys were investigated by using tensile tests and X-ray diffraction (XRD) measurement. The alloy ingots were fabricated by an arc melting method. The ingots were cold-rolled by a reduction up to 95% in thickness at room temperature. All the alloys were solution-treated at 1173 K for 1.8 ks. The alloys subjected to the solution treatment exhibited large elongations ranging between 28 and 40%. The martensitic transformation temperature decreased by 38 K with 1 at.% increase of Zr content. The maximum recovered strain of 4.3% was obtained in the Ti-22Nb-4Zr(at.%) alloy. Ti-22Nb-(2-4)Zr(at.%) and Ti-22Nb-6Zr(at.%) alloys exhibited stable shape memory effect and superelastic behavior at room temperature, respectively

  6. On the Young's moduli of Ti-6Al-4V alloys

    International Nuclear Information System (INIS)

    Fan, Zhongyun

    1993-01-01

    In this paper, the authors will present an iterative approach to Young's modulus of multi-phase composites developed by Fan et al. The iterative approach will then be applied to Ti-6Al-4V alloys to predict their effective Young's moduli. It is hoped that the theoretical predictions will offer a quantitative explanation to the peculiar shape of the E c -f β curve and will shed some light on controlling the Young's moduli of Ti-6Al-4V alloys by choosing the proper heat treatment procedure

  7. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  8. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    Science.gov (United States)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  9. Effect of Mo and C additions on magnetic properties of TiC–TiN–Ni cermets

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Qingqing; Xiong, Weihao; Zheng, Liyun; Huang, Bin; Chen, Shan; Yao, Zhenhua

    2015-01-01

    The effect of 2–8 mol.% Mo and 4 mol.% C additions on magnetic properties of TiC–10TiN–30Ni (mol.%) cermet was investigated. Saturation magnetization M_s, remanence M_r and Curie temperature T_c of as-sintered cermets (1420 °C, 1 h) decreased with increasing Mo. This was mainly attributed to that the total content of non-magnetic alloying elements Mo and Ti in Ni-based binder phase increased with increasing Mo in cermets, leading to the weakening of magnetic exchange interaction among Ni atoms in binder phase. The further addition of 4 mol.% C inversely increased M_s, M_r and T_c of cermets, which was mainly attributed to that it decreased the total content of Mo and Ti in binder phase, leading to the strengthening of magnetic exchange interaction among Ni atoms in binder phase. T_c of cermets without C addition was about 250 K at 6 mol.% Mo and 115 K at 8 mol.% Mo, respectively, and that of cermets with 4 mol.% C addition was about 194 K at 8 mol.% Mo. - Highlights: • M_s, M_r and T_c of TiC–10TiN–30Ni–xMo cermets decreased with the increase of Mo content, x. • Further addition of 4 mol.% C inversely increased M_s, M_r and T_c of cermets at the same Mo content. • T_c of cermets without C addition was about 250 K at x = 6 and 115 K at x = 8, respectively. • T_c of cermets with 4 mol.% C addition was about 194 K at x = 8.

  10. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  11. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  12. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  13. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  14. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  15. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  16. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  17. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  18. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    Science.gov (United States)

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  19. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  20. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  1. Effect of Mo and C additions on magnetic properties of TiC–TiN–Ni cermets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Qingqing, E-mail: yqqah@sina.com [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiong, Weihao [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng, Liyun [School of Equipment Manufacture, Hebei University of Engineering, Handan 056038 (China); Huang, Bin; Chen, Shan; Yao, Zhenhua [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-11-25

    The effect of 2–8 mol.% Mo and 4 mol.% C additions on magnetic properties of TiC–10TiN–30Ni (mol.%) cermet was investigated. Saturation magnetization M{sub s}, remanence M{sub r} and Curie temperature T{sub c} of as-sintered cermets (1420 °C, 1 h) decreased with increasing Mo. This was mainly attributed to that the total content of non-magnetic alloying elements Mo and Ti in Ni-based binder phase increased with increasing Mo in cermets, leading to the weakening of magnetic exchange interaction among Ni atoms in binder phase. The further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets, which was mainly attributed to that it decreased the total content of Mo and Ti in binder phase, leading to the strengthening of magnetic exchange interaction among Ni atoms in binder phase. T{sub c} of cermets without C addition was about 250 K at 6 mol.% Mo and 115 K at 8 mol.% Mo, respectively, and that of cermets with 4 mol.% C addition was about 194 K at 8 mol.% Mo. - Highlights: • M{sub s}, M{sub r} and T{sub c} of TiC–10TiN–30Ni–xMo cermets decreased with the increase of Mo content, x. • Further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets at the same Mo content. • T{sub c} of cermets without C addition was about 250 K at x = 6 and 115 K at x = 8, respectively. • T{sub c} of cermets with 4 mol.% C addition was about 194 K at x = 8.

  2. Effect of Inoculant Alloy Selection and Particle Size on Efficiency of Isomorphic Inoculation of Ti-Al.

    Science.gov (United States)

    Kennedy, J R; Rouat, B; Daloz, D; Bouzy, E; Zollinger, J

    2018-04-25

    The process of isomorphic inoculation relies on precise selection of inoculant alloys for a given system. Three alloys, Ti-10Al-25Nb, Ti-25Al-10Ta, and Ti-47Ta (at %) were selected as potential isomorphic inoculants for a Ti-46Al alloy. The binary Ti-Ta alloy selected was found to be ineffective as an inoculant due to its large density difference with the melt, causing the particles to settle. Both ternary alloys were successfully implemented as isomorphic inoculants that decreased the equiaxed grain size and increased the equiaxed fraction in their ingots. The degree of grain refinement obtained was found to be dependent on the number of particles introduced to the melt. Also, more new grains were formed than particles added to the melt. The grains/particle efficiency varied from greater than one to nearly twenty as the size of the particle increased. This is attributed to the breaking up of particles into smaller particles by dissolution in the melt. For a given particle size, Ti-Al-Ta and Ti-Al-Nb particles were found to have a roughly similar grain/particle efficiency.

