WorldWideScience

Sample records for alloy-ta-10v

  1. Superconductivity and specific heat measurements in V--Nb--Ta ternary alloys

    International Nuclear Information System (INIS)

    Wang, R.Y.P.

    1977-01-01

    The correlation between the superconducting transition temperature T/sub c/ with electronic specific heat coefficient γ and Debye temperature theta/sub D/ in some isoelectronic ternary V--Nb--Ta alloys is investigated. It has been known that the variation of theta/sub D/ with concentration in both V--Nb and V--Ta systems is clearly of the same curvature as that of T/sub c/ and γ. In Ta--Nb alloys, however, over most of the concentration range theta/sub D/ seems to have a slight negative curvature while T/sub c/ and γ curve upwards. (But beyond approx. 80 at. % Nb theta/sub D/ rises rapidly to the pure Nb value.) By choosing alloys along a line connecting Ta and V 25 --Nb 75 which is close to the Nb--Ta side of the Gibb's triangle the extent to which the Nb--Ta type of behavior persists in this ternary system can be estimated. A model proposed by Miedema that takes into account the variation of properties caused by possible charge transfer among constituent atoms in an alloy has been found to apply almost quantitatively for nearly all binary alloy systems whose experimental data are available, including those for which Hopfield's method fails. A previous test of the extension of Miedema's empirical model into ternary alloys shows qualitatively correct behavior for intra-row Zr/sub x/Nb/sub 1-2x/Mo/sub x/ alloys. The good agreement between the predicted values of γ and T/sub c/ and the experimental values in the inter-row ternary V--Nb--Ta system studied here gives another and better test of the application of Miedema's model

  2. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-30

    This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.

  3. Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.

  4. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  6. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  7. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  8. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl{sub 3} molten salt containing TaCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuki; Matsushima, Hisayoshi; Ueda, Mikito, E-mail: mikito@eng.hokudai.ac.jp

    2016-12-01

    Highlights: • Electrodeposition of Al-Ta alloys in an AlCl{sub 3}-NaCl-KCl-TaCl{sub 5} melt was carried out. • We were obtained 72 at% Ta-Al alloy at 0.3 V. • Amorphous Ta-Al was formed in high Ta concentration. - Abstract: To form Al-Ta alloys for high temperature oxidation resistance components, molten salt electrolysis was carried out in an AlCl{sub 3}-NaCl-KCl melt containing TaCl{sub 5} at 423 K. The voltammogram showed two cathodic waves at 0.45 V and 0.7 V vs. Al/Al(III), which may correspond to reduction from Ta(V) to Ta(III) and from Ta(III) to tantalum metal, respectively. Electrodeposits of Al and Ta were obtained in the range from −0.05 to 0.3 V and the highest concentration of Ta in the electrodeposit was 72 at% at 0.3 V. With increasing Ta content in the alloy, the morphology of the electrodeposits became powdery and the particle size smaller.

  9. Corrosion Characteristics of Ti-xTa Alloys with Ta contents

    International Nuclear Information System (INIS)

    Kim, H. J.; Choe, H. C.

    2013-01-01

    The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at 1000 .deg. C and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at 36.5 ± 1 .deg. C. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy

  10. Method of treating Ti--Nb--Zr--Ta superconducting alloys

    International Nuclear Information System (INIS)

    Horiuchi, T.; Monju, Y.; Tatara, I.; Nagai, N.; Hisata, M.; Matsumoto, K.

    1975-01-01

    A superconducting alloy is formulated from 10 to 50 at. percent Ti, 20 to 50 at. percent Nb, 10 to 40 at. percent Zr, and 5 to 12 at. percent Ta. A Ti--Nb--Zr--Ta superconducting alloy with a fine, non-homogeneous structure is obtained by forming a β solid solution of Ti--Nb--Zr--Ta alloy by heating to a temperature within the β solid solution range, cooling, and then cold working the heated alloy. The cold worked alloy is heated to a temperature within the (β' + β'') alloy to maintain the peritectoid structure, cold worked, then heated to a temperature within the eutectoid range to form a multiphase alloy structure and then cooled and finally cold worked. (U.S.)

  11. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  12. Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys

    International Nuclear Information System (INIS)

    He Zhirong; Zhou Jingen; Furuya, Y.

    2003-01-01

    Effects of Ta content on martensitic transformation (MT) behavior of Ru 100-x Ta x (x=46-54 at.%) alloys have been investigated by differential scanning calorimetry, dilatometry, X-ray diffraction and optical microscopy. Ta content significantly affects the MT behavior of RuTa alloys. The one-stage reservible MT occurs in Ta-poor RuTa alloys with Ta content less than 49 at.%. The two-stage reservible MT takes place in near-equiatomic RuTa alloys. No reservible MT is observed in Ta-rich alloys with Ta content more then 52 at.% Ta. The MT temperatures and hysteresis of RuTa alloys decrease with increasing Ta content. The aged and thermal cycled processes are nearly no effect on the MT behavior of these alloys. The deforming way of RuTa alloys is twinning. The Ru 50 Ta 50 alloy is of the most excellent MT behavior among these RuTa alloys

  13. Ti-25Ta-Zr alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia; Quadros, Fernanda Freitas; Grandini, Carlos Roberto, E-mail: pedro@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias

    2016-07-01

    Full text: The most widely used titanium alloy for biomedical applications is Ti-6Al-4V, however, previous studies showed that vanadium cause allergic reactions in human tissue and aluminum has been associated with neurological disorders. Then, to solve this problem, new titanium alloys without the presence of these elements are being developed, with the addition of different elements, usually the β-stabilizers, which can change its microstructure and mechanical properties, and may make the titanium and its alloys, most promising for use as biomaterial. In this paper the development and characterization of Ti-25Ta-(10-40)Zr alloys, for biomedical applications are discussed. X-ray diffraction results show the coexistence of α', α” and β phases, which are corroborated by SEM results. The results of microhardness and elastic modulus present an anomaly for the alloy with 10 wt% Zr, due, probably the presence of ω phase. (author)

  14. Magnetic hyperfine fields on 181Ta at the Nb and V sites in Heusler alloys CO2YAL (Y=NB,V)

    International Nuclear Information System (INIS)

    Pendl Junior, W.

    1990-01-01

    Magnetic hyperfine fields (MHF) acting on sup(181)Ta at the Nb and V sites have been determined in the Heusler alloys Co sub(2) NbA1 and Co sub(2) VA1 by the time differential perturbed angular correlation (TDPAC) technique utilizing the well known 133-482 Kev gamma cascade in sup(181)Ta. The measurement were carried out using an automatic spectrometer consisting of three NaI(T1) detectors and a fast-slow coincidence system. The measurements were performed at 77 K with and without an externally applied magnetic field ( ∼ 4.5 KGauss) to determine the sign as well as the magnitude of the hyperfine fields in both alloys. For the alloy Co sub(2) NbA1 a unique field of -138(4) KOe was observed whereas in the case of Co sub(2)VA1 two distinct magnetic sites were observed. The present result show that approximately 24% of the sup(181)Ta atoms in this alloy probe a field of -116(4) KOe while the other ∼ 76% of the atoms feel -83(3) KOe. Present data along with the existing results on similar alloys Co sub(2)T1,Hf,Zr (Al,Ga,Sn) are discussed and compared with the magnetic hyperfine field systematics in Heusler alloys. (author)

  15. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The failure behavior of duplex 316 L steel-TA6V titanium alloy spherical pressure vessels

    International Nuclear Information System (INIS)

    Miannay, D.

    1980-05-01

    The purpose of this paper is to compare the experimental residual stresses of spherical vessels made of TA6V alloy which exhibits plasticity before failure in toughness testing and cracked with several configurations, with stresses estimated according to the afore mentioned theories. An internal austenitic 316 L steel is used to prevent 'leak before break' [fr

  17. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy

    Science.gov (United States)

    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.

    2006-03-01

    Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).

  18. Composition analysis of Ta-W alloy using NAA and EDXRF techniques

    International Nuclear Information System (INIS)

    Swain, K.K.; Remya Devi, P.S.; Chavan, Trupti A.; Verma, R.; Reddy, A.V.R.

    2015-01-01

    Tantalum-Tungsten (Ta-W) alloy is a high strength alloy and is used in corrosion resistant chemical process equipment's including heat exchangers, condensers, heating and cooling coils and reaction vessels. Ta-W alloy is also used as ion extraction plate during laser Isotope separation of uranium and hence the composition is critical for its optimal application. The composition of the alloy was determined by neutron activation analysis (NAA) and energy dispersive X-ray fluorescence spectrometry (EDXRF) techniques. Ta-W alloy sample was received from Nuclear Fuel Complex (NFC), Hyderabad. For NAA, samples (50 - 500 mg) were sealed in polyethylene. High purity Ta foil (30 - 40 mg) and W foil (10 - 20 mg) were packed and used as comparators. Samples and standards were irradiated in the graphite reflector position of Advanced Heavy Water Reactor Critical Facility (AHWR CF) reactor, BARC, Mumbai for 4 hours. After suitable decay period, radioactivity assay was carried out using a 45% relative efficiency high purity germanium (HPGe) detector coupled to MCA with 8 k conversion gain

  19. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process

    International Nuclear Information System (INIS)

    Robert, Y.

    2007-09-01

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  20. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    Science.gov (United States)

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-04-15

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of

  1. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  2. Microstructure and superplasticity of TA15 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q.J., E-mail: cruzesun@nchu.edu.cn; Wang, G.C.

    2014-06-01

    Superplasticity of TA15 alloy was investigated by constant strain rate tensile method in this work. In order to enhance superplasticity, thermo-mechanical techniques were applied for refining the grains of the alloy first. The superplastic tensile tests were carried out on a SANS CMT4104 electronic tensile testing machine at temperatures ranging from 780 to 950 °C and strain rates from 3.3×10{sup −4} to 1.1×10{sup −2} s{sup −1}. The tensile elongation-to-failure values between 188% and 1074% were obtained. Microstructure evolution after superplastic deformation was also analyzed by optical microscope (OM) and transmission electron microscope (TEM). The micrographs show that the grains were coarsened after deformation, and α→β phase transformation took place at 950 °C, which resulted in the worst superplasticity. Extensive strain hardening stages were observed in the true stress–strain curves due to high dense dislocations in the thermo-mechanically processed alloy and dynamic grain growth during superplastic deformation. The strain rate sensitivity m and the activation energy values at various deformation conditions were calculated, respectively. Based on an analysis of the above studies, it may be inferred that grain boundary sliding (GBS) in TA15 alloy is accommodated by grain boundary diffusion at high temperatures and low strain rates, and the accommodation process involves dislocation glide creep at low temperatures and high strain rates.

  3. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process; Simulation numerique du soudage du TA6V par laser YAG impulsionnel: caracterisation experimentale et modelisation des aspects thermomecanique associees a ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Y

    2007-09-15

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  4. Microstructural evolution and creep of Fe-Al-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prokopcakova, Petra; Svec, Martin [Technical University of Liberec (Czech Republic). Dept. of Material Science; Palm, Martin [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Structure and Nano-/Micromechanics of Materials

    2016-05-15

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2{sub 1} Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  5. Microstructural evolution and creep of Fe-Al-Ta alloys

    International Nuclear Information System (INIS)

    Prokopcakova, Petra; Svec, Martin; Palm, Martin

    2016-01-01

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2 1 Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  6. Effect of Ta substitution method on the mechanical properties of Ni3(Si,Ti) intermetallic alloy

    International Nuclear Information System (INIS)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki

    2013-01-01

    In this study, Ta was added to an L1 2 -type Ni 3 (Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1 2 phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1 2 phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1 2 single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si

  7. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    Science.gov (United States)

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  8. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  9. Effect of Ta substitution method on the mechanical properties of Ni{sub 3}(Si,Ti) intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki, E-mail: takasugi@mtr.osakafu-u.ac.jp

    2013-12-20

    In this study, Ta was added to an L1{sub 2}-type Ni{sub 3}(Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1{sub 2} phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1{sub 2} phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1{sub 2} single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si.

  10. Density Measurement of Liquid Ni-Ta Alloys by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; Kusuhiro Mukai

    2005-01-01

    The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.

  11. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    Science.gov (United States)

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti 20 Zr 20 Nb 20 Ta 20 Mo 20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σ y =1390MPa and apparent plastic strain of ε p ≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys

    International Nuclear Information System (INIS)

    Elias, L.M.; Schneider, S.G.; Schneider, S.; Silva, H.M.; Malvisi, F.

    2006-01-01

    In recent years there has been a significant development of novel implant alloys based on β-Ti such as Ti-Nb-Zr and Ti-Nb-Zr-Ta alloys systems. The purpose of this work is to provide characterization of Ti-35.3Nb-5.1Ta-7.1Zr and Ti-41.1Nb-7.1Zr alloys, in which Nb will substitute the atomic amount of Ta, with emphasis in the property-microstructure-composition relationships. These alloys are produced from commercially pure materials (Ti, Nb, Zr and Ta) by an arc melting method. All ingots were submitted to sequences of heat treatment (1000 deg. C/2 h - WQ), cold working by swaging procedures and other heat treatment (1000 deg. C/2 h - WQ). Specimens, in as cast and heat-treated condition, were examined by light and scanning electron microscopy (SEM). These results suggested the presence of β- and ω-phases. Mechanical properties were based on tensile and hardness tests. These alloys exhibit a lower modulus than that of conventional Ti alloys and the other mechanical properties are suitable for biomedical applications

  13. Creep rupture properties of laves phase strengthened Fe--Ta--Cr--W and Fe--Ta--Cr--W--Mo alloys

    International Nuclear Information System (INIS)

    Singh, S.

    1975-12-01

    A small addition of tungsten (0.5 at. percent) was shown to have an effect similar to that of molybdenum on the phase transformation characteristics of alloy Ta7Cr (with a nominal composition of 1 at. percent Ta, 7 at. percent Cr, balance Fe). The existence of time-temperature dependent transformation behavior in alloy Ta7Cr0.5W was confirmed. The effect of spheroidization time and temperature on creep strength was determined. In addition, effect of mechanical processing prior to aging, on creep strength was also determined. It was also shown that by suitable modifications of composition, the grain boundary film can be broken during the aging treatment without the use of spheroidization treatment. Microhardness, tensile and creep properties have been determined. Optical metallography and scanning electron microscopy have been used to follow the microstructural changes and mode of fracture. The creep rupture strength of alloy Ta7CrW alloy was found to be superior to many of the best commercially available ferritic alloys at 1200 0 F. (21 fig., 8 tables)

  14. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    Science.gov (United States)

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI. (c) 2010 Wiley Periodicals, Inc.

  15. Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Linlin Liu

    2016-09-01

    Full Text Available A β-Ta nanocrystalline coating was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique to improve the corrosion resistance and bioactivity of this biomedical alloy. The new coating has a thickness of ~40 μm and exhibits a compact and homogeneous structure composed of equiaxed β-Ta grains with an average grain size of ~22 nm, which is well adhered on the substrate. Nanoindentation and scratch tests indicated that the β-Ta coating exhibited high hardness combined with good resistance to contact damage. The electrochemical behavior of the new coating was systematically investigated in Hank’s physiological solution at 37 °C. The results showed that the β-Ta coating exhibited a superior corrosion resistance as compared to uncoated Ti-6Al-4V and commercially pure tantalum, which was attributed to a stable passive film formed on the β-Ta coating. The in vitro bioactivity was studied by evaluating the apatite-forming capability of the coating after seven days of immersion in Hank’s physiological solution. The β-Ta coating showed a higher apatite-forming ability than both uncoated Ti-6Al-4V and commercially pure Ta, suggesting that the β-Ta coating has the potential to enhance functionality and increase longevity of orthopaedic implants.

  16. Technical Area V (TA-V) transformation project close-out report.

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Sandia National Laboratories (SNL) Technical Area V (TA-V) has provided unique nuclear experimental environments for decades. The technologies tested in TA-V facilities have furthered the United States Nuclear Weapons program and has contributed to the national energy and homeland security mission. The importance of TA-V working efficiently to produce an attractive and effective platform for experiments should not be underestimated. Throughout its brief history, TA-V has evolved to address multiple and diverse sets of requirements. These requirements evolved over many years; however, the requirements had not been managed nor communicated comprehensively or effectively. A series of programmatic findings over several years of external audits was evidence of this downfall. Today, these same requirements flow down through a new TA-V management system that produces consistently applied and reproducible approaches to work practices. In 2008, the TA-V department managers assessed the state of TA-V services and work activities to understand how to improve customer interfaces, stakeholders perceptions, and workforce efficiencies. The TA-V management team initiated the TA-V Transformation Project after they deemed the pre-June 2008 operational model to be ineffective in managing work and in providing integrated, continuous improvement to TA-V processes. This report summarizes the TA-V Transformation Project goals, activities, and accomplishments.

  17. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  18. Robust tribo-mechanical and hot corrosion resistance of ultra-refractory Ta-Hf-C ternary alloy films.

    Science.gov (United States)

    Yate, Luis; Coy, L Emerson; Aperador, Willian

    2017-06-08

    In this work we report the hot corrosion properties of binary and ternary films of the Ta-Hf-C system in V 2 O 5 -Na 2 SO 4 (50%wt.-50%wt.) molten salts at 700 °C deposited on AISI D3 steel substrates. Additionally, the mechanical and nanowear properties of the films were studied. The results show that the ternary alloys consist of solid solutions of the TaC and HfC binary carbides. The ternary alloy films have higher hardness and elastic recoveries, reaching 26.2 GPa and 87%, respectively, and lower nanowear when compared to the binary films. The corrosion rates of the ternary alloys have a superior behavior compared to the binary films, with corrosion rates as low as 0.058 μm/year. The combination and tunability of high hardness, elastic recovery, low nanowear and an excellent resistance to high temperature corrosion demonstrates the potential of the ternary Ta-Hf-C alloy films for applications in extreme conditions.

  19. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  20. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  1. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  2. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  3. Analysis of phase formation in Ni-rich alloys of the Ni-Ta-W system by calorimetry, DTA, SEM, and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T.; Hecht, U.; Warnken, N.; Fries, S.G. [Access e.V., Aachen (Germany); Hu Weiping [Inst. fuer Metallkunde und Metallphysik der RWTH Aachen (Germany)

    2006-04-15

    The partial enthalpies of dissolution of pure Ni, W and Ta in liquid ternary Ni-Ta-W alloys have been determined at (1773 {+-} 5) K using a high temperature isoperibolic calorimeter. Measurements were performed in Ni-rich alloys (from 80 to 100 at.% Ni) along sections with constant Ta:W atomic ratios 1:0, 2:1, 1:2, and 0:1. The partial enthalpies and thereby the integral enthalpy of mixing of these ternary alloys are calculated from the partial enthalpies of dissolution using SGTE Gibbs energies for pure elements as reference. The obtained thermochemical data confirm that in the investigated Ni-rich alloys the binary interactions between Ta and W as well as the ternary Ni-Ta-W interactions are negligibly small. Due to this the variation of the integral enthalpy of mixing of the ternary alloys is well described as linear combination of the constituent Ni-Ta and Ni-W binaries. Such behaviour of the ternary liquid alloys is related to a very low probability of new ternary stable phases to occur in solid state. This prediction is confirmed by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy of the as-solidified and annealed samples obtained as last alloy compositions in the series of calorimetric dissolution. (orig.)

  4. Atomistic simulation of the point defects in B2-type MoTa alloy

    International Nuclear Information System (INIS)

    Zhang Jianmin; Wang Fang; Xu Kewei; Ji, Vincent

    2009-01-01

    The formation and migration mechanisms of three different point defects (mono-vacancy, anti-site defect and interstitial atom) in B 2 -type MoTa alloy have been investigated by combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM). From minimization of the formation energy, we find that the anti-site defects Mo Ta and Ta Mo are easier to form than Mo and Ta mono-vacancies, while Mo and Ta interstitial atoms are difficult to form in the alloy. In six migration mechanisms of Mo and Ta mono-vacancies, one nearest-neighbor jump (1NNJ) is the most favorable due to its lowest activation and migration energies, but it will cause a disorder in the alloy. One next-nearest-neighbor jump (1NNNJ) and one third-nearest-neighbor jump (1TNNJ) can maintain the ordered property of the alloy but require higher activation and migration energies, so the 1NNNJ and 1TNNJ should be replaced by straight [1 0 0] six nearest-neighbor cyclic jumps (S[1 0 0]6NNCJ) or bent [1 0 0] six nearest-neighbor cyclic jumps (B[1 0 0]6NNCJ) and [1 1 0] six nearest-neighbor cyclic jumps ([1 1 0]6NNCJ), respectively. Although the migrations of Mo and Ta interstitial atoms need much lower energy than Mo and Ta mono-vacancies, they are not main migration mechanisms due to difficult to form in the alloy.

  5. Atomistic simulation of the point defects in TaW ordered alloy

    Indian Academy of Sciences (India)

    atom method (MAEAM), the formation, migration and activation energies of the point defects for six-kind migration mechanisms in B2-type TaW alloy have been investigated. The results showed that the anti-site defects TaW and WTa were easier to form than Ta and W vacancies owing to their lower formation energies.

  6. Crack propagation behavior of Ti-5Ta alloy in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    1999-05-01

    The crack propagation behavior of Ti-5Ta alloy both in boiling nitric acid solution and in air at room temperature has been investigated. The crack growth rate of Ti-5Ta alloy was measured as a function of the stress intensity factor range. After the tests, the fracture surface morphology was observed by a scanning electron microscope and the crystallographic orientation was examined by X-ray diffraction analysis. Difference in the crack growth behavior was not observed in both environments. The crack growth rate in boiling nitric acid solution was similar to that in air at room temperature. Moreover, the crystallographic orientation of Ti-5Ta alloy had little effect on the fatigue behavior, because this alloy does not have the susceptibility to SCC in nitric acid solution. (author)

  7. Supporting data for senary refractory high-entropy alloy CrxMoNbTaVW

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2015-12-01

    Full Text Available This data article is related to the research paper entitled “senary refractory high-entropy alloy CrxMoNbTaVW [1]”. In this data article, the pseudo-binary Cr-MoNbTaVW phase diagram is presented to show the impact of Cr content to the senary Cr-MoNbTaVW alloy system; the sub-lattice site fractions are presented to show the disordered property of the Cr-MoNbTaVW BCC structures; the equilibrium and Scheil solidification results with the actual sample elemental compositions are presented to show the thermodynamic information of the melted/solidified CrxMoNbTaVW samples; and the raw EDS scan data of the arc-melted CrxMoNbTaVW samples are also provided.

  8. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  9. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Nam, Tae-hyun [School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2010-10-15

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of {alpha} phase increases M{sub s} and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M{sub s} and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of {alpha} phase can be attributed to the fact that N is absorbed in {alpha} phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M{sub s} of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of {alpha} phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  10. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Hosoda, Hideki; Nam, Tae-hyun; Miyazaki, Shuichi

    2010-01-01

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of α phase increases M s and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M s and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of α phase can be attributed to the fact that N is absorbed in α phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M s of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of α phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  11. Study on mechanical properties and metallograph of high density function alloy Ta-12W

    International Nuclear Information System (INIS)

    Liu Taiping; Huang Zhenchi

    1998-12-01

    As a new material, the study on the metallograph and properties of Ta-12W alloy has been set about to testify its employ characteristics. The alloy's metallograph specimen preparation methods to illustrate microstructure are found out, 12 dose of chemical-corrosives are given. The author studies the metallograph, weld structure and properties, and chemical-corrosive resistance, provides scientific base for future research on Ta-12 W alloy

  12. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  13. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  14. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  15. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    Science.gov (United States)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  16. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  17. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2009-01-01

    Ti-35Nb-2Ta-3Zr alloy was fabricated by vacuum consumable arc melting furnace and hot pressing. Microstructure and phase transformation of solution-treated (ST) and cold-rolled (CR) plates of Ti-Nb-Ta-Zr alloy were observed. Different microstructure of strain-induced martensite transformation during cold deformation were investigated. With the increase of reduction of cold rolling, microstructure of α''-phase changed from acicular martensite to butterfly shaped martensite and showed variant crossed and cross-hatched when the reduction of cold rolling was over 60%. Mechanical properties and SEM images of the fracture surface indicated that the alloy fabricated by cold deformation showed favorable strength and plasticity. Owing to the excellent cold workability and biomedical safety of elements of Nb, Ta and Zr, Ti-Nb-Ta-Zr alloy contributed much to medical applications

  18. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    Science.gov (United States)

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A study on the microstructural property and thermal property of Ti-alloys without Al as biomaterials

    International Nuclear Information System (INIS)

    Ban, Jae Sam; Lee, Kyung Won; Cho, Kyu Zong; Kim, Sun Jin

    2008-01-01

    Ti-10Ta-10Nb alloys were designed for surgical implants, dental and orthopedic materials without V and Al. Specimens of the Ti-10Ta-10Nb alloy were remelted three times through the consumable VAR process and were made into small rods. Homogenization heat treatment was carried out for 24 hours under a vacuum of 10 -3 torr and at constant temperature of 1050 .deg. C and then the specimens were cooled in water. After that, we observed the microstructure of the alloy by using an SEM. Rockwell (B) hardness, thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy were measured in order to examine the material properties. It was found that the mechanical property of the specimen was altered by the heat treatment, and thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy would be useful data for engineering processing design

  20. Microstructure, surface characterization and long-term stability of new quaternary Ti-Zr-Ta-Ag alloy for implant use.

    Science.gov (United States)

    Vasilescu, C; Osiceanu, P; Moreno, J M Calderon; Drob, S I; Preda, S; Popa, M; Dan, I; Marcu, M; Prodana, M; Popovici, I A; Ionita, D; Vasilescu, E

    2017-02-01

    The novel Ti-20Zr-5Ta-2Ag alloy was characterised concerning its microstructure, morphology, mechanical properties, its passive film composition and thickness, its long-term electrochemical stability, corrosion resistance, ion release rate in Ringer solution of acid, neutral and alkaline pH values and antibacterial activity. The new alloy has a crystalline α microstructure (by XRD). Long-term XPS and SEM analyses show the thickening of the passive film and the deposition of hydroxyapatite in neutral and alkaline Ringer solution. The values of the electrochemical parameters confirm the over time stability of the new alloy passive film. All corrosion parameters have very favourable values in time which attest a high resistance to corrosion. Impedance spectra evinced a bi-layered passive film formed by the barrier, insulating layer and the porous layer. The monitoring of the open circuit potentials indicated the stability of the protective layers and their thickening in time. The new alloy releases (by ICP-MS measurements) very low quantities of Ti, Zr, Ag ions and no Ta ions. The new alloy exhibits a low antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mechanical properties and biocompatibility in alloy Ti-Ta system containing oxygen

    International Nuclear Information System (INIS)

    Ruiz, S.L.M.; Grandini, C.R.; Claro, A.P.R.A.

    2010-01-01

    Due to the excellent properties such as corrosion resistance, good mechanical strength/density, good performance at high temperatures, Ti is very useful in the chemical industry and aerospace. Currently, their use has expanded to the field of biomaterials, due to its excellent biocompatibility and reduced elasticity modulus, favouring the production of orthopaedic and dental prostheses. Promising alloys are the Ti-Ta system and researches have been directed to describe and understand the behavior of this system. In this paper, samples of Ti-Ta alloys containing 8 and 16% (wt%) containing interstitial oxygen were prepared and characterized by density, xray diffraction, hardness, elasticity modulus measurements and in vitro cytotoxicity tests. (author)

  2. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  3. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Liu, Ruxia; Wei, Qinqin; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng [Wuhan Univ. of Technology (China). The State Key Lab. of Advanced Technology for Materials Synthesis and Processing

    2017-11-01

    The combination of W and Ta is expected to be highly beneficial for many applications from aerospace, weapons, military and nuclear industry. In this paper, W and Ta alloys were successfully diffusion bonded with Ni interlayer. The process of the formation of W/Ni/Ta diffusion bonded joints was investigated by means of scanning electron microscopy, X-ray diffraction system, electron probe micro-analyzer, energy dispersive spectrometry and shear strength measurement. The results show that the shear strength increases when the bonding temperature increases and exhibits a maximum value of 244 MPa at 930 C. The bonding of W/Ni can be attributed to the bonding of Ni to tungsten grains and the bonding of Ni to a Ni-Fe-binder mainly by elemental diffusion. The fracture takes place in the Ni/Ta interface and Ni{sub 3}Ta and Ni{sub 2}Ta intermetallic compounds are formed on the fracture surfaces.

  4. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    Science.gov (United States)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  5. Density functional theory investigation of elastic properties and martensitic transformation of Ti-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr- Universitaet Bochum (Germany)

    2016-07-01

    Ti-Ta alloys are considered as promising materials for high temperature shape memory alloys as well as biomedical applications. The properties of these alloys have been shown to be strongly composition dependent. The temperature for the martensitic transformation between the high temperature cubic austenite and the low temperature orthorhombic martensite decreases linearly with increasing Ta content. Likewise, the elastic properties show clear trends with changing composition. We use density functional theory to investigate the involved phases in Ti-Ta where the disordered phases are treated by special quasi-random structures. To compare the stability of the involved phases as a function of temperature we calculate free energies using the quasi-harmonic Debye model. The obtained trends in the stability are consistent with experimentally measured transformation temperatures. Furthermore, we determine elastic properties which are in good agreement with experimentally observed trends.

  6. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti−6Al−4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, B., E-mail: r.bijan@yahoo.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, W. Jeffrey [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abas, W.A.B.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    In this research, an attempt is made to study the corrosion and wear behavior of TaO{sub 2} thin film coating deposited onto Ti−6Al−4V alloy with the highest adhesion (was achieved in the author's previous experiments using Taguchi statistical method) which leads to increase corrosion resistance, decrease debris generation and improve durability. Accordingly, pure tantalum (Ta) was deposited onto Ti−6Al−4V substrate surface as intermetallic layer then to form a TaO{sub 2} thin film, Ta was deposited onto the sample surface in the presence of oxygen by using physical vapor deposition magnetron sputtering (PVDMS). Corrosion testing was carried out in fetal bovine serum (FBS). The corrosion test in FBS medium confirmed that the corrosion resistance of the TaO{sub 2} – coated Ti−6Al−4V alloys was significantly higher than the uncoated Ti−6Al−4V substrate due to the decrease in corrosion current density (I{sub corr}) for the coated substrate with high thin-film adhesion. Wear testing was carried out on uncoated and coated Ti−6Al−4V substrates in the presence of FBS medium under 15 N load (natural walking load) at 1.09 m/s (simulated medium walking speed). The tests revealed that the specific wear ratio of TaO{sub 2} coating was significantly lower than the uncoated substrate wear ratio. The average friction coefficients obtained were 0.183 and 0.152 for uncoated substrate and TaO{sub 2} thin film coating, respectively. So, due to the noticeable corrosion and wear resistance characteristics of the TaO{sub 2} coating, it is suggested for hip joint implant. - Highlights: • The TaO{sub 2} coating has been created onto the Ti−6Al−4V surface by using PVDMS method. • The TaO{sub 2} coating has been formed on the Ti−6Al−4V sample at the highest adhesion. • The corrosion resistance of the coated Ti−6Al−4V substrate has been improved. • The wear resistance of the coated Ti−6Al−4V substrate has been increased. • The durability

  7. Severe plastic deformation of α+β Ti-5Ta-1.8Nb alloy by cryo-rolling

    International Nuclear Information System (INIS)

    Dasgupta, Arup; Parida, Pradyumna Kumar; Saroja, S.; Vijayalakshmi, M.

    2010-01-01

    The α-β (β ∼ 8%) Ti5Ta1.8Nb alloy is under development at IGCAR for reprocessing applications owing to its superior corrosion resistance and weldability. A possible method to strengthen the alloy is to engineer the grain size to finer dimensions through severe plastic deformation (SPD). A detailed analysis of the study of evolution of microstructure and micro-texture in the SPD Ti-Ta-Nb alloy is presented

  8. A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Andong National University, Andong (Korea, Republic of)

    2009-08-15

    Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by are melting and heat treatment, was studied in 0.9 wt% NaCl at 37{+-}1 .deg. C, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

  9. Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipated based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.

