WorldWideScience

Sample records for alloy-n55m20v25

  1. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    Science.gov (United States)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  2. Microstructure evolution of the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joints brazed using Au-Ni-V filler alloys with different V content

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, J., E-mail: hitzhangjie@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, H.W.; Fan, G.H.; He, Y.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-08-18

    Highlights: > Si{sub 3}N{sub 4} ceramic was brazed using Au-Ni-V filler alloy with different V content. > The microstructure evolution of the joint was study in detail in the paper. > The polygonal Ni{sub 2}SiV{sub 3} and Ni{sub 3}V phase in the joint were investigated by TEM. > The formation of different compounds and alloys in joint was detailed discussed. - Abstract: Au-Ni-V filler alloys with different vanadium contents were designed to braze Si{sub 3}N{sub 4} ceramic at 1373 K for 30 min, and the microstructures of brazing seams were investigated by SEM and TEM. When the Au-Ni-V filler alloy contains 5 at.% V, round-like Ni[Si, V, Au] precipitates form in the Au[Ni] solid solution matrix and a VN reaction layer with 0.5 {mu}m thickness appears on Si{sub 3}N{sub 4} interface. When the V content increases to 10 at.%, a new polygonal Ni{sub 2}SiV{sub 3} phase occurs in the seam, and the Ni[Si, V, Au] precipitate coarsens and VN layer thickens. With increase of V contents to 15 and 20 at.%, laminar Ni[Au] and polygonal Ni{sub 3}V precipitates form. With 25 at.% V content in the filler alloy, the Ni{sub 2}SiV{sub 3} and Ni{sub 3}V precipitates distribute homogenously in the brazing seam. These microstructure evolutions were attributed to the reaction between Si{sub 3}N{sub 4} and vanadium, which forms VN reaction layer and releases Si into the molten alloy.

  3. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  4. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  5. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  6. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  7. Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L.; Chan, K.C.; Tang, M.B.

    2011-01-01

    Highlights: → A new Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was synthesized by minor Mn addition. → The BMG has enhanced glass forming ability and excellent refrigerant capacity (RC). → The RC of the BMG reaches a high value of 825 J kg -1 under a field of 3979 kA/m. → Its excellent RC is related to its large effective magnetic moment. - Abstract: In this work, a small amount of Mn was added to a Gd 55 Ni 25 Al 20 glass forming alloy, as a replacement for Ni, and a Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was obtained by suction casting. Its glass forming ability (GFA) was characterized by X-ray diffraction and differential scanning calorimetry, and its magnetic properties were measured using a magnetic property measurement system. It is found that the minor Mn addition can significantly improve both the GFA and the magnetocaloric effect (MCE) of the alloy. The refrigerant capacity (RC) of the BMG can reach a high value of 825 J kg -1 under a field of 3979 kA/m, which is about 29% larger than that of a Gd 55 Ni 25 Al 20 BMG. The effect of the minor Mn addition on the GFA and MCE of the BMG was investigated in the study.

  8. Cyclic hydrogenation stability of γ-hydrides for Ti{sub 25}V{sub 35}Cr{sub 40} alloys doped with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chia-Chieh, E-mail: ccshen@saturn.yzu.edu.tw [Department of Mechanical Engineering, Yuan Ze University, Chungli 32003, Taiwan (China); Graduate School of Renewable Energy and Engineering, Yuan Ze University, Chungli 32003, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chungli 32003, Taiwan (China); Li, Hsueh-Chih [Graduate School of Renewable Energy and Engineering, Yuan Ze University, Chungli 32003, Taiwan (China)

    2015-11-05

    An automatic Sievert's apparatus equipped with a temperature-programmed desorption spectrometer was constructed to study the stability of annealed Ti{sub 25}V{sub 35}Cr{sub 40}C{sub x} (x = 0 and 0.1) alloy under cyclic hydrogenation at 6 N H{sub 2}. The specimens were tested at 30 °C with a hydrogen loading of around 1.00 H/M, which enabled the phase transformation from β-to γ-hydrides. After 500 cycles, 83% and 90% of the initial hydrogen capacities were preserved for Ti{sub 25}V{sub 35}Cr{sub 40} and Ti{sub 25}V{sub 35}Cr{sub 40}C{sub 0.1}, respectively. Therefore, a small amount of C doping was effective in reducing the hydrogenation degradation of Ti{sub 25}V{sub 35}Cr{sub 40}. The hydrogenation degradation of Ti{sub 25}V{sub 35}Cr{sub 40} was examined by measuring the P–C isotherms, temperature-programmed desorption spectra, and X-ray diffraction patterns. The degradation was ascribed to intrinsic disproportionation, i.e., Ti{sub 0.25}V{sub 0.35}Cr{sub 0.40} + 0.88H{sub 2} → yTiH{sub 2} + Ti{sub 0.25−y}V{sub 0.35}Cr{sub 0.40}H{sub 1.76–2y}, where the coefficient y indicates the amount of Ti-rich precipitate. The better cyclic hydrogenation stability of Ti{sub 25}V{sub 35}Cr{sub 40}C{sub 0.1} was related to the suppression of intrinsic disproportionation by the presence of carbon atoms in the body-centered-cubic lattice. - Highlights: • The stability of γ-hydride for Ti{sub 25}V{sub 35}Cr{sub 40} alloys was examined for 500 cycles. • The γ-hydride of Ti{sub 25}V{sub 35}Cr{sub 40} alloy degraded by intrinsic disproportionation. • The disproportionation of γ-hydride can be suppressed through carbon inclusion.

  9. Silicon tunnel FET with average subthreshold slope of 55 mV/dec at low drain currents

    Science.gov (United States)

    Narimani, K.; Glass, S.; Bernardy, P.; von den Driesch, N.; Zhao, Q. T.; Mantl, S.

    2018-05-01

    In this paper we present a silicon tunnel FET based on line-tunneling to achieve better subthreshold performance. The fabricated device shows an on-current of Ion = 2.55 × 10-7 A/μm at Vds = Von = Vgs - Voff = -0.5 V for an Ioff = 1 nA/μm and an average SS of 55 mV/dec over two orders of magnitude of Id. Furthermore, the analog figures of merit have been calculated and show that the transconductance efficiency gm/Id beats the MOSFET performance at low currents.

  10. Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage

    KAUST Repository

    Huang, Chi-Te

    2010-07-30

    Piezoelectric potential of a InN nanowire (NW) growing along [011̄0] can be positive, negative, and zero depending on the direction of the applied transverse force. By measuring the output voltage of a InN-NW-based nanogenerator, about 40% to 55% of output voltages are within the range of ?1 and ?20 mV, and 25% to 30% of output voltages would exceed ?100 mV. Some output voltages could reach the magnitude of ?1000 mV, showing its great potential for fabricating high-output nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of heat treatment on the microstructures and mechanical properties of Al-5.5Zn-2.5Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Acer, Emine [Erciyes University, Institute of Science, Department of Physics, Kayseri (Turkey); Çadırlı, Emin [Niğde University, Faculty of Arts and Sciences, Department of Physics, Niğde (Turkey); Erol, Harun [Erciyes University, Institute of Science, Department of Physics, Kayseri (Turkey); Karatekin University Faculty of Arts and Sciences, Department of Physics, Çankırı (Turkey); Kırındı, Talip [Kırıkkale University, Faculty of Education, Department of Elementary Education, Kırıkkale (Turkey); Gündüz, Mehmet, E-mail: gunduz@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, Kayseri (Turkey)

    2016-04-26

    The Al-5.5 Zn-2.5 Mg (wt%) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Microstructural and mechanical properties of the alloy were investigated as-cast and under heat-treated conditions. To investigate the effect of heat treatment, numerous designed Al-5.5 Zn-2.5 Mg samples were homogenized under different conditions and then aged under different regimes. The effects of heat treatment on the microstructures were examined by OM, SEM, and TEM, and mechanical properties of the Al-Zn-Mg alloy were studied. A good combination of high microhardness and reasonable tensile strength were obtained by successive and suitable heat treatments. After aging for 24 h at 150°C, the peak microhardnes and tensile strength values were achieved as 157 MPa and 188.8 MPa, respectively. The microscopic fracture surfaces of the aged samples under different homogenization and aging conditions were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces shows that the type of fracture changed significantly from ductile to more ductile depending on the aging regime.