  3. Research on investment casting of TiAl alloy agitator treated by HIP and HT

    Directory of Open Access Journals (Sweden)

    LI Zhen-xi

    2007-05-01

    Full Text Available Using TiAl alloy to substitute superalloy is a hot topic in aeroengine industry because of its low density,high elevated temperature strength, and anti-oxidization ability. In this research, Ti-47.5AL-2Cr-2Nb-0.2B alloy was used as the test material. By applying a combination process of ceramic shell mold and core making, vacuum arc melting and centrifugal pouring, and heat isostatic pressing (HIP and heat treatment (HT etc., the TiAl vortex agitator casting for aeroengine was successfully made. This paper introduced key techniques in making the TiAl vortex agitator with investment casting process, provided some experimental results including mechanical properties and machinability, and explained some concerns that could affect applications of TiAl castings.

  4. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  5. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  6. The massive transformation in Ti-Al alloys: mechanistic observations

    International Nuclear Information System (INIS)

    Zhang, X.D.; Godfrey, S.; Weaver, M.; Strangwood, M.; Kaufman, M.J.; Loretto, M.H.

    1996-01-01

    The massive α→γ m transformation, as observed using analytical transmission electron microscopy, in Ti-49Al, Ti-48Al-2Nb-2Mn, Ti-55Al-25Ta and Ti-50Al-20Ta alloys is described. Conventional solution heating and quenching experiments have been combined with the more rapid quenching possible using electron beam melting in order to provide further insight into the early stages of the transformation of these alloys. It is shown that the γ develops first at grain boundaries as lamellae in one of the grains and that these lamellae intersect and spread into the adjacent grain in a massive manner. Consequently, there is no orientation relationship between the massive gamma (γ m ) and the grain being consumed whereas there is the expected relation between the γ m and the first grain which is inherited from the lamellae. It is further shown that the γ m grows as an f.c.c. phase after initially growing with the L1 0 structure. Furthermore, it is shown that the massive f.c.c. phase then orders to the L1 0 structure producing APDB-like defects which are actually thin 90 degree domains separating adjacent domains that have the same orientation yet are out of phase. The advancing γ m interface tends to facet parallel either to one of its four {111} planes or to the basal plane in the grain being consumed by impinging on existing γ lamellae. Thin microtwins and α 2 platelets then form in the γ m presumably due, respectively, to transformation stresses and supersaturation of the γ m with titanium for alloys containing ∼48% Al; indeed, there is a local depletion in aluminium across the α 2 platelets as determined using fine probe microanalysis

  7. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  8. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  9. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  10. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  11. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    Science.gov (United States)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  12. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    Many metals and alloys are used in service under conditions in which they are metastable or unstable with respect to phase separation or transformation. Analytical and numerical models exist for relatively simple decomposition processes, such as nucleation and growth mechanisms and spinodal decomposition. In reality, however, more complex phase transformations may occur which are less well understood. For example, reactions involving coupled ordering and phase separation, such as the 'conditional spinodal mechanism', have been predicted. A 'conditional spinodal' is defined as a reaction in which compositional phase separation is thermodynamically possible only after a prior process, such as ordering at the parent composition. There is some debate regarding which real alloy systems exhibit such complex behaviour. Previous atom probe field ion microscopy work on titanium-rich titanium-aluminium based alloys has led to the suggestion that formation of the α 2 phase in this system may occur by a complex phase separation process. As well as being of interest from the point of view of fundamental materials science, this has potential engineering significance as the Ti-Al system forms the basis of the current generation of high-temperature Ti-based alloys for compressor applications in jet engines. This thesis describes an investigation into the phase decomposition process taking place in a titanium-rich Ti-Al alloy lying in the two-phase α+α 2 region. Experimentally, a binary alloy containing 15at% aluminium was heat-treated and examined using electron microscopy, X-ray diffraction, atom probe field ion microscopy and mechanical testing methods. Neutron diffraction experiments were also completed on this system for the first time. In addition, fully three-dimensional atomistic simulations were conducted using a Monte Carlo computer model based on first principles thermodynamic stability calculations of the Ti-Al system. The results provide an insight into many aspects

  13. The influence of Ni, Mo, Si, Ti on the surface alloy layer quality

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2011-07-01

    Full Text Available The paper presents research results of microstructure and selected mechanical properties of alloy layer. The aim of the researches was to determine the influence of Ni, Mo, Si and Ti with high-carbon ferrochromium (added separately to pad on the alloy layer on the steel cast. Metallographic studies were made with use of light microscopy. During studies of usable properties measurements of hardness, microhardness and abrasive wear resistance of type metal-mineral for creation alloy layer were made. As thick as possible composite layer without any defects and discontinuity was required. The conducted researches allowed to take the suitable alloy addition of the pad material which improved the quality of the surface alloy layer.

  14. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  16. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  17. Key improvements in machining of Ti6al4v alloy: A review

    Science.gov (United States)

    Katta, Sivakoteswararao; Chaitanya, G.

    2017-07-01

    Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.

  18. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  19. Tailoring ultrafine grained and dispersion-strengthened Ti2AlC/TiAl ...

    Indian Academy of Sciences (India)

    and Ti-Al pre-alloyed powders at low temperature of 1150◦C. The composite mainly consisted ... Metal–matrix composites; mechanical properties; microstructures; sintering. 1. Introduction γ-TiAl-based intermetallic alloys have been extensively.