  10. Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys

    Science.gov (United States)

    Yang, Chaoming; Qi, Liang

    2018-01-01

    An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is the mechanical failure mode of their perfect crystals under tension along ; directions. When the tensile stress reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100 } plane so that it is intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability under tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory and Rice's criterion were also applied to analyze the mechanical instability at the crack tip under tension based on the competition between cleavage propagation and dislocation emission. The results show that the intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon mode is related to the generation of 1/2 {2 ¯11 } dislocation in bcc crystals. The ideal tensile calculations, phonon analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.

  11. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  12. Radiation-enhanced precipitation in a V-10 wt % Ti alloy

    International Nuclear Information System (INIS)

    Agarwal, S.C.; Taylor, A.

    1976-01-01

    A V-10 wt % Ti alloy was irradiated with 2.7 MeV 51 V + at 650 0 C to doses of 2 to 60 dpa. No void swelling was observed at any dose. The irradiation resulted in an enhancement of a precipitation process similar to that observed in unirradiated materials. The precipitates in irradiated specimens were found to have the NaCl-type cubic crystal structure with a lattice parameter of TiO. The orientation relationship between the matrix and the precipitates was the same as that observed under thermal equilibrium conditions in unirradiated materials

  13. Mechanical properties and microstructure of Ti-35.5Nb-5.7Ta beta alloy.

    Science.gov (United States)

    Bartakova, S; Prachar, P; Dvorak, I; Hruby, V; Vanek, J; Pospichal, M; Svoboda, E; Martikan, A; Konecna, H; Sedlak, I

    2015-01-01

    Titanium and titanium alloys represent generally accepted metallic biomaterials for clinical dentistry and dental implantology. In this paper, we present a Ti-35.5Nb-5.7Ta alloy with a special respect to its microstructure and mechanical characteristics, such as Young modulus of elasticity. Three thermal treatments differing in temperature and time of annealing were used during the Ti-35.5Nb-5.7Ta processing in order to evaluate the effects of ageing, melting annealing, and annealing on mechanical characteristics and microstructure. Using microscopy, the alloy was analyzed and the differences in shares of beta phase grains, alpha particles and precipitates evaluated. The three thermal treatments were evaluated also from technological point of view. The following thermal treatment was found optimal for the Ti-35.5Nb-5.7Ta alloy: melting annealing at 800 °C for 0.5 hour followed by a cold swaging with a 52-79 % deformation, and final hardening at 500 °C for 2 hours in water(Tab. 2, Fig. 3, Ref. 24).

  14. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  15. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  16. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin

    2015-01-01

    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  17. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    Science.gov (United States)

    Kim, Won-Gi; Choe, Han-Cheol

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  18. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment. Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation ∼500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after ∼2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after ∼250 h exposure at 500 C in environments with a pO 2 range of 1 x 10 -6 to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO 2 in the preexposure environment and was of 70--95 microm after 250--275 h exposure at 500 C

  19. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.

    Science.gov (United States)

    Liu, Jue; Ruan, Jianming; Chang, Lin; Yang, Hailin; Ruan, Wei

    2017-09-01

    Porous Nb-Ti-Ta (at.%) alloys with the pore size of 100-600μm and the porosity of 50%-80% were fabricated by the combination of the sponge impregnation technique and sintering method. The results revealed that the pores were well connected with three-dimensional (3D) network structure, which showed morphological similarity to the anisotropic porous structure of human bones. The results also showed that the alloys could provide the compressive Young's modulus of 0.11±0.01GPa to 2.08±0.09GPa and the strength of 17.45±2.76MPa to 121.67±1.76MPa at different level of porosity, indicating that the mechanical properties of the alloys are similar to those of human bones. Pore structure on the compressive properties was also discussed on the basis of the deformation mode. The relationship between compressive properties and porosity was well consistent with the Gibson-Ashby model. The mechanical properties could be tailored to match different requirements of the human bones. Moreover, the alloys had good biocompatibility due to the porous structure with higher surface, which were suitable for apatite formation and cell adhesion. In conclusion, the porous Nb-Ti-Ta alloy is potentially useful in the hard tissue implants for the appropriate mechanical properties as well as the good biocompatible properties. Copyright © 2017. Published by Elsevier B.V.

  20. Total conversion coefficient of the 185 keV (10--7+) transition in sup(182m)Ta

    International Nuclear Information System (INIS)

    Suryanarayana, Ch.; Venkateswara Rao, N.; Raghavaiah, C.V.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.

    1988-01-01

    The total conversion coefficient of the 185 keV (E3) isomeric transition in 182 Ta was measured for the first time using gamma intensity balance method. The experimental αsub(T) was obtained as 3.4 ± 0.2 consistent with the theoretical value (3.272) due to Rosel et al. The E3 transition probability was found to be hindered by a factor of 5.07x10 4 when compared to the single particle estimate. (author). 13 refs

  1. Study of transformation behavior in a Ti-4.4 Ta-1.9 Nb alloy

    International Nuclear Information System (INIS)

    Mythili, R.; Paul, V. Thomas; Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    2005-01-01

    An alloy of composition Ti-4.4 wt.% Ta-1.9 wt.% Nb is being developed as a structural material for corrosion applications, as titanium and its alloys possess excellent corrosion resistance in many oxidizing media. The primary physical metallurgy database for the Ti-4.4 wt.% Ta-1.9 wt.% Nb alloy is being presented for the first time. Determination of the β transus, M s temperature and classification of the alloy have been carried out, employing a variety of microscopy techniques, X-ray diffraction (XRD), micro-hardness and differential scanning calorimetry (DSC). The β transition temperature or β transus determined using different experimental techniques was found to agree very well with evaluations based on empirical calculations. Based on chemistry and observed room temperature microstructure, the alloy has been classified as an α + β titanium alloy. The high temperature β transforms to either α' or α + β by a martensitic or Widmanstatten transformation. The mechanisms of transformation of β under different conditions and characteristics of different types of α have been studied and discussed in this paper

  2. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  3. Resistance to He{sup 2+} irradiation damage in metallic glass Ta{sub 38}Ni{sub 62}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zhang, Xiaonan; Wang, Yingmin; Qiang, Jianbing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Sun, Jianrong [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2016-10-15

    Highlights: • Metallic glass Ta{sub 38}Ni{sub 62} irradiated by different fluence of He{sup 2+} remained amorphous. • The helium bubble layer appeared at the end of ion range 1.01 μm away from surface. • Helium bubbles were larger in the layer center and reduced to top and bottom sides. • No significant damage appeared in the surface of metallic glass Ta{sub 38}Ni{sub 62}. • Ta{sub 38}Ni{sub 62} better resisted to He{sup 2+} irradiation than W and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17}. - Abstract: Metallic glass Ta{sub 38}Ni{sub 62} strips, metallic W, and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy were irradiated using a 500 keV He{sup 2+} ion beam at different fluence to compare the metallic glass resistance to irradiation. Metallic glass Ta{sub 38}Ni{sub 62} remained amorphous at different He{sup 2+} irradiation fluence. Transmission electron microscopy analysis revealed the presence of helium bubbles at the end of the range of helium ions in the metallic glass. No significant damage resulted in the metallic glass surface, and the root mean square roughness increased nonlinearly with the increase in fluence. At 1 × 10{sup 18} ions/cm{sup 2}, metallic W appeared in larger sunken areas on the surface and V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy experienced multi-layer flaking. The metallic glass Ta{sub 38}Ni{sub 62} resistance to He{sup 2+} ion beam irradiation was better than that of metallic W, and that of the V{sub 87.5}Cr{sub 4.17}Ti{sub 4.17}Nb{sub 4.17} alloy was the poorest.

  4. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  5. Modelling the mechanical behaviour of heterogeneous Ta/TA6V welded joints: behaviour and failure criteria; Modelisation du comportement mecanique des liaisons soudees heterogenes Ta/TA6V: comportement et critere de rupture

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Th

    2008-12-15

    As laser welding of two different materials (heterogeneous welding) leads to a joint having a characteristic size close to the millimetre, i.e. much smaller than that of a structure, and as such a junction displays completely different mechanical properties because of the metallurgical transformations induced by intense thermal loading, the aim of this research thesis is to develop a behaviour model, flexible and robust enough, to represent all together the mechanical behaviours of the Ta, the TA6V and the melted zone. This model must be able to take plasticity and visco-plasticity into account, and also to provide a failure criterion through damage mechanics and its coupling with the behaviour. The author first reports the experimental characterization of the base materials (Ta and TA6V) by using tensile tests under different strain rates and different directions, relaxation tests and fatigue shear tests. He also characterizes the melted zone by describing the influence of a thermal treatment (induced by welding) on the formation of the melted zone, and by using different tests: four point bending on notched specimens, nano-indentation test, and longitudinal tensile test. In a second part, the author develops the model within the framework of continuum thermodynamics, and explores the numerical issues. The last part deals with the validation of the model for the concerned materials (Ta and TA6V) and melted zone.

  6. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlO{sub x}/TaO{sub x}/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Maikap, S., E-mail: sidhu@mail.cgu.edu.tw [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Sreekanth, G.; Dutta, M.; Jana, D. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Y.Y.; Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Cu:AlO{sub x} alloy is used for the first time to have defective TaO{sub x} film. • A relation in between formation voltage and RESET current has been developed. • A switching mechanism based on a thinner with dense Cu filament is demonstrated. • Good uniformity with yield of >90% and long cycles using 1 ms pulse are obtained. - Abstract: Improved resistive switching phenomena such as device-to-device uniformity, lower formation voltage (2.8 V) and RESET current, >500 program/erase cycles, longer read endurance of >10{sup 6} cycles with a program/erase pulse width of 1 μs, and data retention of >225 h under a low current compliance of 300 μA have been discussed by using Cu-Al alloy in Cu:AlO{sub x}/TaO{sub x}/TiN conductive bridging resistive random access memory (CBRAM) device for the first time. The switching mechanism is based on a thinner with dense Cu filament formation/dissolution through the defects in the Cu:AlO{sub x}/TaO{sub x}/TiN structure owing to enhance memory characteristics. These characteristics have been confirmed by measuring randomly picked 100 devices having via-hole size of 0.4 × 0.4 μm{sup 2}. The Cu-Al alloy becomes Cu:AlO{sub x} buffer layer and Ta{sub 2}O{sub 5} becomes TaO{sub x} switching layer owing to Gibbs free energy dependency. All layers and elements are observed by high-resolution transmission electron microscope (HRTEM) image and energy dispersive X-ray spectroscopy (EDX). By developing a numerical equation in between RESET current and formation voltage, it is found that a higher rate of Cu migration is observed owing to both the defective switching layer and larger size, which results a lower formation voltage and RESET current of the Cu:AlO{sub x}/TaO{sub x}/TiN structure, as compared to Cu/Ta{sub 2}O{sub 5}/TiN under external positive bias on the Cu electrode. This simple Cu:AlO{sub x}/TaO{sub x}/TiN CBRAM device is useful for future nanoscale non-volatile memory application.

  7. Mechanical properties and biocompatibility in alloy Ti-Ta system containing oxygen; Propriedades mecanicas e biocompatibilidades em ligas do sistema Ti-Ta contendo oxigenio

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, S.L.M.; Grandini, C.R., E-mail: samlea@fc.unesp.b [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Lab. de Anelasticidade e Biomateriais; Claro, A.P.R.A. [Universidade Estadual Paulista Julio de Mesquisa Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    Due to the excellent properties such as corrosion resistance, good mechanical strength/density, good performance at high temperatures, Ti is very useful in the chemical industry and aerospace. Currently, their use has expanded to the field of biomaterials, due to its excellent biocompatibility and reduced elasticity modulus, favouring the production of orthopaedic and dental prostheses. Promising alloys are the Ti-Ta system and researches have been directed to describe and understand the behavior of this system. In this paper, samples of Ti-Ta alloys containing 8 and 16% (wt%) containing interstitial oxygen were prepared and characterized by density, xray diffraction, hardness, elasticity modulus measurements and in vitro cytotoxicity tests. (author)

  8. Tritium diffusion in V, Nb and Ta

    International Nuclear Information System (INIS)

    Qi, Z.; Voelkl, J.; Laesser, R.; Wenzl, H.

    1983-01-01

    Gorsky-effect measurements of the diffusion coefficient of tritium (T) in V, Nb and Ta are reported. The measurements were performed at small T concentrations (less than about 1.4 at%), and in the temperature range from -140 0 C to 100 0 C. Comparison with results obtained for H and D shows an increase of the activation energy with increasing isotopic mass. For Nb and Ta, the pre-exponential factors are identical for all the isotopes, whereas for V this factor is appreciably larger for T than for H and D. The reduction of the relaxation strength in the presence of precipitation allows a rough determination of the solubility limit, which is found to be isotope independent for Nb and Ta. In V, the solubility limit for T is shifted slightly to lower temperatures. The H, D or T induced lattice expansion calculated from the relaxation strength shows no dependence on isotopic mass. (author)

  9. Magnetic moment distribution in Co-V alloys

    International Nuclear Information System (INIS)

    Cable, J.W.

    1982-01-01

    Magnetization and neutron scattering measurements were made on Co-V alloys containing 10, 15, and 20 at.% V to determine the local environment effects on the magnetic moment distribution in this system. The magnetization data agree with earlier results and suggest the presence of some hcp phase in the 10% sample. This was confirmed by the neutron data which showed both fcc and hcp phases in an approximate 4:1 volume ratio for this alloy. The other two samples were single phase fcc but the 15% alloy was disordered while the 20% alloy was ordered in the Cu 3 Au-type structure with the maximum order consistent with the concentration. In this ordered alloy, the excess Co occupies the V sites. These ''wrong sited'' Co atoms have 12 Co nearest neighbors and larger magnetic moments than the ''properly sited'' Co atoms which have an average of 8.8 Co nearest neighbors. The average moments associated with these two types of sites were determined from flipping-ratio measurements on the superlattice and fundamental reflections. The values obtained are 0.28 μ/sub B//Co for the proper-site atoms and 1.3 μ/sub B//Co for the wrong-site atoms. Average moments at the Co and V sites were determined from the diffuse scattering for the 10% and 15% alloys. The results are 1.38 μ/sub B//Co and -0.26 μ/sub B//V for the 10% sample and 1.05 μ/sub B//Co and -0.11 μ/sub B//V for the 15% sample

  10. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    Science.gov (United States)

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

    Science.gov (United States)

    Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion

    2012-05-01

    Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} to {114} to {112} ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

  12. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Hot corrosion of Ti–46Al–8Ta (at.%) intermetallic alloy

    International Nuclear Information System (INIS)

    Godlewska, E.; Mitoraj, M.; Leszczynska, K.

    2014-01-01

    Highlights: •Cyclic oxidation tests with salt deposits were conducted on Ti–46Al–8Ta (at.%) alloy. •Mineral contaminants had detrimental effect on oxidation resistance. •Sodium chloride appeared to be the most hazardous among salts used. •Significant material losses were attributed to self-sustaining reaction mechanism. -- Abstract: Hot corrosion behaviour of a fully lamellar Ti–46Al–8Ta (at.%) alloy was studied in air under thermal cycling conditions (20-h cycles) at 700 and 800 °C. The samples were purposely contaminated with salt deposits consisting of NaCl or Na 2 SO 4 or a mixture of these. The progress of degradation was followed by mass change measurements and visual inspection. Post-exposure examination involved scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The composition of salt deposits clearly influenced the rate and type of corrosion. Sodium chloride appeared especially harmful because of the formation of volatile chloride species

  14. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  15. Structure of the oxide film on Ti–6Ta alloy after immersion test in 8 mol/L boiling nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dizi, E-mail: diziguo@126.com; Yang, Yingli; Wu, Jinping; Zhao, Bin; Zhao, Hengzhang; Su, Hangbiao; Lu, Yafeng

    2013-08-15

    Highlights: •Structure of the oxide film on Ti–6Ta alloy is studied by depth profile XPS. •TiO{sub 2} and Ta{sub 2}O{sub 5} are found in the top layer of the oxide film. •High valence oxide evolutes form Ti{sub 2}O{sub 3} and TaO. •Shielding effect of Ta{sub 2}O{sub 5} leads to the enhanced corrosion resistance of Ti–Ta alloy. -- Abstract: By using X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD) and scanning electron microscopy (SEM), we investigate the corrosion behavior and the structure of the oxide film of Ti–6Ta alloy that is subjected to the immersion corrosion test in 8 mol/L boiling nitric acid for 432 h. Based on the phase constitution indentified by depth profile XPS, the oxide film could be divided into three sub-layers along its thickness direction: the chemical stable TiO{sub 2} and Ta{sub 2}O{sub 5} are present in layer I; the sub-oxide Ti{sub 2}O{sub 3} and TaO are present in the layer II and layer III, and the high valence oxide evolutes from their sub-oxide gradually. Owing to the shielding effect of Ta{sub 2}O{sub 5}, the corrosion rate of the Ti–6Ta alloy decreases from 0.051 mm/y to 0.014 mm/y with increasing immersion time, showing an excellent corrosion resistance in 8 mol/L boiling nitric acid.

  16. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  17. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  18. Modelling the mechanical behaviour of heterogeneous Ta/TA6V welded joints: behaviour and failure criteria

    International Nuclear Information System (INIS)

    Paris, Th.

    2008-12-01

    As laser welding of two different materials (heterogeneous welding) leads to a joint having a characteristic size close to the millimetre, i.e. much smaller than that of a structure, and as such a junction displays completely different mechanical properties because of the metallurgical transformations induced by intense thermal loading, the aim of this research thesis is to develop a behaviour model, flexible and robust enough, to represent all together the mechanical behaviours of the Ta, the TA6V and the melted zone. This model must be able to take plasticity and visco-plasticity into account, and also to provide a failure criterion through damage mechanics and its coupling with the behaviour. The author first reports the experimental characterization of the base materials (Ta and TA6V) by using tensile tests under different strain rates and different directions, relaxation tests and fatigue shear tests. He also characterizes the melted zone by describing the influence of a thermal treatment (induced by welding) on the formation of the melted zone, and by using different tests: four point bending on notched specimens, nano-indentation test, and longitudinal tensile test. In a second part, the author develops the model within the framework of continuum thermodynamics, and explores the numerical issues. The last part deals with the validation of the model for the concerned materials (Ta and TA6V) and melted zone

  19. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys

    NARCIS (Netherlands)

    Kormann, F.H.W.; Sluiter, M.H.F.

    2016-01-01

    Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW,

  20. Structure and Properties of Ti-19.7Nb-5.8Ta Shape Memory Alloy Subjected to Thermomechanical Processing Including Aging

    Science.gov (United States)

    Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.

    2013-09-01

    In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.

  1. Thermal stability of TaN Schottky contacts on n-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.R.; Kim, D-W.; Meidia, H.; Mahajan, S

    2003-02-07

    The thermal stability and electrical characteristics of tantalum-nitrogen alloy Schottky contacts on n-GaN were investigated. Non-stoichiometric {delta}-phase (40 atomic percent nitrogen) tantalum nitride contacts exhibited good electrical properties up to an annealing temperature of 600 deg. C. However, they degrade rapidly above this temperature due to outward diffusion of Ga and presumably nitrogen into the {delta}-phase tantalum nitride. It is surmised that excess Ta reacts with N at the GaN surface, freeing Ga which then diffuses into the TaN layer. Stoichiometric TaN Schottky contacts were stable at temperatures as high as 800 deg. C and had far superior electrical performance. This stems from the thermodynamic stability of the stoichiometric TaN/GaN interface. {delta}-phase TaN had I-V and C-V barrier heights of 0.55 eV and 0.8 eV respectively. On the other hand, TaN had an I-V barrier height near 0.7 eV and a C-V barrier height near 1.2 eV. The ideality factors for both {delta}-phase TaN and TaN were above 1.8 at all annealing temperatures, suggesting tunneling contributes significantly to current transport.

  2. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  3. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  4. Spectra of γ-rays from capture of 2 eV to 9 x 104 eV neutrons by 181Ta

    International Nuclear Information System (INIS)

    Stelts, M.L.

    Using new experimental techniques, the spectra of γ-rays from the capture of neutrons by 181 Ta were measured at the Livermore 100-MeV linac for neutrons from 2 eV to 9 x 10 4 eV with a (Ge(Li)-NaI) three-crystal spectrometer. Individual primary γ-ray lines were resolved to 1778-keV excitation in 182 Ta. Neutron resonances were resolved to 200-eV neutron energy. Data analysis techniques and codes were developed to extract positions and intensities of resolved transitions from the large data matrices accumulated in this experiment. Techniques were developed to unfold the unresolved γ-ray spectra using the simple response of the three-crystal spectrometer. The resolved transition data were used to place 110 states with spin and parity assignments in the 182 Ta level diagram below 1780-keV excitation. A set of 1240 E1 transition strengths were analyzed to extract 1.38 +- 0.11 degrees of freedom for the most likely chisquared fit to the distribution of widths. The E1 strength function was extracted for E/sub gamma/ = 4 to 6 MeV and compared with previous results. The γ-ray spectra for E/sub gamma/ = 1.5 to 6.1 MeV were unfolded for neutron energy groups between 20 and 9 x 10 4 eV. Below 5-MeV γ-ray energy no dependence of the spectral shape on neu []ron energy was observed. (30 figures, 4 tables) (auth)

  5. The effect of microstructure and temperature on the oxidation behavior of two-phase Cr-Cr2X (X=Nb,Ta) alloys

    International Nuclear Information System (INIS)

    Brady, M.P.; Tortorelli, P.F.

    1998-01-01

    The oxidation behavior of Cr(X) solid solution (Cr ss ) and Cr 2 X Laves phases (X = Nb, Ta) was studied individually and in combination at 950--1,100 C in air. The Cr ss phase was significantly more oxidation resistant than the Cr 2 X Laves phase. At 950 C, two-phase alloys of Cr-Cr 2 Nb and Cr-Cr 2 Ta exhibited in-situ internal oxidation, in which remnants of the Cr 2 X Laves phase were incorporated into a growing chromia scale. At 1,100 C, the Cr-Cr 2 Nb alloys continued to exhibit in-situ internal oxidation, which resulted in extensive O/N penetration into the alloy ahead of the alloy-scale interface and catastrophic failure during cyclic oxidation. IN contrast, the Cr-Cr 2 Ta alloys exhibited a transition to selective Cr oxidation and the formation of a continuous chromia scale. The oxidation mechanism is interpreted in terms of multiphase oxidation theory

  6. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  7. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    International Nuclear Information System (INIS)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M.

    2013-01-01

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  8. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  9. Oxidation performance of V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    2000-01-01

    Vanadium-base alloys are being considered as candidates for the first wall in advanced V-Li blanket concepts in fusion reactor systems. However, a primary deterrent to the use of these alloys at elevated temperatures is their relatively high affinity for interstitial impurities, i.e., O, N, H, and C. The authors conducted a systematic study to determine the effects of time, temperature, and oxygen partial pressure (pO 2 ) in the exposure environment on O uptake, scaling kinetics, and scale microstructure in V-(4--5) wt.% Cr-(4--5) wt.% Ti alloys. Oxidation experiments were conducted on the alloys at pO 2 in the range of 5 x 10 -6 -760 torr (6.6 x 10 -4 -1 x 10 5 Pa) at several temperatures in the range of 350--700 C. Models that describe the oxidation kinetics, oxide type and thickness, alloy grain size, and depth of O diffusion in the substrate of the two alloys were determined and compared. Weight change data were correlated with time by a parabolic relationship. The parabolic rate constant was calculated for various exposure conditions and the temperature dependence of the constant was described by an Arrhenius relationship. The results showed that the activation energy for the oxidation process is fairly constant at pO 2 levels in the range of 5 x 10 -6 -0.1 torr. The activation energy calculated from data obtained in the air tests was significantly lower, whereas that obtained in pure-O tests (at 760 torr) was substantially higher than the energy obtained under low-pO 2 conditions. The oxide VO 2 was the predominant phase that formed in both alloys when exposed to pO 2 levels of 6.6 x 10 -4 to 0.1 torr. V 2 O 5 was the primary phase in specimens exposed to air and to pure O 2 at 760 torr. The implications of the increased O concentration are increased strength and decreased ductility of the alloy. However, the strength of the alloy was not a strong function of the O concentration of the alloy, but an increase in O concentration did cause a substantial decrease

  10. Hydrogen permeation properties of Pd-coated V89.8Cr 10Y0.2 alloy membrane using WGS reaction gases

    KAUST Repository

    Jeon, Sungil

    2013-05-01

    The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated V89.8Cr10Y0.2 alloy membrane. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was 6.26 ml/min/cm2 for a Pd-coated V 89.8Cr10Y0.2 alloy membrane (thick: 0.5 mm) using pure hydrogen as feed gas. Also, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure at constant pressure when H 2/CO2 and H2/CO2/H2S mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert\\'s law in different feed conditions. It was found from XRD and SEM results after permeation test that the Pd-coated V89.8Cr 10Y0.2 alloy membrane had good stability and durability for various mixture feeding conditions. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  11. Hydrogen permeation properties of Pd-coated V89.8Cr 10Y0.2 alloy membrane using WGS reaction gases

    KAUST Repository

    Jeon, Sungil; Park, Junghoon

    2013-01-01

    The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated V89.8Cr10Y0.2 alloy membrane. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was 6.26 ml/min/cm2 for a Pd-coated V 89.8Cr10Y0.2 alloy membrane (thick: 0.5 mm) using pure hydrogen as feed gas. Also, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure at constant pressure when H 2/CO2 and H2/CO2/H2S mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD and SEM results after permeation test that the Pd-coated V89.8Cr 10Y0.2 alloy membrane had good stability and durability for various mixture feeding conditions. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-01-01

    In the last years the V-Ti-Cr alloys were considered as candidate materials for different structures of fusion reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V-Ti-Cr alloys in FR. In this paper: hydrogen problems for V-Ti-Cr alloys are formulated; V-H system data base is analyzed; study results of the hydrogen mobility and trapping in V-4Ti-4Cr and V-10Ti-5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory'). (orig.)

  13. Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system

    Science.gov (United States)

    Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.

    2018-04-01

    The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate.

  14. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  15. The effect of boron addition on microstructure and mechanical properties of biomedical Ti35Nb6Ta alloy

    Energy Technology Data Exchange (ETDEWEB)

    Málek, Jaroslav, E-mail: malek@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); CTU in Prague, Faculty of Mechanical Engineering, Department of Materials Engineering, Karlovo Namesti 13, 121 35 Praha 2 (Czech Republic); Hnilica, František, E-mail: hnilica@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Veselý, Jaroslav, E-mail: vesely@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Smola, Bohumil, E-mail: smola@met.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Březina, Vítězslav, E-mail: brezinavita@gmail.com [Masaryk University, Faculty of Medicine, Department of Stomathology, Komenského Náměstí 220/2, 662 43 Brno (Czech Republic); Kolařík, Kamil, E-mail: kamil.kolarik@email.cz [Faculty of Mechanical Engineering, University of West Bohemia, Univerzitní 22, 306 14 Plzeň (Czech Republic)

    2014-10-15

    The beta-titanium alloys are promising materials for bioapplications but their processing via melting is difficult. Coarse grains have been observed in as-cast specimens. Subsequent thermo-mechanical processing seems to be necessary in order to obtain fine-grained microstructure with better mechanical properties. The grain size can be decreased significantly by addition of small boron amount. In this work Ti–35Nb–6Ta alloy with various B additions (0, 0.05, 0.1, 0.3 and 0.5 wt.%) has been studied. Even the smallest amount of B leads to significant grain refinement in Ti–35Nb–6Ta alloy (from 1300 to about 350 μm). Slight grain refinement has been observed also after hot forging and solution treatment. TiB particles emerged in specimens due to B addition. These particles contribute to changes in mechanical properties not only in hot forged and solution treated specimens (hardness increase from 140 to 180 HV10), but also in cold swaged specimens (hardness from 230 to 250 HV10, tensile strength from 800 to 920 MPa). The hardness values can be increased up to 370 HV10 during aging at 400 °C (specimen with 0.5 wt.% B). It has been observed that specimens with low boron addition 0.05 wt.% possess no cytotoxicity. On the other hand in specimens with 0.1 wt.% B or more slight adverse effect on cytotoxicity has been observed. - Highlights: • The influence of boron on microstructure and mechanical properties has been studied. • Beta-transus temperature has been determined. • Cytotoxicity depending on boron content has been evaluated. • Possibility of final heat treatment has been determined.

  16. Superconducting properties of (Nb,Ta)3Sn wires fabricated by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Aihara, K.; Kaiho, K.; Luhman, T.S.

    1979-01-01

    Measurements of the superconducting critical temperature T/sub c/, critical current density, J/sub c/ (8 3 Sn monofilamentary wires. Ta content in the Nb 3 Sn compound was varied by alloying the Nb core prior to a reaction heat treatment. Core compositions were 0, 3, 7, 10, and 20 wt% Ta and heat treatments for the reaction were 16, 64, and 120 h at 725 0 C. For the 120 h heat treatment T/sub c/ decreased monotonically with Ta content from 17.5 to 15.7K while H/sub c2/ increased from 19.8 to 24.6 T. With increasing Ta content J/sub c/ (16 T) increased from 0.7 x 10 5 A/cm 2 to a maximum value of 1.3 x 10 5 at 7 wt% Ta. Further increases in the Ta content produced a decrease in J/sub c/(16 T). At 10 T J/sub c/ decreased with increasing Ta content. An important aspect of this work is the observation that alloying with Ta did not hinder wire ductility during drawing. It appears therefore that the improvements in J/sub c/(16 T) can be incorporated into commercially manufactured conductors

  17. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    Science.gov (United States)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  18. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  19. First-principles study of the phase stability and the mechanical properties of W-Ta and W-Re alloys

    Directory of Open Access Journals (Sweden)

    Ning Wei

    2014-05-01

    Full Text Available The phase stability and mechanical properties of binary W1−xTax and W1−xRex alloys were investigated using the full-potential augmented plane-wave method. The special quasirandom structures(SQSs of these alloys are mechanically stable due to all of the positive elastic constants and negative binding energies. The binding energies of both the W1−xTax and W1−xRex alloys also exhibit energy favorable asymmetry toward the W-rich side. In addition, the bulk modulus of the W1−xTax alloys decrease gradually with the increase of the Ta concentration, while those of the W1−xRex alloys increase gradually with the increase of the Re concentration. Consequently, the bulk modulus of W metal can be improved by doping with Re, implying that the resistance to deformation is enhanced. Based on the mechanical characteristic G/B and Poisson's ratio ν, both the W1−xTax and W1−xRex alloys are regarded as being ductile materials, the ductility of which improves with the increase of Ta or Re.

  20. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  1. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Inaekyan, K. [Ecole de Technologie Superieure, 1100, Notre-Dame Str. West, Montreal Quebec H3C 1K3 (Canada); Brailovski, V., E-mail: vladimir.brailovski@etsmtl.ca [Ecole de Technologie Superieure, 1100, Notre-Dame Str. West, Montreal Quebec H3C 1K3 (Canada); Prokoshkin, S. [National University of Science and Technology “MISIS”, Leninskiy prosp. 4, Moscow 119049 (Russian Federation); Pushin, V. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, 18, S. Kovalevskoy Str., Ekaterinburg 620199 (Russian Federation); Dubinskiy, S.; Sheremetyev, V. [Ecole de Technologie Superieure, 1100, Notre-Dame Str. West, Montreal Quebec H3C 1K3 (Canada); National University of Science and Technology “MISIS”, Leninskiy prosp. 4, Moscow 119049 (Russian Federation)

    2015-05-15

    This work sets out to study the peculiar effects of aging treatment on the structure and mechanical behavior of cold-rolled and annealed biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) (at.%) shape memory alloys by means of transmission electron microscopy, X-ray diffractometry, functional fatigue and thermomechanical testing techniques. Dissimilar effects of aging treatment on the mechanical behavior of Zr- and Ta-doped alloys are explained by the differences in the ω-phase formation rate, precipitate size, fraction and distribution, and by their effect on the alloys' critical stresses and transformation temperatures. Even short-time aging of the TNZ alloy leads to its drastic embrittlement caused by “overaging”. On the contrary, during aging of the TNT alloy, formation of finely dispersed ω-phase precipitates is gradual and controllable, which makes it possible to finely adjust the TNT alloy functional properties using precipitation hardening mechanisms. To create in this alloy nanosubgrained dislocation substructure containing highly-dispersed coherent nanosized ω-phase precipitates, the following optimum thermomechanical treatment is recommended: cold rolling (true strain 0.37), followed by post-deformation annealing (600 °C, 15–30 min) and age-hardening (300 °C, 30 min) thermal treatments. It is shown that in TNT alloy, pre-transition diffraction effects (diffuse reflections) can “mask” the β-phase substructure and morphology of secondary phases. - Highlights: • TNZ alloy is characterized by much higher ω-phase precipitation rate than TNT alloy. • Difference in precipitation rates is linked to the difference in Zr and Ta diffusion mobility. • Aging of nanosubgrained TNZ alloy worsens its properties irrespective of the aging time. • Aging time of nanosubgrained TNT alloy can be optimized to improve its properties.