  12. Improvement the Capacity of Cockcroft-Walton High Voltage Source from 300 kV/20 mA to 500 kV/20 mA for Accelerating Voltage of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Djasiman

    2002-01-01

    The improvement capacity of Cockcroft-Walton high voltage source from 300 kV/20 mA to 500 kV/mA has been carrying out. To improve the capacity of high voltage source was done by means of increasing the stage number of voltage multiplier from 11 to 18 and its output voltage measuring resistance. Each stage of voltage multiplier consists of 2 capacitors and 2 circuits of high voltage diode. This voltage multiplier is constructed using main components of high voltage capacitor and high voltage diode each of 0.22 μF/50 kV and UF 5408 respectively. To avoid stray discharge and corona it was provided with high voltage electrode and corona ring. The test result indicated that the output voltage obtained from 16 stages was 350 kV according to operating condition of 25 MΩ resistive load and first stage voltage of 28.5 kV with oscillator frequency of 24 Hz. That condition requires anode voltage and current of 5.5 kV and 2.5 A respectively. The no load test for 16 stages indicates 400 kV of output voltage and 28.5 kV first stage voltage. Efficiency of high voltage source was 48 % at 6.75 kW of output power. The expected test of 500 kV with 18 stages of voltage multiplier can not be carried out because of some restrictive of loading system. From the test result can be predicted that the output voltage of 500 kV with 18 stages of voltage multiplier requires 31.2 kV of first stage voltage. Then the expected high voltage source of Cockcroft-Walton is capable as accelerating voltage source for Electron Beam Machine with energy of 500 kV. (author)

  13. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  14. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  15. The dependence of activity coefficient on intensive thermodynamic parameters in a liquid Fe-N-V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hutny, A.; Siwka, J. [Faculty of Materials Processing Technology and Applied Physics, Technical Univ. of Czestochowa (Poland)

    2003-07-01

    The article presents the methodology and results of experimental studies on the solubility of nitrogen in liquid Fe-V alloys. Tests were carried out using the levitation metal melting technique. Liquid alloys of Fe-V ([%V]{sub wt.%} 1.5; 2.5; 4,0; 5.8; 7.8; 12.2; 45%) were saturated with nitrogen at temperatures of 2073, 2173, 2273 K. The partial pressure of nitrogen was varied in the range 0.001-2.5 MPa. The experiment involved melting a 1 g specimen in an electromagnetic field generated by a levitation coil, filling the reaction chamber with nitrogen up to the required pressure and heating the specimen up to a preset temperature. High nitrogen concentrations were obtained in the samples due to the formation of high nitrogen partial pressures in the gaseous phase in the reaction chamber. In such conditions, all interactions of nitrogen in the alloy tested could be disclosed, namely: nitrogen-vanadium, nitrogen-nitrogen, and nitrogen-nitrogen-vanadium interactions. The results of the tests showed a nonlinear dependence of the activity coefficient, f{sub N}, not only on vanadium content in the alloy, but also on nitrogen content in it. Using the experimental data and the findings of the previous study on the liquid Fe-N alloy, temperature relationships of inter- and self-reaction parameters have been determined. (orig.)

  16. 55-mW, 1.2-V, 12-bit, 100-MSPS Pipeline ADCs for Wireless Receivers

    Science.gov (United States)

    Ito, Tomohiko; Kurose, Daisuke; Ueno, Takeshi; Yamaji, Takafumi; Itakura, Tetsuro

    For wireless receivers, low-power 1.2-V 12-bit 100-MSPS pipeline ADCs are fabricated in 90-nm CMOS technology. To achieve low-power dissipation at 1.2V without the degradation of SNR, the configuration of 2.5bit/stage is employed with an I/Q amplifier sharing technique. Furthermore, single-stage pseudo-differential amplifiers are used in a Sample-and-Hold (S/H) circuit and a 1st Multiplying Digital-to-Analog Converter (MDAC). The pseudo-differential amplifier with two-gain-stage transimpedance gain-boosting amplifiers realizes high DC gain of more than 90dB with low power. The measured SNR of the 100-MSPS ADC is 66.7dB at 1.2-V supply. Under that condition, each ADC dissipates only 55mW.

  17. Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV

    International Nuclear Information System (INIS)

    Luo, J.; Peking Univ., Beijing; Liu, R.; Jiang, L.; Liu, Z.; Sun, G.; Ge, S.

    2013-01-01

    Cross sections of 45 Sc(n,2n) 44m,g Sc reactions and their isomeric cross section ratios σ m /σ g have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3 H(d, n) 4 He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  18. Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys

    Science.gov (United States)

    1998-07-20

    was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director

  19. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  20. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kumari, Renu; Besser, Heino; Scharnweber, Tim; Majumdar, Jyotsna Dutta

    2015-01-01

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti_2O_3 phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  1. Isomeric cross section ratios in 55Mn(α, n)58m,gCo reaction

    International Nuclear Information System (INIS)

    Long Xianguan; He Fuqing; Peng Xiufen; Liu Mantian

    1989-01-01

    The isomeric cross section ratios in 55 Mn(α, n) 58m,g Co reaction are measured for incident alpha-particle energies ranging from 10.4 to 26.5 MeV by using activation method and stacked-foil technique. The measured values are compared with theoretical calculations performed by using Huizenga and Vandenbosch method and the values of spin cutoff factor are obtained for product nucleus 58 Co

  2. Joining of Si3N4 ceramic using PdCo(NiSiB–V system brazing filler alloy and interfacial reactions

    Directory of Open Access Journals (Sweden)

    Huaping Xiong

    2014-02-01

    Full Text Available The wettability of V-active PdCo-based alloys on Si3N4 ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6 (wt%, was developed for Si3N4 ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4 joints brazed at 1453 K for 10 min was 205.6 MPa, and the newly developed braze gives joint strengths of 210.9 MPa, 206.6 MPa and 80.2 MPa at high temperatures of 973 K, 1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4 joint brazed at 1453 K for 10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result, the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases, in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.

  3. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  4. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  5. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  6. Cross-sections for the formation of isomeric pair {sup 75}Ge{sup m,g} through (n, 2n), (n, p) and (n, {alpha}) reactions measured over 13.73 MeV to 14.77 MeV and calculated from near threshold to 20 MeV neutron energies

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2009-09-15

    The cross-sections for formation of isomeric pair, {sup 75}Ge{sup m}({sigma}{sub m}) and {sup 75}Ge{sup g}({sigma}{sub g}), through {sup 76}Ge(n, 2n), {sup 75}As(n, p) and {sup 78}Se(n, {alpha}) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, {alpha}) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, {alpha}n) reactions. The higher values of {sigma}{sub m} relative to {sigma}{sub g} reveal that the transitions of the excited {sup 75}Ge from higher energy levels to metastable state (7{sup +}/2) are favored as compared to unstable ground state (1{sup -}/2). The present values of cross sections for formation of {sup 75}Ge{sup m,g} through (n, 2n) and (n, {alpha}) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.

  7. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  8. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  9. Cross-sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reaction from the reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Peking Univ., Beijing (China). State Key Laboratory of Nuclear Physics and Technology; Liu, R.; Jiang, L. [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Liu, Z.; Sun, G.; Ge, S. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering

    2013-07-01

    Cross sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reactions and their isomeric cross section ratios {sigma}{sub m}/{sigma}{sub g} have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the {sup 3}H(d, n){sup 4}He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  10. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  11. V M Jali

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V M Jali. Articles written in Bulletin of Materials Science. Volume 25 Issue 3 June 2002 pp 191-196 Thermal Properties. Synthesis and thermal expansion hysteresis of Ca1–SrZr4P6O24 · Basavaraj Angadi V M Jali M T Lagare N S Kini A M Umarji · More Details Abstract ...

  12. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  13. Effects of Sn addition on the microstructure and tensile properties of AX55 alloys

    Science.gov (United States)

    Qiu, K. Q.; Huang, P.

    2018-04-01

    The microstructures and tensile properties at both room and elevated temperatures for both the as-cast and as-aged Mg-5Al-5Ca (AX55) alloy with 0–2 wt% Sn addition were studied. The results indicate that the α-Mg dendrite is gradually refined and the interdendritic Al2Ca and Mg2Ca intermetallics become more connected with Sn addition. The as-cast AX55-1Sn alloy shows optimal ultimate tensile strength (UTS) at testing temperature from 25 to 225 °C. After T61 and T62 heat treatment, the eutectic-lamellar microstructure of the as-cast alloys tends to be spheroidized and distributed uniformly along the grain boundaries. While the alloys with higher Sn content show higher density of granulated and needle-shaped Al2Ca phases precipitated into α-Mg matrix, which results in the increase of UTS, yield strength (YS), elongation and microhardness with Sn addition. The morphology of CaMgSn phase can be improved by T62 treatment, which makes as-aged AX55-2.0Sn alloy exhibit a smaller decrease rate of the UTS at temperature up to 225 °C. The heat resistance of different heat-resistant magnesium alloys were compared and discussed by using the decrease rate of the UTS.

  14. Wear Analysis of a Ti-5Al-3V-2.5Fe Alloy Using a Factorial Design Approach and Fractal Geometry

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy

    2018-02-01

    Full Text Available This paper describes the application of the full factorial experimental design technique to confirm the significance of the factors affecting the wear behavior of a recycled Ti-5Al-3V-2.5Fe alloy with a minimum number of experiments. The fractal theory has been used to describe the worn surface state and to investigate the relationship between the fractal dimensions and the surface morphology. The experiments of the sliding wear have been performed under stresses in the range of 1-5 MPa and within sliding velocities range of 0.2–2.0 m/s. Morphology of the worn surfaces investigations has been undertaken using a scanning electron microscope. From the analysis of variance and the nonlinear regression model, the results show that the applied stress has a higher contribution to the wear rate than the sliding velocity.