  20. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  1. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 717-724, 2004

  2. Formation of Al3Ti/Mg composite by powder metallurgy of Mg–Al–Ti system

    Directory of Open Access Journals (Sweden)

    Zi R Yang et al

    2008-01-01

    Full Text Available An in situ titanium trialuminide (Al3Ti-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg–Al–Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC, x-ray diffractometry (XRD, scanning electron microscopy (SEM and energy-dispersive x-ray spectroscopy (EDS. Al3Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg–Al–Ti system, Al3Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg–Al–Ti system is almost the same as that of the Al–Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  3. TiAl doping by vanadium: ab initio study

    International Nuclear Information System (INIS)

    Smirnova, E.A.; Isaev, Eh.I.; Vekilov, Yu.Kh.

    2004-01-01

    Tetragonality degree in TiAl and vanadium doping effect on it were studied using the methods of calculation based on approximation of coherent potential and ab initio pseudopotentials. It is shown that vanadium substitution for Ti sublattice atoms entails increase in tetragonality degree but with substitution of the atoms in aluminium sublattice the tetragonality of the TiAl:V alloy decreases and at the content of vanadium about 8 at. % the lattice becomes actually cubical. In its turn, it may result in increase in TiAl ductility, the alloy being brittle at low temperatures [ru

  4. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  5. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wu, Yuyu; Wang, Hui; Liu, Jiangwen; Fang, Fang; Sun, Dalin; Zhang, Qingan; Zhu, Min

    2015-01-01

    Highlights: • Mg 85 In 5 Al 5 Ti 5 alloy catalyzed with in-situ formed MgF 2 was prepared by P-milling. • Reaction mechanism of Mg 85 In 5 Al 5 Ti 5 alloy was presented. • Further destabilization of Mg was realized (65.2 kJ/mol H 2 ). • Dual tuning of the thermodynamic and kinetic properties of MgH 2 was realized. - Abstract: The dehydrogenation enthalpy change of MgH 2 by reversibly forming an Mg 0.95 In 0.05 solid solution offers a new method for tuning the thermodynamics of Mg-based alloys. In order to further lower the stability of MgH 2 , Al has been introduced into Mg(In) solid solution. At the same time, to solve the problem of sluggish kinetic properties of Mg–In solid–solution systems and to lower the dehydrogenation activation energy, Ti has also been added. It has been demonstrated that the Mg 85 In 5 Al 5 Ti 5 alloy synthesized by plasma milling (P-milling) shows both enhanced dehydriding thermodynamics and kinetics. This technique could be used to synthesize Mg(In, Al) ternary solid solution incorporating the Ti catalyst in only one step, making it much more efficient than the two-step method. Compared with Mg-based solid solutions, the addition of Ti and in-situ synthesized MgF 2 improved the kinetics and the introduction of In as well as Al imparted enhanced thermodynamics to the Mg 85 In 5 Al 5 Ti 5 system. The dehydrogenation enthalpy change and activation energy were lowered to 65.2 kJ/(mol H 2 ) and 125.2 kJ/mol, respectively, for the Mg 85 In 5 Al 5 Ti 5 alloy

  6. U-Mo/Al-Si interaction: Influence of Si concentration

    International Nuclear Information System (INIS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M.C.; Lemoine, P.

    2010-01-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 deg. C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 , when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6 Mo 4 Al 43 . For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3 (Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 . On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  7. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    Science.gov (United States)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  8. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  9. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  10. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  11. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  12. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  13. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  14. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  15. Equal Channel Angular Extrusion Simulation of High-Nb Containing β-γ TiAl Alloys

    Directory of Open Access Journals (Sweden)

    Lai-qi Zhang

    2015-01-01

    Full Text Available TiAl alloys containing high Nb are significantly promising for high-temperature structural applications in aerospace and automotive industries. Unfortunately the low plasticity at room temperature limits their extensive applications. To improve the plasticity, not only optimizing the opposition, but also refining grain size through equal channel angular extrusion (ECAE is necessary. The equal channel angular extrusion simulation of Ti-44Al-8Nb-(Cr,Mn,B,Y(at% alloy was investigated by using the Deform-3D software. The influences of friction coefficient, extrusion velocity, and different channel angles on effective strain, damage factor, and the load on the die were analyzed. The results indicate that, with the increasing of friction coefficient, effective strain is enhanced. The extrusion velocity has little effect on the uniformity of effective strain; in contrast it has large influence on the damage factor. Thus smaller extrusion rate is more appropriate. Under the condition of different channel angles, the larger one results in the lower effective strain magnitude and better strain distribution uniformity.

  16. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraei, O. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Farhangi, H. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-01-10

    In current research, the effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy have been investigated. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis were utilized to study the microstructure and fracture surfaces of samples. Microstructural analysis of the cast alloy showed the dendrites of a primary {alpha}-phase solid solution within the eutectic matrix which consists of {beta}-Al{sub 3}Mg{sub 2} intermetallic and {alpha}-solid solution. The results indicated that adding Al-5Ti-1B to the alloy caused a significant rise in the ultimate tensile strength (UTS) and elongation values from 168 MPa and 1.2% to maximum 253 MPa and 2.4%, respectively. The main mechanisms for the observed enhancement were found to be due to the refinement of grains during solidification and also segregation of Ti to the tip of Al ({alpha}) dendrites. This phenomenon controls the dendritic growth and changes the morphology of this phase from interconnected coarse dendrites to a star-like morphology.

  17. SURFACE MODIFICATIONS WITH LASER SYNTHESIZED Mo MODIFIED COATING

    OpenAIRE

    LU SUN; HAO CHEN; BO LIU

    2013-01-01

    Mg–Cu–Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg–Cu–Al–B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. ...

  18. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  19. Interfacial phenomena in the reactions of Al-B, Al-Ti-B, and Al-Zr-B alloys with KF-AlF3 and NaF-AlF3 melts

    International Nuclear Information System (INIS)

    Lee, M.S.; Terry, B.S.; Grieveson, P.