  2. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  3. Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, M.; Takahashi, K.; Isomura, A. [Mater. R and D Co., Ltd., Aichi (Japan). IMRA; Sakai, T. [Osaka National Research Institute, Midorigaoka, Ikeda-shi, Osaka, 563 (Japan)

    1998-01-30

    The influence of oxygen on micro-structure, hydrogen storage and electrode properties were investigated for the alloy V{sub 3}TiNi{sub 0.56}Co{sub 0.14}Nb{sub 0.047}Ta{sub 0.047}. Since titanium in the alloy worked as a deoxidizer to form the oxide phase, the alloy preserved a large hydrogen capacity in the oxygen concentration range below 5000 mass ppm. More oxygen than 6000 mass ppm caused a remarkable contraction of the unit cell of the vanadium-based main phase and then a decrease in the hydrogen storage capacity. The contraction was accompanied by the precipitation of the Ti-based oxide phase. (orig.) 15 refs.

  4. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  5. Microstructural evolution in a Ti-Ta high-temperature shape memory alloy during creep

    International Nuclear Information System (INIS)

    Rynko, Ramona; Marquardt, Axel; Pauksen, Alexander; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2015-01-01

    Alloys based on the titanium-tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti 70 Ta 30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol -1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

  6. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  7. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca 2+ , PO 4 3− and SiO 3 2− ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO 4 4− groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO 4 4− groups in the Si-HA coating

  8. Energy-beam processing studies on Ta/U and Ir/Ta systems

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Peercy, P.S.; Jacobson, D.C.; Draper, C.W.; Huegel, F.J.; Echer, C.J.; Makowiecki, D.M.; Balser, J.D.

    1983-01-01

    Films of Ta metal on uranium and of Ir metal on tantalum have been irradiated and melted by pulses from Q-switched Ruby and frequency-doubled Nd:YAG lasers to investigate the nature of the resulting mixtures in light of the very different binary-phase diagrams of the two systems. In addition, a two-phase Ir-Ta alloy has been surface-processed with CW CO 2 -laser radiation and with an electron beam in order to study microstructure refinement and test the advantage of using alloys as opposed to film-on-substrate combinations for the development of claddings

  9. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  10. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  11. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys

    International Nuclear Information System (INIS)

    Senkov, O.N.; Senkova, S.V.; Woodward, C.

    2014-01-01

    The microstructure, phase composition and mechanical properties of the AlMo 0.5 NbTa 0.5 TiZr and Al 0.4 Hf 0.6 NbTaTiZr high-entropy alloys are reported. The AlMo 0.5 NbTa 0.5 TiZr alloy consists of two body-centered cubic (bcc) phases with very close lattice parameters, a 1 = 326.8 pm and a 2 = 332.4 pm. One phase was enriched with Mo, Nb and Ta and another phase was enriched with Al and Zr. The phases formed nano-lamellae modulated structure inside equiaxed grains. The alloy had a density of ρ = 7.40 g cm −3 and Vickers hardness H v = 5.8 GPa. Its yield strength was 2000 MPa at 298 K and 745 MPa at 1273 K. The Al 0.4 Hf 0.6 NbTaTiZr had a single-phase bcc structure, with the lattice parameter a = 336.7 pm. This alloy had a density ρ = 9.05 g cm −3 , Vickers microhardness H v = 4.9 GPa, and its yield strength at 298 K and 1273 K was 1841 MPa and 298 MPa, respectively. The properties of these Al-containing alloys were compared with the properties of the parent CrMo 0.5 NbTa 0.5 TiZr and HfNbTaTiZr alloys and the beneficial effects from the Al additions on the microstructure and properties were outlined. A thermodynamic calculation of the solidification and equilibrium phase diagrams was conducted for these alloys and the calculated results were compared with the experimental data

  12. Amorphous alloys in the U-Cr-V system

    International Nuclear Information System (INIS)

    Ray, R.; Musso, E.

    1979-01-01

    Amorphous uranium-chromium-vanadium alloys and a method of producing them are described. The uranium content of the alloys may vary between 60 and 80 atom percent, and chromium and vanadium between 0 and 40 atom percent, most particularly between 20 and 40 atom percent. A maximum of 10 atom percent of Cr or V may be replaced by other alloying elements, including metalloids and at least one transtion metal element. (LL)

  13. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  14. Manufacture of semifinished items of alloys V-4Ti-4Cr and V-10Ti-5Cr for use as a structural material in fusion applications

    International Nuclear Information System (INIS)

    Potapenko, M.M.; Drobishev, V.A.; Filkin, V.Y.; Gubkin, I.N.; Myasnikov, V.V.; Nikulin, A.D.; Shingarev, E.N.; Vedernikov, G.P.; Votinov, S.N.; Zurabov, V.S.; Zolotarev, A.B.

    1996-01-01

    Vanadium-titanium-chromium alloys are considered as structural materials with the most appropriate properties for fusion applications. However, the final ratio V-Ti-Cr in an alloy is not yet determined. On the one hand, it is offered to optimize structure on the basis of an alloy V-4Ti-4Cr. On the other hand, it is proposed that the optimum of total Ti and Cr content should be near 15%, and the Ti to Cr ratio should be 2:1. Melting, casting and processing by pressure of ingots of vanadium alloys V-4Ti-4Cr and V-10Ti-5Cr weighing as much as 50 kg are considered in the report. The ingots in diameters up to 130 mm were obtained by melting in vacuum-arc furnaces. Results on chemical uniformity and structure of the ingots are presented. A basic scheme of semifinished items manufacture is submitted. Rod and tube hot extrusion conditions are presented. A new technology for protection of ingot and billet surface from gases during hot processing is used to discard application of protective stainless steel and to lower temperature of processing. Sheet and tube products were made from extruded billets by cold rolling with intermediate heat treatment. The list of obtained products, including sheets 0.5-5 mm thick, rods 10-18 mm in diameter and tubes from 50 mm up to 6.0 mm in diameter is presented. The availability of large-scale ingots processing with weight above 300 kg is discussed. (orig.)

  15. Texture and superelastic behavior of cold-rolled TiNbTaZr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2008-01-01

    This work investigates the deformation texture and strain-induced α'' martensite texture of TiNbTaZr alloy during cold rolling. The alloy is rolled by 20% and 90% reductions without changing rolling direction. Textures of cold-rolled specimens are investigated by X-ray diffraction measurements. Besides {2 2 1} β β twinning texture, {1 0 0} β β texture is developed in the specimen with 20% reduction. In the 90% cold-rolled specimen, {1 0 0} β β texture appears along rolling direction and strain-induced α'' martensite texture tends to [0 1 0] and [0 0 1] directions along rolling direction (RD) and transverse direction (TD), respectively. Superelastic strain (ε SE ) exhibits higher value along RD and TD. Pure elastic strain (ε E ) shows higher value along RD and 45 deg. from RD

  16. Morphology and Hardness Improvement of Lead Bearing Alloy through Composite Production: 75Pb-15Sb-10Sn/ 15% V/V SiO2 Particulate Composite

    Directory of Open Access Journals (Sweden)

    Linus Okon ASUQUO

    2013-06-01

    Full Text Available The morphology and hardness improvement of lead bearing alloy through composite production: 75Pb-15Sb-10Sn/ 15%v/v SiO2 particulate composite, was studied. 75Pb-15Sb-10Sn white bearing alloy produced at the foundry shop of National Metallurgical Development Centre Jos was used for the production of the composite using stir-cast method. The reinforcing agent was 63 microns passing particles of silica. This was produced from pulverizing quartz using laboratory ball mill. The specimens of the composite produced were then subjected to metallographic to study the morphology of the structures produced both in the as cast and aged conditions of the composite. The samples were also tested for hardness and the result showed that the as cast composite had a hardness value of 33 HRB which is an improvement over the hardness value of 27.7 HRB for the 75Pb-15Sb-10Sn alloy which was used for the production of the composite. The effect of age hardening on the produced composite was also investigated; the result showed that the maximum hardness of 34 HRB was obtained after ageing for 3 hours. The micrographs revealed inter-metallic compound SbSn, eutectic of two solid solutions-one tin-rich and the other lead-rich, reinforcing particles, and solid solution of β. The results revealed that particle hardening can be used to improve the hardness of 75Pb-15Sb-10Sn white bearing alloy for use as heavy duty bearing material.

  17. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders

    International Nuclear Information System (INIS)

    Zambon, A.

    2004-01-01

    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe 50 Ni 30 Si 10 B 10 and Fe 32 Ni 36 Ta 7 Si 8 B 17 , were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe 32 Ni 36 Ta 7 Si 8 B 17 alloy exhibits a higher proneness to the development of amorphous phase than the Fe 50 Ni 30 Si 10 B 10 alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions

  18. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  19. On the Effects of Hot Forging and Hot Rolling on the Microstructural Development and Mechanical Response of a Biocompatible Ti Alloy

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.

  20. Electron microscopy studies in a high corrosion resistant Ti-Ta-Nb alloy

    International Nuclear Information System (INIS)

    Mythili, R.; Saroja, S.; Vijayalakshmi, M.

    2010-01-01

    Electron microscopy has played an important role in the indigenous development of Ti-5Ta-1.8Nb, an α+β alloy, for reprocessing applications. TEM was used to study the Widmanstatten, martensitic, and the omega phase transformations in the system. A wide spectrum of phase transformations could be introduced into the system, by modifying the composition of the β phase and the cooling rate. PEELS was used to understand the corrosion mechanism, by characterizing the passive film after the corrosion reactions

  1. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  2. Effect of Zr substitution on the thermal and mechanical properties of Rh3A (A=Nb,Ta) - A theoretical study

    Science.gov (United States)

    Manjula, M.; Sundareswari, M.; Viswanathan, E.

    2018-04-01

    The present study focuses upon the thermal and mechanical properties of Rh3ZrxA1-x (A= Nb,Ta) ternary alloys using ab initio density functional theory where Nb/Ta is substituted by Zr. These ternary alloys were investigated for the first time using elastic moduli, hardness, Debye temperature, Debye average velocity and Gruneisen parameter. Further the ductile/brittle analysis was made by using Cauchy pressure, degree of brittleness and Poisson's ratio. Systematic addition of Zr with Rh3Nb/Ta shows that Rh3Zr0.75Nb0.25, Rh3Zr0.875Nb0.125 and Rh3Zr0.875Ta0.125combinations are more ductile. Further the melting temperature of Rh3Zr0.75Nb0.25(2227 K), Rh3Zr0.875Nb0.125(2200 K) and Rh3Zr0.875Ta0.125 (2134 K) alloys are nearer to those of their parent binary alloys namely Rh3Nb (2636 K) and Rh3Ta (2562 K). Their corresponding density values (10.84 gm/cm3, 10.77 gm/cm3 and 11.09 gm/cm3) are found to be much less than those of their parent materials.

  3. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr-Mo-V

  4. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  5. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy

    International Nuclear Information System (INIS)

    Niinomi, Mitsuo; Nakai, Masaaki; Hendrickson, Mandana; Nandwana, Peeyush; Alam, Talukder; Choudhuri, Deep; Banerjee, Rajarshi

    2016-01-01

    The effect of oxygen on stability of isothermal omega precipitates in Ti-29Nb-13Ta-4.6Zr was examined using X-ray powder diffraction, transmission electron microscopy, and atom probe tomography. Two alloys with 0.1 and 0.4 mass% oxygen were subjected to single step, and two-step annealing heat-treatments to respectively promote omega and alpha formation. After second step annealing, large volume fraction of omega precipitates was retained in 0.4 mass% O alloy while mainly alpha phase was observed in TNTZ-0.1O. The enhanced stability of omega in the higher oxygen containing TNTZ alloys questions the conventionally accepted understanding that oxygen destabilizes the omega phase in titanium alloys.

  6. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  7. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  8. Long-term durability test of acid recovery evaporators made of Ti-5% Ta alloy and zirconium

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Koizumi, Tsutomu; Koyama, Tomozo

    2001-05-01

    Mock-ups of acid recovery evaporators which are made of Ti-5% Ta alloy and Zr were tested under inactive condition for forty thousands hours to improve a corrosion resistance of acid recovery evaporator in Tokai reprocessing plant (TRP). The mock-up unit was designed and produced referring to the specification of acid recovery evaporator in TRP and the evaporation performance of the mock-up was 1/27 of TRP. A long-term durability of both evaporators was demonstrated by results of operation data, evaporation performance and corrosion resistance. The mock-up unit did not suffer from any trouble during the running test and the operation data such as temperature, flow, concentrations of nitric acid and metal ions were fairly stable within standard condition. As for the corrosion resistance, cracks and local corrosion such as intergranular attack were not observed on both evaporators after the running test, and a corrosion of weld was not selective. The average corrosion rates at measuring points were less than 0.1 mm/yr, respectively, however, thickness of the Ti-5% Ta alloy evaporator was slightly reduced at all points of vapor phase region. In addition, from the result by test coupon, it is found that both materials have low susceptibility to stress corrosion cracking in this environment. The destructive inspection showed that the mechanical properties of both materials were not degraded during the running test. Finally, the total running time of the mock-up unit is much more than a maximum running time of acid recovery evaporator made of stainless steel in TRP (nearly 15,000 hours). On the basis of the test results, an excellent durability of Ti-5% Ta alloy and Zr evaporators under was successfully demonstrated throughout the mock-up test from an engineering perspective. (author)

  9. Corrosion resistance after mechanical deformation of the Ti30Ta experimental alloy for using in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Kerolene Barboza da; Konatu, Reginaldo Toshihiro; Oliveira, Liliane Lelis de; Nakazato, Roberto Zenhei; Claro, Ana Paula Rosifini Alves, E-mail: rosifini@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratinguetá, SP (Brazil). Departamento de Engenharia de Materiais

    2017-10-15

    In this study the corrosion resistance of Ti30Ta experimental alloy was evaluated when submitted to different deformation rates. Alloys were processed in arc melting, furnace, forged and treated. The samples were machined in accordance with ASTME9-09 standard to carry out compression tests. The influence of deformation was evaluated by optical microscopy and XRD, and Electrochemical parameters were analyzed in the most severe condition of deformation (22%). Corrosion resistance exhibited the same behavior for two conditions, 22% and without deformation. (author)

  10. Effect of tantalum on α-martensite crystal structure in Co-Ta alloy

    International Nuclear Information System (INIS)

    Skorodzievskij, V.S.; Ustinov, A.I.; Chuistov, K.V.

    1985-01-01

    Changes in the crystal structure of α-martensite, formed during Co-Ta alloy hardening from the region of a homogeneous solid solution, are investigated by X-ray analysis methods. In case of increasing tantalum content in the alloy, intensity redistribution of X-ray scattering along the direction of the reverse space of H-K not equal to 3N (N=0, +-1, +-2...) type is fixed, which appears, depending on concentration, in continuous displacement of maxima from positions being characteristic for the initial 2H structure, as well as in occurring additional maxima and in changing the ratio between them by ipteΣity. For limiting values of tantalum concentration, where β → α-transformations are still observed, the number of intepsity maxima and their positions an the period of α-martensite reverse lattice recurrence period is closer to the location of 15R 1 -structure reverse structure unit

  11. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  12. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  13. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  14. Synthesis and crystal structure of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Sebastian A.; Kraus, Florian [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Lozinsek, Matic [Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-07-01

    [Sr(HF){sub 3}(TaF{sub 6}){sub 2}] reacts with liquid ammonia under the formation of colorless crystals of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}] (1). The structure was elucidated by low-temperature X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group P2{sub 1}/c with a = 5.1525(6), b = 11.736(1), c = 10.171(1) Aa, β = 94.843(9) , V = 612.8(1) Aa{sup 3} at 123 K with Z = 4. Its structure displays discrete TaF{sub 5}(NH{sub 3}){sub 3} molecules, which are interconnected by N-H..F hydrogen bonds to form a complex three-dimensional network. The title compound is a rare example of a neutral, molecular, eight-coordinate tantalum species. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  16. Recovery of electron irradiated V-Ga alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Monge, M.; Pareja, R.; Hodgson, E.R.

    2000-01-01

    The recovery characteristics of electron-irradiated V-Ga alloys with 1.2 and 4.6 at.% Ga have been investigated by positron annihilation spectroscopy (PAS). It is found that vacancies created by electron irradiation become mobile in these alloys at ∼293 K. This temperature is noticeably lower than that in pure V and V-Ti alloys. The vacancies aggregate into microvoids in V-4.6Ga, but do not in V-1.2Ga. The results indicate that vacancies are bound to Ga-interstitial impurity pairs

  17. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH 2 levels of 0.01 and 3 x 10 -6 torr showed negligible effect of H 2 on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H 2 environments on specimens annealed at different temperatures showed that grain-size variation by a factor of ∼2 had little or no effect on tensile properties

  18. Tensile properties of several 800 MeV proton-irradiated bcc metals and alloys

    International Nuclear Information System (INIS)

    Brown, R.D.; Wechsler, M.S.; Tschalar, C.

    1987-01-01

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid that must retain reasonable strength and ductility upon irradiation at about 673 K to fluence of about 1 x 10/sup 25/ protons/m/sup 2/. Investigations are underway at the 800-MeV proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) to test the performance of candidate SIN window materials under appropriate conditions of temperature, irradiation, and environment. Based on considerations of chemical compatibility with molten Pb-Bi, as well as interest in identifying fundamental radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo(HT-9) were chosen as candidate materials. Sheet tensile samples, 0.5-mm thick, of the four materials were fabricated and heat treated. The samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 10/sup 23/ p/m/sup 2/. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. The power deposited by the proton beam in the capsules was sufficient to maintain sample temperatures of about 673 K. Post-irradiation tensile tests were conducted at room temperature at a strain rate of 9 x 10/sup -4/s/sup -1/. The yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased, as indicated by the uniform strain. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility. The increase in strength following irradiation is discussed in terms of a dispersed-barrier hardening model, for which the barrier sizes and formation cross sections are calculated

  19. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  20. Hydrogen uptake characteristics of mechanically alloyed Ti-V-Ni

    International Nuclear Information System (INIS)

    Cauceglia, Dorian; Hampton, Michael D.; Lomness, Janice K.; Slattery, Darlene K.; Resan, Mirna

    2006-01-01

    It has been well established that hydrogen will react directly and reversibly with a large number of metals and alloys to form metallic hydrides. Extensive research has been done over the years to improve properties of these hydrogen purification and recovery media and in developing new compounds for this purpose. In the present study, the hydrogen uptake characteristics of mechanically alloyed titanium-vanadium-nickel have been studied. Thermal and composition data were obtained for the Ti-V-Ni system prepared by mechanical alloying at a ball-to-powder mass ratio of 10:1. It was found that this material would absorb up to approximately 1.0 wt% hydrogen at near ambient temperature and ambient pressure of hydrogen

  1. Enhancement of ductility in cubic Rh{sub 3}A{sub x}Ti{sub 1−x}(A = V,Nb,Ta)(x = 0, 0.125, 0.25, 0.75, 0.875, 1) aerospace materials–First principles DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Manjula, M.; Sundareswari, M., E-mail: sundare65@gmail.com; Viswanathan, E.

    2016-09-15

    Structural, electronic, elastic and mechanical properties of cubic Rh{sub 3}A{sub x}Ti{sub 1−x} (where A = V, Nb, Ta and x = 0, 0.125, 0.25, 0.75, 0.875, 1) alloys are investigated by FP-LAPW method using the Density Functional Theory (DFT) within the generalized gradient approximation (GGA). The ground state properties of these compounds have been obtained by the optimization procedure as implemented in the wien2k code. The electronic and bonding patterns of the same are analysed. Using the calculated elastic constants, the Shear modulus, Young’s modulus, Poisson’s ratio, Pugh criteria, Cauchy’s pressure and Hardness values are derived. The ductility of these refractory alloys are analysed in terms of Cauchy’s pressure, Pugh criteria and Poisson’s ratio. The results are further assessed by using the charge density plots. From this study, we conclude that, among Rh{sub 3}A{sub x}Ti{sub 1−x} (A = V, Nb, Ta; x = 0, 0.125, 0.25, 0.75, 0.875, 1) alloy combinations, the Rh{sub 3}Nb{sub 0.75}Ti{sub 0.25} alloy is found to be more ductile and yet another combination namely Rh{sub 3}Nb{sub 0.875}Ti{sub 0.125} could serve as a preferred ductile material with a reasonable hardness. - Highlights: • The elastic and mechanical properties of Rh{sub 3}(V,Nb,Ta){sub x}Ti{sub 1−x} alloys are investigated. • Ductility of these materials are analysed using (C{sub 12}–C{sub 44}), G/B ratio and ν values. • The results are assessed by charge density plot. • Rh{sub 3}Nb{sub 0.75}Ti{sub 0.25} and Rh{sub 3}Nb{sub 0.875}Ti{sub 0.125} alloys are found to be more ductile.

  2. Nanotubular surface and morphology of Ti-binary and Ti-ternary alloys for biocompatibility

    International Nuclear Information System (INIS)

    Choe, Han-Cheol

    2011-01-01

    The nanotubular surface of Ti-binary and Ti-ternary alloys for biomaterials has been investigated using various methods of surface characterization. Binary Ti-xNb (x = 10, 20, 30, and 40 wt.%) and ternary Ti-30Ta-xNb (x = 3, 7 and 15 wt.%) alloys were prepared by using the high-purity sponges; Ti, Ta and Zr spheres. The nanotube on the alloy surface was formed in 1.0 M H 3 PO 4 with small additions of NaF (0.5 and 0.8 wt.%), using a potentiostat. For cell proliferation, an MC3T3-E1 mouse osteoblast was used. The surface characteristics were investigated using field-emission scanning electron microscope, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Binary Ti-xZr alloys had a lamellar and a needle-like structure, whereas, ternary Ti-30Ta-xZr alloys had equiaxed grains with a lamellar martensitic α' structure. The thickness of the needle-like laths of the α-phase increased as the Zr content increased. The nanotubes formed on the α phase and β phase showed a different size and shape appearance with Zr content. As the Zr content increased from 3 to 40 wt.%, the diameter of the nanotubes in Ti-xZr and Ti-30Ta-xZr alloy decreased from 200 nm to 50 nm. The nanotubular Ti-30Ta-15Zr alloy surface with a diameter of 50 nm provided a good osseointegration; cell proliferation, migration and differentiation.

  3. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    Science.gov (United States)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  4. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  5. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  6. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  7. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  8. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  9. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  10. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  11. Volatility of V15Cr5Ti fusion reactor alloy

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1986-01-01

    One potential hazard from the presence of activation products in fusion facilities is accidental oxidation-driven volatility of those activation products. Scoping experiments were conducted to investigate the oxidation and elemental volatility of candidate fusion reactor alloy V15Cr5Ti as a function of time, temperature, and test atmosphere. Experiments in air and in argon carrier gases containing 10 4 to 10 1 Pa (10 -1 to 10 -4 atm) oxygen were conducted to investigate the lower oxygen partial pressure limit for the formation of a low melting point (approximately 650 0 C), high volatility, oxide layer and its formation rate. Experiments to determine the elemental volatility of alloy constituents in air at temperatures of 700 0 C to greater than 1600 0 C. Some of these volatility experiments used V15Cr5Ti that was arc-remelted to incorporate small quantities (<0.1 wt. %) of Sc and Ca. Incorporation of Sc and Ca in test specimens permitted volatility measurement of radioactive constituents present only after activation of V15Cr5Ti

  12. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  13. Performance of V-Cr-Ti alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W. K.

    2000-01-01

    A systematic study is underway at Argonne National Laboratory to evaluate the mechanical properties of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake by the samples and with the resulting influence on microstructures and tensile properties of the alloys. Other variables examined are specimen cooling rate and synergistic effects, if any, of oxygen and hydrogen on tensile behavior of the alloys. Experiments were conducted to evaluate the effect of pH 2 in the range of 3 x 10 -6 and 1 torr on tensile properties of two V-Cr-Ti alloys. Up to pH 2 of 0.05 torr, negligible effect of H was observed on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed at 500 C to 1.0 torr of H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal adverse effects on the maximum engineering stress or on uniform and total elongation when the alloy contained ∼ 2,000 wppm O and 16 wppm H. Furthermore, tests in H 2 -exposed specimens, initially annealed at various temperatures, showed that grain-size variation by a factor of ∼ 2 had little or no effect on tensile properties. Also, specimen cooling rate had a small effect, if any, on the tensile properties of the alloy

  14. Thermal plasma synthesis of transition metal nitrides and alloys

    International Nuclear Information System (INIS)

    Ronsheim, P.; Christensen, A.N.; Mazza, A.

    1981-01-01

    Applications of arc plasma processing to high-temperature chemistry of Group V nitrides and Si and Ge alloys are studied. The transition metal nitrides 4f-VN, 4f-NbN, and 4f-TaN are directly synthesized in a dc argon-nitrogen plasma from powders of the metals. A large excess of N 2 is required to form stoichiometric 4f-VN, while the Nb and Ta can only be synthesized with a substoichiometric N content. In a dc argon plasma the alloys V 3 Si, VSi 2 , NbSi 2 , NbGe 2 , Cr 3 Si, and Mo 3 Si are obtained from powder mixtures of the corresponding elements. The compounds are identified by x-ray diffraction patterns and particle shape and size are studied by electron microscopy

  15. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  16. Correlation between thermodynamic and mechanical properties in Ta-W

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sandra; Mueller, Stefan [Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg (Germany)

    2015-07-01

    Varying an alloy's concentration or alloying constituents strongly influences its structural and mechanical properties. Modern simulation methods like density functional theory in combination with the cluster expansion make the whole configurational space accessible. This way, also metastable structures may be considered, which are experimentally difficult to obtain. Recent results for several face-centered cubic (fcc) binary metal alloys suggest a linear correlation between thermodynamic stability and elastic properties at a fixed stoichiometry. This study aims to investigate the generality of these findings by considering a similar correlation for binary body-centered cubic (bcc) alloys. As a model system, Ta-W was chosen due to its simple phase diagram with solid solution in the whole concentration range. Interestingly, the elastic constants c{sub 44} and c{sub 12} show an opposing trend to that observed for fcc alloys: Energetically favorable structures are mechanically weaker than those further away from the ground-state line. This phenomenon may be related to the anomalous behavior of c{sub 44} with increasing pressure or temperature, which has been reported in the literature for Ta-W. We will discuss the interesting behavior of Ta-W with regard to its electronic structure.

  17. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydriding and dehydriding rates of Mg, Mg-10TaF5, and Mg-10NbF5 prepared via reactive mechanical grinding

    Science.gov (United States)

    Song, Myoung Youp; Kwak, Young Jun; Lee, Seong Ho; Park, Hye Ryoung

    2015-01-01

    In this work, TaF5 and NbF5 were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Mg, Mg-10TaF5, and Mg-10NbF5 samples were prepared by reactive mechanical grinding. The hydriding and dehydriding properties of the samples were then examined. Mg-10TaF5 had the largest amount of hydrogen absorbed for 30 min and the highest initial dehydriding rate after incubation period, followed in order by Mg-10NbF5, and Mg. At 593 K under 12 bar H2 at the first cycle, Mg-10TaF5 absorbed 3.63 wt% H for 5 min and 4.53 wt% H for 30 min. At 593 K under 1.0 bar H2 at the first cycle, Mg-10TaF5 desorbed 0 wt% H for 2.5 min, 0.59 wt% H for 5 min, 3.42 wt% H for 30 min, and 4.24 wt% H for 60 min. The reactive mechanical grinding of Mg with TaF5 or NbF5 is believed to have facilitated the nucleation and to have decreased the diffusion distances of hydrogen atoms. These two effects are believed to have increased the hydriding and dehydriding rates of Mg. The MgF2 and Ta2H formed in Mg-10TaF5, and the MgF2, NbH2, and NbF3 formed in Mg-10NbF5 are considered to have enhanced both of these effects.

  19. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  20. The Al Effects of Co-Free and V-Containing High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Songqin Xia

    2017-01-01

    Full Text Available In this study, five-component high-entropy alloys (HEAs AlxCrFeNiV (where x denotes the molar ratio, x = 0, 0.1, 0.3, 0.5, 0.75, 1, and 1.5 were prepared using an arc-melting furnace. The effects of the addition of the Al on the crystal structures were investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Also, two non-equiatomic ratio HEAs, AlxCrFeNiV (x = 0.3, and 0.5, were systematically studied through the use of various characterization methods in the as-cast state. The Al0.3CrFeNiV alloy displayed typical duplex body-centered cubic (BCC structures, including disordered BCC (A2, and NiAl-type ordered BCC (B2 phases. Meanwhile, in regard to the Al0.5CrFeNiV alloy, this alloy was found to contain an unknown phase which was enriched in Cr and V, as well as the coherent A2/B2 phases. Both of these alloys displayed very high yield and fracture strengths. However, their compression fracture strains were approximately 10%. Also, the fracture surfaces showed mainly cleavage fracture modes.

  1. Design of Refractory High-Entropy Alloys

    Science.gov (United States)

    Gao, M. C.; Carney, C. S.; Doğan, Ö. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-11-01

    This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  2. Výzkum a vývoj přípravy a hodnocení anodické vrstvy na titanové slitině Ti6Al4V

    Czech Academy of Sciences Publication Activity Database

    Gabor, R.; Vlčková, I.; Malaník, K.; Michenka, V.; Marvan, J.; Doubková, Martina; Pařízek, Martin; Bačáková, Lucie

    2015-01-01

    Roč. 68, č. 6 (2015), s. 84-92 ISSN 0018-8069 R&D Projects: GA TA ČR(CZ) TA04011214 Institutional support: RVO:67985823 Keywords : anodic oxidation * electrochemical process * electrolyte * surface modification * Ti6Al4V alloy * oxide layer * mechanical pretreatment Subject RIV: EI - Biotechnology ; Bionics

  3. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  4. Two-step superconducting transition in Cu-V-Si alloys

    International Nuclear Information System (INIS)

    Sharma, R.G.; Krishna, M.M.; Narlikar, A.V.

    1980-01-01

    Copper ternary alloys containing small amounts of vanadium and silicon exhibit a two-step superconducting resistive transition. The first transition occurs around 17 K, the transition temperature of β-W V 3 Si, followed by a plateau and a second transition around 10 K. The resistivity, however, does not drop to zero down to 2.5 K. Reduction of the wire diameter causes the two transitions to shift to lower temperatures. Complete superconductivity in these specimens is absent for two reasons. Firstly, the superconducting volume fraction present in these alloy-wires is below the threshold given by either the effective-medium theory or the site percolation theory. Secondly, the superconducting phase V 3 Si does not precipitate in copper matrix in a fine structure and the proximity effect does not operate strongly. Annealing causes the superconducting particles to coalesce and grow in size and suppresses the proximity effect and superconductivity further in these alloy wires. (author)

  5. Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

    Directory of Open Access Journals (Sweden)

    Joan Lario

    2018-01-01

    Full Text Available The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM, and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS. The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV irradiation of the TiO2 nanotubes decrease the water contact angle.