  15. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment. Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation ∼500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after ∼2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after ∼250 h exposure at 500 C in environments with a pO 2 range of 1 x 10 -6 to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO 2 in the preexposure environment and was of 70--95 microm after 250--275 h exposure at 500 C

  16. Evaluation of the 175Lu(n,2n)174Lu, 175Lu(n,2n/sup 174m/Lu, and 175Lu(n,3n)173Lu cross sections from threshold to 20 MeV

    International Nuclear Information System (INIS)

    Philis, C.; Young, P.G.; Arthur, E.D.

    1978-04-01

    An evaluation of the 175 Lu(n,2n) 174 Lu, 175 Lu(n,2n)/sup 174m/Lu, and 175 Lu(n,3n) 173 Lu reactions from threshold to 20 MeV is presented. Available experimental data were renormalized to a consistent set of standards and were used along with results from statistical-preequilibrium model calculations to produce recommended curves for each of these reactions

  17. Performance of V-4Cr-4Ti Alloy Exposed to the JFT-2M Tokamak Environment

    International Nuclear Information System (INIS)

    Johnson, W.R.; Trester, P.W.; Sengoku, S.; Ishiyama, S.; Fukaya, K.; Eto, M.; Oda, T.; Hirohata, Y.; Hino, T.; Tsai, H.

    1999-01-01

    A long-term test has been conducted in the JFT-2M tokamak fusion device to determine the effects of environmental exposure on the mechanical and chemical behavior of a V-4Cr-4Ti alloy. Test specimens of the alloy were exposed in the outward lower divertor chamber of JFT-2M in a region away from direct contact with the plasma and were preheated to 300 C just prior to and during selected plasma discharges. During their nine-month residence time in JFT-2M, the specimens experienced approximately 200 lower single-null divertor shots at 300 C, during which high energy particle fluxes to the preheated test specimens were significant, and approximately 2,010 upper single-null divertor shots and non-diverter shots at room temperature, for which high energy particle fluxes to and expected particle retention in the test specimens were very low. Data from post-exposure tests have indicated that the performance of the V-4Cr-4Ti alloy would not be significantly affected by environmental exposure to gaseous species at partial pressures typical for tokamak operation. Deuterium retention in the exposed alloy was also low (<2 ppm). Absorption of interstitial by the alloy was limited to the very near surface, and neither the strength nor the Charpy impact properties of the alloy appeared to be significantly changed from the exposure to the JFT-2M tokamak environment

  18. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    Science.gov (United States)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  19. Nuclear decay scheme studies of 30-h 131Te/sup m/, 25-min 131Te/sup g/, and 55.5-min 105Cd

    International Nuclear Information System (INIS)

    Jackson, S.V.

    1975-01-01

    High-resolution Ge(Li) detectors have been used to observe γ-ray singles and coincidence spectra of 30-h 11 / 2 - , /sup 131m/Te, 25-min 3 / 2 + , and 55.5-min 5 / 2 + 105 Cd. Sources of /sup 131m/Te and /sup 131g/Te were produced by neutron irradiation of enriched 130 Te metal, and, in the case of /sup 131m/Te, were chemically purified to remove the 131 I daughter. A total of 190 and 80 γ-rays are attributed to the decays of /sup 131m/Te and /sup 131g/Te, respectively; and 174 and 77 of these transitions have been placed in a 131 I level scheme involving 52 excited states. Absolute β group intensities were determined for the transitions to 131 I levels. Spin and parity assignments were made for all observed levels. The β feeding from the 11 / 2 - /sup 131m/Te to the 7 / 2 + 131 I ground state was determined to be (5.2 +- 3.0) percent (log ft = 10.5). The isomeric transition of 11 / 2 - /sup 131m/Te to 3 / 2 + /sup 131g/Te was determined to be (22.2 +- 1.6) percent. The 6-nsec isomer in 131 I at 1797 keV has been assigned as 15 / 2 - and interpreted as a πν 1 ν 2 three quasi-particle state. Sources of 105 Cd were produced via the 106 Cd(n,2n) reaction on enriched 106 CdO using 14 MeV neutrons. A total of 274 γ-rays are attributed to the decay of 105 Cd, and 248 of these have been placed in a 105 Ag level scheme involving 50 excited states. Absolute values for the β + /EC transition intensities to 105 Ag levels were determined. The β + /EC feeding from the 5 / 2 + 105 Cd to the 7 / 2 + 25.5-keV isomeric state in 105 Ag was determined to be (51.4 +- 4.0) percent (log ft = 5.4). The experimentally determined level structures of 131 I and 105 Cd are interpreted in terms of the shell model and core excitation considerations with emphasis placed on the core coupling model and the three-particle models. (U.S.)

  20. Magnetic moment distribution in Co-V alloys

    International Nuclear Information System (INIS)

    Cable, J.W.

    1982-01-01

    Magnetization and neutron scattering measurements were made on Co-V alloys containing 10, 15, and 20 at.% V to determine the local environment effects on the magnetic moment distribution in this system. The magnetization data agree with earlier results and suggest the presence of some hcp phase in the 10% sample. This was confirmed by the neutron data which showed both fcc and hcp phases in an approximate 4:1 volume ratio for this alloy. The other two samples were single phase fcc but the 15% alloy was disordered while the 20% alloy was ordered in the Cu 3 Au-type structure with the maximum order consistent with the concentration. In this ordered alloy, the excess Co occupies the V sites. These ''wrong sited'' Co atoms have 12 Co nearest neighbors and larger magnetic moments than the ''properly sited'' Co atoms which have an average of 8.8 Co nearest neighbors. The average moments associated with these two types of sites were determined from flipping-ratio measurements on the superlattice and fundamental reflections. The values obtained are 0.28 μ/sub B//Co for the proper-site atoms and 1.3 μ/sub B//Co for the wrong-site atoms. Average moments at the Co and V sites were determined from the diffuse scattering for the 10% and 15% alloys. The results are 1.38 μ/sub B//Co and -0.26 μ/sub B//V for the 10% sample and 1.05 μ/sub B//Co and -0.11 μ/sub B//V for the 15% sample

  1. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  2. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  3. Measurement of cross-sections for the 93Nb(p,n)93mMo and 93Nb(p,pn)92mNb reactions up to ∼20 MeV energy

    Science.gov (United States)

    Lawriniang, B.; Ghosh, R.; Badwar, S.; Vansola, V.; Santhi Sheela, Y.; Suryanarayana, S. V.; Naik, H.; Naik, Y. P.; Jyrwa, B.

    2018-05-01

    Excitation functions of the 93Nb(p,n)93mMo and 93Nb(p,pn)92mNb reactions were measured from threshold energies to ∼ 20MeV by employing stacked foil activation technique in combination with the off-line γ-ray spectroscopy at the BARC-TIFR Pelletron facility, Mumbai. For the 20 MeV proton beam, the energy degradation along the stack was calculated using the computer code SRIM 2013. The proton beam intensity was determined via the natCu(p,x)62Zn monitor reaction. The experimental data obtained were compared with the theoretical results from TALYS-1.8 as well as with the literature data available in EXFOR. It was found that for the 93Nb(p,n)92mMo reaction, the present data are in close agreement with some of the recent literature data and the theoretical values based on TALYS-1.8 but are lower than the other literature data. In the case of 93Nb(p,pn)93mNb reaction, present data agree very well with the literature data and the theoretical values.

  4. Ti-3Al-2.5V for seawater piping applications

    International Nuclear Information System (INIS)

    Caplan, I.L.

    1984-01-01

    Copper-nickel alloys and steel are the materials most commonly used for piping applications in a seawater environment. For situations where reduced weight, incraesed flexibility, and excellent corrosion-erosion resistance are desired, titanium is an extremely attractive alternate material. Commercially pure grades of titanium can be used for seawater piping, but are rather low in strength. However, by taking advantage of the high specific strength possible with alloys of titanium, substantial weight savings can be achieved. Based upon screening studies, Ti-3Al-2.5V was selected for investigation as a candidate alloy for this application. Plate 25.4-mm (1-in.) thick, extruded from Ti-3Al-2.5V billet at a 10:1 reduction ratio, was used for heat treatment and property studies. In addition, double-vee butt weldments of this plate were prepared by the automatic cold-wire gas tungsten arc welding process. The results of mechanical property tests are presented for both Ti-3Al-2.5V plate and weldments. Results to date indicate that the Ti-3Al-2.5V alloy possesses a highly desirable suite of properties that make it a very attractive candidate for piping and machinery applications in the seawater environment

  5. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  6. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  7. Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy

    International Nuclear Information System (INIS)

    Cho, Sung-Wook; Shim, Gunchoo; Choi, Good-Sun; Park, Choong-Nyeon; Yoo, Jeong-Hyun; Choi, Jeon

    2007-01-01

    Ti 0.32 Cr 0.43 V 0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately -36 kJ/mol H 2 . The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased

  8. Defect microstructure in copper alloys irradiated with 750 MeV protons

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Horsewell, A.; Singh, B.N.