    1993-01-01

    The interfacial phenomena occurring during the contacting of liquid Al-B, Al-Ti-B, and Al-Zr-B melts with KF-AlF 3 liquid fluxes have been investigated by optical examination of quenched metal drops previously immersed in the liquid fluxes. Reactions in the Al-B/KF-AlF 3 system involve the formation of metastable AlB 12 at the metal/flux interface. At high KBF 4 levels in the flux, the AlB 12 is dispersed in the flux and also at low KBF 4 levels in the metal. Reactions in the Al-Ti-B/KF-AlF 3 system involve the formation of TiB 2 , which may be dispersed in either the metal or the flux depending upon the composition of the flux. The results obtained for the Al-Ti-B/NaF-AlF 3 and Al-Zr-B/KF-AlF 3 systems were similar to those observed for the Al-Ti-B/KF-AlF 3 system

  20. Surface Hardening of Ti-15V-3Al-3Cr-3Sn Alloy after Cyclic Hydrogenation and Subsequent Solution Treatment

    Directory of Open Access Journals (Sweden)

    Chia-Po Hung

    2014-01-01

    Full Text Available The as-received and preheated (1000°C-30 min. and 500°C-30 min. sheets of Ti-15V-3Al-3Cr-3Sn alloy (Ti-153 were treated according to the predetermined process including a cyclic electrolytic hydrogenation (at 50 mA/cm2 for 1 hr and at 5 mA/cm2 for 10 hrs combining a subsequent solution treatment to see the effects of various operating parameters on the evolution of microstructure and the variations of hardness. The hardening effect deriving from solid-solution strengthening of hydrogen eventually overrode that from precipitation hardening. The maximum hardness elevation was from 236.9 to 491.1 VHN.

  1. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  2. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  3. State of the Art in Beta Titanium Alloys for Airframe Applications

    Science.gov (United States)

    Cotton, James D.; Briggs, Robert D.; Boyer, Rodney R.; Tamirisakandala, Sesh; Russo, Patrick; Shchetnikov, Nikolay; Fanning, John C.

    2015-06-01

    Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.

  4. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    Science.gov (United States)

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  5. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.

    Science.gov (United States)

    Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng

    2017-12-16

    This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001-0.1 s -1 and a temperature range of 1125-1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10 -3 -2.5 × 10 -3 s -1 and temperature range of 1130-1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10 -3 s -1 . Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α₂ occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10 -4 s -1 .

  6. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  7. Surface Modifications with Laser Synthesized Mo Modified Coating

    Science.gov (United States)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  8. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    Science.gov (United States)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  9. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  10. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  11. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  12. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  13. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  14. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  16. X – ray and neutron diffraction of TiAl alloys

    International Nuclear Information System (INIS)

    Valkov, Stefan; Petrov, Peter; Neov, Dimitar; Beskrovny, Anatoly; Kozlenko, Denis

    2015-01-01

    TiAl alloys were prepared by electron beam hybrid method. Composite Ti-Al film, from composite target, was deposited on Ti substrate by electron beam evaporation, followed by electron beam treatment with scanning electron beam. Experiments were made using Leybold Heraus (EWS 300/ 15 - 60) with the following technological parameters : accelerating voltage U = 60kV; beam current I=40 mA, speed of movement of specimens V=5 cm/s, current of the focusing lens If =512mA, specimen distance D0 = 38cm. X- ray and neutron diffraction methods were used to determine the phase composition on the surface and at the volume, respectively. Time of flight neutron diffraction study of TiAl specimens was performed on DN-2 diffractometer at fast pulsed IBR-2 reactor in FLNP JINR (Dubna, Russia).We found that intermetallic TiAl phases were successfully obtained on the surface, as well as in the volume.

  17. Effect of TiC addition on fracture toughness of Al6061 alloy

    Science.gov (United States)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  18. Preparation and characterization of Ti-15Zr-12.5Mo alloy for use as biomaterial

    International Nuclear Information System (INIS)

    Lourenco, M.L.; Correa, D.R.N.; Grandini, C.R.

    2014-01-01

    Titanium alloys exhibit favorable properties for biomedical applications. With the zirconium and molybdenum addition, the microstructure and mechanical properties can be changed. Moreover, these alloying elements have certified non-toxicity. The aim of this paper is to prepare and characterize the microstructure and some mechanical properties of Ti-15Zr-12,5Mo (wt%). The alloy was produced by arc-melting and heat treated at 1000 °C for 24 h. Chemical analysis was made by ICP-OES, EDS and density measurements. The crystalline structure and microstructure were analyzed by X-ray diffraction, optical and scanning electron microscopy. An analysis of the mechanical properties was evaluated by Vickers microhardness measurements. The alloy presented a β-type structure (bcc crystalline structure), with the formation of typical equiaxial grains, with higher hardness value than the cp-Ti. (author)

  19. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys

    International Nuclear Information System (INIS)

    Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S.

    2011-01-01

    The effect of test temperature on the superelasticity of Ti-27Nb and various Ti-Nb-Mo alloys is investigated. A deviation in the stress at which martensitic transformation starts (σ β-α'' ) from the behavior expected from the Clausius-Clapeyron relationship is confirmed in all alloys. The degree of deviation is found to be in inverse proportion to the electron-to-atom ratio. However, no deviation is observed in the stress at which the reverse transformation finishes (σ α''-β ). All alloys exhibit anomalous electrical resistivity during cooling. X-ray diffraction (XRD) and transmission electron microscopy investigations show that the volume fraction of the athermal ω (ω ath ) phase increases with a decrease in temperature. An in situ XRD experiment obtained during a loading-unloading cycle shows that the β and ω ath phases transform into the α'' phase during loading. The annihilation of the ω ath phase within the α'' phase allows σ α''-β to obey the Clausius-Clapeyron relationship. As a result, a large hysteresis loop is produced.