  6. Effect of Inoculant Alloy Selection and Particle Size on Efficiency of Isomorphic Inoculation of Ti-Al.

    Science.gov (United States)

    Kennedy, J R; Rouat, B; Daloz, D; Bouzy, E; Zollinger, J

    2018-04-25

    The process of isomorphic inoculation relies on precise selection of inoculant alloys for a given system. Three alloys, Ti-10Al-25Nb, Ti-25Al-10Ta, and Ti-47Ta (at %) were selected as potential isomorphic inoculants for a Ti-46Al alloy. The binary Ti-Ta alloy selected was found to be ineffective as an inoculant due to its large density difference with the melt, causing the particles to settle. Both ternary alloys were successfully implemented as isomorphic inoculants that decreased the equiaxed grain size and increased the equiaxed fraction in their ingots. The degree of grain refinement obtained was found to be dependent on the number of particles introduced to the melt. Also, more new grains were formed than particles added to the melt. The grains/particle efficiency varied from greater than one to nearly twenty as the size of the particle increased. This is attributed to the breaking up of particles into smaller particles by dissolution in the melt. For a given particle size, Ti-Al-Ta and Ti-Al-Nb particles were found to have a roughly similar grain/particle efficiency.

  7. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  8. Collective flows of protons and $\\pi^-$ mesons in $^{2}$H + C, Ta and He plus C, Ta collisions at 3.4 GeV/nucleon

    CERN Document Server

    Chkhaidze, L; Djobava, T; Kladnitskaya, E; Kharkhelauri, L; Uzhinsky, V

    2011-01-01

    Collective flows of protons and negative pions have been studied in (2)H + C, Ta and He + C, Ta collisions at an energy of 3.4 GeV/nucleon. The data have been obtained by the 2-m Propane Bubble Chamber (PBC-500) at JINR. It is found that the directed flow of protons and pi(-) mesons characterized by d /d(y) increases with increase of the mass numbers of colliding nucleus pairs; the elliptic proton flow points out of the reaction plane and also strengthens as the system mass increases; the negative pion directed flow is in the same reaction plane as the proton flow for the lighter (2H + C, He + C) systems and in the opposite direction for the heavier ((2)H + Ta, He + Ta) systems. In (2)H + C, He + C, C + C, C + Ne, (2)H + Ta, He + Ta, C + Cu, and C + Ta collisions, the linear dependence of directed and elliptic flow parameters from mass numbers of projectile and target nuclei, (A(P).A(T))(1/2), is similar for protons while for pi(-) mesons the dependence of directed flow parameters is stronger. The ultrarelati...

  9. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  10. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  11. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  12. "Forest Grove School District v. T.A." Supreme Court Case: Implications for School Psychology Practice

    Science.gov (United States)

    Dixon, Shauna G.; Eusebio, Eleazar C.; Turton, William J.; Wright, Peter W. D.; Hale, James B.

    2011-01-01

    The 2009 "Forest Grove School District v. T.A." United States Supreme Court case could have significant implications for school psychology practice. The Court ruled that the parents of a student with a disability were entitled to private school tuition reimbursement even though T.A. had not been identified with a disability or previously…

  13. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    Science.gov (United States)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  14. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    International Nuclear Information System (INIS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-01-01

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  15. The TA and TALE Experiments

    International Nuclear Information System (INIS)

    Thomson, Gordon

    2006-01-01

    The TA/TALE experiment is under construction, and is being deployed in Millard County, Utah. It will consist of a suite of detectors covering four orders of magnitude in energy, from 10 16.5 to 10 20.5 eV, and will observe cosmic ray showers with fluorescence detectors and arrays of scintillation counters. Events will be seen by multiple detectors and cross calibration of detectors' energy scales will be possible. TA/TALE will observe all three features of the spectrum of ultrahigh energy cosmic rays, observe the galactic/extragalactic transition, study the cosmology of cosmic ray sources, and perform anisotropy studies with unprecedented accuracy

  16. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Science.gov (United States)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  17. Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver, BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-08-05

    Highlights: • Nb–Ta, Nb–Zr and Ta–Zr alloy films were deposited by co-sputtering. • Co-sputtered Nb–Zr and Nb–Ta alloy coatings had crystalline microstructures. • Diffusion barrier efficiency of Nb–Zr and Nb–Ta decreased with the increase of Nb %. • Co-sputtered Ta–Zr films with 30–73 at.% Ta were amorphous. • Sputtered amorphous Ta–Zr films showed superior diffusion barrier efficiency. - Abstract: Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from Havar® entrance foils of the targets for [{sup 18}F] production. The corrosion damage of coated entrance foils is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective film toward Havar® substrate. Since amorphous metal alloys (metallic glasses) are well-known to perform a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of different alloy composition and ∼1.5 μm thickness were co-deposited by magnetron sputtering. Diffusion barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for coatings with 30–73 at.% Ta.

  18. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  19. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    Science.gov (United States)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  20. Preparation of tantalum-based alloys by a unique CVD process

    International Nuclear Information System (INIS)

    Bryant, W.A.; Meier, G.H.

    1975-01-01

    One of the greatest problems associated with the formation of alloys by CVD is the achievement of compositional uniformity. In a typical deposition apparatus, wherein reactant gases are made to flow over the substrate in a continuous manner, this nonuniformity is inherent for two reasons. The composition of the gas stream changes as a function of its distance of travel over the substrate and, inevitably, one of the reactant compounds is more easily reduced than the other(s). This problem was overcome by the development of a process termed ''pulsing.'' In it reactant gases are periodically injected into a previously evacuated reaction chamber where they cover the substrate almost instantaneously. By this technique, gas composition at any point in time is not dependent upon distance along the substrate. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative number of the various cycles. This technique has been utilized to produce dense alloys with the composition Ta--10 wt percent W by depositing alternating layers of TA and W by the hydrogen reduction of TaCl 5 and WCl 6 . The alloys were uniform in thickness and composition over lengths in excess of 20 cm and the target composition was attained. A similar attempt to deposit a Ta--8 wt percent W--2 wt percent Hf alloy was unsuccessful because of the difficulty in reducing HfCl 4 at temperatures below those at which gas phase nucleation of Ta and W occurred (1200 and 1175 0 C respectively). 7 fig

  1. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  2. Study of the impact of treatment modes on hardness, deformability and microstructure of VT6 (Ti-6Al-4V and VV751P (Ni-15Co-10Cr alloy samples after selective laser sintering

    Directory of Open Access Journals (Sweden)

    Galkina Natalia V.

    2017-01-01

    Full Text Available Selective laser sintering is an advanced method for obtaining sophisticated products and assembly permanent joints. This is particularly relevant for heat resistant alloys employed in aviation equipment. Heat treatment modes traditionally applied to the products are chosen in accordance with conditions of further product operation. In this paper there are given the results of experimental study of hardness, deformability and microstructure of samples after selective laser sintering of Ni-15Co-10Cr and Ti–6Al–4V alloy powders. It has been determined that Ni-15Co-10Cr alloy ageing increases the hardness and deformability of samples; these characteristics decrease if the ageing lasts for 9-19 hours. Annealing of Ti–6Al–4V alloy samples results in preserving original hardness. After complete annealing, the hardness of samples decreases from 32 … 33HRC to 24 … 26HRC. Microstructural studies showed that there are cracks between layers in the surface of Ti–6Al–4V alloy samples after sintering and not complete annealing. After full annealing, cracks' width and length decreased. Cracks in Ni-15Co-10Cr alloy samples' microstructure were not detected.

  3. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  4. Sb interactions with TaC precipitates and Cu in ion-implanted α-Fe

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Myers, S.M.

    1980-01-01

    The interactions of Sb with the other species implanted into Fe to form Fe-Ta-C-Sb and Fe-Cu-Sb alloys have been examined with transmission electron microscopy and Rutherford backscattering following annealing at 873 0 K. Trapping of Sb at TaC precipitates is observed in the former alloy just as was previously observed in Fe-Ti-C-Sb. In Fe-Cu-Sb, Sb interactions are governed by the atomic ratio of Sb to Cu. For ratios between 0.2 to 0.4, the compound β-Cu 3 Sb was observed to form. For Sb to Cu ratios approx.< 0.1, fcc Cu precipitates were observed. In addition to the expected Sb dissolution in Cu, Sb trapping by Cu precipitates is also observed. The binding enthalpy of Sb at both TaC and Cu precipitates with respect to a solution site in the bcc Fe is the same as observed for TiC, approx. 0.4 eV. The constancy of the binding enthalpy at such chemically dissimilar precipitates supports the hypothesis that the trapping is due to the structural discontinuity of the precipitate-host interface. The observed Sb trapping at precipitates is of potential significance for the control of temper embrittlement in bcc steels

  5. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.. TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L. resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes.

  6. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  7. Bundes-Immissionsschutzgesetz (Federal Nuisance Protection Act). BImSchG, BImSch-Verordnungen, EMASPrivilegV, Biokraft-NachV, TA Luft, TA Laerm, USchadG, TEHG, ZuG 2012, ZuV 2012, EHVV 2012, FlugISchG, 2. FlugLSV. 29. ed.; Bundes-Immissionsschutzgesetz. BImSchG, BImSch-Verordnungen, EMASPrivilegV, Biokraft-NachV, TA Luft, TA Laerm, USchadG, TEHG, ZuG 2012, ZuV 2012, EHVV 2012, FlugISchG, 2. FlugLSV

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Klaus (ed.)

    2011-07-01

    After a detailed introduction, the book goes into detail about the specifications of the Federal Immission Control Act (BImSchG). Also discussed are all regulations for the implementation of the BImSchG, the EMAS-Privilegierungsverordnung (privileges ordinance), the biofuels sustainibility ordinance (Biokraft-NachV), the Technical Instructions on Air Quality Control (TA Luft) and the Technical Instructions on Noise Control (TA Laerm), the Environmental Damage Act (Umweltschadensgesetz), the Greenhouse Gas Emissions Act (Treibhausgas-Emissionshandelsgesetz), the Allocation Act (Zuteilungsgesetz 2012), the Allocation Ordinance (Zuteilungsverordnung 2012), the Auctioning Ordinance (Emissionshandels-Versteigerungsverordnung 2012), and the Aircraft Noise Act (Gesetz zum Schutz gegen Fluglaerm) and the Ordinance on Noise Protection in Airports (Flugplatz-Schallschutzmassnahmenverordnung).

  8. Niobium Nb and tantalum Ta

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining niobium and tantalum in various objects are described. Nb and Ta are separated with the aid of N-benzoyl-N-phenylhydroxylamine by precipitating Nb(5) from a tartaric acid solution with subsequent precipitation of Ta from the filtrate. The gravimetric determination of Nb and Ta in steels is based on their quantitative separation from a diluted solution by way of hydrolysis with subsequent after-precipitation with phenylarsonic acid (in the absence of W). The gravimetric determination of Nb in the presence of W is carried out with the aid of Cupferron. To determine Nb in its carbide, Nb(5) reduced to Nb(3) is titrated with a solution of K 2 Cr 2 O 7 in the presence of phenyl-anthranilic acid. The photometric determination of Nb in tungsten-containing steels and in ores containing Ti, W, Mo and Cr is based on the rhodanide method. Nb is determined in alloys with Zr and Ti photometrically with the aid of 4-(2-pyridylazo)-resorcin and in alloyed steels with the aid of benzhydroxamic acid. The latter complex is extracted with chloroform. This method is used to determine Nb in rocks. The photometric determination of Ta in TiCl 4 is carried out with the aid of pyrogallol, in commercial niobium with the aid of methyl violet, and in steel with the aid of 4-(-pyridylazo)-resorcin. Also described is the polarographic determination of Nb in tantalum pentoxide

  9. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications

    Science.gov (United States)

    Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.

    2018-01-01

    Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.

  10. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  11. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    Science.gov (United States)

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  13. High thermoelectric figure of merit by resonant dopant in half-Heusler alloys

    Science.gov (United States)

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-06-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.

  14. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  15. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  16. Relationship of microstructure and mechanical properties for V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Gazda, J.; Nowicki, L.J.; Smith, D.L.; Danyluk, S.

    1993-08-01

    Relation of composition, number density, and diameter of precipitates in microstructures of unalloyed V and V-Cr-Ti alloys to the yield strength, hardness, creep stress, and ductile-brittle transition temperature (DBTT) for these materials was determined from analytical electron microscopy analyses of precipitates in these materials and from mechanical properties data. Unalloyed V and V-Cr-Ti alloys with ≤3 wt. % Ti contained VC and TI(CNO) precipitates that were coherent with the matrix. The most common precipitates in the alloys were Ti(C 1-x-y N x O y ) that were non-coherent with the matrix. The number density of non-coherent precipitates was maximum in V-3Ti and V-5Cr-3Ti alloys, and the average diameter of non-coherent precipitates was minimum in V-(1--3)Ti and V-5Cr-3Ti alloys. The increase of yield strength and hardness of V on alloying with Ti and Cr was shown to be primarily due to coherent precipitate, solute-atom misfit, and shear-modulus difference effects. The creep stress for rupture in 1000 hours was related to the number density of precipitates, whereas the DBTT was related to the volume fraction of precipitates

  17. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  18. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion.

    Science.gov (United States)

    Afonso, Conrado R M; Amigó, Angelica; Stolyarov, Vladimir; Gunderov, Dmitri; Amigó, Vicente

    2017-10-19

    β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

  19. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  20. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    Science.gov (United States)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  1. Energetics of gaseous and volatile fission products in molten U–10Zr alloy: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Tian, Jie; Jiang, Tao; Yang, Yanqiu; Hu, Sheng [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Peng, Shuming, E-mail: pengshuming@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Yan, Liuming [Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2015-11-15

    Gaseous and volatile fission products have a number of adverse effects on the safety and efficiency of the U–10Zr alloy fuel. The theoretical calculations were applied to investigate the energetics related to the formation, nucleation, and degassing of gaseous and volatile fission products (Kr, Xe and I) in molten U–10Zr alloy. The molecular dynamics (MD) simulations were applied to generate equilibrium configurations. The density functional theory (DFT) calculations were used to build atomistic models including molten U–10Zr alloy as well as its fission products substituted systems. The vacancy formation in liquid U–10Zr alloy were studied using DFT calculations, with average Gibbs free formation energies at 8.266 and 6.333 eV for U- and Zr-vacancies, respectively. And the interaction energies were −1.911 eV, −2.390 eV, and −1.826 eV for the I–I, Xe–Xe, and Kr–Kr interaction in lattice when two of the adjacent uranium atoms were substituted by gaseous atoms. So it could be concluded that the interaction between I, Kr, and Xe in lattice is powerful than the interaction between these two atoms and the other lattice atoms in U–10Zr.

  2. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Klepikov, A.Kh. E-mail: klepikov@ietp.alma-ata.su; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R. E-mail: gxl@inel.gov

    2000-11-01

    The present work is an attempt to obtain data concerning the influence of neutron and {gamma} irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10{sup 14} n/cm{sup 2} s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples.

  3. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R.

    2000-01-01

    The present work is an attempt to obtain data concerning the influence of neutron and γ irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10 14 n/cm 2 s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples

  4. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dissociation of dilute immiscible copper alloy thin films

    International Nuclear Information System (INIS)

    Barmak, K.; Lucadamo, G. A.; Cabral, C. Jr.; Lavoie, C.; Harper, J. M. E.

    2000-01-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 degree sign C. However, in most cases, substantial reductions in resistivity of the films took place below 400 degree sign C, at temperatures of interest to copper metallization schemes for silicon chip technology. (c) 2000 American Institute of Physics

  6. Microstructural design of magnesium alloys for elevated temperature performance

    Science.gov (United States)

    Bryan, Zachary Lee

    during heat treatment and creep deformation. An optimal Mg-1.9at%Sn-1.5at%Al-1.0at%Si (TAS) alloy was cast, solution treated, and aged. The high aspect ratio Mg 2Si particles were found to effectively limit grain growth during solution treatment. Tension testing revealed no statistical difference between the TA and TAS due to the Mg2Si location at the HCPMg grain boundaries. The TAS alloy, however, exhibited approximately an order of magnitude decrease in the minimum creep rate compared to TA because the Mg2Si particles hindered grain boundary motion during deformation.

  7. Precipitation structures and mechanical properties of Al-Li-Zr alloy containing V

    International Nuclear Information System (INIS)

    Ying, J.K.; Ohashi, T.

    1999-01-01

    It is known that Al-Li alloys possess high elastic modulus and low density, and the metastable δ' (Al 3 Li) precipitate in these alloys affords considerable strengthening effect. However, with the strengthening resulting from the precipitation of δ' which is coherent with the matrix, these alloys suffer from low ductility and fracture toughness. It seems that the loss of ductility is the slip localization which occurs as a result of slip planes during deformation in connection with the specific hardening mechanism. As a result it indicates typical intergranular fracture. On the one hand, zirconium is used in many aluminum alloys to inhibit recrystallization during alloy processing. When zirconium is present in the alloy grain refinement occurs, which consequently, is considered as a factor that reduces the slip distance, and lowers the stress concentration across grain boundaries and at grain boundary triple points. Nevertheless, if only zirconium is added in Al-Li alloy it still shows intergranular fracture. By Zedaris et al., equilibrium phase Al 3 (Zr,V) in Al-Zr alloy containing V reduces the lattice mismatch along the c-axis with Al and, the L1 2 -structure metastable precipitates Al 3 (Zr,V) in Al-Zr-V alloys are stable at elevated temperature. Therefore, it is interesting to elucidate the effect of V in Al-Li-Zr alloy at the precipitation structures and mechanical properties of these alloys

  8. Thin TaC layer produced by ion mixing

    DEFF Research Database (Denmark)

    Barna, Árpád; Kotis, László; Pécz, Béla

    2012-01-01

    in strongly asymmetric ion mixing; the carbon was readily transported to the Ta layer, while the reverse process was much weaker. Because of the asymmetrical transport the C/TaC interface remained sharp independently from the applied fluence. The carbon transported to the Ta layer formed Ta......Ion-beam mixing in C/Ta layered systems was investigated. C 8nm/Ta 12nm and C 20nm/Ta 19nm/C 20nm layer systems were irradiated by Ga+ ions of energy in the range of 2–30keV. In case of the 8nm and 20nm thick C cover layers applying 5–8keV and 20–30keV Ga+ ion energy, respectively resulted...

  9. Effects of alloying and transmutation impurities on stability and mobility of helium in tungsten under a fusion environment

    International Nuclear Information System (INIS)

    Wu Xuebang; Kong Xiangshan; You Yuwei; Liu, C.S.; Fang, Q.F.; Chen Junling; Luo, G.-N.; Wang Zhiguang

    2013-01-01

    The behaviour of helium in metals is particularly significant in fusion research due to the He-induced degradation of materials. A small amount of impurities introduced either by intentional alloying or by transmutation reactions, will interact with He and lead the microstructure and mechanical properties of materials to change. In this paper, we present the results of first-principles calculations on the interactions of He with impurities and He diffusion around them in tungsten (W), including the interstitials Be, C, N, O, and substitutional solutes Re, Ta, Tc, Nb, V, Os, Ti, Si, Zr, Y and Sc. We find that the trapping radii of interstitial atoms on He are much larger than those of substitutional solutes. The binding energies between the substitutional impurities and He increase linearly with the relative charge densities at the He occupation site, indicating that He atoms easily aggregate at the low charge density site. The sequence of diffusion energy barriers of He around the possible alloying elements is Ti > V > Os > Ta > Re. The present results suggest that Ta might be chosen as a relatively suitable alloying element compared with other possible ones. (paper)

  10. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  11. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  12. Preparation and Photocatalytic Properties of Sr2−xBaxTa3O10−yNz Nanosheets

    Directory of Open Access Journals (Sweden)

    Tatsumi Ishihara

    2013-01-01

    Full Text Available Sr2−xBaxTa3O10−yNz (x = 0.0, 0.5, 1.0 nanosheets were prepared by exfoliating layered perovskite compounds (CsSr2−xBaxTa3O10−yNz. The Sr1.5Ba0.5Ta3O9.7N0.2 nanosheet showed the highest photocatalytic activity for H2 production from the water/methanol system among the Sr2−xBaxTa3O9.7N0.2 nanosheets prepared. In addition, Rh-loaded Sr1.5Ba0.5Ta3O9.6N0.3 nanosheet showed the photocatalytic activity for oxygen and hydrogen production from water. The ratio of hydrogen to oxygen evolved was around two. These results indicate that the Rh-loaded Sr1.5Ba0.5Ta3O9.6N0.3 nanosheet is a potential catalyst for photocatalytic water splitting.

  13. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  14. Morphology and hot deformation of lamellar microstructures in zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Vanderesse, N.

    2008-06-01

    This study aims at providing a precise description of the lamellar microstructures of two alloys, Zircaloy-4 and TA6V, and at characterizing their deformation at high temperature. New experimental techniques have been developed for these materials: instrumented Jominy end quench test, channel-die with mobile walls, X-ray microtomography. The main results underline the role of the alpha-GB phase formed at the prior beta grain boundaries on the variant selection in Zircaloy-4 and TA6-V. The three dimensional organization of the colonies in TA6V is also revealed for the first time and discussed in relationship with the formation of the microstructure. In hot compressed Zircaloy-4 several mechanisms of strain localization are observed. Twinning activity at 750 C, in particular, is clearly put into evidence. A classification of these heterogeneities is proposed and their influence on the recrystallization is discussed. (author)

  15. The magnetic hyperfine field in the 181Ta site in the Co2HfAl and Co2HfGa Heusler alloys

    International Nuclear Information System (INIS)

    Silva, R. da.

    1979-01-01

    The hyperfine magnetic fields at 181 Ta nuclei in Heusler alloys Co 2 HfZ (Z=Al, Ga) have been measured using the time differential perturbed gamma-gamma angular correlation (TDPAC) method. The hyperfine fields obtained from these measurements at the liquid nitrogen temperature are -189 and +- 150 kOersted for Co 2 HfAl and Co 2 HfGa, respectively. The concept that the hyperfine field at the Y site is similar to the solute fields in Fe, Co, Ni and Gd matrices is corroborated. We have verified that ratios H sub(hf) sub(Ta)/T sub(c) and H sub(hf) sub(Ta)μ sub(Co) in Co 2 HfZ compounds (Z=Al, Ga, Sn) do not depend on the nature of Z element. However a dependence in the value of observed field with the s-p element in Z site was noticed. We feel that the samples are not completely ordered cubic as observed by the quadrupole interaction measurements. The results are interpreted in terms of the Campbell-Blandin formalism, and it is shown that the spin polarization of conduction electrons at Hf and Ta have opposite signs. (Author) [pt

  16. New micrographic examination methods for nuclear metals and alloys; Methodes micrographiques originales pour l'examen de differents metaux et alliages nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Monti, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Compagnie Saint Gobain, Services Nucleaires (France)

    1959-07-01

    The report describes several methods of preparation of specimens (polishing and pickling) and the results obtained on metals: Pu, U, Th, Nb, Ta, V and alloys: Al-Pu, U-Pu and Th-Nb. (author) [French] On decrit diverses methodes de preparation d'echantillons metallographiques (polissage et attaque) ainsi que les resultats obtenus sur les metaux: Pu, U, Th, Nb, Ta, V et les alliages: Al-Pu, U-Pu et Th-Nb. (auteur)

  17. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  18. Effect of hydrogen on Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Costa, J.E.

    1985-01-01

    The effect of hydrogen on the physical and mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. This study had three main goals. The first was to improve the understanding of the effects of hydrogen in the β phase. The second goal was to determine the effects of hydrogen on the specific alloy Ti-10V-2Fe-3Al. The third goal was to identify possible in-service problems that could occur in Ti-10V-2Fe-3Al and in similar alloys. The effects of hydrogen were examined in three different microstructures: beta-annealed and water-quenched (B/WQ), beta-annealed and furnace cooled (B/FC), and solution treated and aged (STA). The B/WQ microstructure was nominally all-β with some athermal omega phase while the B/FC and STA microstructures were α + β microstructures. Hydrogen concentrations from approx.0 to >30 at.% were used. Hydrogen was introduced into test specimens using either Sieverts charging or cathodic charging techniques. When the B/WQ microstructure was deformed, the β phase was transformed to orthorhombic α'' martensite. Hydrogen effects in the B/FC and STA microstructures were largely the result of hydride formation at α/β interfaces. The effect of hydride formation was observed as decreases in the reduction of area for tensile specimens

  19. Absolute measurement of the cross sections of neutron radiative capture for 23Na, Cr, 55Mn, Fe, Ni, 103Rh, Ta, 197Au and 238U in the 10-600keV energy range

    International Nuclear Information System (INIS)

    Le Rigoleur, Claude; Arnaud, Andre; Taste, Jean.

    1976-10-01

    The total energy weighting technique has been applied to measuring absolute neutron capture cross sections for 23 Na, Cr, 55 Mn, Fe, Ni, 103 Rh, Ta, 197 Au, 238 U in the 10-600keV energy range. A non hydrogeneous liquid scintillator was used to detect the gamma from the cascade. The neutron flux was measured with a 10 B INa(Tl) detector or a 6 Li glass scintillator of well known efficiency. The fast time-of-flight technique was used with on line digital computer data processing [fr

  20. Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti-30Nb-5Ta-6Zr alloy.

    Science.gov (United States)

    Wang, Yu; Zhao, Juan; Dai, Shijuan; Chen, Feng; Yu, Xinquan; Zhang, Youfa

    2013-11-01

    In this study, the relationship between deformation mechanism and rolling reductions was investigated, and the effects of deformation reductions on the microstructure and mechanical properties of the alloys both cold rolled and aged were revealed. It was found that the equiaxed β grains of the Ti-30Nb-5Ta-6Zr alloy have elongated gradually with increasing the deformation reduction. The deformation mechanism of dislocation slipping, deformed twins and SIM α″ phase appeared in the alloy deformed by 23% and 66%. The type of twins of the alloy deformed by 23% and 66% are {112}〈111〉 and {332}〈113〉 respectively. When the reduction was up to 85%, dislocation slipping was the main mode of deformation accompanying with SIM α″ phase occurred. With increasing deformation reduction, the average size of lenticular precipitation α phase decreased gradually. The strength of cold rolled and aged samples increased with increasing deformation reduction, while elastic modulus decreased. Due to the precipitation α phase, the elastic modulus of aged samples was higher than cold rolled. © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of Silicon in U-10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, Elizabeth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showed that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.

  2. The influence of Ta on the solidification microstructure and segregation behavior of γ(Ni)/γ′(Ni3Al)–δ(Ni3Nb) eutectic Ni-base superalloys

    International Nuclear Information System (INIS)

    Xie, M.; Helmink, R.; Tin, S.

    2013-01-01

    Highlights: ► Ta and Nb have a nominally identical influence on equilibrium δ volume fraction. ► Ta and Nb impact the sequence and segregation differently during solidification. ► Microstructure varies with both overall Ta + Nb level and Ta/Nb ratio. ► Pandat (PanNi7) is unable to predict trends quantitatively in this system. -- Abstract: Polycrystalline γ/γ′–δ eutectic Ni-base superalloys based on the Ni–Al–Nb alloy system were recently demonstrated to possess excellent high temperature strength and creep resistance. Investigations aimed to establish the fundamental relationships between alloy chemistry, solidification behavior and cast microstructure in these novel Ni–Al–Nb γ/γ′–δ alloy systems are currently underway. This particular study is focused on understanding the influence of Ta additions on the solidification sequence, phase volume fraction, distribution coefficient and solid state partitioning parameter of this eutectic alloy system by systematically investigating a series of experimental alloys with nominally constant overall levels of Ta + Nb content but varying Ta/Nb ratios. Although many of the tendencies observed in these multi-component γ/γ′–δ eutectic alloys are in agreement with trends observed in lower order model alloy systems, Ta additions were found to significantly modify solidification characteristics of the alloys. The experimental observations were also used to critically assess the predictive capability of thermodynamic database calculations. Despite the qualitative agreement observed between the experimental results and predictions for relatively simple quaternary and quinary model alloys, comparison of the results for higher order, multi-component γ/γ′–δ eutectic alloys reveals notable differences

  3. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  4. Neutral strange particle production and inelastic cross section in p-bar+Ta reaction at 4 GeV/c

    International Nuclear Information System (INIS)

    Miyano, K.; Noguchi, Y.; Yoshimura, Y.

    1988-01-01

    The inclusive production of K/sub s//sup 0/, /Lambda/ Lambda-bar, and K/sub s//sup 0//Lambda/in the p-barTa reaction at 4 GeV/c was measured and compared with that in the p-barp reaction. The total inelastic and topological cross sections were also measured. The number of /Lambda/s produced in the p-barTa reaction was 11.3 times larger than that expected from the geometrical cross section, which is defined as A/sup 2/3/ times the cross section for the p-barp reaction. The yield ratio Lambda-bar//Lambda/was found to be 2 x 10/sup -2/. These values cannot be accounted for by a straightforward extension of the p-barN reaction. Besides, a correlation of 2 vees like K/sub s//sup 0/-/Lambda/could not prove their simultaneous production. Nuclear temperatures of 135 and 97 MeV were obtained from the kinetic energy spectra of K/sub s//sup 0/ and /Lambda/ respectively. The kinematical characteristics of the K/sub s//sup 0/ and /Lambda/produced were analyzed in terms of the fireball model

  5. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Kadochkin, A.; Gaganidze, E.

    2009-01-01

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is ∼0.2 NRT that is slightly higher than for pure α-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  6. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)

    2009-12-15

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  7. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  8. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  9. Acoustic tests of elastic and microplastic properties of V-Ti-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.M. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Rezvoushkin, A.V. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Kardashev, B.K. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)

    1996-10-01

    The non-linear acoustic properties of V-10Ti-5Cr alloy before and after proton irradiation (dose 2.2 x 10{sup 14} p/cm{sup 2}) were investigated using a composite oscillator technique at longitudinal vibration frequencies of about 100 kHz. Acoustic parameters (decrement and resonance frequency) of the samples demonstrated noticeable amplitude dependencies of hysteretic type both in undeformed and deformed states. An unusual influence of plastical pre-straining on irradiated sample was found which resulted in small decreases in damping and increases in resonance frequency, and hence, of the elastic modulus. Damping in an irradiated sample was higher and its resonant frequency was lower as compared with a non-irradiated sample. This acoustic effect correlated with the results of microhardness and yield strength measurements. The experimental results are discussed in the framework of a model which predicts the creation by proton irradiation of defects which aid the motion of dislocations in V-alloys. (orig.).

  10. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Zhou, W.F.; Liu, F.F.; Ren, Y.P. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Ren, N.F.; Xu, S.D.; Yang, T. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-02-15

    Graphical abstract: The grain refinement process of Ti-6Al-4V alloy under LSP: (a) LDD in original grains; (b) Dislocations in β phase; (c) DTIs in α phase; (d) DTs transform into DCs; (e) DWs develop into sub-GBs; (f) GR accomplishes. - Highlights: • LSP could repair the surface defects and reduce the surface roughness. • Microstructure evolution of α phase in Ti-6Al-4V alloy processed by LSP is distinct from β phase. • Multidirectional twin intersections and subgrain boundaries are the main mechanism of grain refinement of Ti-6Al-4V alloy. • Grain refinement process of the Ti-6Al-4V alloy was illustrated. - Abstract: Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  11. Electrodeposition of Ge/C composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Wan; Ngo, Duc Tung; Pak, Chan Jin [Junnam National Univ., Gwangju (Korea, Republic of)

    2014-06-15

    As a result, new titanium alloys are now being studies for application as biomaterials and interesting choice is the β-type titanium alloys. In order to overcome these weakness of Ti-6Al-4V alloy, many Ti alloys consisting of non-toxic elements such as Nb, Ta, Zr, Hf, Mo and Sn, have been developed for biomedical applications. They are mostly β type alloys composed of non-toxic elements. This newly developed Ti-25Ta-xHf (x = 0, 3, 7, 10, and 15 wt.%) alloy is expected to demonstrate better biocompatibility. The purpose of this research was to investigate electrochemical characteristics of Ti-Ta alloys containing HA for biomaterials. Electrochemical characteristics of Ti-25Ta-xHf alloys were improved by Hf addition and it can be an important factor for the improvement of corrosion resistance.

  12. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 717-724, 2004

  13. NMR-ON of 182Ta and 183Ta in Fe

    International Nuclear Information System (INIS)

    Allsop, A.L.; Chaplin, D.H.; Murray, D.W.; Stone, N.J.