    1994-01-01

    Transmission electron microscopy (TEM) disks of pure copper and solid solution copper alloys containing 5 at% of Al, Mn, or Ni were irradiated with 750 MeV protons to damage levels between 0.4 and 2 displacements per atom (dpa) at irradiation temperatures between 60 and 200 degrees C. The defect...... significant effect on the total density of small defect clusters, but they did cause a significant decrease in the fraction of defect clusters resolvable as SFT to similar to 20 to 25%. In addition, the dislocation loop density (> 5 nm diameter) was more than an order of magnitude higher in the alloys...

  9. Co-based soft magnetic bulk glassy alloys optimized for glass ...

    Indian Academy of Sciences (India)

    diameter of 5 mm by conventional copper mould casting method. It reveals ... For example, Co43Fe20Ta5.5B31.5 glassy alloy with a ... coercive force (Hc) of 0.25 A m. −1 ..... [7] Lu Z P, Liu C T, Thompson J R and Porter W D 2004 Phys. Rev.

  10. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Fan, Dawei; Wang, Jinping; Xu, Caixia

    2015-01-01

    A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61 V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800 μM, 4 to 20 μM, and 10 to 70 μM, respectively. The lower detection limits are 17.5 μM, 2.8 µM and 5.7 μM at an S/N ratio of 3. (author)

  11. Evaluation of cross-section data from threshold to 40-60 MeV for specific neutron reactions important for neutron dosimetry applications. Part 1: Evaluation of the excitation functions for the 27Al(n,α)24Na, 55Mn(n,2n)54Mn, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo and 90Zr(n,2n)89m+gZr reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2009-04-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: - excitation functions were re-evaluated for the 27 Al(n,α) 24 Na, 55 Mn(n,2n) 54 Mn and 90 Zr(n,2n) 89m+g Zr reactions over the neutron energy range from threshold to 40 MeV; - excitation functions were re-evaluated for the 59 Co(n,p) 59 Fe and 59 Co(n,2n) 58m+g Co reactions over the neutron energy range from threshold to 60 MeV. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  12. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  13. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  14. Electrodeposition of white copper-tin alloys from alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Purwadaria, H.S.; Zainal Arifin Ahmad

    2007-01-01

    Electrodeposition of white copper-tin alloys (including with mir alloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 degree C. The chemical composition of the coating is influenced by plating bath composition and current density. White mir alloy can be produced from the test solution containing 10 g/l CuCN 2 ,45 g/l Na 2 SnO 3 , 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm?2. The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage. (Author)

  15. The Status and Promise of Advanced M&V: An Overview of “M&V 2.0” Methods, Tools, and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Franconi, Ellen [Rocky Mountain Inst., Boulder, CO (United States); Gee, Matt [Univ. of Chicago, IL (United States); Goldberg, Miriam [DNV GL, Oslo (Norway); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guiterman, Tim [EnergySavvy, Seattle, WA (United States); Li, Michael [U.S. Department of Energy (DOE), Baltimore, MD (United States); Smith, Brian Arthur [Pacific Gas and Electric, San Francisco, CA (United States)

    2017-04-11

    Advanced measurement and verification (M&V) of energy efficiency savings, often referred to as M&V 2.0 or advanced M&V, is currently an object of much industry attention. Thus far, however, there has been a lack of clarity about what techniques M&V 2.0 includes, how those techniques differ from traditional approaches, what the key considerations are for their use, and what value propositions M&V 2.0 presents to different stakeholders. The objective of this paper is to provide background information and frame key discussion points related to advanced M&V. The paper identifies the benefits, methods, and requirements of advanced M&V and outlines key technical issues for applying these methods. It presents an overview of the distinguishing elements of M&V 2.0 tools and of how the industry is addressing needs for tool testing, consistency, and standardization, and it identifies opportunities for collaboration. In this paper, we consider two key features of M&V 2.0: (1) automated analytics that can provide ongoing, near-real-time savings estimates, and (2) increased data granularity in terms of frequency, volume, or end-use detail. Greater data granularity for large numbers of customers, such as that derived from comprehensive implementation of advanced metering infrastructure (AMI) systems, leads to very large data volumes. This drives interest in automated processing systems. It is worth noting, however, that automated processing can provide value even when applied to less granular data, such as monthly consumption data series. Likewise, more granular data, such as interval or end-use data, delivers value with or without automated processing, provided the processing is manageable. But it is the combination of greater data detail with automated processing that offers the greatest opportunity for value. Using M&V methods that capture load shapes together with automated processing1 can determine savings in near-real time to provide stakeholders with more timely and

  16. Comparative assessment of filler wires for argon-arc welding of refractory alloys

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Bagdasarov, Yu.S.; Tupikin, V.I.

    1993-01-01

    It is recommended to use wires of similar composition as filler material during argon-arc welding of heat resisting alloys, and Sv-08Kh20N57M8V8T3R wire - for welding of dispersion hardening alloys. Sv-06Kh15N60M15, Sv-KhN64KBMYuVF or Kh11N60M23 wires should be used as filler materials to decrease tendency of welded joints to cracking during welding and heat treatment

  17. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    Science.gov (United States)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  18. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  19. Mass spectra and fusion cross sections for 20Ne+24Mg interaction at 55 and 85 MeV

    International Nuclear Information System (INIS)

    Grotowski, K.; Belery, P.; Delbar, T.; El Masri, Y.; Gregoire, G.; Janssens, R.; Vervier, J.; Paic, G.; Albinska, M.; Albinski, J.; Kopta, S.; Kozik, T.; Planeta, R.

    1981-01-01

    Inclusive γ spectra from the 20 Ne+ 24 Mg interaction have been measured using 55- and 85-MeV 20 Ne ions. The identification of γ lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated

  20. Gd{sub 90}Co{sub 2.5}Fe{sub 7.5} alloy displaying enhanced magnetocaloric properties

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, V., E-mail: virgil12@nist.gov [Materials Science and Engineering Division, NIST, Gaithersburg, MD 20899-8552 (United States); Shull, R.D., E-mail: robert.shull@nist.gov [Materials Science and Engineering Division, NIST, Gaithersburg, MD 20899-8552 (United States); Kletetschka, G., E-mail: kletetschka@gmail.com [Faculty of Science, Charles University, Prague 12843 (Czech Republic); Institute of Geology, Academy of Science of the Czech Republic, v.v.i., Prague 16500 (Czech Republic); Stutzman, P.E., E-mail: paul.stutzman@nist.gov [Materials and Structural Systems Division, NIST, Gaithersburg, MD 20899-861 (United States)

    2015-02-15

    Highlights: • The Gd{sub 90}Co{sub 2.5}Fe{sub 7.5} alloy displays superior magnetocaloric properties than Gd. • Alloy’s superior properties at relatively low field values: 400, 800 kA/m (0.5, 1 T). • We proposed two possible mechanisms for the Gd-based alloy enhanced properties. • We indicated a pathway for further improving the alloy magnetocaloric properties. - Abstract: We report on the discovery of a new Gd{sub 90}Co{sub 2.5}Fe{sub 7.5} alloy exhibiting superior magnetocaloric properties compared to those of gadolinium. We present magnetically-derived entropy change, ΔS{sub M}, computed from magnetic data, and thermally-derived temperature change, ΔT{sub ad}, obtained from direct thermal measurements together with their respective MCE peaks for the alloy and gadolinium. The MCE peaks of the alloy are taller and broader than the corresponding MCE peaks of gadolinium. Correspondingly, the refrigeration capacity (RC) values of the alloy computed from magnetic and thermal MCEs for field changes, ΔH, of 400 kA/m (0.5 T) and 800 kA/m (1 T) are about 20% larger than those of gadolinium. Two possible mechanisms are proposed to account for the improved magnetocaloric properties of gadolinium alloyed with small amounts of Co and Fe, thereby pointing out a different methodology to use in the search for improved low field magnetic refrigerants.

  1. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  2. Effect Of SiC Particles On Sinterability Of Al-Zn-Mg-Cu P/M Alloy

    Directory of Open Access Journals (Sweden)

    Rudianto H.

    2015-06-01

    Full Text Available Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

  3. Critical parameters for the molecular beam epitaxial growth of 1.55 μm (Ga,In)(N,As) multiple quantum wells

    International Nuclear Information System (INIS)

    Ishikawa, Fumitaro; Luna, Esperanza; Trampert, Achim; Ploog, Klaus H.

    2006-01-01

    The authors discuss the effect of substrate temperature and As beam equivalent pressure (BEP) on the molecular beam epitaxial growth of (Ga,In)(N,As) multiple quantum wells (MQWs). Transmission electron microscopy studies reveal that a low substrate temperature essentially prevents composition modulations. Secondary ion mass spectrometry results indicate that a low As BEP reduces the incorporation competition of group V elements. The low substrate temperature and low As BEP growth condition leads to (Ga,In)(N,As) MQWs containing more than 4% N preserving good structural and optical properties, and hence demonstrating 1.55 μm photoluminescence emission at room temperature

  4. Strength, ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.

    1988-01-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20 and 38%. The reduction in area ranged from 30 to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0-0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. (orig.)