  20. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CN{sub x} multilayer grown by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Alemón, B.; Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, Mexico, DF 07738 (Mexico); Broitman, E. [Thin Films Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden)

    2014-07-15

    A novel TiAlCN/CN{sub x} multilayer coating, consisting of nine TiAlCN/CN{sub x} periods with a top layer 0.5 μm of CN{sub x}, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti{sub 0.5}Al{sub 0.5} and C targets respectively in a N{sub 2}/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  1. The relation between wetting and infiltration behaviour in the Al-1010/TiC and Al-2024/TiC Systems

    International Nuclear Information System (INIS)

    Contreras, A.; Lopez, V.H.; Leon, C.A.; Bedolla, E.; Drew, R.A.A.

    2001-01-01

    Wetting and infiltration behavior of TiC by commercial aluminum (Al-1010) and Al-2024 alloy was investigated. Wettability tests were performed on dense TiC substrates (96.8% theoretical density) using a sessile drop technique in the temperature range of 850 to 1000 deg C under vacuum atmosphere. Pressureless melt infiltration of particulate TiC performs (56% theoretical density) was carried out under an inert atmosphere at temperatures ranging from 900 to 1100 deg C. Infiltration profiles were obtained using a thermogravimetric analyzer (TGA), which measured continuously the weight change of the compacts as the liquid alloy infiltrated From the wetting study, it was found that wettability of TiC by liquid Al-1010 was better than Al-2024. A strong temperature dependence was observed. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface in both metal/ceramic assemblies. In agreement with the wetting results. Al-1010 exhibited the highest infiltration rate during composite fabrication. The activation energy determined from the slopes of Arrhenius plots for the infiltration rate at the different temperatures was 172 kJ/mol and 179 kJ/mol for the Al-1010/TiC and Al-2024/TiC systems, respectively. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Zhou, W.F.; Liu, F.F.; Ren, Y.P. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Ren, N.F.; Xu, S.D.; Yang, T. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-02-15

    Graphical abstract: The grain refinement process of Ti-6Al-4V alloy under LSP: (a) LDD in original grains; (b) Dislocations in β phase; (c) DTIs in α phase; (d) DTs transform into DCs; (e) DWs develop into sub-GBs; (f) GR accomplishes. - Highlights: • LSP could repair the surface defects and reduce the surface roughness. • Microstructure evolution of α phase in Ti-6Al-4V alloy processed by LSP is distinct from β phase. • Multidirectional twin intersections and subgrain boundaries are the main mechanism of grain refinement of Ti-6Al-4V alloy. • Grain refinement process of the Ti-6Al-4V alloy was illustrated. - Abstract: Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  3. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys

    International Nuclear Information System (INIS)

    Boucher, R.; Barthelemy, P.

    1964-01-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [fr

  4. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  5. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    Science.gov (United States)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  6. Mechanical and tribological properties of Ti-containing carbon nanocomposite coatings deposited on TiAlV alloys

    Directory of Open Access Journals (Sweden)

    Emanuel Santos Júnior

    2010-12-01

    Full Text Available Ti-doped carbon coatings were deposited on TiAlV alloys by reactive dc-magnetron sputtering in Ar/CH4 mixed gas. When Ar flow increases the incorporation of Ti into films raises while the concentration of C decreases. The formed nanometric TiC crystals were more noticeable for coatings deposited with higher Ar flows. Hardness (H and elastic modulus (E of coatings were measured by nanoindentation. H values were in the range of 8.8-15.9 GPa and E of 53.4-113.7 GPa. Higher values for H and E were obtained for films containing larger amount of TiC-phase. The presence of TiC crystals increased the coefficient of friction (COF from 0.07 to 0.28 in scratch tests. Tribological experiments were carried out by using a pin-on-disk apparatus in air and in liquid. COF values ranged from 0.10 to 0.50 for tests in air. Despite of presenting higher COF, tests performed in liquid resulted in less pronounced wear tracks.

  7. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  8. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  9. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  10. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  11. The Microstructure of Multi-wire U-Mo Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Sang; Park, Eun Kee; Cho, Woo Hyoung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm {approx} 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix as shown. This multi-wire fuels showed very good fuel performance during the KOMO-3 irradiation test. At the KOMO-3 test, the specimen of the multi-wire fuels were U-7Mo/Al and U-7Mo-1Si/Al. In this study we investigate the microstructure change of the U-7Mo and U-7Mo-1Ti with some variation of annealing conditions. In addition to this, we want to check the effect of adding Ti element to U-7Mo on the gamma phase stability

  12. Study on Ti-6Al-4V Alloy Machining Applying the Non-Resonant Three-Dimensional Elliptical Vibration Cutting

    Directory of Open Access Journals (Sweden)

    Mingming Lu

    2017-10-01

    Full Text Available The poor machinability of Ti-6Al-4V alloy makes it hard to process by conventional processing methods even though it has been widely used in military and civilian enterprise fields. Non-resonant three-dimensional elliptical vibration cutting (3D-EVC is a novel cutting technique which is a significant development potential for difficult-to-cut materials. However, few studies have been conducted on processing the Ti-6Al-4V alloy using the non-resonant 3D-EVC technique, the effect of surface quality, roughness, topography and freeform surface has not been clearly researched yet. Therefore, the machinability of Ti-6Al-4V alloy using the non-resonant 3D-EVC apparatus is studied in this paper. Firstly, the principle of non-resonant 3D-EVC technique and the model of cutter motion are introduced. Then the tool path is synthesized. The comparison experiments are carried out with traditional continuous cutting (TCC, two-dimension elliptical vibration cutting (2D-EVC, and the non-resonant 3D-EVC method. The experimental results shown that the excellent surface and lower roughness (77.3 nm could be obtained using the non-resonant 3D-EVC method; the shape and dimension of elliptical cutting mark also relates to the cutting speed and vibration frequency, and the concave/convex spherical surface topography are achieved by non-resonant 3D-EVC in the Ti-6Al-4V alloy. This proved that the non-resonant 3D-EVC technique has the better machinability compared with the TCC and 2D-EVC methods.