    1980-01-01

    Nuclear magnetic resonance has been observed on radioactive 182 Ta and 183 Ta oriented at low temperature in an Fe host, by detection of the change in spatial anisotropy of γ-rays emitted during nuclear decay. By measuring the resonant frequencies of 183 Ta in four different applied magnetic fields the nuclear magnetic moment and hyperfine field have been deduced. These are: vertical stroke μ( 183 Ta;I = 7/2) = 2.28(3)μsub(N) and Bsub(h)sub(f)(TaFe at 0 K) = -67.2(1.3)T. The sin of the ground state of 182 Ta has been determined as I = 3 by comparing resonance results with those obtained in a thermal equilibrium nuclear orientation study. The ratio of the resonant frequencies observed for 182 Ta and 183 Ta at one applied field value yields a magnetic moment for the former of vertical stroke μ( 182 Ta;I = 3) vertical stroke = 2.91(3)μsub(N). The spin lattice relaxation time for 183 TaFe (0.12 at% Ta) at 18 mK in an applied field of 0.5 T has been found to be 40(10)s. (orig.)

  14. Microstructure evolution of the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joints brazed using Au-Ni-V filler alloys with different V content

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, J., E-mail: hitzhangjie@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, H.W.; Fan, G.H.; He, Y.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-08-18

    Highlights: > Si{sub 3}N{sub 4} ceramic was brazed using Au-Ni-V filler alloy with different V content. > The microstructure evolution of the joint was study in detail in the paper. > The polygonal Ni{sub 2}SiV{sub 3} and Ni{sub 3}V phase in the joint were investigated by TEM. > The formation of different compounds and alloys in joint was detailed discussed. - Abstract: Au-Ni-V filler alloys with different vanadium contents were designed to braze Si{sub 3}N{sub 4} ceramic at 1373 K for 30 min, and the microstructures of brazing seams were investigated by SEM and TEM. When the Au-Ni-V filler alloy contains 5 at.% V, round-like Ni[Si, V, Au] precipitates form in the Au[Ni] solid solution matrix and a VN reaction layer with 0.5 {mu}m thickness appears on Si{sub 3}N{sub 4} interface. When the V content increases to 10 at.%, a new polygonal Ni{sub 2}SiV{sub 3} phase occurs in the seam, and the Ni[Si, V, Au] precipitate coarsens and VN layer thickens. With increase of V contents to 15 and 20 at.%, laminar Ni[Au] and polygonal Ni{sub 3}V precipitates form. With 25 at.% V content in the filler alloy, the Ni{sub 2}SiV{sub 3} and Ni{sub 3}V precipitates distribute homogenously in the brazing seam. These microstructure evolutions were attributed to the reaction between Si{sub 3}N{sub 4} and vanadium, which forms VN reaction layer and releases Si into the molten alloy.

  15. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.; Hall, J.; Cantor, R.

    2009-01-01

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle (Omega)/4π ∼ 10 -3 , offers an energy resolution of ∼10-20 eV FWHM for energies up to ∼1 keV, and can be operated at total count rates of ∼10 6 counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  16. A study of nitride formation during the oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Hanrahan, R.J. Jr.; Lu, Y.C.; Kung, H.; Butt, D.P.

    1996-01-01

    The oxidation rates of Ti rich titanium-tantalum alloys are significantly lower in air than in oxygen. This nitrogen effect has been shown to be associated with the formation of a nitride layer at or near the scale-metal interface. In the present work the authors used transmission electron microscopy and microdiffraction to identify the nitrides formed on Ti5Ta and Ti40Ta (5 and 40 weight percent Ta alloys) during identical exposures. In both alloys the nitride develops in contact with the oxygen stabilized α-phase in the substrate. In Ti5Ta a continuous layer of TiN forms, while in Ti40Ta a discontinuous layer of Ti 2 N interspersed with Ta 2 O 5 (formed from the Ta rich β-phase) is formed. The nitride layer acts as an oxygen diffusion barrier, reducing the dissolution of oxygen in the substrate

  17. Tensile properties and bend ductility of (Fe,Ni)3V long-range-ordered alloys after irradiation in HFIR

    International Nuclear Information System (INIS)

    Braski, D.N.

    1984-01-01

    The objective of this work was to determine the effect of neutron irradiation on the tensile properties and bend ductility of (Fe,Ni) 3 V long-range-ordered (LRO) alloys. Several (Fe,Ni) 3 V LRO alloys were irradiated in HFIR-CTR-42 and -43 at 400 to 600 0 C, to approximately 10 dpa and approximately 1000 at. ppm He. Additions of cerium or carbon and the use of cold-worked microstructures did not improve the embrittlement resistance of the LRO alloys. The LRO-37-5RS alloy, with a microstructure produced by rapid solidification, exhibited the highest ductilities, and further study of the RS microstructure is warranted. The correlation between bend ductility and tensile ductility was poor

  18. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin

    2013-11-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  19. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin; Callens, Emmanuel; Abou-Hamad, Edy; Basset, Jean-Marie

    2013-01-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  20. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  1. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  2. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  3. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  4. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  5. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  6. Hexagonal perovskites with cationic vacancies. 25. Hexagonal 5 L stacking polytypes in the systems Ba/sub 5/BaWsub(3-x)sup(VI)Msub(x)sup(V)vacantOsub(15-x/2)vacantsub(x/2) with Msup(V) = Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-12-01

    In the systems BaO-M/sub 2/sup(V)O/sub 5/-WO/sub 3/ (Msup(V) = Nb, Ta) a new phase Ba/sub 5/BaWsub(3-x)Msub(x)sup(V)vacantOsub(15-x/2)vacantsub(x/2) with hexagonal 5 L structure (sequence hhccc; space group P-3m1) could be prepared. The range of existence is restricted to Msup(V) containing compounds. With Msup(V) = Nb the lower phase boundary is x = 3. In the Ta system it is reached between x = 2 and 3; the pure Ta pervoskite (Ba:Ta:O = 6:3:13 1/2 = 4:2:9) represents the final member of the series Ba/sub 3/Srsub(1-y)Basub(y)Ta/sub 2/O/sub 9/ with y = 1.

  7. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@usp.br [Escola de Engenharia de Lorena, Universidade de São Paulo, Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Portebois, L., E-mail: leo.portebois@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); David, N., E-mail: nicolas.david@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France)

    2017-02-15

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF{sub 2} as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V{sub 3}Si, V{sub 5}Si{sub 3}, V{sub 6}Si{sub 5} and VSi{sub 2}) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10{sup −9} to 10{sup −13} cm{sup 2} s{sup −1}. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi{sub 2} layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum. - Highlights: • The pack cementation technique is implemented to study interdiffusion in V/Si and V-4Cr-4Ti/Si couples. • Interdiffusion coefficients of vanadium silicides were experimentally determined within the range 1100–1250 °C. • For either V/Si or V-4Cr-4Ti/Si couples, the VSi{sub 2} layer has the highest growth rate. • The Cr and Ti alloying elements mainly modified the V{sub 5}Si{sub 3} and V{sub 6}Si{sub 5} growth rate. • Numerical simulation allows for a confident assessment of the VSi{sub 2} coating lifetime on V-4Cr-4Ti.

  8. Investigation of TaC–TaB2 ceramic composites

    Indian Academy of Sciences (India)

    ture and the mechanical properties of the composites were investigated. The results .... 300 nm. Jingangzuan in the TaC/TaB2 composites SPS for 10 min at different temperatures are .... [1] Liu L, Yea F, Hea X and Zhoua Y 2011 Mater. Chem.

  9. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  10. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  11. "Forest Grove School District v. T.A.": The Supreme Court and Unilateral Private Placements

    Science.gov (United States)

    Yell, Mitchell L.; Katsiyannis, Antonis; Collins, Terri S.

    2010-01-01

    On June 22, 2009, the U.S. Supreme Court issued its decision in the case "Forest Grove School District v. T.A." (hereafter "Forest Grove"). In "Forest Grove," the High Court answered the question of whether the parents of students with disabilities are entitled to reimbursement for the costs associated with placing…

  12. Total neutron cross section for 181Ta

    Directory of Open Access Journals (Sweden)

    Schilling K.-D.

    2010-10-01

    Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104  n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].

  13. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-11-15

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  14. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    International Nuclear Information System (INIS)

    Hellstroem, J.; Beshai, S.

    1971-11-01

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  15. Hexagonal perovskites with cationic vacancies. 16. Rhombohedral 12 L-stacking polytypes Ba/sub 3/Asup(III)M/sub 3/sup(V)vacantO/sub 12/ with Msup(V) = Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-02-01

    The white quaternary oxides Ba/sub 3/LaM/sub 3/sup(V)vacantO/sub 12/ with Msup(V) = Nb, Ta belong to the group of hexagonal perovskites with cationic vacancies. They crystallize in a rhombohedral 12 L-structure (sequence (hhcc)/sub 3/; space group R3m) with a = 5.75 A; c = 28.1 A (Msup(V) = Nb); a = 5.74 A; c = 28.2 A (Ta) and Z = 3. Signs for the formation of isotypic compounds with Asup(III) = Pr, Nd could be obtained as well.

  16. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).

    Science.gov (United States)

    Lin, Zhengjie; Wang, Liqiang; Xue, Xiaobing; Lu, Weijie; Qin, Jining; Zhang, Di

    2013-12-01

    In this paper, an equal channel angular pressing method is employed to refine grains and enhance mechanical properties of a new β Ti-35Nb-3Zr-2Ta biomedical alloy. After the 4th pass, the ultrafine equiaxed grains of approximately 300 nm and 600 nm are obtained at pressing temperatures of 500 and 600°C respectively. The SEM images of billets pressed at 500°C reveal the evolution of shear bands and finally at the 4th pass intersectant networks of shear bands, involving initial band propagation and new band broadening, are formed with the purpose of accommodating large plastic strain. Furthermore, a unique herringbone microstructure of twinned martensitic variants is observed in TEM images. The results of microhardness measurements and uniaxial tensile tests show a significant improvement in microhardness and tensile strength from 534 MPa to 765 MPa, while keeping a good level of ductility (~16%) and low elastic modulus (~59 GPa). The maximum superelastic strain of 1.4% and maximum recovered strain of 2.7% are obtained in the billets pressed at 500°C via the 4th pass, which exhibits an excellent superelastic behavior. Meanwhile, the effects of different accumulative deformations and pressing temperatures on superelasticity of the ECAP-processed alloys are investigated. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  18. Electronic structure of disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Krause, J.C.; Paduani, C.; Schaff, J.; Costa, M.I. Jr. da

    1998-01-01

    The first-principles discrete variational method is employed to investigate the electronic structure and local magnetic properties of disordered Fe-V alloys. The spin-polarized case is considered in the formalism of the local-spin-density approximation, with the exchange-correlation term of von Barth endash Hedin. The effect on the local magnetic properties of adding V atoms in the immediate neighborhood of iron atoms is investigated. The partial density of states, hyperfine field (H c ), magnetic moment (μ), and isomer shift are obtained for the central atom of the cluster. For the impurity V atom in the bcc iron host the calculated values for H c and μ are -203 kG and -0.86μ B , respectively. The isolated Fe atom in a bcc vanadium host exhibits a collapsed moment and acts as a receptor for electrons. In ordered alloys the calculations indicate also a vanishing moment at iron sites. copyright 1998 The American Physical Society

  19. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  20. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  1. Effects of Y incorporation in TaON gate dielectric on electrical performance of GaAs metal-oxide-semiconductor capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li Ning; Choi, Hoi Wai; Lai, Pui To [Department of Electrical and Electronic Engineering, The University of Hong Kong (China); Xu, Jing Ping [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China)

    2016-09-15

    In this study, GaAs metal-oxide-semiconductor (MOS) capacitors using Y-incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 x 10{sup 11} cm{sup -2} eV{sup -1}), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 x 10{sup -5}A/cm{sup 2} at V{sub fb} + 1 V). These merits should be attributed to the complementary properties of Y{sub 2}O{sub 3} and Ta{sub 2}O{sub 5}:Y can effectively passivate the large amount of oxygen vacancies in Ta{sub 2}O{sub 5}, while the positively-charged oxygen vacancies in Ta{sub 2}O{sub 5} are capable of neutralizing the effects of the negative oxide charges in Y{sub 2}O{sub 3}. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Radiation-enhanced diffusion in nickel-10.6% chromium alloys

    International Nuclear Information System (INIS)

    Gieb, M.

    1995-01-01

    Results of investigations of the diffusion rate of nickel-10.6% chromium alloys after plastic deformation, after quenching from 700 C and from 1030 C, and during irradiation with 18 MeV protons and 1.85 MeV electrons are reported. The diffusion rate is measured by means of the electrical resistivity which increases with increasing degree of short range order. It was found that the characteristic temperature below which short range order develops is T t =550 C. Below about 400 C the atomic mobilities of the component atoms of the alloy are so small that no further increase in the degree of short range order is found in due laboratory times. The activation energy for self-diffusion was determined after quenching from 700 C to Q SD =2.88 eV. For the migration activation energy of vacancies a value of E M 1V =1.18 eV was obtained after quenching from 1030 C. For the migration activation energies of interstitials and vacancies values of E M 1I =1.04 eV and E M 1V =1.16 eV are derived from results of measurements of radiation enhanced diffusion, respectively. These values decrease with increasing high energy particle flux. The characteristic temperature for interstitial cluster formation is T t =300 C. Above this temperature radiation-induced interstitials and vacancies annihilate mainly by pair recombination. Below this temperature interstitials also annihilate at sinks which are formed during irradiation so that the concentration of vacancies increases with irradiation time. Their migration activation energy is approximately obtained in a straight-forward way from the experimental data. Above about 380 C the radiation enhanced diffusion rate is surprisingly much smaller than the thermal diffusion rate. The quasi-dynamic vacancy concentration built up during irradiation is much smaller than the thermal vacancy concentration. (orig.)

  3. Annealing Induced Softening in Deformed AI-4043 Alloy

    International Nuclear Information System (INIS)

    Saad, G.; Fawzy, A.; Soliman, H.N.; Mohammed, Gh.; Fayek, S.A.

    2011-01-01

    The present paper is devoted to study the effect of annealing temperature for different annealing periods of time on the structure and consequently on the tensile properties of Al-4043 alloy. The obtained results showed that the microstructure of AI-4043 alloy is characterized by the presence of spherically shaped Si-particles, which were found to be uniformly distributed within the AI-matrix. Stress-strain characterizations of AI-4043 samples annealed at different temperatures (T a = 573, 673 and 773 K) for different periods of time (t a = 0.5, 1,2.5,5 and 10 h), showed that the tensile parameters; yield stress ε y 0.2 and fracture stress ε f were decreased with increasing Ta and/or ta while the total strain ε T was increased. This was interpreted in terms of growth of Si-particles with increasing T a and/or t a . Attention has been also paid to the role of the minor elements Fe, Cu and Ti on the structure and tensile response behavior of the alloy under investigation

  4. DFT investigations on mechanical stability, electronic structure and magnetism in Co2TaZ (Z = Al, Ga, In) heusler alloys

    Science.gov (United States)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-12-01

    Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.

  5. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  6. Electronic structure and interatomic bonding in Al10V

    International Nuclear Information System (INIS)

    Jahnatek, M; Krajci, M; Hafner, J

    2003-01-01

    On the basis of ab initio calculations we analysed the electron density distribution in the elementary cell of the compound Al 10 V. We found covalent bonding between certain atoms. The Al-V bonds of enhanced covalency are linked into -Al-V-Al-V- chains that extend over the whole crystal. The chains intersect at each V site and together form a Kagome network of corner-sharing tetrahedra. The large voids of this network are filled by Z 16 Friauf polyhedra consisting of Al atoms only. The skeleton of the Friauf polyhedron has the form of a truncated tetrahedron and consists of 12 strongly bonded Al atoms. These Al-Al bonds also have covalent character. The bonding is dominated by sp 2 hybridization. The centre of the Friauf polyhedron may be empty or occupied by an Al atom. The thermodynamic stability of the phase is investigated. The Al 21 V 2 phase with occupied voids is at low temperatures less stable than Al 10 V. The Al 10 V structure can be considered as a special case of the Al 18 Cr 2 Mg 3 structural class. We have found the same picture of bonding as we report here for Al 10 V for several other aluminium-rich alloys belonging to the Al 18 Cr 2 Mg 3 structural class also

  7. Transformation of Ti/sub 30/Nb/sub 30/Zr/sub 7/Ta superconducting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, T; Monju, Y; Tatara, I; Nagi, N

    1973-10-01

    The effect of cold working on the rates of beta phase decomposition in the Ti/sub 30/Nb/sub 30/Zr/sub 7/Ta superconducting alloy was investigated. T.T.T. diagrams for the cold worked specimen were determined from the changes in electrical resistivity at liquid nitrogen temperature, Micro vickers hardness number measurement and the lattice constants determined by the x-ray powder method. Some results are as follows: (1) the alpha phase precipitation occurs by ageing at temperatures higher than 550/sup 0/C. At 550/sup 0/C, the beta phase decomposition into the alpha-beta minutes + beta seconds phase temperatures higher than 550/sup 0/C. At 550/sup 0/C, the beta phase decomposition into the alpha minutes + beta + betaseconds phase was found. (2) the rates of the alpha phase precipitation were accelerated by cold working. (3) the omega phase precipitation was found between 450 and 700/sup 0/C. 17 references.

  8. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, Galen Richard; Petti, David Andrew; Sharpe, John Phillip; Schuetz, Stanley Thomas

    2000-10-01

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200°C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices

  9. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, G.R.; Petti, D.A.; Sharpe, J.P.; Schuetz, S.T.

    2000-10-31

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200 C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices.

  10. Mechanical and diffusion properties of refractory me--tal and alloy monocrystals

    International Nuclear Information System (INIS)

    Shinyaev, A.Ya.; Kopalejshvili, N.I.

    1977-01-01

    The temperature dependence of mechanical properties of single crystals Mo, W, Ta, Nb and of alloys Mo-Ta and Nb-Ta has been investigated from the point of view of diffusion processes. The curve of the dependence of the ultimate strength upon the temperature has shown four discontinuities corresponding to various stages of development of intercrystalline and volume diffusions. It is shown that for close-to-ideal solid solutions of Nb-Ta alloys the temperature dependence of the strength properties is the same as for pure metals. In case of appreciable deviations from ideal properties (system Mo-Ta), the drops in strength, due to volume diffusion, shift toward higher temperatures

  11. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  12. Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti-6Al-4V.

    Science.gov (United States)

    Sarraf, Masoud; Razak, Bushroa Abdul; Nasiri-Tabrizi, Bahman; Dabbagh, Ali; Kasim, Noor Hayaty Abu; Basirun, Wan Jefrey; Bin Sulaiman, Eshamsul

    2017-02-01

    Tantalum pentoxide nanotubes (Ta 2 O 5 NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta 2 O 5 NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H 2 SO 4 : HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin - 1 . The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  14. Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy

    International Nuclear Information System (INIS)

    Jin, Weihong; Wang, Guomin; Lin, Zhengjie; Feng, Hongqing; Li, Wan; Peng, Xiang; Qasim, Abdul Mateen; Chu, Paul K.

    2017-01-01

    Highlights: • Films comprising Ta_2O_5, Ta suboxide, and Ta are sputter-deposited on ZK60 Mg alloy. • The Ta-containing film significantly mitigates degradation of ZK60. • The modified ZK60 exhibits notably enhanced cell adhesion and proliferation. - Abstract: Tantalum (Ta) is introduced to the surface of the ZK60 Mg alloy by reactive magnetron sputtering to enhance the corrosion resistance and cytocompatibility. The film thickness and composition, corrosion behavior, and cytocompatibility are studied by various techniques systematically. The surface layer composed of Ta_2O_5, Ta suboxide, and Ta increases the corrosion resistance of ZK60 while simultaneously improving cell attachment, spreading, and proliferation in vitro. The enhancement mechanism is proposed and discussed.

  15. A study on corrosion resistance of the Ti-10Mo experimental alloy after different processing methods

    International Nuclear Information System (INIS)

    Alves, A.P.R.; Santana, F.A.; Rosa, L.A.A.; Cursino, S.A.; Codaro, E.N.

    2004-01-01

    The purpose of this work was to evaluate the microstructure and corrosion resistance of the experimental Ti-10Mo (wt.%) alloy as-cast and treated. These alloys were divided into three groups for analysis: as-cast, after solution heat treatment at 1000 deg. C in argon atmosphere and remelting in centrifugal machine (investment casting). The microstructure formed from each condition was studied using optical microscopy. Corrosion behavior of titanium-molybdenum alloys in fluoridated physiological serum (0.15 M NaCl+0.03 M NaF [pH=6]) was studied and compared with Ti-6Al-4V alloy. In all electrodes systems, similar electrochemical response was obtained. In naturally aerated physiological serum, the corrosion rate is mainly controlled by dissolution process of a complex passive film. This film appears to be formed by titanium species with different oxidation states. Experimental Ti-10Mo alloy exhibit the lowest passive current densities, in particular, samples after heat treatment

  16. Phase selection during pulsed laser annealing of Fe-V alloys

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Follstaedt, D.M.; Peercy, P.S.

    1987-01-01

    Pulsed laser melting of the low-temperature σ (tetragonal, D8/sub b/) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by -- 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (-- 10/sup 10/ K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the σ phase in the near-surface after melting σ with incident laser energies (1.0-1.41 J/cm/sup 2/) which are well above the melt threshold as determined by changes in reflectivity (-- 0.7 J/cm/sup 2/). The α phase nucleated from the undercooled liquid within -- 20 ns

  17. Synthesis, crystal structure and properties of K2Ta2S10: A novel ternary tantalum polysulfide with TaS8 polyhedra forming infinite anionic chains

    International Nuclear Information System (INIS)

    Wu Yuandong; Naether, Christian; Bensch, Wolfgang

    2005-01-01

    The new ternary alkali tantalum polysulfide K 2 Ta 2 S 10 has been synthesized by reacting TaS 2 with an in situ formed melt of K 2 S 3 and S at 773K. The compound crystallizes with four formula units in the monoclinic space group P2 1 /n (No. 14) with lattice parameters of a=14.9989(13)A,b=6.4183(4)A,c=15.1365(13)A,β=117.629(9) o . The structure contains two different zigzag chain anions [TaS 5 ] - , running parallel to the crystallographic b-axis separated by potassium cations. The two crystallographically independent tantalum atoms are in a distorted bi-capped trigonal prismatic environment of eight sulfur atoms which was never observed before. The TaS 8 polyhedra share three S atoms on each side to form the anionic chains. The compound was characterized with FIR and Raman spectroscopy

  18. Role of α precipitates in flux pinning in a superconducting Ti-Nb-Ta-Zr quaternary alloy

    International Nuclear Information System (INIS)

    Osamura, K.; Tsunekawa, H.; Monju, Y.; Horiuchi, T.

    1984-01-01

    The precipitation behaviour of the α phase in a Ti-27 at.% Nb-6 at% Ta-6 at% Zr alloy has been investigated mainly by means of small-angle X-ray scattering measurements, by which the average size and number density of α precipitates were determined. The alloy was isothermally aged at 643 K after cold-rolling to various thicknesses. During ageing the average size of α precipitates increased but the number density decreased. The effect of cold-rolling was to increase the volume fraction of α precipitates. The superconducting critical current density was measured for the same specimens after the metallographical investigation. The specific pinning force produced by α precipitates, which corresponds to the global pinning force density divided by the number density of precipitates, was found to be proportional to the cube of the particle radius. It was found that the global pinning force density can be described using a scaling rule in terms of the volume fraction of α precipitates and the reduced magnetic field. The dominant global pinning force in the present foil specimens, as well as in commercial multifilamentary wires, is attributed to α precipitates. Dislocations and their secondary substructure introduced by cold-working also contributed to flux pinning, and could offer nucleation sites for the α phase. (author)

  19. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications

    International Nuclear Information System (INIS)

    Zheng, Liang; Zhang, Guoqing; Lee, Tung L.; Gorley, Michael J.; Wang, Yue; Xiao, Chengbo; Li, Zhou

    2014-01-01

    Highlights: • An equiaxed superalloy has high rupture life equivalent to single crystal alloy DD3. • Low Cr and high W superalloys possess good microstructrual stability at 850–1100 °C. • Tantalum promotes, strengthens and stabilizes the eutectic γ′ and MC carbides. • Excessive Ta leads to form harmful abnormal primary α and plate-like M 6 C phases. • Proper Ta can improve the stress rupture life at intermediate and high temperatures. - Abstract: A novel polycrystalline Ni-base superalloy was developed for land-based high temperature applications, such as isothermal forging dies and industrial gas turbines. The alloy possessed surprisingly high stress rupture life of 52 h at 1100 °C/118 MPa which is comparable to the first generation single crystal (SC) superalloy and exhibited good microstructural stability. The effects of Ta addition on the phase change, stress rupture properties and microstructural stability of the alloy were investigated. The results indicated that Ta is a γ′-former and promotes the formation of eutectic γ′. The alloys with ∼7 vol.% eutectic γ′ possess higher stress rupture life at 1100 °C/118 MPa than the alloys with higher ∼20 vol.% eutectic. However, ∼20 vol.% excessive eutectic phases will enhance the stress rupture life at intermediate temperature of 760 °C for 686 MPa but weaken high temperature stress rupture properties. The (Al + Ta) content over 14.4 at.% led to the formation of large amounts of eutectic γ′ and exceeded the solubility of W and Mo in the residue liquid pool, which then promoted the precipitation of primary α-(W,Mo) and M 6 C phases. Tantalum was also found as a strong MC carbides forming element. The order of ability to form monocarbide decreased from NbC to TaC to TiC. 6Al–0Ta (wt.%) alloys possessed good microstructural stability with no harmful topologically close-packed (TCP) phases being observed after thermal exposure at 850 °C/3000 h, 900 °C/1000 h. Only trace amounts of

  20. Compounds of the type Ba/sub 3/Bsup(II)M/sub 2/sup(V)O/sub 9/ with Bsup(II) = Mg, Ca, Sr, Ba, and Msup(V) = Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Thumm, I; Herrmann, M [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-08-01

    The hexagonal perovskites Ba/sub 3/Bsup(II)M/sub 2/sup(V)O/sub 9/ (Msup(V) = Nb, Ta) crystallize with Bsup(II) = Mg, Ca in a 3 L structure (sequence (c)/sub 3/) and Bsup(II) = Sr in the hexagonal BaTiO/sub 3/ type (6 L; sequence (hcc)/sub 2/) with an 1:2 order for the B and M ions. Intensity calculations for Ba/sub 3/SrNb/sub 2/O/sub 9/ and Ba/sub 3/SrTa/sub 2/O/sub 9/ gave in the space group P6/sub 3//mmc a refined, intensity related R' value of 8.4% (Nb) and 9.0% (Ta) respectively. For Bsup(II) = Ba the perovskite Ba/sub 3/BaTa/sub 2/O/sub 9/ has an orthorhombic distorted 6 L structure and forms with Ba/sub 3/SrTa/sub 2/O/sub 9/ a continuous series of mixed crystals (Ba/sub 3/Srsub(1-x)Basub(x)Ta/sub 2/O/sub 9/). In the system Ba/sub 3/Srsub(1-x)Basub(x)Nb/sub 2/O/sub 9/ the range of existence of the hexagonal BaTiO/sub 3/ type is confined to the Sr richer end. The pure Ba compound posesses a proper structure type (5 L: Ba/sub 5/BaNb/sub 3/vacantOsub(13.5)vacantsub(1.5)).

  1. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  2. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.

    Science.gov (United States)

    Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J

    2010-11-01

    Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk

  3. Damage rates in neutron irradiated FeCo and FeCo2V ordered and disordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1979-01-01

    Ordered and disordered samples of FeCo and FeCo2V alloys have been irradiated at liquid hydrogen temperature with fission neutrons up to an integrated dose of about 7.2 x 10 17 n/cm 2 (E > 1 MeV). During the irradiation, the resistivity increases continuously due to point defect production. (author)

  4. Structural and electronic properties of V{sub 2}B{sub n} (n = 1–10) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Nan; Jia, Jianfeng, E-mail: jiajf@dns.sxnu.edu.cn; Wu, Hai-Shun, E-mail: wuhs@mail.sxnu.edu.cn

    2015-09-28

    Highlights: • Ground state isomers of V{sub 2}B{sub n} clusters are presented. • The growth pattern of V{sub 2}B{sub n} clusters is discussed. • V{sub 2}B{sub 6} is found to be the magically stable cluster. • The different ground state structure of V{sub 2}B{sub n} from that of Ta{sub 2}B{sub n} is caused by the small atomic radius of V atom. - Abstract: Inspired by the discovery of a series of Ta{sub 2}B{sub n} clusters, the geometric structures, stabilities, and electronic properties of V{sub 2}B{sub n} clusters up to n = 10 have been systematically investigated based on the density-functional B3LYP method and the CCSD(T) method. Among the small size clusters, the V{sub 2}B{sub 5} cluster was observed to have different geometric motif than Sc{sub 2}B{sub 5}, Ti{sub 2}B{sub 5} and Ta{sub 2}B{sub 5}. For V{sub 2}B{sub n} clusters with an n ⩾ 6, the bipyramidal structure is energetically favored, as for Sc{sub 2}B{sub n} and Ti{sub 2}B{sub n}. The second-order difference of energies, binding energies, dissociation energies, vertical ionization potentials, vertical electron affinities and chemical hardness of the V{sub 2}B{sub n} clusters were calculated and analyzed. The V{sub 2}B{sub 6} cluster was determined to be stable thermodynamically and might be observed in a future experiment. To understand the stability of the V{sub 2}B{sub 6} cluster, a detailed inspection of its occupied valence orbitals was performed.

  5. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  6. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  7. Structures of Ta22W4O67 and Ta74W6O203. Pt. 1. Refined structural models using synchrotron radiation

    International Nuclear Information System (INIS)

    Schmid, S.

    1995-01-01

    The crystal structures of Ta 22 W 4 O 67 [M r = 5788.19, a = 6.1485 (5), b = 47.6205 (12), c = 3.8559 (3) A, γ = 90.04 (1) , space group = C112/m (non-standard setting), Z = 1, D x = 8.513 g cm -3 , F(000) = 2438] and Ta 74 W 6 O 203 [M r = 17741.06, a = 6.1664 (5), b = 29.2717 (14), c = 3.8731 (2) A, space group = Pbam (no. 55), Z = 0.2, D x = 8.428 g cm -3 , F(000) 1494] were determined using synchrotron radiation at four different wavelengths below the Ta L III edge [λ = 1.2741 (-146 eV), λ = 1.2586 (-26 eV), λ = 1.2571 (-14 eV) and λ = 1.2563 A (-8 eV)]. The collection of data immediately below the Ta L III edge at -8 eV enabled resolution of Ta and W of up to eight electrons, which assisted in the refinement of Ta/W ordering for both structures. Bond valence arguments have been used to locate oxygen vacancies required by the formulae. From the largest data set for Ta 22 W 4 O 67 (λ = 1.2741 A), a final value of 0.0481 for R 1 = Σ parallel F obs (h)vertical stroke - vertical stroke F calc (h) parallel /Σvertical stroke F obs (h)vertical stroke was obtained for 3082 unmerged reflections with I(h) > 3σ[I(h)] and for Ta 74 W 6 O 203 (λ = 1.2563 A) a final value of 0.0571 for R 1 was obtained for 5675 unmerged reflections. The two structures are described from a conventional polyhedral perspective as 13- and 8-times superstructures occurring in the solid solution (1-x)Ta 2 O 5 xWO 3 , 0 ≤ x ≤ 0.267. (orig.)