  5. Tensile properties and microstructure of helium-injected and reactor-irradiated V-20 Ti

    International Nuclear Information System (INIS)

    Tanaka, M.P.; Bloom, E.E.; Horak, J.A.

    1981-01-01

    Mechanical properties and microstructure of vanadium-20% titanium were examined following helium-injection and reactor irradiation. Helium was injected at ambient temperature to concentrations of 90 and 200 at. ppM; neutron irradiation was at 400, 575, 625, and 700 0 C to fluence of 3 x 10 26 n/m 2 , E > 0.1 MeV. Cavities representing negligible volume swelling were observed in all helium-injected specimens. Degradation of mechanical properties, especially loss of ductility due to helium, occurred at temperatures of 625 and 700 0 C. The levels of helium produced in the fusion spectrum can be expected to alter the response of vanadium alloys from that observed in fast reactor irradiations

  6. Tensile properties and microstructure of helium-injected and reactor-irradiated V-20 Ti

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.P.; Bloom, E.E.; Horak, J.A.

    1981-01-01

    Mechanical properties and microstructure of vanadium-20% titanium were examined following helium-injection and reactor irradiation. Helium was injected at ambient temperature to concentrations of 90 and 200 at. ppM; neutron irradiation was at 400, 575, 625, and 700/sup 0/C to fluence of 3 x 10/sup 26/ n/m/sup 2/, E > 0.1 MeV. Cavities representing negligible volume swelling were observed in all helium-injected specimens. Degradation of mechanical properties, especially loss of ductility due to helium, occurred at temperatures of 625 and 700/sup 0/C. The levels of helium produced in the fusion spectrum can be expected to alter the response of vanadium alloys from that observed in fast reactor irradiations.

  7. Evaluation of cast Ti-Fe-O-N alloys for dental applications

    International Nuclear Information System (INIS)

    Koike, Marie; Ohkubo, Chikahiro; Sato, Hideki; Fujii, Hideki; Okabe, Toru

    2005-01-01

    Good mechanical properties, biocompatibility and corrosion resistance make titanium an excellent material for biomedical applications. However, when better mechanical properties than those offered by commercially pure titanium (CPTi) are needed, Ti-6Al-4V is sometimes a good alternative. Some new titanium alloys, developed as industrial structural materials, aim at an intermediate range of strength between that of CP Ti and Ti-6Al-4V. Two of these alloys are Super-TIX800TM (Ti-1% Fe-0.35% O-0.01% N) and Super-TIX800NTM (Ti-1% Fe-0.3% O-0.04% N) (both produced by Nippon Steel Corp., Japan). Besides being stronger than CP Ti, the cost of manufacturing these alloys is reportedly lower than for Ti-6Al-4V since they do not contain any expensive elements. In addition, they are not composed of elements such as aluminum or vanadium, which have caused biocompatibility concerns in medical and dental appliances. To evaluate these alloys as candidates for dental use, it is helpful to compare them to CP Ti (ASTM Grade 2) and Ti-6Al-4V (ASTM Grade 5), which have already been employed in dentistry. We evaluated the tensile properties, mold filling capacity, corrosion characteristics and grindability of these industrial alloys prepared by investment casting. Compared to the strengths of cast CPTi, the yield strength and tensile strength of these cast alloys were more than 20% and approximately 30% higher, respectively. On the other hand, both of these properties were 30% lower than for Ti-6Al-4V. Better grindability and wear resistance were additional benefits of these new alloys for dental applications

  8. A 20mK temperature sensor

    International Nuclear Information System (INIS)

    Wang, N.; Sadoulet, B.; Shutt, T.

    1987-11-01

    We are developing a 20mK temperature sensor made of neutron transmutation doped (NTD) germanium for use as a phonon detector in a dark matter search. We find that NTD germanium thermistors around 20mK have resistances which are a strong function of temperature, and have sufficient sensitivity to eventually reach a base line rms energy fluctuation of 6eV at 25mK. Further work is needed to understand the extreme sensitivity of the thermistors to bias power. 13 refs., 18 figs

  9. Amorphous alloys in the U-Cr-V system

    International Nuclear Information System (INIS)

    Ray, R.; Musso, E.

    1979-01-01

    Amorphous uranium-chromium-vanadium alloys and a method of producing them are described. The uranium content of the alloys may vary between 60 and 80 atom percent, and chromium and vanadium between 0 and 40 atom percent, most particularly between 20 and 40 atom percent. A maximum of 10 atom percent of Cr or V may be replaced by other alloying elements, including metalloids and at least one transtion metal element. (LL)

  10. Ab initio study of M2AlN (M = Ti,V,Cr)

    International Nuclear Information System (INIS)

    Sun, Zhimei; Music, Denis; Ahuja, Rajeev; Schneider, Jochen M

    2005-01-01

    We have studied M 2 AlN phases, where M = Ti, V, and Cr, by means of ab initio total energy calculations. The bulk modulus of M 2 AlN increases as Ti is replaced with V and Cr by 19.0% and 26.5%, respectively, which can be understood on the basis of the increased number of valence electrons filling the p-d hybridized bonding states. The bulk modulus of M 2 AlN is generally higher than that of the corresponding M 2 AlC phase, which may be explained by an extra electron in the former phases contributing to stronger chemical bonding. This work is important for fundamental understanding of elastic properties of these ternary nitrides and may inspire future experimental research. (letter to the editor)

  11. Evaluation of the nuclear cross sections for the reactions: /sup 93/Nb(n,2n)sup(92M)Nb and /sup 93/Nb(n,2n)/sup 92/Nb from threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Philis, C; Young, P G

    1975-07-01

    A preliminary evaluation of the nuclear cross section for the reactions /sup 93/Nb(n,2n)sup(92M)Nb and /sup 93/Nb(n,2n)/sup 92/Nb has been completed from threshold to 20 MeV. The evaluation is based entirely on experimental results. The recommended values were determined after analysis, selection, and normalization of the measurements to a consistent set of standards. The evaluated data are discussed and compared with theoretical values and estimates of the uncertainty in the adopted data are provided.

  12. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  13. Leisure time, occupational, domestic, and commuting physical activity of inhabitants of the Czech Republic aged 55-69: Influence of socio-demographic and environmental factors [Pohybová aktivita obyvatel České republiky ve věku 55-69 let prováděná v rámci volného času, zaměstnání, v domácnosti a při přesunech: Vliv socio-demografických a environmentálních faktorů

    Directory of Open Access Journals (Sweden)

    Jana Pelclová

    2009-09-01

    Full Text Available BACKGROUND: The assessment of multiple domains of physical activity is considered to be necessary for global physical activity surveillance and might be useful for the recognition of the effects of physical activity on health. OBJECTIVE: The aims of this study were twofold: firstly to analyze moderate physical activity and walking within the leisure time, domestic, occupational and transport related domains of the inhabitants of the Czech Republic aged 55–69, and secondly, to investigate the socio-demographic and environmental factors which can influence meeting physical activity recommendations in leisure time, domestic, occupational and transport related domains. METHODS: The long version of the International Physical Activity Questionnaire (IPAQ was used to assess physical activity in 320 randomly selected inhabitants of the Czech Republic aged 55–69. They also answered additional questions on socio-demographic and environmental factors. RESULTS: Meeting moderate physical activity recommendations was significantly associated with elementary education, the age group 55–59 (compared to the age group 65–69, living in a house and non smoking whereas the likelihood of meeting the walking recommendation was connected only with having an occupation. Different socio-demographic and environmental factors were associated with moderate physical activity and walking within different domains. CONCLUSIONS: These factors should be taken into consideration, particularly when creating a successful PA promotion strategy tailored to Czech national specifics. [VÝCHODISKA: Výzkum pohybové aktivity z hlediska odlišných oblastí života se jeví jako přínosný pro celosvětové komparační studie a pomáhá detailněji zjišťovat efekt pohybové aktivity na zdraví člověka. CÍLE: Cíle této studie byly dva: za prvé analyzovat středně zatěžující pohybovou aktivitu a chůzi v rámci pohybových aktivit prováděných ve volném čase, v

  14. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Directory of Open Access Journals (Sweden)

    Azim Ataollahi Oshkour

    2014-01-01

    Full Text Available This study investigated the impact of calcium silicate (CS content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%. The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.

  15. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Science.gov (United States)

    Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  16. Determination of {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vansola, Vibha; Mukherjee, Surjit [M.S. University of Baroda, Vadodara (India). Dept. of Physics; Naik, Haladhara [Bhabha Atomic Research Center, Mumbai (India). Radiochemistry Div.; Suryanarayana, Saraswatula Venkata [Bhabha Atomic Research Center, Mumbai (India). Nuclear Physics Div.; Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty Mary [North Eastern Hill Univ., Meghalaya (India). Dept. of Physics; Sheela, Yerraguntla Santhi [Manipal Univ. (India). Dept. of Statistics

    2016-07-01

    The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The neutron energies of 1.12 and 2.12 MeV were generated from the {sup 7}Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC. For the neutron energies of 3.12 and 4.12 MeV, the proton energies used were 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The {sup 115}In(n,γ){sup 116m}In reaction cross-section was used as the neutron flux monitor. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 4.12 MeV are reported for the first time, whereas at 1.12, 2.12 and 3.12 MeV, they are in between the literature data. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section was also calculated theoretically by using the computer code TALYS 1.6 and EMPIRE 3.2.2. The experimental data of present work are found to be in between the theoretical values of TALYS and EMPIRE.