  13. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  14. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  15. Effects of brazing temperature on microstructure and mechanical performance of Al{sub 2}O{sub 3}/AgCuTi/Fe–Ni–Co brazed joints

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yongtong; Yan, Jiazhen, E-mail: yanjiazhen@scu.edu.cn; Li, Ning; Zheng, Yi; Xin, Chenglai

    2015-11-25

    Al{sub 2}O{sub 3}/Fe–Ni–Co joints are achieved using Ag–Cu–8Ti filler alloy, and the dependence of the joint microstructure and mechanical performance on the brazing temperature has been studied by means of SEM, EDS, XRD and tensile test. The results show that the brazing seam is composed of TiO, Ti{sub 3}Al, Ag (s, s), Cu (s, s), (Cu, Ni) and Ni{sub 4}Ti{sub 3} phases. A layer of Ti{sub 3}Al and TiO products is observed at the Al{sub 2}O{sub 3}/AgCuTi interface and the fracture testing indicates that the thickness of the reaction layer plays a critical role in the joint strength. The joint strength firstly increases and then declines with the thickness of the (Ti{sub 3}Al + TiO) layer increasing, and the formation of the cracks is ascribed to the existence of Ti{sub 3}Al phase. The thermokinetic analysis for the interfacial reaction between Al{sub 2}O{sub 3} and AgCuTi show that the Gibbs free energy equals −88.939 kJ/mol for forming Ti{sub 3}Al and TiO phases, and the growth rate of the reaction layer mainly depends on the diffusion rate of Ti across the formed reaction layer. Meanwhile, the quantitative relationship among brazing temperature, holding time and reaction layer thickness has been established. - Graphical abstract: The theoretical curve of brazing time and thickness is close proximity to the measured values, which means the extracted mathematical relationship (X = 2.2616 × 10{sup −1} exp (−143.85 × 10{sup 3}/8.314 T) × t{sup 0.5}) relatively closed to the actual situation. The growth rate of reaction layer declines with the increase of brazing time, and this phenomenon indicates that the diffusion rate of Ti atoms across the reaction layer is less than the rate of the chemical reaction during brazing, that is, the growth rate of reaction layer mainly depends on the diffusion rate of Ti atoms across the formed reaction layer. - Highlights: • The dependence of seam microstructure on brazing temperature is discussed. • Thermokinetic

  16. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wen-Fu, E-mail: fujiiwfho@yahoo.com.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Li, Yu-Chi [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2012-04-01

    The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal {alpha} Prime phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic {alpha} Double-Prime structure was found. When increased to 7.5 wt.% or greater, retention of the metastable {beta} phase began. The {omega} phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the {alpha} Double-Prime -phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4 Degree-Sign and 24.6 Degree-Sign , respectively) were much greater than those of c.p. Ti (2.7 Degree-Sign ). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of {alpha} Double-Prime phase Ti-10Zr-5Mo and {beta} phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates. - Highlights: Black-Right-Pointing-Pointer The effects of Mo on the structure

  17. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  18. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  20. Improvement of Silicide Coating Method as Diffusion Barrier for U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-Mo-Ti alloy powders were coated with silicide layers. The coating process was improved when compared to the previous coating in terms of the ball milling and heat treatment conditions. Subsequently, silicide coated U-Mo-Ti powders and pure aluminum powders were mixed and made into a compact for the annealing test. The compacts were annealed at 550 .deg. C for 2hr, and characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). 1. Uniform, homogeneous, thickness controllable silicide layers were successfully coated on the surface of U-7wt%Mo-1wt%Ti powders. 2. U{sub 3}Si, U{sub 3}Si{sub 2} silicide layers formed on the surface of U-7wt%Mo-1wt%Ti powders, and were identified by XRD and EDS analyses.

  1. Neutronic feasibility studies using U-Mo dispersion fuel (9 Wt % Mo, 5.0 gU/cm3) for LEU conversion of the MARIA (Poland), IR-8 (Russia), and WWR-SM (Uzbekistan) research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, E.

    2000-01-01

    U-Mo alloys dispersed in an Al matrix offer the potential for high-density uranium fuels needed for the LEU conversion of many research reactors. On-going fuel qualification tests by the US RERTR Program show good irradiation properties of U-Mo alloy dispersion fuel containing 7-10 weight percent molybdenum. For the neutronic studies in this paper the alloy was assumed to contain 9 wt % Mo (U-9Mo) with a uranium density in the fuel meat of 5.00 gU/cm 3 which corresponds to 32.5 volume % U-9Mo. Fuels containing U-9Mo have been used in Russian reactors since the 1950's. For the three research reactors analyzed here, LEU fuel element thicknesses are the same as those for the Russian-fabricated HEU reference fuel elements. Relative to the reference fuels containing 80-90% enriched uranium, LEU U-9Mo Al-dispersion fuel with 5.00 gU/cm 3 doubles the cycle length of the MARIA reactor and increases the IR-8 cycle length by about 11%. For the WWR-SM reactor, the cycle length, and thus the number of fuel assemblies used per year, is nearly unchanged. To match the cycle length of the 36% enriched fuel currently used in the WWR-SM reactor will require a uranium density in the LEU U-9Mo Al-dispersion fuel of about 5.4 gU/cm 3 . The 5.00 gU/cm 3 LEU fuel causes thermal neutron fluxes in water holes near the edge of the core to decrease by (6-8)% for all three reactors. (author)

  2. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  3. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  4. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  5. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  6. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  7. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  8. Reactions between Ti3Al-Nb and mixed second phases

    International Nuclear Information System (INIS)

    Bowden, D.M.; Sastry, S.M.L.; Smith, P.R.