  8. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  9. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    International Nuclear Information System (INIS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-01-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO 2 /Ta 2 O 5 charge-trapping layer. In comparison to a memory capacitor with a single HfO 2 trapping layer, the erase speed of a memory capacitor with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔV FB = 4 V, the device with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO 2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application

  11. Study on the influence of heat treatment, solubilization and ageing in the microstructure biocompatible alloy Ti10Nb

    International Nuclear Information System (INIS)

    Barretto, Tatiana Conceicao Machado; Coelho, Rodrigo Estevam; Barbosa, Sonia Regina Sales

    2014-01-01

    Titanium alloys are the class of metallic materials used for biomedical applications due the excellent combination of physical properties and biocompatibility. Alloys that have Aluminum and Vanadium are the most used today but some studies have reported adverse effects with long-term presence of Al and V in the body, not to mention the value of the elastic modulus of this alloy is much higher than the elastic modulus of the bone. In this work we study the microstructure and hardness variations of a binary alloy Ti10Nb of α + β type, a league that possess the β- stabilizing element in substitution of Al and V. To characterize the elements of this alloy X-ray diffraction, scanning electron microscopy and hardness testing were used. With the X- ray diffraction was not possible to observe the formation of β phase neither before nor the after heat treatments. The microscopy allowed the presence of β phase and α phase change to be observed. (author)

  12. Fission of Al, Ti, Co, Zr, Nb, Ag, In, Nd, Sm, and Ta nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1989-01-01

    Samples of Al, Ti, Co, Zr, Nb, Ag, In, Nd, Sm, and Ta elements in contact with solid state nuclear track detectors were exposed to 0.8-1.8 GeV bremsstrahlung beams at the 2.5-GeV Electron Synchrotron of the Bonn University. The detectors were processed to produce visible fission tracks for track analysis with optical microscopes. Absolute mean cross section per photon and fissility were evaluated. Results are discussed and compared with other photofission data as well as with estimates from the current fission models. A broad minimum found for nuclear fissility of 10 -4 -10 -3 covering the range 15 approx Z 2 /A approx 25 seems to confirm the predictions from the models. For Al and Ti nuclei the probability of fission amounts to approx 10 -1 . (author) [pt

  13. Analysis of polarized photoluminescence emission of ordered III–V semiconductor quaternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, Tatiana, E-mail: tatiana.prutskij@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Makarov, Nykolay, E-mail: nykolay.makarov@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Attolini, Giovanni, E-mail: giovanni@imem.cnr.it [IMEM/CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy)

    2016-04-15

    Ternary and quaternary III–V alloys obtained by metal-organic vapor-phase epitaxy (MOVPE) grow very often with some degree of atomic ordering. Atomic ordering reduces the symmetry of the crystal lattice and thus drastically changes optical properties of the alloy. Moreover, the photoluminescence (PL) emission becomes polarized and its study helps to understand the atomic arrangement within the crystal lattice. In this work we experimentally studied the polarization of the PL emission from different crystallographic planes of several quaternary III–V semiconductor alloys grown on GaAs substrates by MOVPE. We compare the measured PL emission polarization angular patterns with those calculated with a model made for ternary alloys and discuss the limits of application of this model for quaternaries. It is found that the experimentally obtained polarization patterns are consistent with the existence of different ordering crystallographic planes for III- and for V-group atoms.

  14. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy

    International Nuclear Information System (INIS)

    Hasani, S.; Shamanian, M.; Shafyei, A.; Behjati, P.; Szpunar, J.A.

    2014-01-01

    Highlights: • We investigated, occurrence of different phase transformations in a FeCo- 7.15%wt V alloy upon heating to 1200 °C. • We investigated, the determination of the activation energy for these phase transformations by using five isoconversional methods. • We investigated, the calculation of the empirical kinetic triplets by using the invariant kinetic parameters method and fitting model. - Abstract: In this study, occurrence of different phase transformations was investigated in a FeCo-7 wt% V alloy upon heating to 1200 °C by the dilatometry method at different heating rates (5, 10, and 15 °C min −1 ). It was found that four phase transformations (including B2-type atomic ordering in α phase, first stage of polymorphic transformation (α → α r + γ), ordering to disordering, and second stage of polymorphic transformation (α r → γ) occur in this alloy up to 1200 °C. Two isoconversional methods, as Starink and Friedman, were used to determine variation of the activation energy with temperature, E(T). Moreover, the empirical kinetic triplets (E, A, and g(α)) were calculated by the invariant kinetic parameters (IKP) method and fitting model

  15. Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance

    International Nuclear Information System (INIS)

    Wang, X.Y.; Zhang, Z.S.; Bai, T.

    2010-01-01

    The sputtering target for high-resistance thin film resistors plays a decisive role in temperature coefficient of resistance (TCR). Silicon-rich chromium (Cr)-silicon (Si) target was designed and smelted for high-resistance thin film resistors with low TCR. Valve metal tantalum (Ta) and aluminum (Al) were introduced to the Cr-Si target to improve the performance of the target prepared. The measures for grain refining in smelting Cr-Si-Ta-Al target were taken to improve the performance of the prepared target. The mechanism and role of grain refinement were discussed in the paper. The phase structure of the prepared target was detected by X-ray diffraction (XRD). Rate of temperature drop was studied to reduce the internal stress of alloy target and conquer the easy cracking disadvantage of silicon-rich target. The electrical properties of sputtered thin film resistors were tested to evaluate the performance of the prepared target indirectly.

  16. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Mitra, S.

    1992-01-01

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10 - 5/sec and 6.56 x 10 -6 /sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  17. Influence of pulsed electron beam treatment on microstructure and properties of TA15 titanium alloy

    International Nuclear Information System (INIS)

    Gao Yukui

    2013-01-01

    Highlights: ► The hardness changes were determined by nanoindention method. ► The surface modification by pulsed electron beam treatment was investigated. ► The mechanism was analyzed based on XRD and TEM investigations. ► The modification effects were focused at the surface layer hardness. - Abstract: The surface of TA15 titanium alloy was modified by pulsed electron beam and the hardness distribution along the treated surface layer was investigated by nanoindent technology. The grade characteristics were therefore analyzed by studying the distribution of hardness along surface layer of specimens. Moreover, the microstructure was investigated by OM, XRD and TEM techniques. Furthermore, the correlation of hardness to microstructure was analyzed. The results show that the grade fine grain microstructure is formed in the upper surface layer and the temperature grade or heat effect caused by pulsed electron beam treatment is the main reason to form grade fine grain microstructure in the surface layer.

  18. La2O3-reinforced W and W-V alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Savoini, B.; Rabanal, M.E.; Garces, G.; Pareja, R.

    2011-01-01

    W and W-V alloys reinforced with La 2 O 3 particles have been produced by MA and subsequent HIP at 1573 K and 195 MPa. The microstructure of the consolidated alloys has been characterized by scanning electron microscopy, energy dispersive spectroscopy analyses and X-ray diffraction. The mechanical properties were studied by nanoindentation measurements. The results show that practically full dense billets of W-V, W-V-La 2 O 3 and W-La 2 O 3 alloys can be produced. The microstructure analysis has shown that islands of V are present in W-V and W-V-1La 2 O 3 alloys. In W-1La 2 O 3 islands of La 2 O 3 are also present. The nanohardness of the W matrix increases with the addition of V, while decreases with the addition of La 2 O 3 .

  19. STUDY OF THERMAL BEHAVIOUR ON TITANIUM ALLOYS (TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    VASUDEVAN D

    2017-08-01

    Full Text Available Titanium is recognized for its strategic importance as a unique lightweight, high strength alloyed structurally efficient metal for critical, high-performance aircraft, such as jet engine and airframe components. Titanium is called as the "space age metal" and is recognized for its high strength-to-weight ratio. Today, titanium alloys are common, readily available engineered metals that compete directly with stainless steel and Specialty steels, copper alloys, nickel based alloys and composites. Titanium alloys are needed to be heat treated in order to reduce residual stress developed during fabrication and to increase the strength. Titanium (Ti-6Al-4V alloy is an alpha, beta alloy which is solution treated at a temperature of 950 ºC to attain beta phase. This beta phase is maintained by quenching and subsequent aging to increase strength. Thermal cycling process was carried out for Ti-6Al-4V specimens using forced air cooling. Heat treated titanium alloy specimen was used to carry out various tests before and after thermal cycling, The test, like tensile properties, co-efficient of thermal expansion, Microstructure, Compression test, Vickers Hardness was examined by the following test. Coefficient of Thermal expansion was measured using Dilatometer. Tensile test was carried out at room temperature using an Instron type machine. Vickers's hardness measurement was done on the same specimen as used for the microstructural observation from near the surface to the inside specimen. Compression test was carried out at room temperature using an Instron type machine. Ti‐6Al‐4V alloy is a workhorse of titanium industry; it accounts for about 60 percent of the total titanium alloy production. The high cost of titanium makes net shape manufacturing routes very attractive. Casting is a near net shape manufacturing route that offers significant cost advantages over forgings or complicated machined parts.

  20. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Zhao-Gui Zhang

    Full Text Available Sucrose non-fermenting 1-related protein kinases (SnRKs comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L, a cleaved amplified polymorphic sequence (CAPS marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs. The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A were transformed into allele-specific PCR (AS-PCR markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW and spike length (SL of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH was significantly lower.

  1. Neutron spectrum at 900 from 800 MeV (p,n) reactions on a Ta target

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; King, N.S.P.; Russell, G.J.; Donnert, H.J.

    1979-01-01

    The neutron time-of-flight spectrum produced by a thick tantalum target bombarded by 800-MeV protons was measured at an angle of 90 0 . The data were taken at the Weapons Neutron Research facility by use of a cylindrical Ta target with a radius of 1.27 cm and a length of 15 cm. An NE-213 liquid scintillator was used to detect the neutrons over an energy range of 0.5 to 350 MeV. The neutron yield is presented and compared to a intranuclear-cascade/evaporation model prediction. 3 figures

  2. Crystal growth and structure of the barium chloride nitrido-tantalate(V) Ba_3Cl_2TaN_3

    International Nuclear Information System (INIS)

    Blaschkowski, Bjoern; Duerr, Oliver; Reckeweg, Olaf; Schleid, Thomas

    2015-01-01

    Transparent, light yellow single crystals of the barium chloride nitridotantalate(V) Ba_3Cl_2TaN_3 (hexagonal, P6_3cm; a = 1507.39(8) pm, c = 632.98(3) pm, c/a = 0.420; Z = 6) are obtained by the reaction of the barium azide chloride Ba(N_3)Cl or its ternary decomposition products with the container wall of arc-welded tantalum ampoules at 900 C after four days. Its crystal structure displays one-dimensional chains "1_∞{[TaN_2_/_2N_2_/_1]"4"-} consisting of corner-sharing [TaN_4]"7"- tetrahedra (d(Ta-N) = 191-200 pm), which run along [001] and arrange as hexagonal rod packing. Charge compensation of these parallel "1_∞{[TaN_3]"4"-} strands occurs via Ba"2"+ cations and Cl"- anions erecting a three-dimensional network "3_∞{[Ba_3Cl_2]"4"+} (d(Ba-Cl) = 318-339 pm) with narrow channels apt to embed the chains. Several Ba-N contacts ranging between 264 and 319 pm secure the interconnection between both structural arrays and complete the coordination numbers of the Ba"2"+ cations to seven or eight. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Oxidative addition of diphenyl disulfide across a Ta=Ta bond. Preparation and characterization of [TaCl3(Me2S)]2(μ-SPh)2

    International Nuclear Information System (INIS)

    Campbell, G.C.; Canich, J.A.M; Cotton, F.A.; Duraj, S.A.; Haw, J.F.

    1986-01-01

    The tantalum complex (SMe 2 )Cl 2 Ta(μ-Cl) 2 (μ-SMe 2 )TaCl 2 (SMe 2 ), possessing a sigma 2 π 2 Ta=Ta double bond, reacts readily with PhSSPh to give (SMe 2 )Cl 3 Ta(μ-SPh) 2 TaCl 2 (SMe 2 ). In this reaction, the starting material loses the bridging SMe 2 ligand and two chloride bridges are broken while only two new SPh bridges are formed in the final product. This oxidative-addition reaction of the S-S single bond to the Ta=Ta double bond converts the face-sharing bioctahedron structure of the starting compound to an edge-sharing bioctahedron structure in the final dimer, with concomitant change of the oxidation state of tantalum from III to IV. The product is the first example of a d 1 -d 1 ditantalum thiolate-bridged dimer. Important structural data for (SMe 2 )Cl 3 Ta(μ-SPh) 2 TaCl 3 (SMe 2 ), which has an inversion center, are determined. The new compound crystallizes in the monoclinic space group C2/c with a = 17.934 (5) A, b = 12.445 (4) A, c = 11.705 (4) A, β = 92.50 (3) 0 , V = 2610 (2) A 3 , and Z = 4. Solid-state 13 C NMR spectroscopy with cross polarization and magic-angle spinning (CP/MAS) at 28 and -103 0 C provides evidence that this compound is diamagnetic. 12 references, 3 figures, 4 tables

  4. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  5. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  6. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling

    Science.gov (United States)

    Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.

    2018-04-01

    The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.

  7. Carbonitrides in the system Ta-TaC-TaN

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.

    1975-04-01

    Specimens have been prepared in the binary section TaC-TaN and the carbon-rich region of the Ta-TaC-TaN system by hot pressing and subsequent homogenisation. It was possible to prepare nitrogen-rich carbonitrides by homogenizing them at 1,800 0 C under a nitrogen-pressure of 50 at up to the composition of 70 mol% TaN/30 mol% TaC. Those carbonitrides containing less than 25 at% nitrogen could be prepared by homogenisation at 2,000 0 C under a nitrogen-pressure of 600 Torr. Subsequent ageing at temperatures of 1,200, 1,300 and 1,400 0 C in high vacuum as well as at 1 at nitrogen resulted in the appearance of precipitations of epsilon-TaN, β-Ta 2 (C,N) and of the zeta-phase. The type amount and shape of the precipitated phases are dependent on the ageing conditions and on the composition the specimens. Single phase specimens with compositions close to the non-metal deficient phase boundary as well as multi-phase carbonitrides with high nitrogen contents and very fine precipitates showed values of the Vickers-hardness up to 3,000 kp/mm 2 at room temperature. With regard to the hot hardness up to a temperature of 1,300 0 C specimens aged in high vacuum were superior to those which were only homogenized as well as to those aged under a nitrogen-pressure of 1 at. On an average the best hardness-values have been found at room temperature as well as at temperatures up to 1,300 0 C for carbonitrides consisting of 50 mol% TaC/50 mol% TaN after homogenisation and subsequent ageing for 40 h at 1,300 0 C. (orig.) [de

  8. Microstructural characterization of Ta-Si alloy as cast; Caracterizacao microestrutural de ligas Ta-Si no estado bruto de fusao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A.A.P. da; Coelho, G.C.; Nunes, C.A.; Suzuki, P.A.; Borges, S.P.T., E-mail: antonioaaps@gmail.co [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Faria, M.I.S.T. [Centro Universitario de Volta Redonda (UNIFOA), RJ (Brazil)

    2010-07-01

    Recent experimental studies developed in our group involving systems containing transition metals and silicon differed from the phase diagrams actually accepted. The objective of this study is to experimentally re-evaluate the invariant reactions involving liquid phase of the binary Ta-Si. Samples with different compositions were melted in arc furnace with non-consumable tungsten electrode in the copper crucible cooled water under argon atmosphere and titanium getter, using materials of high purity (minimum purity of 99.5% Ta and 99.999% Si). The samples were melted four times to ensure the microstructural and compositional homogeneity. The microstructures of the samples as cast were characterized by scanning electron microscopy (SEM/EDS) and X-ray diffraction (XRD). The results of this analysis led to a proposal for the phase diagram of Ta-Si slightly different than the diagram currently accepted. (author)

  9. Processing of Refractory Metal Alloys for JOYO Irradiations

    International Nuclear Information System (INIS)

    RF Luther; ME Petrichek

    2006-01-01

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang

  10. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    KAUST Repository

    Nurlaela, Ela

    2015-06-15

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  11. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    KAUST Repository

    Nurlaela, Ela; Harb, Moussab; Del Gobbo, Silvano; Vashishta, Manish; Takanabe, Kazuhiro

    2015-01-01

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  12. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  13. Effects of alloying on Co--Si eutectoid structures and properties

    International Nuclear Information System (INIS)

    Livingston, J.D.

    1976-01-01

    The effects of various ternary alloying elements on the microstructure and properties of directionally solidified and transformed Co-Si eutectoid alloys were studied. Aligned eutectoid structures were maintained with additions of up to 10 at. percent Ni. However, higher Ni additions led to changes in both the silicide and solid-solution phases, related changes in microstructure, and decreased tensile strength. Additions of 5 at. percent Cr, Cu, Fe, or Mn produced cellular eutectoid microstructures which deteriorated the mechanical properties. Additions of W, Ta, or Al led to eutectic, rather than eutectoid, microstructures. Alloys based on the Co-W-Si eutectic appear to have the most promising high-temperature mechanical properties

  14. Regularities in forming hardened layer during electric spark alloying on the mechanized plant EhFI-66

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Zajtsev, E.A.

    1975-01-01

    The regularities in erosion and formation of a hardened layer during electric spark alloying by a mechanized installation EFI-66-type have been studied. The heat resisting metals: Ti,Zr,V,Nb,Ta,Cr,Mo,W have been used as material for alloying electrodes. The effect of the thermophysical constants, as well as of the time of treatment and the material nature have been investigated. No direct dependence of erosion on the thermophysical constants was found. The erosion resistance of material, when treated by a mechanized installation, depends on its plasticity. Tantalum appeared to be more erosion-resistant, its cold-embrittlement temperature being the least. The dependence of the erosion on the alloying time is of a linear character. Depending on the nature of material are the most erosive vanadium and chromium, tantalum is the least erosive. The metallographic analysis has shown, that in the electric spark alloying by means of the mechanized installation the hardened layer could be subdivided into a ''white'' layer of high hardness and a layer of transformed structure. The ''white'' layer thickness is practically the same for each of the metals. The largest summary thickness of the layer is observed when alloying with the metals Ti, Zr, Nb, Ta

  15. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    1998-01-01

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO 2 in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1 x 10 -6 to 1 x 10 -1 torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO 2 environments, and for oxidation in pure O 2 at 760 torr was much lower than in low-pO 2 environments. X-ray diffraction analysis of the specimens showed that VO 2 was the dominant phase in low-pO 2 environments, while V 2 O 5 was dominant in air and in pure oxygen at 76f0 torr

  16. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    International Nuclear Information System (INIS)

    He Zhirong; Liu Manqian

    2011-01-01

    Highlights: → New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. → The effect laws of annealing on transformation temperature and hysteresis of the alloy. → The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A → R/R → A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A → R → M/M → R → A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A → R → M/M → A type transformation occurs in 550 deg. C annealed alloy, and A → M/M → A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A → R/R → A, and that of 500 deg. C aged alloy is A → R → M/M → A, while that of 400 deg. C aged alloy changes from A → R/R → A to A → R → M/M → R → A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  17. Chemical state and phase structure of (TaNbTiW)N films prepared by combined magnetron sputtering and PBII

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xingguo [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze [National Key Laboratory of Materials Behavior and Evaluation in Space Environment, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [National Key Laboratory of Science and Technology on Precision Hot Processing of Metals Harbin Institute of Technology, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China)

    2013-09-01

    (TaNbTiW)N films with thickness of ∼1000 nm are prepared on titanium alloy substrate by combined magnetron sputtering deposition and nitrogen plasma based ion implantation (N-PBII). Chemical state of the elements and phase structure of the films are investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The bonds of Ta-N, Nb-N, Ti-N-O and Ta-O are detected in the (TaNbTiW)N films, however both W-N and W-O are not found. The initial alloy film has a BCC structure, while the films with N-PBII treatment are composed of BCC and FCC structures. The hardness and elastic modulus of the films can be improved by increasing nitrogen implantation dose and reach maximum values of 9.0 GPa and 154.1 GPa, respectively.

  18. Podiel osobností na vývoji profesionálnej hudobnej kultúry. K pocte Alexandra Moyzesa (1906–1984) a Ludovíta Rajtera (1906–2000). Muzikologická konferencia s medzinárodnou účasťou, Bratislava 4.–6. 10. 2006

    Czech Academy of Sciences Publication Activity Database

    Gabrielová, Jarmila

    2007-01-01

    Roč. 44, č. 2 (2007), s. 193-194 ISSN 0018-7003. [Podiel osobností na vývoji profesionálnej hudobnej kultúry. K pocte Alexandra Moyzesa (1906–1984) a Ludovíta Rajtera (1906–2000). Bratislava, 04.10.2006–06.10.2006] Institutional research plan: CEZ:AV0Z90580513 Keywords : professional music culture * Alexander Moyzes * Ludovit Rajter Subject RIV: AL - Art, Architecture, Cultural Heritage

  19. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration

    International Nuclear Information System (INIS)

    Yang, L.Y.; Zhang, D.H.; Li, C.Y.; Foo, P.D.

    2004-01-01

    Tantalum (Ta), TaN and bilayer Ta/TaN barriers deposited on ultra-low-k porous polymer (ULKPP) and the thermal stability of their structures are comparatively investigated using various techniques. The Ta/ultra-low-k polymer shows the smallest sheet resistance, but the poorest thermal stability, while TaN on the ultra-low-k polymer shows the highest resistance but the best thermal stability. The bi-layer Ta/TaN barrier takes the advantage of both Ta and TaN barriers and gives reasonable resistance and thermal stability. The electrical tests indicate that the Cu lines with the TaN and bi-layer Ta/TaN barriers exhibit the smaller leakage current and higher breakdown voltage compared with the Cu lines with the Ta barrier. The better thermal stability of the TaN and the bi-layer Ta/TaN barriers is mainly due to the amorphous/nanostructure and less grain boundaries of the barriers. In addition, the texture discontinuity at the Ta/TaN interfaces in the bi-layers barrier also plays an important role in reducing mutual diffusion of Ta atoms in the Ta barrier and some atoms in the ultra-low-k porous polymer

  20. Electrochemical hydrogen storage of Ti-V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles

    International Nuclear Information System (INIS)

    Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.

    2005-01-01

    A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries

  1. Level structures in odd-odd deformed nucleus {sup 184}Ta

    Energy Technology Data Exchange (ETDEWEB)

    Gowrishankar, R.; Sood, P.C. [Sri Sathya Sai Institute of Higher Learning, Department of Physics, Prasanthinilayam (India)

    2016-02-15

    A detailed low-energy level scheme of the odd-odd n-rich nucleus {sub 73}{sup 184}Ta{sub 111} is constructed using the well tested Two-Quasiparticle Rotor Model (TQRM) for calculating the bandhead energies of physically admissible 2qp configurations with the inclusion of residual n-p interaction contribution. The presently available data on this level scheme from {sup 184}Hf decay are shown to be in agreement with these calculations. Our analysis concludes that {sup 184}Hf (Q{sub β} = 1340(30) keV) decay admits of 7 additional (to the 3 presently reported) β -branches to {sup 184}Ta with J = 0 or 1 and 8 more physically admissible weak (1f{sup u}) β -branches populating J{sup π} = 2{sup -} levels in {sup 184}Ta. Further, a close examination of our level scheme clearly indicates the existence of a low-lying (E{sub x} = 260(40) keV) high-spin (J{sup π} = 10{sup -}) long-lived isomer in this nucleus. (orig.)

  2. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  3. Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys

    Science.gov (United States)

    1998-07-20

    was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director

  4. Photoabsorption coefficient of alloys at Al with transition metals V, Fe, Ni and with Cu and Pr from 30 eV to 150 eV photon energy

    International Nuclear Information System (INIS)

    Hagemann, H.J.; Gudat, W.; Kunz, C.

    1975-10-01

    The absorption coeffecient of VAl 3 , FeAl, NiAl, NiAl 3 , CuAl 2 , PrAl 2 and of disordered V-Al (16 at. % Al, 28 %, 41%) and Fe-Al (11%) alloys has been measured in the region of the Msub(2,3)-absorption of the transition metals and the L-absorption of Al. The strong changes of the Al spectrum in the region of the 100 eV maximum upon alloying are explained as another evidence of the EXAFS (extended X-ray absorption fine structure) nature of these structures. The broad, prominent absorption peaks from the 3p excitations in V and Fe and from the 4d excitations in Pr are influenced only little on alloying and thus appear to be of atomic origin. The fine structure at the onset of the Pr 4d-transitions is identical in the metal and the alloy but differs from that of Pr oxide. The only Msub(2,3)-edge which is detectably shifted is that if Ni (up to 2.1 eV), whereas the onset of the Al Lsub(2,3)-edge is shifted in all the alloys (up to 1.1 eV). The shifts are interpreted in accordance with X-ray fluorescence and nuclear resonance measurements as changes of the density of states in the valence band of the alloys. (orig.) [de

  5. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  6. Assessment of the radiation-induced loss of ductility in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Alloys based on the V-Cr-Ti system are attractive candidates for structural applications in fusion systems because of their low activation properties, high thermal stress factor (high thermal conductivity, moderate strength, and low coefficient of thermal expansion), and their good compatibility with liquid lithium. The U.S. program has defined a V-4Cr-4Ti (wt %) alloy as a leading candidate alloy based upon evidence from laboratory-scale (30 kg) heats covering the approximate composition range 0-8 wt % Ti and 5 to 15 wt % Cr. A review of the effects of neutron displacement damage, helium, and hydrogen generation on mechanical behavior, and of compatibility with lithium, water, and helium environments was presented at the ICFRM-5 conference at Clearwater in 1991. The results of subsequent optimization studies, focusing on the effects of fast reactor irradiation on tensile and impact properties of a range of alloys, were presented at the ICFRM-6 conference at Stresa in 1993. The primary conclusion of this work was that the V-4Cr-4Ti alloy composition possessed a near-optimal combination of physical and mechanical properties for fusion structural applications. Subsequently, a production-scale (500 kg) heat of V-4Cr-4Ti (Heat No. 832665) was procured from Teledyne Wah-Chang, together with several 15 kg heats of alloys with small variations in Cr and Ti. Further testing has been carried out on these alloys, including neutron irradiation experiments to study swelling and mechanical property changes. This paper discusses ductility measurements from some of these tests which are in disagreement with earlier work.

  7. Erosion behavior of W-Ta coatings in plasmas of stationary mirror penning discharges

    International Nuclear Information System (INIS)

    Belous, V.A.; Bondarenko, M.N.; Glazunov, G.P.; Ilchenko, A.V.; Kuprin, A.S.; Konotopskiy, A.L.; Lunyov, V.M.; Ovcharenko, V.D.

    2016-01-01

    Investigations had been carried out of the influence of Ta alloying (2...16 wt.%) in W-coatings on their erosion behavior in steady state plasmas of Penning discharges in different gases: argon, nitrogen, and hydrogen. The coatings were deposited on stainless steel substrates by argon ion sputtering of targets made from appropriate metals. For comparison the erosion behavior had been examined of pure W and Ta coatings obtained by the same method. It was shown the essential decrease of an erosion rate after Ta addition in W coatings. The possible physical mechanism is suggested to explain such erosion behavior

  8. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    Science.gov (United States)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  9. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  10. Plasma arc melting of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Dunn, P.; Patterson, R.A.; Haun, R.

    1994-01-01

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys

  11. CONTRIBUTION TO THE TECHNOLOGY OF TANTALUM--TUNGSTEN ALLOYS. Beitrag zur technologie der tantal-wolfram-legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Kieffer, R.; Sedlatschek, K.

    1971-12-15

    The available literature on Ta-W alloys is briefly surveyed, and the methods used for the preparation of sintered Ta-W alloys (preliminary formation of solid solutions) and the type of working (cold working, vacuum sheathing, and hot working) are described. The characteristics - density, lattice parameter, hardness, specific electric resistance, hydridability, oxidation resistance, modulus of elasticity, and corrosion resistance - of sintered and cast compositions containing 0 to 100% Ta are presented.

  12. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta{sub 3}N{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Nurlaela, Ela; Harb, Moussab [Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 Saudi Arabia (Saudi Arabia); Gobbo, Silvano del [Solar and Photovoltaic Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Vashishta, Manish [Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 Saudi Arabia (Saudi Arabia); Takanabe, Kazuhiro, E-mail: kazuhiro.takanabe@kaust.edu.sa [Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 Saudi Arabia (Saudi Arabia)

    2015-09-15

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta{sub 3}N{sub 5}), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta{sub 3}N{sub 5} were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta{sub 3}N{sub 5} is present in terms of dielectric constant and effective masses. - Graphical abstract: Detailed investigation has been conducted from combined experimental and theoretical approaches on Raman and IR spectroscopies, electronic structures, dielectric constants and effective masses of TaON and Ta{sub 3}N{sub 5}. - Highlights: • Crystal structures of TaON and Ta{sub 3}N{sub 5} are discussed based on XRD and DFT calculation. • Raman and IR spectra of TaON and Ta{sub 3}N{sub 5} materials are measured and computed by DFPT method. • Optoelectronic properties of TaON and Ta{sub 3}N{sub 5} are discussed. • Dielectric constant and effective masses of TaON and Ta{sub 3}N{sub 5} are calculated.

  13. Multi-component solid solution alloys having high mixing entropy

    Science.gov (United States)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  14. Ultrasonic Characterization of Microstructural Changes in Ti-10V-4.5Fe-1.5Al β-Titanium Alloy

    Science.gov (United States)

    Viswanath, A.; Kumar, Anish; Jayakumar, T.; Purnachandra Rao, B.

    2015-08-01

    Ultrasonic measurements have been carried out in Ti-10V-4.5Fe-1.5Al β-titanium alloy specimens subjected to β annealing at 1173 K (900 °C) for 1 hour followed by heat treatment in the temperature range of 823 K to 1173 K (550 °C to 900 °C) at an interval of 50 K (50 °C) for 1 hour, followed by water quenching. Ultrasonic parameters such as ultrasonic longitudinal wave velocity, ultrasonic shear wave velocity, shear anisotropy parameter, ultrasonic attenuation, and normalized nonlinear ultrasonic parameter have been correlated with various microstructural changes to understand the interaction of the propagating ultrasonic wave with microstructural features in the alloy. Simulation studies using JMatPro® software and X-ray diffraction measurements have been carried out to estimate the α-phase volume fraction in the specimens heat treated below the β-transus temperature (BTT). It is found that the α-phase (HCP) volume fraction increases from 0 to 52 pct, with decrease in the temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic longitudinal and shear wave velocities are found to increase with decrease in the heat treatment temperature below the BTT, and they exhibited linear relationships with the α-phase volume fraction. Thickness-independent ultrasonic parameters, Poisson's ratio, and the shear anisotropy parameter exhibited the opposite behavior, i.e., decrease with increase in the α-phase consequent to decrease in the heat treatment temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic attenuation is found to decrease from 0.7 dB/mm for the β-annealed specimen to 0.23 dB/mm in the specimen heat treated at 823 K (550 °C) due to the combined effect of the decrease in the β-phase (BCC) with higher damping characteristics and the reduction in scattering due to randomization of β grains with the precipitation of α-phase. Normalized nonlinear ultrasonic parameter is found to increase with increase in the α-phase volume fraction

  15. Ellipsometry applied to phase transitions and relaxation phenomena in Ni.sub.2./sub.MnGa ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Zablotskyy, Vitaliy A.; Tyunina, Marina; Jastrabík, Lubomír; Pérez-Landazábal, J.I.; Recarte, V.; Sánchez-Alarcos, V.; Chernenko, V.A.

    2012-01-01

    Roč. 101, č. 14 (2012), "141908-1"-"141908-5" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : shape memory alloy * ellipsometry * Ni 2 MnGa Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.4757393

  16. Reactive wetting of Ti-6Al-4V alloy by molten Al 4043 and 6061 alloys at 600-700 C

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qiaoli; Li, Fuxiang; Jin, Peng; Yu, Weiyuan [Lanzhou Univ. of Technology (China). State Key Lab. of Advanced Processing and Recycling of Non-ferrous Metal

    2017-06-15

    Wetting of Ti-6Al-4V alloy by two industrial grade Al alloys (i.e., Al 6061 and 4043 alloys) was studied using the sessile drop method at 600-700 C under high vacuum. Al/Ti-6Al-4V is a typical reactive wetting system with good final wettability accompanied by the formation of precursor film which is actually an extended reaction layer. The formation mechanism for the precursor film is ''subcutaneous infiltration''. The small amount of alloying element Si in the alloys can cause significant segregation at the liquid/solid interface which satisfies the thermodynamic condition. The wetting behavior can be described by the classic reaction product control models, and Ti{sub 7}Al{sub 5}Si{sub 12} decomposition and Al{sub 3}Ti formation correspond to the two spreading stages. The small difference in alloying elements in Al 6061 and 4043 resulted in distinctly different interface structures, formation of precursor film and spreading dynamics, especially for the Si segregation at the interface.