  17. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Klepikov, A.Kh. E-mail: klepikov@ietp.alma-ata.su; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R. E-mail: gxl@inel.gov

    2000-11-01

    The present work is an attempt to obtain data concerning the influence of neutron and {gamma} irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10{sup 14} n/cm{sup 2} s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples.

  18. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R.

    2000-01-01

    The present work is an attempt to obtain data concerning the influence of neutron and γ irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10 14 n/cm 2 s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples

  19. Evaluation of 235U(n,f) between 100 keV and 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1979-07-01

    The 235 U(n,f) cross section is evaluated in the energy range from 100 keV to 20 MeV. Experimental data are included up to the 1978 Harwell Conference on Neutron Physics. The evaluation methodology is discussed in detail. The shape and the normalization of the cross section are evalutated in separate steps. An extensive comparison of the evaluation result with experimental data sets is made. The shape of the cross section obtained in a preliminary version of the present evaluation and a normalization factor extracted from data provided within the framework of this evaluation were used by the Subcommittee on Standards and Normalizations of the Cross Sections Evaluation Working Group to establish 235 U(n,f) for ENDF/B-V above 100 keV. 20 figures, 6 tables

  20. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    International Nuclear Information System (INIS)

    He Zhirong; Liu Manqian

    2011-01-01

    Highlights: → New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. → The effect laws of annealing on transformation temperature and hysteresis of the alloy. → The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A → R/R → A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A → R → M/M → R → A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A → R → M/M → A type transformation occurs in 550 deg. C annealed alloy, and A → M/M → A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A → R/R → A, and that of 500 deg. C aged alloy is A → R → M/M → A, while that of 400 deg. C aged alloy changes from A → R/R → A to A → R → M/M → R → A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  1. High temperature aging structures of Ni-20Cr-20W alloys

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    High temperature aging structures and age hardening of Ni-20Cr-20W alloys developed as the superalloys for the nuclear energy steelmaking, and effects of C and Zr additions to the alloys and the effect of preheat treatment on these properties were studied. M 6 C, α-W and two kinds of M 23 C 6 having different lattice parameters were found as precipitates in the alloys. M 23 C 6 whose lattice parameter was around 10.7A precipitated in the early stage of aging at 700 0 C-1,150 0 C, and the carbide changed to M 6 C at higher temperature than 1,000 0 C, but it remained as a stable carbide at lower temperature than 900 0 C. α-W precipitated at 800 0 C-1,100 0 C after precipitation of M 23 C 6 and it disappeared with increase of M 6 C. M 23 C 6 having the larger lattice parameter (10.9A) precipitated transitionally in aging stage of 26 x 10 3 in Larson Miller parameter at 900 0 C and 1,000 0 C. Age hardening corresponded to the precipitation of M 23 C 6 and it was reduced by the double pre-heat-treatment. Zr addition and amount of C influenced on the aging structure and age hardening. Zr seemed to be a favorable element to stabilize the carbide. (auth.)

  2. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries

    Science.gov (United States)

    Ye, Hui; Huang, Yuexiang; Chen, Jianxia; Zhang, Hong

    Non-stoichiometric La-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys using B-Ni or B-Fe alloy as additive and Ce-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 one using pure B as additive have been prepared and their microstructure, thermodynamic, and electrochemical characteristics have been examined. It is found that all investigated alloys show good activation performance and high-rate dischargeability though there is a certain decrease in electrochemical capacities compared with the commercial MmNi 3.55Co 0.75Mn 0.4Al 0.3 alloy. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys using B-Ni alloy as additive or adopting Ce-rich mischmetal show excellent rate capability and can discharge capacity over 190 mAh/g even under 3000 mA/g current density, which display their promising use in the high-power type Ni/MH battery. The electrochemical performances of these MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys are well correlated with their microstructure, thermodynamic, and kinetic characteristics.

  3. Neutron irradiation embrittlement of reactor pressure vessel steel 20 MnMoNi55 weld

    International Nuclear Information System (INIS)

    Ghoneim, M.M.

    1987-05-01

    The effect of neutron irradiation on the mechanical and fracture properties of an 'improved' 20 MnMoNi 55 Pressure Vessel Steel (PVS) weld was investigated. In addition to very low residual element content, especially Cu (0.035 wt.%), and relatively higher Ni content (0.9 wt.%), this steel has higher strength (30% more) than the steels used currently in nuclear reactor pressure vessels. The material was irradiated to 3.5x10 19 and 7x10 19 n/cm 2 (E > 1 Mev) at 290 0 C and 2.5x10 19 n/cm 2 (E > 1 MeV) at 160 0 C in FRJ-1 and FRJ-2 research reactors at KFA, Juelich, F.R.G. Test methods used in the evaluation included instrumented impact testing of standard and precracked Charpy specimens, tensile, and fracture toughness testing. Instrumented impact testing provided load and energy vs. time (deflection) data in addition to energy absorption data. The results indicated that the investigated high strength improved steel is more resistant to irradiation induced embrittlement than conventional PVSs. (orig./IHOE)

  4. Comparing magnetostructural transitions in Ni{sub 50}Mn{sub 18.75}Cu{sub 6.25}Ga{sub 25} and Ni{sub 49.80}Mn{sub 34.66}In{sub 15.54} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Granovsky, Alexander [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Lahderanta, Erkki [Lappeenranta University of Technology, 53851 (Finland); Kashirin, Maxim; Makagonov, Vladimir [Voronezh State Technical University, Voronezh 394026 (Russian Federation); Aryal, Anil; Quetz, Abdiel; Pandey, Sudip [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Rodionov, Igor [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Samanta, Tapas; Stadler, Shane [Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Mazumdar, Dipanjan, E-mail: dmazumdar@siu.edu [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2016-03-01

    The crystal structure, magnetic and transport properties, including resistivity and thermopower, of Ni{sub 50}Mn{sub 18.75}Cu{sub 6.25}Ga{sub 25} and Ni{sub 49.80}Mn{sub 34.66}In{sub 15.54} Heusler alloys were studied in the (10–400) K temperature interval. We show that their physical properties are remarkably different, thereby pointing to different origin of their magnetostructural transition (MST). A Seebeck coefficient (S) was found to pass minimum of about −20 µV/K in respect of temperature for both compounds. It was shown that MST observed for both compounds results in jump-like changes in S for Ga-based compound and jump in resistivity of about 20 and 200 µΩ cm for Ga and In –based compounds, respectively. The combined analyzes of the present results with that from literature show that the density of states at the Fermi level does not change strongly at the MST in the case of Ni–Mn–In alloys as compared to that of Ni–Mn–Ga. - Graphical abstract: Temperature dependencies of resistivity for Ni{sub 50}Mn{sub 18.75}Cu{sub 6.25}Ga{sub 25} and Ni{sub 49.80}Mn{sub 34.66}In{sub 15.54} obtained on heating (open symbols) and cooling (closed symbols). Arrows indicate the temperature of direct (T{sub M}) and inverse (T{sub A}) martensitic transitions and ferromagnetic ordering of the austenitic (T{sub C}) and martensitic (T{sub CM}) phases. The T{sub CM}=T{sub A}/T{sub M} in the case of Ga-based alloy. - Highlights: • Magnetostructural transitions (MST) in two compounds with same parent material. • The figure exemplifies how sensitive MST properties are to the density of states. • Proper understanding is required for utilizing these multifunctional materials.

  5. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  6. Strength, ductility, and ductile-brittle transition temperature for MFR [magnetic fusion reactor] candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.; Peterson, J.R.