    1989-01-01

    In engineered multiphase materials, the interfacial characteristics that develop between individual phases during high-temperature exposure can play a significant role in determining mechanical behavior. In titanium alloys containing silicon carbide and boron fibers, rule-of-mixtures strength values are not realized, primarily because of the chemical reactions that occur between the matrix alloys and these phases. Previous investigations of the reaction between titanium alloys and boron have shown that a uniform reaction layer of the phase TiB 2 is formed, followed by growth of TiB needles. The primary mechanism of this reaction was observed to be the one-way diffusion of boron into titanium. The use of a B 4 C coating on the boron (B 4 C/B) as a diffusion barrier was found to significantly slow the reaction between the titanium and boron. Certain alloy additions to titanium, such as aluminum, vanadium, and molybdenum, can increase the chemical compatibility of these two phases. For the case of SiC, the reaction zone is formed by the interdiffusion of silicon and carbon atoms with titanium. X-ray diffraction studies have shown the reaction components to include TiC, Ti 5 Si 3 , and TiSi 2 . In the present study, the reactions between a Ti 3 Al alloy and both B 4 C/B and SiC have been examined. Reaction models are proposed to describe the development of the chemical interaction zone formed between these phases

  9. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  10. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    Science.gov (United States)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  11. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  12. Uniform distribution of TiCp in TiCp/Zn-Al composites prepared by XDTM

    Institute of Scientific and Technical Information of China (English)

    王香; 马旭梁; 李庆芬; 曾松岩

    2002-01-01

    The prefabricated Al/TiC alloy with high TiC particle content was prepared by XDTM process. The uniform distribution process of TiC particles in the stationary zinc melt was studied and analyzed using self-made experimental equipment, and the model of the uniform distribution process was built. The results show that zinc diffuses into the prepared Al/TiC alloy after it is placed in the zinc melt at temperatures below the melting point of aluminum, which leads to the decrease of the liquidus temperature of Al-Zn alloy in the surface layer of Al/TiC alloy. When the liquidus temperature of Al-Zn alloy is equal to or below the temperature of zinc melt, Al-Zn alloy melts and TiC particles drop with it from the Al/TiC alloy and then transfer into the zinc melt and finally distribute uniformly in it.

  13. Effect Mechanism of TiAl3 on the Precipitation of TiC Particles in Aluminum Melt%TiAl3TiC粒子在铝熔体中沉淀特性的影响机理

    Institute of Scientific and Technical Information of China (English)

    丁万武; 夏天东; 赵文军

    2013-01-01

    采用金相显微镜(MEF3)、电子探针(EPMA)等研究TiC和TiAl3细化工业纯铝时TiAl3的存在对TiC在铝熔体中沉淀特性的影响规律,分析其影响机制.结果表明:TiC在铝熔体中单独存在时沉淀速率快,在较短时间保温后,大量TiC发生沉淀,从而限制其异质形核作用;当TiC和TiAl3在铝熔体中共同存在时,TiC沉淀速率变缓,在较长时间保温后,只有少量TiC发生沉淀,表现出较强形核能力和抗晶粒细化衰退能力.其影响机理是:TiAl3在铝熔体中增大了TiC粒子的沉降阻力,使得TiC粒子沉降速率变缓而在凝固时成为α(Al)的异质形核质点.Al Ti-C合金细化作用衰减是由TiC发生沉淀引起.%The effect of TiAl3 on the precipitation of TiC particles in aluminum melt was studied when TiC and TiAl3 refining industry aluminum, and the mechanism was discussed using MEF3 and EPMA. The results show that TiC particles deposit quickly and have poor nucleation capability when TiC is used as the α(Al) nucleation phase only, but when TiC and TiAl3 common as the α(Al) nucleation phase, TiC particles deposit more and more slow. Even after long time, there was only a small a-mount of precipitation. It demonstrated better nucleation and higher resistance to grain refining fading. The reason is that TiAl3 increase the settlement resistance of TiC particles. The refinement effect fading of Al-Ti-C master alloy is caused by TiC precipitation.

  14. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  15. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  16. Microstructural and mechanical properties of gravity-die-cast A356 alloy inoculated with yttrium and Al-Ti-B grain refiner simultaneously

    Directory of Open Access Journals (Sweden)

    Y.P. Lim

    2011-10-01

    Full Text Available In the present work, the effect of inoculating yttrium and Al-5Ti-1B simultaneously on A356 aluminum alloy has been studied. Gravity die casting process is used to cast the ASTM tensile test specimens for analysis. In each experiment, the Ti and B contents were maintained constantly at 0.1 and 0.02 wt% respectively. The addition of yttrium was manipulated at the amount of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 wt%. Microstructural characterization of the as-cast A356 alloy was investigated by means of optical microscope and its phases are detected by XRD. The mechanical properties tested are tensile strength and hardness. The inoculation of yttrium was found to enhance the grain refinement effect of Al-5Ti-1B grain refiner and improve the mechanical properties. The optimal weight percentage of yttrium was found to be 0.3. The grain refining efficiency of combining yttrium and Al-5Ti-1B on A356 aluminum alloy was mainly attributed to the heterogeneous nucleation of TiB2 and TiAl3 particles which were dispersed more evenly in the presence of yttrium and the grain growth restriction effected by the accumulation of Al-Y compound at grain boundaries.

  17. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  18. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  19. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  20. A study on the microstructural property and thermal property of Ti-alloys without Al as biomaterials

    International Nuclear Information System (INIS)

    Ban, Jae Sam; Lee, Kyung Won; Cho, Kyu Zong; Kim, Sun Jin

    2008-01-01

    Ti-10Ta-10Nb alloys were designed for surgical implants, dental and orthopedic materials without V and Al. Specimens of the Ti-10Ta-10Nb alloy were remelted three times through the consumable VAR process and were made into small rods. Homogenization heat treatment was carried out for 24 hours under a vacuum of 10 -3 torr and at constant temperature of 1050 .deg. C and then the specimens were cooled in water. After that, we observed the microstructure of the alloy by using an SEM. Rockwell (B) hardness, thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy were measured in order to examine the material properties. It was found that the mechanical property of the specimen was altered by the heat treatment, and thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy would be useful data for engineering processing design

  1. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  2. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  3. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  4. Experimental studies on the dynamic tensile behavior of Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy with Widmanstatten microstructure at elevated temperatures

    International Nuclear Information System (INIS)

    Gong Xuhui; Wang Yu; Xia Yuanming; Ge Peng; Zhao Yongqing

    2009-01-01

    The tensile behavior of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s -1 . The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s -1 , a discontinuity is found in the yield stress-temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.