  17. Correlation between hardness and stress in Al-(Nb, Mo, Ta) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T., E-mail: car@irb.h [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Radic, N. [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Panjan, P.; Cekada, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Tonejc, A. [Department of Physics, Bijenicka cesta 32, 10000 Zagreb, P.O.B. 331 (Croatia)

    2009-06-30

    The thin films of Al{sub x}Nb{sub 1-x} (95 {>=} x {>=} 20), Al{sub x}Mo{sub x} (90 {>=} x {>=} 20) and Al{sub x}Ta{sub 1-x} (95 {>=} x {>=} 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.

  18. The effect of the solidification mode on eutectic structure in Fe-C-V alloys

    International Nuclear Information System (INIS)

    Fras, E.; Guzik, E.

    1980-01-01

    The aim of the study was to determine such a chemical composition of Fe-C-V alloys which would ensure the formation of perfectly eutectic structures as well as to investigate the eutectic morphology of these alloys when undergoing bulk and directional solidification. Attempts have been done to get in situ composites from Fe-C-V alloys. The adopted testing methods as well as obtained results are described in detail. (H.M.)

  19. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  20. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys

    Science.gov (United States)

    Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.

    2018-04-01

    Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.

  1. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  2. Effect of alloying elements on characteristics of iron passive state in sulfuric acid

    International Nuclear Information System (INIS)

    Rejes Jola, O.; Mustafa-Zade, F.M.; Sukhotin, A.M.; Tchannikova, O.A.

    1981-01-01

    The curves of anodic polarization of iron binary alloys with Cr, Mo, W, Ni, Si, Co, Mn, Re, Ti, Al, Cu, Bi, Zn, In, V, Sb, Ta, Hf, Pb, Sn, Zr, Nb, Ce, B, P, S in 0.5 MH 2 SO 4 are studied. Passivation potentials, potentials of total passivation, transpassivity and current density are determined in the passivity region. All alloys had alpha-structure, the content of alloying elements was close to solubility in solid solution. Elements are classified according to the type of their effect on passive state of iron. Character of this effect does not have a direct connection with passivation ability the elements themselves, it is determined, probably, by a possibility to form stable passivating ruixed oxides of the ferrospinel type [ru

  3. Study of radionuclides created by 181Ta(γ,xn yp) reactions for bremsstrahlung photons produced by 150-MeV electrons

    International Nuclear Information System (INIS)

    Miller, M.A.; Dickens, J.K.

    1991-12-01

    Ten radionuclides, including isomers, from 172 Ta to 180 Ta and 180m Hf were produced by photon interactions with a sample of elemental tantalum and measured by counting photons using a high-resolution detection system. Relative yields of these radionuclides were obtained. In addition, precision half lives were obtained for 175,176,180 Ta and 180m Hf. Those obtained for the three Ta isotopes agree with previously reported values. For 180m Hf, the present measurements resulted in a half life determination of 6.05±0.06 hr, or about 10% longer than the currently adopted value for this half life

  4. From Ba3Ta5O14N to LaBa2Ta5O13N2: Decreasing the optical band gap of a photocatalyst

    International Nuclear Information System (INIS)

    Anke, B.; Bredow, T.; Pilarski, M.; Wark, M.; Lerch, M.

    2017-01-01

    Yellow LaBa 2 Ta 5 O 13 N 2 was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba 3 Ta 5 O 14 N and mixed-valence Ba 3 Ta V 4 Ta IV O 15 . The electronic structure of LaBa 2 Ta 5 O 13 N 2 was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba 3 Ta 5 O 14 N to 2.63 eV for the new oxide nitride, giving rise to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba 3 Ta 5 O 14 N revealing significantly higher activity for LaBa 2 Ta 5 O 13 N 2 under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa 2 Ta 5 O 13 N 2 with the results of the Rietveld refinements. Inset: Unit cell of LaBa 2 Ta 5 O 13 N 2 and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa 2 Ta 5 O 13 N 2 . • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H 2 evolution rate compared to prior tested Ba 3 Ta 5 O 14 N.

  5. Hot Ta filament resistance in-situ monitoring under silane containing atmosphere

    International Nuclear Information System (INIS)

    Grunsky, D.; Schroeder, B.

    2008-01-01

    Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric Ta X Si Y alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes

  6. On the Young's moduli of Ti-6Al-4V alloys

    International Nuclear Information System (INIS)

    Fan, Zhongyun

    1993-01-01

    In this paper, the authors will present an iterative approach to Young's modulus of multi-phase composites developed by Fan et al. The iterative approach will then be applied to Ti-6Al-4V alloys to predict their effective Young's moduli. It is hoped that the theoretical predictions will offer a quantitative explanation to the peculiar shape of the E c -f β curve and will shed some light on controlling the Young's moduli of Ti-6Al-4V alloys by choosing the proper heat treatment procedure

  7. Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys

    OpenAIRE

    Zhang, Xianlian; He, Xiaocong; Xing, Baoying; Zhao, Lun; Lu, Yi; Gu, Fengshou; Ball, Andrew

    2016-01-01

    The fatigue performances of self-piercing riveting (SPR) joints connecting similar and dissimilar sheets of TA1 titanium alloy (TA1), Al5052 aluminium alloy (Al5052) and H62 copper alloy (H62) were studied in this paper. The specimens of similar TA1 sheets treated with stress relief annealing were prepared to investigate the influence of relief annealing on the mechanical properties of SPR joints. Fatigue tests were conducted to characterize the fatigue lives and failure modes of the joints. ...

  8. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  9. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  10. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  11. Surface characteristics of hydroxyapatite/titanium composite layer on the Ti-35Ta-xZr surface by RF and DC sputtering

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol

    2011-01-01

    The purpose of this study was to investigate the surface characteristics of hydroxyapatite (HA)/titanium (Ti) composite layer on the Ti-35Ta-xZr alloy surface by radio frequency (RF) and direct current (DC) sputtering for dental application. The magnetron sputtered deposition for the HA was performed in the RF mode and for the Ti in the DC mode. Microstructures of the alloys were examined by optical microscopy (OM) and x-ray diffractometer (XRD). Surface characteristics of coated film was investigated by field-emission scanning electron microscope (FE-SEM) equipped with an energy dispersive x-ray spectrometer (EDS), and XRD. Microstructures of the Ti-35Ta-xZr alloys were changed from α'' phase to β phase, and changed from a needle-like structure to an equiaxed structure with increasing Zr content. From the results of polarization behavior in the Ti-35Ta-15Zr alloy, HA/Ti composite layer showed the good corrosion resistance compared to Ti single layer. The results of alternating current (AC) impedance test indicated that the presence of ha coating acted as a stable barrier in increasing the corrosion resistance.

  12. Ultrathin TaOx film based photovoltaic device

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2011-01-01

    Application of the economical metal oxide thin-film photovoltaic devices is hindered by the poor energy efficiency. This paper investigates the photovoltaic effect with an ultrathin tantalum oxide (TaOx) tunnel barrier, formed by the plasma oxidation of a pre-deposited tantalum (Ta) film. These ∼ 3 nm TaOx tunnel barriers showed approximately 160 mV open circuit voltage and 3-5% energy efficiency, for varying light intensity. The ultrathin TaOx (∼ 3 nm) could absorb approximately 12% of the incident light radiation in 400-1000 nm wavelength range; this strong light absorbing capability was found to be associated with the dramatically large extinction coefficient. Spectroscopic ellipsometry revealed that the extinction coefficient of 3 nm TaOx was ∼ 0.2, two orders higher than that of tantalum penta oxide (Ta 2 O 5 ). Interestingly, refractive index of this 3 nm thick TaOx was comparable with that of stochiometeric Ta 2 O 5 . However, heating and prolonged high-intensity light exposure deteriorated the photovoltaic effect in TaOx junctions. This study provides the basis to explore the photovoltaic effect in a highly economical and easily processable ultrathin metal oxide tunnel barrier or analogous systems.

  13. The laser surface alloying of the surface layer of the plain carbon steel

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.

    2003-01-01

    The paper describes the microstructure and properties (chemical composition, microhardness and the effect of tribological test of the surface laser alloyed layer with tantalum. Scanning electron microscopy examinations show structure, which consist of martensite and Ta2C carbides. Samples covered with Ta and the carbon containing binder showed after laser alloying higher hardness than in case of using silicon-containing binder. (author)

  14. Synthesis and characterization of Cu3TaIn3Se7 and CuTa2InTe4

    International Nuclear Information System (INIS)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M.; Delgado, G.E.; Romero, H.; Briceno, J.M.; Fernandez, J.; Grima-Gallardo, P.

    2008-01-01

    Polycrystalline samples of Cu 3 TaIn 3 Se 7 and CuTa 2 InTe 4 were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794±0.002 A, c=11.66±0.01 A, c/a=2.01, V=391±1 A 3 and a=6.193±0.001 A, c=12.400 ±0.002A, c/a=2.00, V=475±1 A 3 , respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu 3 TaIn 3 Se 7 ) and 42 K (CuTa 2 InTe 4 ). A spin-glass transition was observed in Cu 3 TaIn 3 Se 7 with T f ∼50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Uz, M. [Lafayette College, Easton, PA (United States); Ulie, T.

    1997-08-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature.

  16. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Ulie, T.

    1997-01-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature

  17. Microstructure of V-4Cr-4Ti alloy after low-temperature irradiation by ions and neutrons

    International Nuclear Information System (INIS)

    Gazda, J.; Meshii, M.; Chung, H.M.

    1998-01-01

    Mechanical properties of V-4Cr-4Ti alloy were investigated after low-temperature ( ++ ) and dual ion beams (350-keV He + simultaneously with 4.5-MeV Ni ++ ). TEM observations showed the formation of a high density of point-defect clusters and dislocation loops (<30 nm diameter) distributed uniformly in the specimens. Mechanical-property testing showed embrittlement of the alloy. TEM investigations of deformed microstructures were used to determine the causes of embrittlement and yielded observation of dislocation channels propagating through the undeformed matrix. Channels are the sole slip paths and cause early onset of necking and loss of work-hardening in this alloy. Based on a review of the available literature, suggestions are made for further research of slip localization in V-base alloys

  18. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  19. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  20. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  1. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  2. Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti–V Alloys

    Directory of Open Access Journals (Sweden)

    María C. Nevárez-Martínez

    2017-04-01

    Full Text Available V2O5-TiO2 mixed oxide nanotube (NT layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM, UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX, X-ray diffraction (DRX, and micro-Raman spectroscopy. The effect of the applied voltage (30–50 V, vanadium content (5–15 wt % in the alloy, and water content (2–10 vol % in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt % exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm. Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e− and h+ under Vis light and a possible excitation mechanism was proposed.

  3. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  4. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  5. Overvoltages transferred from a network of 220 kV to 15.65 kV level of the step-up transformer in HPP 'Bajina Bašta'

    Directory of Open Access Journals (Sweden)

    Vukelja Petar

    2011-01-01

    Full Text Available The paper presents the results of research in lightning surge waves and switching overvoltages transferred from a network of 220 kV to the 15.65 kV level of the step-up transformer in HPP 'Bajina Bašta'. Analysis of survey results lead to conclusion that transferred overvoltages can endanger 15.65 kV transformer windings and stator winding insulation. It was therefore suggested for the protection of the 15.65 kV isolation to install metal oxide surge arresters at a suitable place between the power generator bus bars and earthing.

  6. Evolution of resistive switching mechanism through H2O2 sensing by using TaOx-based material in W/Al2O3/TaOx/TiN structure

    Science.gov (United States)

    Chakrabarti, Somsubhra; Panja, Rajeswar; Roy, Sourav; Roy, Anisha; Samanta, Subhranu; Dutta, Mrinmoy; Ginnaram, Sreekanth; Maikap, Siddheswar; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Jana, Debanjan; Qiu, Jian-Tai; Yang, Jer-Ren

    2018-03-01

    Understanding of resistive switching mechanism through H2O2 sensing and improvement of switching characteristics by using TaOx-based material in W/Al2O3/TaOx/TiN structure have been reported for the first time. Existence of amorphous Al2O3/TaOx layer in the RRAM devices has been confirmed by transmission electron microscopy. By analyzing the oxidation states of Ta2+/Ta5+ for TaOx switching material and W0/W6+ for WOx layer at the W/TaOx interface through X-ray photoelectron spectroscopy and H2O2 sensing, the reduction-oxidation mechanism under Set/Reset occurs only in the TaOx layer for the W/Al2O3/TaOx/TiN structures. This leads to higher Schottky barrier height at the W/Al2O3 interface (0.54 eV vs. 0.46 eV), higher resistance ratio, and long program/erase endurance of >108 cycles with 100 ns pulse width at a low operation current of 30 μA. Stable retention of more than 104 s at 85 °C is also obtained. Using conduction mechanism and reduction-oxidation reaction, current-voltage characteristic has been simulated. Both TaOx and WOx membranes have high pH sensitivity values of 47.65 mV/pH and 49.25 mV/pH, respectively. Those membranes can also sense H2O2 with a low concentration of 1 nM in an electrolyte-insulator-semiconductor structure because of catalytic activity, while the Al2O3 membrane does not show sensing. The TaOx material in W/Al2O3/TaOx/TiN structure does not show only a path towards high dense, small size memory application with understanding of switching mechanism but also can be used for H2O2 sensors.

  7. Study of Fatigue and Fracture Behavior of Cr-Based Alloys and Intermetallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    He, YH

    2001-01-31

    The microhardness, and tensile and fracture-toughness properties of drop-cast and directionally-solidified Cr-9.25 at.% (atomic percent) Ta alloys have been investigated. Directional solidification was found to soften the alloy, which could be related to the development of equilibrium and aligned microstructures. It was observed that the tensile properties of the Cr-Ta alloys at room and elevated temperatures could be improved by obtaining aligned microstructures. The directionally-solidified alloy also showed increased fracture toughness at room temperature. This trend is mainly associated with crack deflection and the formation of shear ribs in the samples with aligned microstructures. The sample with better-aligned lamellar exhibits greater fracture toughness.

  8. Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation

    KAUST Repository

    Ziani, Ahmed; Nurlaela, Ela; Dhawale, Dattatray Sadashiv; Silva, Diego Alves; Alarousu, Erkki; Mohammed, Omar F.; Takanabe, Kazuhiro

    2015-01-01

    The physicochemical properties of a tantalum nitride (Ta3N5) photoanode were investigated in detail to understand the fundamental aspects associated with the photoelectrochemical (PEC) water oxidation. The Ta3N5 thin films were synthesized using DC magnetron sputtering followed by annealing in air and nitridation under ammonia (NH3). A polycrystalline structure with a dense morphology of the monoclinic Ta3N5 films was obtained. A relatively low absorption coefficient (104 to 105 cm-1) in the visible light range was measured for Ta3N5, consistent with the nature of the indirect band-gap. Ultra-fast spectroscopic measurements revealed that the Ta3N5 with different thicknesses films possess low transport properties and fast carrier recombination (<10 ps). These critical kinetic properties of Ta3N5 as a photoanode may necessitate high overpotentials to achieve appreciable photocurrents for water oxidation (onset ∼0.6 V vs. RHE). This journal is

  9. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.

    Science.gov (United States)

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan, E-mail: liyan@buaa.edu.cn

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe{sub 81}Ga{sub 19}, (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5}, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0{sub 3} phases were detected for the three types of Fe-Ga alloys, and additional Fe{sub 2}B and TaC phases were found in the (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5} alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe{sub 81}Ga{sub 19} alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4 h and 24 h. - Highlights: • Fe-Ga alloys showed a higher degradation rate than pure Fe. • Fe-Ga alloys exhibited good cytocompatibility for the MC3T3-E1 cells. • The MC3T3-E1 cells were tolerable to the corrosion products of Fe-Ga alloys.

  11. Effect of Ti solute on the recovery of cold-rolled V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Munoz, A.; Pareja, R.

    1999-01-01

    The recovery characteristics of cold-rolled pure V and V-Ti alloys with compositions of 0.3, 1 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. The recovery is accomplished in two stages. Fifty percent cold rolling induces the formation of microvoids in V-0.3Ti and V-1Ti but not in V-4.5Ti. The first recovery stage in pure V, V-0.3Ti and V-1Ti starts with the dissolution of microvoids. The recovery curves of the annihilation parameters for the alloys indicate the formation of Ti-rich precipitates during the first recovery stage. These precipitates act as very efficient vacancy sinks. The second recovery stage starting for annealing temperatures above ≅1150 K is attributed to annealing of vacancies associated to the precipitates. (orig.)

  12. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  13. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan)

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +} or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.

  14. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy

    International Nuclear Information System (INIS)

    He, D.; Zhu, J.C.; Lai, Z.H.; Liu, Y.; Yang, X.W.

    2013-01-01

    Highlights: ► Isothermal tensile deformations were carried on Ti–6Al–2Zr–1Mo–1V titanium alloy. ► Deformation activations were calculated based on kinetics rate equations. ► Deformation mechanisms are dislocation creep and self-diffusion at 800 and 850 °C. ► Microstructure globularization mechanisms varied with deformation temperature. ► Recrystallization mechanism changed from CDRX to DDRX as temperature increasing. - Abstract: Isothermal tensile tests have been performed to study the deformation mechanisms and microstructure evolution of Ti–6Al–2Zr–1Mo–1V titanium alloy in the temperature range 750–850 °C and strain rate range 0.001–0.1 s −1 . The deformation activations have been calculated based on kinetics rate equation to investigate the hot deformation mechanism. Microstructures of deformed samples have been analyzed by electron backscatter diffraction (EBSD) to evaluate the influences of hot deformation parameters on the microstructure evolution and recrystallization mechanism. The results indicate that deformation mechanisms vary with deformation conditions: at medium (800 °C) and high (850 °C) temperature, the deformation is mainly controlled by the mechanisms of dislocation creep and self-diffusion, respectively. The microstructure globularization mechanisms also depend on deformation temperature: in the temperature range from 750 to 800 °C, the high angle grain boundaries are mainly formed via dislocation accumulation or subgrain boundaries sliding and subgrains rotation; while at high temperature of 850 °C, recrystallization is the dominant mechanism. Especially, the evolution of the recrystallization mechanism with the deformation temperature is first observed and investigated in TA15 titanium alloy

  15. Three-quasiparticle isomer in 173Ta and the excitation energy dependence of K -forbidden transition rates

    OpenAIRE

    Wood, RT; Walker, PM; Lane, G J; Carroll, R. J.; Cullen, David; Dracoulis, G D; Hota, S. S.; Kibédi, T.; Palalani, N; Podolyak, Zs.; Reed, MW; Schiffl, K; Wright, A.M

    2017-01-01

    Using the 168Er(10B,5n) reaction at a beam energy of 68 MeV, new data have been obtained for the population and decay of a T1/2=148ns, Kπ=21/2− three-quasiparticle isomer at 1717 keV in 173Ta. Revised decay energies and intensities have been determined, together with newly observed members of a rotational band associated with the isomer. By comparison with other isomers in the A≈180 deformed region, the 173Ta isomer properties help to specify the key degrees of freedom that determine K-forbid...

  16. Room and ultrahigh temperature structure-mechanical property relationships of tungsten alloys formed by field assisted sintering technique (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Browning, Paul N.; Alagic, Sven [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States); Kulkarni, Anil [Pennsylvania State University, Department of Nuclear and Mechanical Engineering, State College, PA-16801 (United States); Matson, Lawrence [Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH (United States); Singh, Jogender, E-mail: jxs46@arl.psu.edu [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States)

    2016-09-30

    Tungsten based alloys have become of critical importance in a number of applications including plasma-facing materials in nuclear fusion reactors, rocket nozzles for aerospace applications, and in kinetic energy penetrators in the defense industry. Formation of components for these uses by powder metallurgical techniques has proven challenging, due to tungsten's relatively poor sinterability. Here we report the use of field assisted sintering technique (FAST) to produce high density, fine grain alloys with mechanical properties comparable or superior to that of components produced by conventional techniques. Alloys of pure tungsten, W-3 vol%TiC, W-5 vol%TiC, and W-10 vol%Ta were synthesized at 2100 °C, 35 MPa for 25 min using FAST. Microstructural characterization revealed effective reduction of grain size with TiC addition and preferential diffusion of oxygen into the center of tantalum particles in tantalum containing alloys. Tensile testing of alloys revealed TiC addition to W resulted in substantially improved ultimate tensile strength at the cost of ductility in comparison at temperatures up to 1926 °C (3500 °F) however this strengthening effect was lost at 2204 °C (4000 °F). Addition of 10 vol%Ta to W resulted in reduced hardness at room temperature, but substantially increased yield strength at the cost of slightly reduced ductility at 1926 °C and 2204 °C.

  17. Moderní počítačové viry

    OpenAIRE

    Malina, Lukáš

    2008-01-01

    Bakalářská práce Moderní počítačové viry se skládá ze dvou hlavních cílů (Analýza počítačových virů a návrh zabezpečení střední počítačové sítě) rozdělených na tři části: Analýza počítačových virů, Vlastní návrh zabezpečení osobního počítače koncového uživatele (Terminálu) a Vlastní návrh zabezpečení střední počítačové sítě. V první části jsou analyzovány metody šíření a infekce, specifické vlastnosti a dopady počítačových virů na osobní počítače. V druhé části je uvedeno řešení zabezpečení o...

  18. Preparation of Ta(C)N films by pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Yan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Gu Weichao [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Guling [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China)

    2007-04-07

    The pulsed high energy density plasma (PHEDP) is generated in the working gas due to a high-voltage high-current discharge, within a coaxial gun. In PHEDP surface modification, discharge is applied for preparing the amorphous and nanostructured high-melting materials as thin films deposited on various substrates. In this investigation, Ta(C)N films were deposited using PHEDP on stainless steel. Pure tantalum and graphite were used as the inner and outer electrodes of the PHEDP coaxial gun, respectively. Nitrogen was used as the working gas and also one of the reactants. Preliminary study on the films prepared under different conditions shows that the formation of Ta(C)N is drastically voltage dependent. At lower gun voltage, no Ta(C)N was detected in the films; when the gun voltage reaches or exceeds 3.0 kV, Ta(C)N occurred. The films are composed of densely stacked nanocrystallines with diameter less than 30 nm, and some grains are within 10 nm in diameter.

  19. La{sub 2}O{sub 3}-reinforced W and W-V alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Savoini, B., E-mail: bsavoi@fis.uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Rabanal, M.E., E-mail: eugenia@ing.uc3m.es [Departamento de Ciencia e Ingenieria de Materiales e Ingenieria Quimica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Garces, G., E-mail: ggarces@cenim.csic.es [Centro Nacional de Investigaciones Melaturgicas, CENIM, 28040 Madrid (Spain); Pareja, R., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-01

    W and W-V alloys reinforced with La{sub 2}O{sub 3} particles have been produced by MA and subsequent HIP at 1573 K and 195 MPa. The microstructure of the consolidated alloys has been characterized by scanning electron microscopy, energy dispersive spectroscopy analyses and X-ray diffraction. The mechanical properties were studied by nanoindentation measurements. The results show that practically full dense billets of W-V, W-V-La{sub 2}O{sub 3} and W-La{sub 2}O{sub 3} alloys can be produced. The microstructure analysis has shown that islands of V are present in W-V and W-V-1La{sub 2}O{sub 3} alloys. In W-1La{sub 2}O{sub 3} islands of La{sub 2}O{sub 3} are also present. The nanohardness of the W matrix increases with the addition of V, while decreases with the addition of La{sub 2}O{sub 3}.

  20. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydration (ΔH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  1. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  2. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  3. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  4. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  5. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  6. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  7. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  8. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    Science.gov (United States)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-06-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  9. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Measurement of the yields of residual nuclei in interactions 17.9 GeV/c α-particles with sup(159)Tb, sup(181)Ta and sup(207,2)Pb nuclei

    International Nuclear Information System (INIS)

    Butsev, V.S.; Butseva, G.L.; Kostin, V.Ya.; Migalenya, V.Ya.

    1984-01-01

    The results of investigations of 17.9 GeV/c α-particle interactions with Tb, Ta and Ph nuclei are presented. Measurements have been carried out of the relative yields of residual nuclei for the (α+Tb), (α+Ta) and (α+Pb) reactions in the 24 93 Tc, 133 Ce and 198 Tl the isomeric ratios are determined, that are compared with the isomeric ratios measured in reactions induced by 500 MeV protons and by 25.2 GeV 12 C ions

  11. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  12. Electron radiation defects in TaCsub(1-x) and TiCsub(0.97)

    International Nuclear Information System (INIS)

    Morillo, J.; Novion, C.H. de; Dural, J.

    1981-08-01

    The electrical resistivity changes of TaCsub(0.99) and TaCsub(0.80) have been measured at 21 K during irradiation with electrons of incident energies ranging from 2.5 to 0.25 MeV: a non-zero production rate is observed, even at the lowest energies. The recovery of defects was followed up to 400 K for TaCsub(0.99) and TiCsub(0.97) irradiated with 2.25 MeV electrons and up to 160 K for TaCsub(0.80) irradiated with 0.75 MeV electrons. The results are compared to fast neutron radiation damage data. For TiCsub(0.97) and TaCsub(0.99), the contributions of the different defects to the production rates and recovery spectra are tentatively separated, and a rough estimate of Frenkel pair resistivities is given

  13. Characterization of Rh films on Ta(110)

    International Nuclear Information System (INIS)

    Jiang, L.Q.; Ruckman, M.W.; Strongin, M.

    1989-01-01

    The surface and electronic structure of Rh films on Ta(110) up to several monolayers thick on Ta(110) are characterized by photoemission, Auger emission, low energy electron diffraction and low energy ion scattering. From the variation of the Rh Auger peak-to-peak intensity as a function of evaporation time, Rh/Ta(110) appears to grow in the Stranski-Krastanov mode at room temperature. However, the LEIS data show that the Rh adatoms begin to cluster on Ta(110) before growth of the monolayer is completed. Diffuse LEED scattering suggests that the Rh films are disordered. Photoemission shows that Rh chemisorption on Ta(110) generates two peaks located at 1.2 and 2. 5 eV binding energy during the initial phase of thin film growth (0 3.7 ML). Photoemission data for CO covered surfaces show that CO dissociates on the Rh/Ta(110) surface for Rh coverages less than 2.5 ML and also show that the Rh clusters develop at least one site capable of molecular CO adsorption above 0.3 ML Rh coverage. 38 refs., 5 figs

  14. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  15. Effect of alloy content on microstructure and microchemistry of ...

    Indian Academy of Sciences (India)

    This paper presents the results of an experimental study on the microstructural evolution in 9Cr reduced activation ferritic/martensitic steels during short term thermal exposures. Since the microstructure is strongly influenced by the alloying additions, mainly W, Ta and C contents, the effect of varying W and Ta contents on ...

  16. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  17. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  18. Joining of Si3N4 ceramic using PdCo(NiSiB–V system brazing filler alloy and interfacial reactions

    Directory of Open Access Journals (Sweden)

    Huaping Xiong

    2014-02-01

    Full Text Available The wettability of V-active PdCo-based alloys on Si3N4 ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6 (wt%, was developed for Si3N4 ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4 joints brazed at 1453 K for 10 min was 205.6 MPa, and the newly developed braze gives joint strengths of 210.9 MPa, 206.6 MPa and 80.2 MPa at high temperatures of 973 K, 1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4 joint brazed at 1453 K for 10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result, the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases, in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.

  19. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  20. ATA and the electron phonon coupling constant in calculating TA of super conducting alloys [Paper No. : V-2

    International Nuclear Information System (INIS)

    Chatterjee, P.; Chatterjee, S.

    1978-01-01

    The theoretical formula of McMillan has been very successful in explaining the superconducting transition temperature. In this theory the electron-phonon coupling constant was very difficult to calculate from a purely theoretical stand point until Gyorffy and Gaspari gave a theoretical formulation from the multiple scattering point of view. This theory has been very successful in explaining Tsub(c) of many superconducting elements and compounds. For the disordered solid, such as substitution alloys, this theory fails because of the breakdown of the translational symmetry used in the multiple scattering theory of Gyorffy and Gaspari. This problem can however be solved if we average the Green's function in random phase approximation (ATA). In this work we have reformulated Gyorffy and Gaspari's expression of the electron phonon coupling constant in the random phase approximation. This theory has been utilised to alloys of Nb and Mo with different concentrations. The agreement between theory and experiment appears to be very good. (author)

  1. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  2. [(≢SiO)TaVCl2Me2]: A well-defined silica-supported tantalum(V) surface complex as catalyst precursor for the selective cocatalyst-free trimerization of ethylene

    KAUST Repository

    Chen, Yin; Callens, Emmanuel; Abou-Hamad, Edy; Merle, Nicolas; White, Andrew J P; Taoufik, Mostafa; Copé ret, Christophe; Le Roux, Erwan; Basset, Jean-Marie

    2012-01-01

    On the surface of it: In the absence of co-catalyst, a well-defined silica-supported surface organometallic complex [(≢SiO)Ta VCl2Me2] selectively catalyzes the oligomerization of ethylene. The use of surface organometallic species allows three different pathways to be determined for the reduction of TaV to TaIII species under pressure of ethylene. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [(≢SiO)TaVCl2Me2]: A well-defined silica-supported tantalum(V) surface complex as catalyst precursor for the selective cocatalyst-free trimerization of ethylene

    KAUST Repository

    Chen, Yin

    2012-10-22

    On the surface of it: In the absence of co-catalyst, a well-defined silica-supported surface organometallic complex [(≢SiO)Ta VCl2Me2] selectively catalyzes the oligomerization of ethylene. The use of surface organometallic species allows three different pathways to be determined for the reduction of TaV to TaIII species under pressure of ethylene. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transparent conductive Ta2O5-codoped ITO thin films prepared by different heating process

    International Nuclear Information System (INIS)

    Zhang, B.; Dong, X.P.; Wu, J.S.; Xu, X.F.

    2008-01-01

    Tantalum-doped indium tin oxide thin films were deposited by a cosputtering technique with an ITO target and a Ta 2 O 5 target. The variations of microstructure, electrical and optical properties with substrate temperature and annealing temperature were investigated in some detail. Ta-doped ITO thin films showed better crystalline structure with different prominent plane orientation by different heating process. ITO:Ta thin films deposited at room temperature showed better optical and electrical properties. Increasing substrate temperature and reasonable annealing temperature could remarkably improve the optical and electrical properties of the films. The variation of carrier concentration had an important influence on near-IR reflection, near-UV absorption and optical bandgap. ITO:Ta thin films showed wider optical bandgap. ITO:Ta thin films under the optimum parameters had a sheet resistance of 10-20 and ohm;/sq and a transmittance of 85% with an optical bandgap of above 4.0 eV. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Characterization of Rh films on Ta(110)

    International Nuclear Information System (INIS)

    Jiang, L.Q.; Ruckman, M.W.; Strongin, M.