    1987-09-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20% and 38%. The reduction in area ranged from 30% to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 0 C to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0 to 0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. 14 refs., 4 figs., 3 tabs

  7. Ti-25Ta-Zr alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia; Quadros, Fernanda Freitas; Grandini, Carlos Roberto, E-mail: pedro@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias

    2016-07-01

    Full text: The most widely used titanium alloy for biomedical applications is Ti-6Al-4V, however, previous studies showed that vanadium cause allergic reactions in human tissue and aluminum has been associated with neurological disorders. Then, to solve this problem, new titanium alloys without the presence of these elements are being developed, with the addition of different elements, usually the β-stabilizers, which can change its microstructure and mechanical properties, and may make the titanium and its alloys, most promising for use as biomaterial. In this paper the development and characterization of Ti-25Ta-(10-40)Zr alloys, for biomedical applications are discussed. X-ray diffraction results show the coexistence of α', α” and β phases, which are corroborated by SEM results. The results of microhardness and elastic modulus present an anomaly for the alloy with 10 wt% Zr, due, probably the presence of ω phase. (author)

  8. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  9. Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)m /(GaN)n (m>n) superlattice substitution for Al-rich AlGaN disorder alloy: ultra-thin GaN layer modulation

    International Nuclear Information System (INIS)

    Jiang, Xin-he; Shi, Jun-jie; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Yu, Tong-jun; Shen, Bo; Lu, Jing; Zhang, Min; Wang, Xihua

    2014-01-01

    The problem of achieving high light extraction efficiency in Al-rich Al x Ga 1−x N is of paramount importance for the realization of AlGaN-based deep ultraviolet (DUV) optoelectronic devices. To solve this problem, we investigate the microscopic mechanism of valence band inversion and light polarization, a crucial factor for enhancing light extraction efficiency, in Al-rich Al x Ga 1−x N alloy using the Heyd–Scuseria–Ernzerhof hybrid functional, local-density approximation with 1/2 occupation, and the Perdew–Burke–Ernzerhof functional, in which the spin–orbit coupling effect is included. We find that the microscopic Ga-atom distribution can effectively modulate the valence band structure of Al-rich Al x Ga 1−x N. Moreover, we prove that the valence band arrangement in the decreasing order of heavy hole, light hole, and crystal-field split-off hole can be realized by using nanoscale (AlN) m /(GaN) n (m>n) superlattice (SL) substituting for Al-rich Al x Ga 1−x N disorder alloy as the active layer of optoelectronic devices due to the ultra-thin GaN layer modulation. The valence band maximum, i.e., the heavy hole band, has p x - and p y -like characteristics and is highly localized in the SL structure, which leads to the desired transverse electric (TE) polarized (E⊥c) light emission with improved light extraction efficiency in the DUV spectral region. Some important band-structure parameters and electron/hole effective masses are also given. The physical origin for the valence band inversion and TE polarization in (AlN) m /(GaN) n SL is analyzed in depth. (paper)

  10. Relación entre la edad del profesorado de música andaluz y el desarrollo de la Escuela TIC 2.0

    Directory of Open Access Journals (Sweden)

    Emilia MARTOS SÁNCHEZ

    2016-06-01

    Full Text Available El objetivo de este artículo era conocer si la edad se asociaba al desarrollo del programa andaluz Escuela TIC 2.0. en los profesores andaluces de Música de Educación Secundaria Obligatoria (ESO. Para esta investigación, la muestra estuvo compuesta por 207 docentes de música de la ESO, quienes cumplimentaron un cuestionario sobre los diferentes aspectos que conllevaba dicho programa en conexión con su área, tales como la formación en TIC, las tecnologías en el aula, la actitud hacia las TIC y las competencias, los recursos digitales, o la vinculación entre las familias y la Escuela TIC. Dicho cuestionario, fue sometido tanto a la validación estadística por componentes principales como a la validación de jueces y a procedimientos de fiabilidad mediante el alpha de Cronbach y las dos mitades. Se aplicó un análisis de contingencias y los resultados mostraron que el profesorado entre 25 y 35 años usaba otras webs en el aula, integraba las TIC porque creía que aumentaban la calidad del aprendizaje y conocían más el correo electrónico. El profesorado de 35 a 44 años manifestó más aceptación por el proyector mientras que el mayor de 55 años, aunque tenía formación en tecnología, prefería la metodología tradicional. El estudio reveló que, efectivamente, la edad del profesorado de música andaluz de la ESO estaba relacionada con la determinación de incorporar las TIC y el desarrollo de la Escuela TIC 2.0

  11. Theoretical study of isoelectronic SinM clusters (M=Sc-,Ti,V+; n=14-18)

    DEFF Research Database (Denmark)

    Torres, M. B.; Fernandez Sanchez, Eva; Balbás, L. C.

    2007-01-01

    We study, from first-principles quantum mechanical calculations, the structural and electronic properties of several low-lying energy equilibrium structures of isoelectronic SinM clusters (M=Sc-,Ti,V+) for n=14-18. The main result is that those clusters with n=16 are more stable than its neighbors...... of the spherical potential model). The structures of the two lowest energy isomers of Si16M are nearly degenerate, and consist of the Frank-Kasper polyhedron and a distortion of that polyhedron. The first structure is the ground state for M=V+, and the second is the ground state for Ti and Sc-. For the lowest...... energy isomers of clusters SinM with n=14-18, we analyze the changes with size n, and impurity M of several quantities: binding energy, second difference of total energy, HOMO-LUMO gap, adiabatic electron affinity, addition energy of a Si atom, and addition energy of an M impurity to a pure Si-n cluster...

  12. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 717-724, 2004

  13. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  14. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  15. Electrochemical behaviour of copper in N,N-dimethylformamide + 0.5 M potassium perchlorate solution

    Directory of Open Access Journals (Sweden)

    S. MENTUS

    2000-09-01

    Full Text Available The electrochemical deposition and dissolution of copper in 0.0025 M CuSO4 + N,N-dimethylformamide + 0.5 M KClO4 solution was examined by the rotating disc and potentiodynamic methods. Both platinum and copper were used as working electrodes. A wide polarization range –1 to +2 V vs. SCE, and several temperatures between 25 and 55°C were encompased. The Cu/electrolyte interface was found to be permanently out of equilibrium, as a consequence of the development of a passivating layer. In accordance with the classic theory of a copper electrode in acidified aqueous solutions, the cathodic and anodic Tafel lines of metallic copper define a unique value of the exchange current density, however, their slopes do not correspond to the classic theory.

  16. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  17. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  19. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  20. 24 CFR 55.20 - Decision making process.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Decision making process. 55.20 Section 55.20 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development FLOODPLAIN MANAGEMENT Procedures for Making Determinations on Floodplain Management § 55.20 Decision making process. The decision making...

  1. Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes

    International Nuclear Information System (INIS)

    Cunha, M.C.P.M. da; De Souza, J.P.I.; Nart, F.C.

    2000-01-01

    The reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes has been investigated using differential electrochemical mass spectrometry and in situ FTIR measurements. For 3 M HNO 3 concentration it has been found that nitrate starts the reduction with partial N-O bond dissociation and N-N bond formation generating NO and N 2 O. At potentials lower than 0.2 V the reaction proceeds forming dissolved NH 4 + . For potentials lower than 0 V the reduction continues via a multiple pathway reaction leading to the nonselective production of N 2 , NH 2 OH, and N 2 H 2 . On the alloyed electrodes, the production of NO and N 2 O has been observed in both cathodic and anodic scans, while on pure platinum and rhodium electrodes the reaction has been observed only during the cathodic scan. Contrasting with the pure platinum and rhodium alloys, where the N-O bond break starts forming NO and N 2 O, on the alloys HNO 2 has been observed as the first reaction step. For alloys with higher rhodium composition, like Pt 75 Rh 25 , no N 2 has been detected for potentials lower than 0 V

  2. Relationship of microstructure and mechanical properties for V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Gazda, J.; Nowicki, L.J.; Smith, D.L.; Danyluk, S.

    1993-08-01

    Relation of composition, number density, and diameter of precipitates in microstructures of unalloyed V and V-Cr-Ti alloys to the yield strength, hardness, creep stress, and ductile-brittle transition temperature (DBTT) for these materials was determined from analytical electron microscopy analyses of precipitates in these materials and from mechanical properties data. Unalloyed V and V-Cr-Ti alloys with ≤3 wt. % Ti contained VC and TI(CNO) precipitates that were coherent with the matrix. The most common precipitates in the alloys were Ti(C 1-x-y N x O y ) that were non-coherent with the matrix. The number density of non-coherent precipitates was maximum in V-3Ti and V-5Cr-3Ti alloys, and the average diameter of non-coherent precipitates was minimum in V-(1--3)Ti and V-5Cr-3Ti alloys. The increase of yield strength and hardness of V on alloying with Ti and Cr was shown to be primarily due to coherent precipitate, solute-atom misfit, and shear-modulus difference effects. The creep stress for rupture in 1000 hours was related to the number density of precipitates, whereas the DBTT was related to the volume fraction of precipitates

  3. Effects of annealing and deforming temperature on microstructure and deformation characteristics of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer The deformation behaviors of annealed Ti-50.8Ni-0.5V shape memory alloy (SMA) were given. Black-Right-Pointing-Pointer The effect of annealing temperature on microstructure and deformation characteristics of Ti-50.8Ni-0.5V SMA was shown. Black-Right-Pointing-Pointer The effect of deforming temperature on deformation characteristics of Ti-50.8Ni-0.5V SMA was given. - Abstract: Effects of annealing temperature T{sub an} and deforming temperature T{sub d} on microstructure and deformation characteristics of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of optical microscopy and tensile test. With increasing T{sub an}, the microstructure of Ti-50.8Ni-0.5V alloy wire changes from fiber style to equiaxed grain, and the recrystallization temperature of the alloy is about 580 Degree-Sign C; the critical stress for stress-induced martensite {sigma}{sub M} of the alloy decreases first and then increases, and the minimum value 382 MPa is got at T{sub an} = 450 Degree-Sign C; the residual strain {epsilon}{sub R} first increases, then decreases, and then increases, and its maximum value 2.5% is reached at T{sub an} = 450 Degree-Sign C. With increasing T{sub d}, a transformation from shape memory effect (SME) to superelasticity (SE) occurs in the alloy annealed at different temperatures, and the SME {yields} SE transformation temperature was affected by T{sub an}; the {sigma}{sub M} of the alloy increases linearly; the {epsilon}{sub R} of the alloy annealed at 350-600 Degree-Sign C decreases first and then tends to constant, while that of the alloy annealed at 650 Degree-Sign C and 700 Degree-Sign C decreases first and then increases. To get an excellent SE at room temperature for Ti-50.8Ni-0.5V alloy, T{sub an} should be 500-600 Degree-Sign C.