  5. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  6. Microstructural stability of a NiAl-Mo eutectic alloy

    International Nuclear Information System (INIS)

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-01-01

    The microstructural stability of a directionally-solidified NiAl-9 at.% Mo quasi-binary alloy was investigated under conditions of thermal cycling between the temperatures 973K and 1,473K utilizing time-temperature heating and cooling profiles which approximate potential engine applications. Two different microstructures were examined: a cellular microstructure in which the faceted second-phase Mo rods in the NiAl matrix formed misaligned cell boundaries which separated aligned cells approximately 0.4 mm in width and 5--25 mm in length, and a nearly fault-free fully columnar microstructure well aligned along the [001] direction. Both microstructures resisted coarsening under thermal cycling, but plastic deformation induced by thermal stresses introduced significant specimen shape changes. Surprisingly, the cellular microstructure, for which the cell boundary region apparently acts as a deformation buffer, exhibited better resistance to thermal fatigue than the more fault-free and better aligned columnar microstructure

  7. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  8. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  9. Castability of Ti-6Al-7Nb alloy for dental casting

    OpenAIRE

    Wang, Tie Jun; 小林, 郁夫; 土居, 壽; 米山, 隆之

    1999-01-01

    Castability of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy was examined for mesh type and plate type specimens. The casting was carried out with a pressure type casting machine and commercial molding material. The castability of the mesh type specimen was evaluated in terms of the number of cast segments (castability index), and that of the plate type was evaluated by the area of the speci­men (casting rate). X-ray images processed by a digital imaging technique were used to identify the casting...

  10. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  11. Study of the evolution of the microstructure and hardness of Cu-Al and Cu-Al-Ti alloys during their production by reactive milling and extrusion

    International Nuclear Information System (INIS)

    Figueroa, F; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    The microstructure and hardness of two alloys produced by reactive milling of elementary powders for 10, 20 and 30 hours and later hot extrusion were studied: a Cu-5 vol.% Al 2 O 3 binary and another Cu-2.5 vol.%TiC-2.5 vol.% Al 2 O 3 ternary. The microstructure of the alloys was characterized with a transmission electron microscope (TEM), X-ray diffraction (XRD) and different methods of chemical analysis. Then their hardness was evaluated before and after annealing at 873 K. The extruded binary alloy showed a micrometric grain structure, with nanometric subgrains (100 nm), together with the formation of nanometric dispersoids of semi-coherent Al 2 0 3 with the Cu matrix. The ternary alloy showed a microstructure very similar to the binary alloy, except that it also showed the formation of nanometric TiC dispersoids. The nanoparticles acted effectively as anchoring points for the movement of dislocations and grain growth. The microstructure was observed to be stable after annealing treatments for all the alloys. The milled ternary alloy was 32% harder (290 HV) than the hardest binary alloy (milled for 30 hours) (au)

  12. Oxidation characteristics of Ti-14Al-21Nb alloy at high temperature in purified oxygen; Ti-14Al?-21Nb gokin no sansochu ni okeru koon sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Akai, M; Taniguchi, S; Shibata, T [Osaka University, Osaka (Japan). Faculty of Engineering

    1994-10-20

    The Ti-14Al-21Nb alloy called Super {alpha}{sub 2} is an alloy which has been improved of plastic transformation ability by adding Nb into Ti3Al with high specific strength, and is used for member materials in aircraft engines. In order to identify its oxidation characteristics, this paper discusses the oxidation characteristics under purified oxygen and atmospheric pressure in temperatures ranging from 1000 K to 1300 K. The experiment made a button-formed ingot with a diameter of 50 mm and a thickness of about 10 mm by melting and thermal refining, and used a thermobalance. Main conclusion thus obtained may be summarized as follows: the amount of increase due to oxidation after 100 ks oxidation at 1000 K is very small; oxidation between 1100 K and 1200 K follows nearly the parabolic rate laws; the scale consisted mainly of rutile, but a thin alumina concentration layer is formed; Nb is concentrated in the rutile-alumina mixed layer, and local fracture and regeneration are repeated at temperatures higher than 1300 K. 21 refs., 8 figs., 2 tabs.

  13. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  14. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behavior

    NARCIS (Netherlands)

    Ocelik, V; Nijman, S.; van Ingen, R; Oliveira, U; De Hosson, J Th M

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied exptl. and theor. by FEM calcns. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminum oxide layer on the Al melt surface

  15. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  16. Effect of hydrogen on Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Costa, J.E.

    1985-01-01

    The effect of hydrogen on the physical and mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. This study had three main goals. The first was to improve the understanding of the effects of hydrogen in the β phase. The second goal was to determine the effects of hydrogen on the specific alloy Ti-10V-2Fe-3Al. The third goal was to identify possible in-service problems that could occur in Ti-10V-2Fe-3Al and in similar alloys. The effects of hydrogen were examined in three different microstructures: beta-annealed and water-quenched (B/WQ), beta-annealed and furnace cooled (B/FC), and solution treated and aged (STA). The B/WQ microstructure was nominally all-β with some athermal omega phase while the B/FC and STA microstructures were α + β microstructures. Hydrogen concentrations from approx.0 to >30 at.% were used. Hydrogen was introduced into test specimens using either Sieverts charging or cathodic charging techniques. When the B/WQ microstructure was deformed, the β phase was transformed to orthorhombic α'' martensite. Hydrogen effects in the B/FC and STA microstructures were largely the result of hydride formation at α/β interfaces. The effect of hydride formation was observed as decreases in the reduction of area for tensile specimens

  17. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  18. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined usin