    1990-01-01

    The surface and electronic structure of Rh films on Ta(110) up to several monolayers thick on Ta(110) are characterized by photoemission, Auger emission, low-energy electron diffraction (LEED) and low-energy ion scattering (LEIS). From the variation of the Rh Auger peak-to-peak intensity as a function of evaporation time, Rh appears to grow in the Stranski--Krastanov mode at room temperature. However, the LEIS data show that the Rh adatoms begin to cluster on Ta(110) before growth of the monolayer is completed. Diffuse LEED scattering suggests that the Rh films are disordered. Photoemission shows that Rh chemisorption on Ta(110) generates two peaks located at -1.5 and -2.5 eV binding energy during the initial phase of thin-film growth (0 3.7 ML). CO dissociates on the Rh/Ta(110) surface for Rh coverages<2.5 ML and the surface develops a site capable of molecular CO adsorption above 0.3-ML Rh coverage

  6. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  7. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  8. The Electrochemical Stability in NaCl Solution of Nanotubes and Nanochannels Elaborated on a New Ti-20Zr-5Ta-2Ag Alloy

    Directory of Open Access Journals (Sweden)

    Claudiu Constantin Manole

    2015-01-01

    Full Text Available Nanotubular and nanochannels structures were fabricated via anodizing on a new alloy Ti-20Zr-8Ta-2Ag. A continuous coating of connected tubes/channels can be observed in the SEM micrographs forming tubular structures with diameters in hundreds of nm, as well as smaller tubes, with diameters in tens of nm. In the case of nanochannels structure, the diameters are smaller and wall thicknesses significantly thinner than in nanotubes. Wettability measurements indicate a decrease of contact angles in both cases of nanotubes and nanochannels, but the increase of hydrophilic character is more significant in the case of nanochannels. The Tafel procedure and electrochemical impedance spectroscopy tests performed in NaCl 0.9% solution indicate a better stability for the nanostructured surfaces compared to untreated alloy, the surface with nanochannels offering higher corrosion resistance. Spectral UV-VIS determination has confirmed Ag metallic presence, opening the door for applications not only in tissue engineering but for water splitting and the photoreduction of CO2 as well.

  9. Defects and related phenomena in electron irradiated ordered or disordered Fe-Co and Fe-Co-V alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.; Desarmot, G.

    1983-01-01

    Two B 2 type alloys Fe 50 at.%-Co 50 at.% and Fe 49 at.%-Co 49 at.%-V 2 at.% either in the ordered or the disordered state have been irradiated with 2.5 MeV electrons at liquid hydrogen temperature. The recovery of the resistivity damage was studied during subsequent isochronal annealing up to 700 K. The resistivity damage rates for both initially disordered Fe-Co and Fe-Co-V alloys are interpreted in terms of point defect production. The intrinsic resistivities rhosub(F) of Frenkel pairs and the effective recombination volumes V 0 are determined. In the Fe-Co ordered alloy point defect production superimposed with a disordering process can account for the resistivity damage. The effective displacement rate causing disordering is determined, indicating that replacement collisions are the dominant disordering mechanism. A calculation of the average number of replacements along directions per Frenkel pair is proposed. During the recovery of the radiation induced resistivity three main stages are observed in both ordered and disordered alloys. The particular resistivity behavior of the Fe-Co-V alloy complicates the interpretation of production and recovery data. (author)

  10. Grain refinement of aluminum and its alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    Grain refinement of aluminum and its alloys by the binary Al-Ti and Ternary Al-Ti-B master alloys is reviewed and discussed. The importance of grain refining to the cast industry and the parameters affecting it are presented and discussed. These include parameters related to the cast, parameters related to the grain refining alloy and parameters related to the process. The different mechanisms, suggested in the literature for the process of grain refining are presented and discussed, from which it is found that although the mechanism of refining by the binary Al-Ti is well established the mechanism of grain refining by the ternary Al-Ti-B is still a controversial matter and some research work is still needed in this area. The effect of the addition of other alloying elements in the presence of the grain refiner on the grain refining efficiency is also reviewed and discussed. It is found that some elements e.g. V, Mo, C improves the grain refining efficiency, whereas other elements e.g. Cr, Zr, Ta poisons the grain refinement. Based on the parameters affecting the grain refinement and its mechanism, a criterion for selection of the optimum grain refiner is forwarded and discussed. (author)

  11. Strength, ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.

    1988-01-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20 and 38%. The reduction in area ranged from 30 to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0-0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. (orig.)

  12. Suitable Fundamental Properties of Ta0.75V0.25ON Material for Visible-Light-Driven Photocatalysis: A DFT Study

    KAUST Repository

    Harb, Moussab; Cavallo, Luigi

    2016-01-01

    By applying calculations based on density functional theory, and on density functional perturbation theory, together with generalized gradient approximation-Perdew–Burke–Emzerho and screened Coulomb hybrid HSE06 functionals, we predict novel and suitable fundamental parameters of the stable monoclinic Ta0.75V0.25ON semiconductor for solar water splitting. In addition to its predicted bandgap of 2.0 eV in the required zone for solar-driven water splitting, this material reveals a high visible-light absorption coefficient, high static dielectric constant, high hole and electron mobilities along the [001] and [010] crystallographic directions, relatively low exciton binding energy, and suitable band edge energy levels for oxidizing water and reducing protons. The optical, charge-carrier transport, and redox features predicted for this material are found to be considerably better than those obtained for Ta3N5, which is the most common semiconductor photocatalyst used in visible-light-driven water splitting.

  13. Suitable Fundamental Properties of Ta0.75V0.25ON Material for Visible-Light-Driven Photocatalysis: A DFT Study

    KAUST Repository

    Harb, Moussab

    2016-11-29

    By applying calculations based on density functional theory, and on density functional perturbation theory, together with generalized gradient approximation-Perdew–Burke–Emzerho and screened Coulomb hybrid HSE06 functionals, we predict novel and suitable fundamental parameters of the stable monoclinic Ta0.75V0.25ON semiconductor for solar water splitting. In addition to its predicted bandgap of 2.0 eV in the required zone for solar-driven water splitting, this material reveals a high visible-light absorption coefficient, high static dielectric constant, high hole and electron mobilities along the [001] and [010] crystallographic directions, relatively low exciton binding energy, and suitable band edge energy levels for oxidizing water and reducing protons. The optical, charge-carrier transport, and redox features predicted for this material are found to be considerably better than those obtained for Ta3N5, which is the most common semiconductor photocatalyst used in visible-light-driven water splitting.

  14. Direct observation of effective temperature of Ta atom in layer compound TaS2 by neutron resonance absorption spectrometer

    International Nuclear Information System (INIS)

    Tokuda, Koji; Kamiyama, Takashi; Kiyanagi, Yoshiaki; Moreh, R.; Ikeda, Susumu

    2001-01-01

    A neutron resonance absorption spectrometer, DOG has been installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate the motions of a particular element by analyzing the line width of resonance absorption spectrum. We measured the temperature dependence of the effective temperature of Ta motion in TaS 2 as well as in Ta metal using DOG. The effective temperatures extracted from the observed absorption spectrum agree well with the calculated values from the phonon density of states of Ta metal over a wide temperature range of 10 to 300 K. We also succeeded in measuring both the angular dependence and the temperature dependence of effective temperatures of Ta in a layer compound TaS 2 . Based on the temperature dependence of the effective temperature, the partial phonon density of states of Ta in TaS 2 was discussed. (author)

  15. Tribocorrosion Study of Ordinary and Laser-Melted Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Danillo P. Silva

    2016-10-01

    Full Text Available Titanium alloys are used in biomedical implants, as well as in other applications, due to the excellent combination of corrosion resistance and mechanical properties. However, the tribocorrosion resistance of titanium alloy is normally not satisfactory. Therefore, surface modification is a way to improve this specific performance. In the present paper, laser surface-modified samples were tested in corrosion and pin-on-disk tribocorrosion testing in 0.90% NaCl under an average Hertzian pressure of 410 MPa against an alumina sphere. Laser-modified samples of Ti6Al4V were compared with ordinary Ti6Al4V alloy. Electrochemical impedance showed higher modulus for laser-treated samples than for ordinary Ti6Al4V ones. Moreover, atomic force microscopy revealed that laser-treated surfaces presented less wear than ordinary alloy for the initial exposure. For a further exposure to wear, i.e., when the wear depth is beyond the initial laser-affected layer, both materials showed similar corrosion behavior. Microstructure analysis and finite element method simulations revealed that the different behavior between the initial and the extensive rubbing was related to a fine martensite-rich external layer developed on the irradiated surface of the fusion zone.

  16. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  17. Radiological soil survey adjacent to TA-35, TA-48, TA-50, and TA-55

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Becker, N.M.; Maes, M.N.

    1985-01-01

    The 137 Cs concentrations in soil from five new locations (in technical areas where radioactive materials are processed or have been processed) are at or below the maximum levels (1.4 pCi/g) found in regional soils. The 238 Pu and /sup 239,240/Pu soil concentrations at Station 2 were greater than were those found in regional soils (1977 and 1978-1982 Summaries). Station 2 is located south of TA-50. The total uranium soil concentrations exceed regional background concentrations at all stations. However, these levels do not indicate contamination but reflect natural uranium leached from soil derived from the tuff. These concentrations are similar to the data collected in 1977. Uranium concentrations in soils vary and depend on the rock type that has weathered to form the soil. A comparison of the averages and standard deviations of radiochemical analyses collected in 1977 and 1983 indicates only slight variations between the 2 yr. The five new stations established in 1983 will provide long-term monitoring of the possible airborne deposition of contaminants in the areas around TA-35, TA-48, TA-50, and TA-55. Comparing 1977 with 1983 data indicates no significant increase in radioactivity of the soil adjacent to these technical areas

  18. Effects of annealing and deforming temperature on microstructure and deformation characteristics of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer The deformation behaviors of annealed Ti-50.8Ni-0.5V shape memory alloy (SMA) were given. Black-Right-Pointing-Pointer The effect of annealing temperature on microstructure and deformation characteristics of Ti-50.8Ni-0.5V SMA was shown. Black-Right-Pointing-Pointer The effect of deforming temperature on deformation characteristics of Ti-50.8Ni-0.5V SMA was given. - Abstract: Effects of annealing temperature T{sub an} and deforming temperature T{sub d} on microstructure and deformation characteristics of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of optical microscopy and tensile test. With increasing T{sub an}, the microstructure of Ti-50.8Ni-0.5V alloy wire changes from fiber style to equiaxed grain, and the recrystallization temperature of the alloy is about 580 Degree-Sign C; the critical stress for stress-induced martensite {sigma}{sub M} of the alloy decreases first and then increases, and the minimum value 382 MPa is got at T{sub an} = 450 Degree-Sign C; the residual strain {epsilon}{sub R} first increases, then decreases, and then increases, and its maximum value 2.5% is reached at T{sub an} = 450 Degree-Sign C. With increasing T{sub d}, a transformation from shape memory effect (SME) to superelasticity (SE) occurs in the alloy annealed at different temperatures, and the SME {yields} SE transformation temperature was affected by T{sub an}; the {sigma}{sub M} of the alloy increases linearly; the {epsilon}{sub R} of the alloy annealed at 350-600 Degree-Sign C decreases first and then tends to constant, while that of the alloy annealed at 650 Degree-Sign C and 700 Degree-Sign C decreases first and then increases. To get an excellent SE at room temperature for Ti-50.8Ni-0.5V alloy, T{sub an} should be 500-600 Degree-Sign C.

  19. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    Science.gov (United States)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  20. Thermal stability of the grain structure in the W-2V and W-2V-0.5Y2O3 alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martínez, J.; Savoini, B.; Monge, M.A.; Muñoz, A.; Armstrong, D.E.J.; Pareja, R.

    2013-01-01

    Highlights: • W-2V and ODS W-2V-0.5Y 2 O 3 alloys have been produced following a powder metallurgy route. • Grain microstructure and microhardness have been studied after isothermal treatments in vacuum. • Both alloys exhibit a duplex grain size population: a submicron-sized grain and a coarse grained one. • The Y 2 O 3 addition inhibits growth of the coarse grains for T 2 O 3 nanoparticles enhance the microhardness of W-2V-0.5Y 2 O 3 . -- Abstract: W-2V and ODS W-2V-0.5Y 2 O 3 alloys have been produced following a powder metallurgy route consisting of mechanical alloying and a subsequent high isostatic pressing HIP at 1573 K. The grain microstructure and microhardness recovery of the alloys have been studied in samples subjected to isothermal treatments in vacuum in temperature range 1073–1973 K. Both alloys exhibit a duplex grain size distribution consisting of a submicron-sized grain and a coarse-grained population. It has been found that the Y 2 O 3 addition inhibits growth of the coarse grains at T 2 O 3 , respectively, was observed at T ≥ 1573 K. It resulted that the rate constant for grain growth is 30 times higher in W-2V-0.5Y 2 O 3 than in W-2V. The considerable enhancement of the microhardness in the W-2V-0.5Y 2 O 3 appears to be associated to dispersion strengthening

  1. High Thermoelectric Figure of Merit by Resonant Dopant in Half-Heusler Alloys

    OpenAIRE

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-01-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in e...

  2. The modification of LiTaO3 crystal by low-energy He-ion implantation

    International Nuclear Information System (INIS)

    Pang, L.L.; Wang, Z.G.; Jin, Y.F.; Yao, C.F.; Cui, M.H.; Sun, J.R.; Shen, T.L.; Wei, K.F.; Zhu, Y.B.; Sheng, Y.B.; Li, Y.F.

    2012-01-01

    Highlights: ► LiTaO 3 crystal was implanted by 250 keV He + . ► We report the surface and transmittance of LiTaO 3 change with the fluence and time. ► New phenomena (self-splitting, self-exfoliation, self-recovery) occurred. ► Evolvement of defects and the behavior of helium were discussed. - Abstract: The effects of He-ion implantation on the surface morphology and transmittance of LiTaO 3 single crystals are investigated. The samples were implanted with 250 keV He-ion at different fluences at room temperature. The results show that the surface morphology and transmittance of implanted samples strongly depend on the ion fluence and the time when the samples expose to the air up to 60 days. When the fluence is above 1.0 × 10 16 He + /cm 2 , the transmission spectra indicate that a high concentration of defects is created. 3D-profile images show that at the higher fluence a great many triangular stripes appear on the surface of the samples. After 60 days, the recovery of the transmittance occurs and varies with the fluence. For the sample at the fluence of 5.0 × 10 16 He + /cm 2 , the raised stripes on the surface evolve into narrow cracks. Regional exfoliation, however, occurs on the surface of the sample with the fluence of 1.0 × 10 17 He + /cm 2 . According to the experimental results and simulation of SRIM 2008 code, the evolvement of defects and the behavior of He are discussed.

  3. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Pengfei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Kangming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Zhang, Deyuan [Life Tech Scientific Corporation, Shenzhen 518057 (China); Zhou, Chungen [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti–19Zr–10Nb–1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti–19Zr–10Nb–1Fe alloy is composed of α′ and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress–strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading–unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti–19Zr–10Nb–1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti–19Zr–10Nb–1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. - Highlights: • A stable superelastic strain of 4.0% is achieved for the Ti–19Zr–10Nb–1Fe alloy. • The ion release rates of Ti–19Zr–10Nb–1Fe are much lower than that of Ni in NiTi. • Ti–19Zr–10Nb–1Fe has a similar cytocompatibility compared with the NiTi alloy. • Ti–19Zr–10Nb–1Fe exhibits a better hemocompatibility than the NiTi alloy.

  4. Study of collective flows of protons and π{sup -}-mesons in p+C, Ta and He+Li, C collisions at momenta of 4.2, 4.5 and 10 AGeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Chkhaidze, L.; Djobava, T.; Kharkhelauri, L. [High Energy Physics Institute of Tbilisi State University, Tbilisi (Georgia); Chlachidze, G. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Galoyan, A. [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics, Dubna (Russian Federation); Togoo, R. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulan Bator (Mongolia); Uzhinsky, V. [Joint Institute for Nuclear Research, Laboratory of Information Technologies, Dubna (Russian Federation)

    2016-11-15

    Collective flows of protons and π{sup -}-mesons are studied at the momenta of 4.2, 4.5 and 10 AGeV/c for p+C, Ta and He+Li, C interactions. The data were obtained from the streamer chamber (SKM-200-GIBS) and from the Propane Bubble Chamber (PBC-500) systems utilized at JINR. A method of Danielewicz and Odyniec has been employed in determining a directed transverse flow of particles. The values of the transverse flow parameter and the strength of the anisotropic emission were defined for each interacting nuclear pair. It is found that the directed flows of protons and pions decrease with increasing the energy and the mass numbers of colliding nucleus pairs. The π{sup -}-meson and proton flows exhibit opposite directions in all studied interactions, and the flows of protons are directed in the reaction plane. The Ultra-relativistic Quantum Molecular Dynamical Model (UrQMD) coupled with the Statistical Multi-fragmentation Model (SMM), satisfactorily describes the obtained experimental results. (orig.)

  5. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Postprint)

    Science.gov (United States)

    2014-04-01

    vacuum arc melting. To close shrinkage porosity, it was hot isostatically pressed (HIPd) at T = 1723K and P = 207MPa for 3 h. In both as-solidified and...Acknowledgements Discussions with Drs. D.M. Dimiduk, F. Meisenkothen, D.B. Mira- cle, T.A. Parthasarathy, A.A. Salem , G.B. Viswanathan, and G.B...en.wikipedia.org/wiki/Hardnesses of the elements (data page). 15] Chr. Herzig, U. Kohler, S.V. Divinski, J. Appl . Phys. 85 (1999) 8119–8130. 16] R.E

  6. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

  7. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the 90 Sr activity will decay to levels permitting unrestricted usage in about 160 y

  8. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  9. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.

    1996-01-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000 degrees C, and exposure times ranged between 100 and ∼5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800 degrees C, even after ∼5000 h. At 1000 degrees C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h

  10. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad; Cavallo, Luigi; Basset, Jean-Marie

    2014-01-01

    (III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta

  11. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  12. Discontinuous precipitation and ordering in Ni2V-Cu alloys

    International Nuclear Information System (INIS)

    Sukhanov, V.D; Boyarshinova, T.S.; Shashkov, O.D.

    1986-01-01

    Ni-V-Cu system alloys were used to investigate the effect of ordering on over-saturated solid solution decomposition. It was discovered that ordering in the process of grain boundary migration (discontinuous disordering), stimulated changing of continuous precipitation mechanism for discontinuous one

  13. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  14. Ab-initio study of the hyperfine parameters in P2{sub 1}/c, P42nmc and Fm3m zirconia phases doped with Ta{sub zr} and the vacancy-Ta{sub zr} complex

    Energy Technology Data Exchange (ETDEWEB)

    Casali, R.A. [Facultad de Ciencias Exactas, y Nat. y Agr.-UNNE-Avenue Libertad 5600, Corrientes (Argentina)]. E-mail: rac@exa.unne.edu.ar; Caravaca, M.A. [Facultad de Ingenieria-UNNE, Avenue Las Heras 727, Resistencia (Argentina)

    2007-02-01

    In this work we develop selfconsistent calculations by means of the all-electron method NFP-LMTO. The electronic structure, quadrupolar frequencies and asymmetry parameters of ZrO{sub 2} polymorphs doped with Ta placed at substitutional site to Zr (Ta{sub Zr}), with and without vacancies are studied in the monoclinic, tetragonal and cubic phases. The calculated hyperfine parameters in neutral Ta{sub Zr} in the monoclinic phase are in agreement with hypine parameters measured with PAC and assigned to substitutional site in a wide range of temperatures. However, in the case of Ta{sub Zr} in the tetragonal P42nmc phase, the electric field gradient (EFG) is in large disagreement with the experimental assignment. Therefore we explored the incorporation of a near neighbor oxygen vacancy in several charged states. We found that the TaV{sup 0} and TaV{sup +1} pairs in the tetragonal symmetry with axis length ratio c/a=1.02 gives electric field gradients V{sub zz} and {eta} in agreement with low-temperature values of the experimentally assigned pure tetragonal, called t-form. Further, the pair Ta-V with a ratio c/a=1 gives EFG in close agreement with reported high-temperature values.

  15. Carbon fiber reinforced magnesium alloy in a Ti-6Al-4V shell

    Directory of Open Access Journals (Sweden)

    Astanin Vasily

    2017-01-01

    Full Text Available Continuous carbon fiber reinforced magnesium alloy pieces in SMC Ti-6Al-4V shell have been fabricated using pressure infiltration. Similar temperatures (~700°C for superplastic formation of the shell and melting of the alloy allow this to be done in one step. The quality of infiltration of the molten alloys is found to be proportional to load. A limiting parameter in increasing the infiltration pressure is the strength of the welded bonds. Structure, fracture parameters and mechanical properties are discussed.

  16. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  17. The Effect of Grain-refinement on Zn-10Al Alloy Damping Properties

    Directory of Open Access Journals (Sweden)

    Piwowarski G.

    2014-12-01

    Full Text Available The paper is devoted to grain-refinement of the medium-aluminium zinc based alloys (MAl-Zn. The system examined was sand cast Zn- 10 wt. %. Al binary alloy (Zn-10Al doped with commercial Al-3 wt. % Ti - 0.15 wt. % C grain refiner (Al-3Ti-0.15C GR. Basing on the measured attenuation coefficient of ultrasonic wave it was stated that together with significantly increased structure fineness damping decreases only by about 10 - 20%. The following examinations should establish the influence of the mentioned grain-refinement on strength and ductility of MAl-Zn cast alloys.

  18. Rotational structures in 174Ta

    International Nuclear Information System (INIS)

    Hojman, Daniel; Kreiner, A.J.; Davidson, Miguel

    1989-01-01

    The nucleus 174 Ta has been studied for the first time through the fusion-evaporation reaction 169 Tm ( 9 Be,4n) using a 4 mg/cm 2 self-supporting Tm foil in the 40 to 65 MeV bombarding energy range (the 4n channel was found to peak at 50 MeV). The experiments comprised γ and X-ray singles in beam and activity spectra, γ-γ-t coincidences (one of the counters was Compton suppressed) and γ-ray angular distributions. The results obtained allowed the construction of a high-spin level scheme. This scheme, which resembles that of 172 Ta, comprises several rotational bands which correspond to different couplings of the valence nucleons. One of these structures, the doubly decoupled band (DDB), is particularly interesting because it is the first observed case of a DDB based on an I π =3 + state. (Author) [es

  19. Excellent enhancement of corrosion properties of Fe–9Al–30Mn–1.8C alloy in 3.5% NaCl and 10% HCl aqueous solutions using gas nitriding treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-Chang; Lin, Chih-Lung; Chao, Chuen-Guang; Liu, Tzeng-Feng, E-mail: Lewischen815@gmail.com

    2015-06-05

    Highlights: • The FeAlMnC alloy was gas-nitrided to simultaneously achieve the aging effect. • Anti-corrosion components AlN, Fe{sub 3}N and Fe{sub 4}N were identified by using GIXRD method. • The present nitrided alloy showed a great improvement in corrosion resistance. • The nitrided sample showed an excellent coherence between nitrided layer and matrix. • The nitrided and then stretched sample maintained satisfactory corrosion behavior. - Abstract: The as-quenched Fe–9.0Al–30Mn–1.8C (in wt.%) alloy gas nitrided at 550 °C for 4 h show excellent corrosion resistance investigated in 3.5% NaCl and 10% HCl solutions. Owing to the high corrosion resistance components, the gas-nitrided layer consists mainly of AlN with a slight amount of Fe{sub 3}N and Fe{sub 4}N identified by grazing incidence X-ray diffraction technique. Therefore, the pitting potential and corrosion potential of the nitrided sample are +1860 mV and +30 mV, respectively. Surprisingly, it is worthy to be pointed out that the nitrided and then tensile-tested alloy reveals very shallow in fracture depth and the excellent lattice coherence is shown between the nitrided layer and the substrate. Moreover, due to the extremely high nitrogen concentration (about 17–18 wt.%) at stretched surface, the corrosion resistance of present gas-nitrided and then tensile-tested alloy is superior to those optimally gas-nitrided or plasma-nitrided high-strength alloy steels, as well as martensitic stainless steels. The nitrided and then stretched alloy still retains a satisfactory corrosion resistance (E{sub pit} = +890 mV; E{sub corr} = +10 mV). Furthermore, only nanoscale-size pits were observed on the corroded surface after being immersed in 10% HCl for 24 h.

  20. Microstructure and Wear Resistance of Laser-Clad (Co, Ni61.2B26.2Si7.8Ta4.8 Coatings

    Directory of Open Access Journals (Sweden)

    Luan Zhang

    2017-10-01

    Full Text Available It has been reported that a quaternary Co61.2B26.2Si7.8Ta4.8 alloy is a good glass former and can be laser-clad to an amorphous composite coating with superior hardness and wear resistance. In this paper, alloys with varying Ni contents to substitute for Co are coated on the surface of #45 carbon steel using a 5-kW CO2 laser source for the purpose of obtaining protective coatings. In contrast to the quaternary case, the clad layers are characterized by a matrix of α-(Fe, Co, Ni solid solution plus CoB, Co3B, and Co3Ta types of precipitates. The cladding layer is divided into four regions: Near-surface dendrites, α-(Fe, Co, Ni solid solution plus dispersed particles in the middle zone, columnar bonding zone, and heat-affected area that consists of martensite. The hardness gradually decreases with increasing Ni content, and the maximum hardness occurs in the middle zone. Both the friction coefficient and wear volume are minimized in the alloy containing 12.2% Ni. Compared with the previous cobalt-based quaternary alloy Co61.2B26.2Si7.8Ta4.8, the addition of the Ni element reduces the glass-forming ability and henceforth the hardness and wear resistance of the clad layers.

  1. The current status and prospect of the TA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, K. [Faculty of Systems Engineering, Dept. of Electronic and Information Systems, Minuma-ku, Saitama-shi, Saitama (Japan)

    2005-07-01

    The Telescope Array (TA) experiment is designed to observe cosmic-ray-induced air showers at extremely high energies. It is being deployed in a desert of Utah (Usa); an array of 3 m{sup 2} scintillation counters will be distributed over 760 km{sup 2} and 3 sets of air fluorescence telescopes will be placed in the perimeter of the array. Its primary purpose is to make a decisive measurement of the cosmic ray spectrum in the GZK (Greisen, Zatsepin and Kuzmin) cutoff region. We expect the first data from the TA in the spring 2007. As its unique features are included: 1) hybrid measurement planned down to 10{sup 17.5} eV; 2) calibration of fluorescence detection by using artificial air showers generated by an electron line; and 3) interaction model calibration by the LHC. (author)

  2. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  3. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  4. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  5. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  6. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  7. The Transverse Rupture Strength in Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lai Pang-Hsin

    2015-01-01

    Full Text Available The objective of this study was to investigate the transverse rupture strength and apparent hardness of selective laser melted Ti-6Al-4V alloys manufactured in the vertical (V and horizontal (H directions. The microstructure and the distribution of alloy elements were examined by optical microscope and electron probe microanalysis, respectively. The results show that the columnar α′ grains are formed along the building direction, and the elemental distributions of Ti, Al, and V are homogeneous in the alloy. The building direction does not sufficiently affect the density and apparent hardness. However, the transverse rupture strengths (TRS are obviously dominated by the building directions investigated in this study. The TRS of an H specimen is significantly superior to that of a V specimen by 48%. This phenomenon can be mainly attributed to the presence of disc-shaped pores.

  8. Fast neutron emission in the interaction of 9 MeV/nucleon 12C and 20Ne ions with 181Ta nuclei

    International Nuclear Information System (INIS)

    Kozulin, Eh.M.; Blinov, M.V.; Kovalenko, S.S.; Mozhaev, A.N.; Borcha, K.; Penionzhkevich, Yu.Eh.

    1987-01-01

    Energy spectra and angular distributions have been measured for neutrons emitted from the 12 C(105 MeV)+ 181 Ta and 20 Ne(180 MeV)+ 181 Ta reactions. The obtained experimental data suggest a conclusion that both the equilibrium and pre-equilibrium components of the neutron emission are present in each reaction. However, yields and angular distributions of the pre-equilibrium neutrons emitted in these reactions are considerably different. By comparing the present results with other data, it is shown that the pre-equilibrium neutron emission has a more isotropic distribution than that for protons for the same entrance channel of the reaction. Besides, an information has been obtained on a dependence of the preequilibrium neutron and proton yields on the projectile mass. The data are analysed in terms of a statistical model describing the emission of evaporated neutrons, as well as in terms of the ''rotating hot spot'' model and the moving source model, for preequilibrium neutrons

  9. Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Chen, G.; Liu, C.T.

    2014-01-01

    Highlights: • Modified Ti64 alloys with improved ductility and oxidation resistance are developed. • B improves the ductility by refining grain size and enhancing boundary cohesion. • Y enhances the oxidation resistance by possibly slowing down the oxidation kinetics. - Abstract: The effects of B and Y on the mechanical properties and oxidation behavior of cast Ti–6Al–4V alloys were systematically investigated, and the new alloys with improved ductility and oxidation resistance are developed by the microalloying approach. The results indicate that boron is beneficial for improving the ductility by not only grain-size refinement but also grain-boundary enhancement, while yttrium is effective in increasing the oxidation resistance through possibly slowing down the oxidation kinetics. The improved properties, together with their high strength, make the microalloyed cast Ti–6Al–4V alloys competitive for practical engineering applications

  10. Photo-Induced depopulation of the 180mTa isomer

    Science.gov (United States)

    Bhike, Megha; Krishichayan, Fnu; Tornow, W.

    2015-10-01

    The 180mTa nucleus is the rarest isotope in the universe, existing only in an isomeric state at 77.2 keV (Jπ = 9-) with half-life of greater than 7.1 ×1015 years. The stellar production of this high-spin isomer has been a challenging astrophysical problem. Cross-section measurements for the depopulation of the 180mTa isomer with monoenergetic photon beams of energies 2.5 and 3.1 MeV have been carried out at the HI γS facility. The activated Ta foils of natural abundance and containing 14.4 mg of 180mTa were γ-ray counted at TUNL's low background facility using a 13% planar HPGe detector. A 8'' ×12'' NaI detector in combination with the standard HI γS scintillator paddle system was employed for absolute photon-flux determination. Preliminary results will be discussed, and measurements at lower energies are planned. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  11. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 2O T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (Auth.)

  12. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 20 T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (orig.)

  13. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  14. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  15. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  16. Microstructural evolution of Ti-10Nb and Ti-15Nb alloys produced by the blended elemental technique

    International Nuclear Information System (INIS)

    Martins, G.V.; Souza, J.V.C.; Machado, J.P.B.; Silva, C.R.M.; Henriques, V.A.R.

    2009-01-01

    Alfa/beta titanium alloys have been intensely used for aerospace and biomedical applications. Production of powder metallurgy titanium alloys components may lead to a reduction in the cost of parts, compared to those produced by conventional cast and wrought (ingot metallurgy) processes, because additional working operations (machining, turning, milling, etc.) and material waste can be avoided. In this work, samples of Ti- 10, 15Nb (weight%) alloys were obtained by the blended elemental technique using hydride-de hydride (HDH) powders as raw material, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering carried out in the range 900-1500 deg C. These alloys were characterized by X-ray diffractometry for phase composition, scanning electron microscopy for microstructure, Vickers indentation for hardness, Archimedes method for specific mass and resonance ultrasound device for elastic modulus. For the samples sintered at 1500 deg C it was identified α and β phases. It was observed the influence of the sintering temperatures on the final microstructure. With increasing sintering temperature, microstructure homogenization of the alloy takes place and at 1500 deg C this process is complete. The same behavior is observed for densification. Comparing to the Ti6Al4V alloy properties, these alloys hardness (sintered at 1500 deg C) are near and elastic modulus are 18% less. (author)

  17. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  18. Identification of ultra-fine Ti-rich precipitates in V-Cr-Ti alloys irradiated below 300 deg. C by using positron CDB technique

    International Nuclear Information System (INIS)

    Fukumoto, Ken-ichi; Matsui, Hideki; Ohkubo, Hideaki; Tang, Zheng; Nagai, Yasuyoshi; Hasegawa, Masayuki

    2008-01-01

    Irradiation-induced Ti-rich precipitates in V-Ti and V-4Cr-4Ti alloys are studied by TEM and positron annihilation methods (positron lifetime, and coincidence Doppler broadening (CDB)). The characteristics of small defect clusters formed in V alloys containing Ti at irradiation temperatures below 300 deg. C have not been identified by TEM techniques. Strong interaction between vacancy and Ti solute atoms for irradiated V alloys containing Ti at irradiation temperatures from 220 to 350 deg. C are observed by positron lifetime measurement. The vacancy-multi Ti solute complexes in V-alloys containing Ti are definitely identified by using CDB measurement. It is suggested that ultra-fine Ti-rich precipitates or Ti segregation at periphery of dislocation loops are formed in V alloys containing Ti at irradiation temperatures below 300 deg. C

  19. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    Energy Technology Data Exchange (ETDEWEB