  4. Systematic study of (n, p) reaction cross sections from the reaction threshold to 20 MeV

    NARCIS (Netherlands)

    Lalremruata, B.; Otuka, N.; Tambave, G. J.; Mulik, V. K.; Patil, B. J.; Dhole, S. D.; Saxena, A.; Ganesan, S.; Bhoraskar, V. N.

    2012-01-01

    The cross sections of Cr-nat(n, x)V-52, Cr-52(n, p)V-52, Cr-nat(n, x)V-53, Cr-53(n, p)V-53, Zn-nat(n, x)Cu-66, Zn-66(n, p)Cu-66, Zn-nat(n, x)Cu-68(m), Zn-68(n, p)Cu-68(m), Mo-nat(n, x)Nb-97(g), Mo-97(n, p)Nb-97(g), Mo-nat(n, x)Nb-97(m), Mo-97(n, p)Nb-97(m), Sn-nat(n, x)In-116(m1+m2), Sn-116(n,

  5. Study of the 28Si(n,α)25Mg induced by 14,55 MeV neutrons

    International Nuclear Information System (INIS)

    Devillers, D.

    1963-02-01

    The aim of this work is the study of the 28 Si(n,α) 25 Mg nuclear reaction. The silicon target is in fact a p-n junction detector that is placed in a neutron beam produced thanks to the D-T reaction by 150 kv electrostatic accelerator. The impulses due to the alpha particles generated by the neutrons inside the junction are analysed with adequate electronic equipment. Protons are generated in other nuclear reactions, they have the same energy as the alpha particles, most of them are not contained in the junction but all contribute to the experimental spectra. In order to make the discrimination between alpha and protons efficient, the thickness of the junction must be in the same magnitude as the alpha particle range in the junction. Edge effects are likely to disturb emission spectra. Corrections are necessary but they require a fine knowledge of the physics of junctions. In the first chapter we review the different reactions that are induced by neutrons in silicon. The second chapter deals with the experimental conditions concerning the studies of the junction detector and of the 28 Si(n,α) 25 Mg reaction itself. The determination of the cross-section requires to know the incident neutron flux accurately, we have applied the method of the associated particle and we have calibrated a scintillation counter operating with an anthracene crystal to measure the neutron flux. The third chapter gathers all the calculations concerning the edge effects in the junction detector. In the fourth chapter we present the experimental results with and without taking into account the edge effects. We have measured the values of the cross-sections corresponding to the first 6 excited states of 25 Mg

  6. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  7. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  8. n + 2759Co(En≤20 MeV) nuclear data calculation and analysis

    International Nuclear Information System (INIS)

    Wang Shunuan

    2006-01-01

    Whole set of nuclear data calculation in ENDF/B-6 format for n + 27 59 Co (E n20 MeV) has been finished by using spherical optical model, coupled channel optical model, pre-equilibrium exciton model and Hauser-Fashbach equilibrium statistical model. The calculated cross sections, angular distributions, spectrum and double differential cross sections by using codes of APOM, ECIS95 and UNF are compared with all existing experimental data for n + 27 59 Co(E n20 MeV) takefrom EXFOR. The calculated results are analyzed from point of view of theoretical model and model parameters used. The work is for CENDL-3. (authors)

  9. Development of 750 keV/20kW DC accelerator

    International Nuclear Information System (INIS)

    Bapna, S.C.; Banwari, R.; Venkateswaran, S.V.; Tripathi, Alok; Kasliwal, Apollo; Pramod, R.; Kumar, Pankaj

    2001-01-01

    This paper discusses development of a DC accelerator at CAT for industrial applications. This accelerator is housed in two floors; first floor having the accelerator and the ground floor is an irradiation cell. It will operate in the voltage range of 300kV to 750kV and will give maximum beam power of 20kW. The electron gun, acceleration column, focusing coil, high voltage multiplier stack, filament power supply and the control unit are housed in a 1.5 m diameter 3.2 m high pressure vessel which will be pressurized to 5.5 bar of SF 6 gas

  10. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin, E-mail: qinlin@tyut.edu.cn; Yi, Hong; Kong, Fanyou; Ma, Hua; Guo, Lili; Tian, Linhai; Tang, Bin

    2017-05-01

    Highlights: • A molybdenized layer was prepared as a buffer layer under TiN film on Ti6Al4V. • The molybdenized layer can enhance adhesion strength of PVD coatings effectively. • The duplex treated samples increase elastic energy ratio in the impact tests. • The enhancement attributes to the hardness improvement and inverted-S shape elastic modulus profile of the modified layer. - Abstract: Effect of molybdenized buffer layer on adhesion strength of TiN film on Ti6Al4V alloy was investigated. The buffer layer composed of a dense molybdenum deposition layer, a rapid drop zone and a slow fall zone was prepared using double glow plasma surface alloying technique. Scratch tests and low energy repeated impact tests were adopted to comparatively evaluate the duplex treated layers and the single TiN samples. The results show that the critical load was increased from 62 N for the single TiN film to over 100 N for the duplex treated layer. The volume of impact pit, formed in impact tests, of the single TiN samples is 9.15 × 10{sup 6} μm{sup 3}, and about 1.5 times than that of the duplex treated samples. The Leeb hardness values reveal that about 70% impact energy was transferred to the single TiN samples to generate permanent deformation, while that was only about 47% for the duplex treated samples. The mechanism of improving adhesion strength is attributed to synergistic effect due to an inverted-S shape elastic modulus distribution produced by the molybdenized layer.

  11. Corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium

    International Nuclear Information System (INIS)

    Alikhanova, S.D.

    2017-01-01

    The present work is devoted to corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium. The purpose of present work is elaboration of optimal composition of zinc-aluminium alloys Zn5Al and Zn55Al alloyed by rare-earth metals of cerium subgroup which are used as anode covers for protection of steel from corrosion. Therefore, the regularities of change of corrosion-electrochemical properties in various corrosive mediums have been determined; processes mechanisms of high temperature oxidation of alloys in solid state have been studied; in the products of alloys oxidation their phase components have been defined and their role in the corrosion process have been revealed; the optimal compositions of zinc-aluminium alloys alloyed by rare earth metals, which are protected by two patents of the Republic of Tajikistan have been elaborated.

  12. Measurement of (n,2n) cross-sections for Sc, Mn, Cr and In between 12 and 19 MeV with activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, S.; Win, Than; Matsuyama, S. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Odano, N.

    1997-03-01

    Activation cross-sections for scandium, manganese, chromium and indium have been measured in the neutron energies from 12 to 19 MeV. Source neutrons were produced via the T(d,n){sup 4}He reaction by bombarding a 3.2-MeV deuteron beam from the Dynamitron accelerator of Fast Neutron Laboratory at Tohoku University. Ten packages of high or ultra-high purity metal foils for chromium and indium, alloy foils for manganese, and oxide powder for scandium were set around the neutron source at 5 cm from the target in the angular range from 0 to 140 deg covering the incident neutron energies from 19 to 12 MeV at the center position of each package. Activation rates of the samples were obtained by the gamma-ray measurements using a high purity germanium detector. Neutron flux at each sample was determined using the activation rates of two niobium foils locating both sides of that sample; the reference reaction was {sup 93}Nb(n,2n){sup 92m}Nb of which cross-section data was taken from the 1991 NEANDC/INDC standard files. The source neutrons distributions have been measured in detail by the time-of-flight technique. The measured cross-sections are the following important dosimetry or activation reactions: {sup 45}Sc(n,2n){sup 44m}Sc, {sup 55}Mn(n,2n){sup 54}Mn, {sup 52}Cr(n,2n){sup 51}Cr, and {sup 115}In(n,2n){sup 114m}In. These cross-sections are compared with available activation file, dosimetry files and previous experimental data. (author)

  13. B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering

    Science.gov (United States)

    Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng

    2018-05-01

    Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.

  14. Measurement of cross-sections for the reaction 103Rh (n,n')103mRh in the energy range 5.69 - 12 MeV and its evaluation from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Hossain, M.M.M.

    1995-05-01

    The cross-sections for the reaction 103 R(n,n') 103m Rh were measured by the method of activation in the neutron energy range 5.69-12.00 MeV produced by the D(d,n) 3 He reaction. The irradiation of Rh foils was performed at zero degree to the incident beam direction and the activities of KX-rays from the decay of 103m Rh were measured by means of a calibrated Si(Li) detector. During irradiation, the neutron fluence was measured with a fission chamber in which a thin deposit of 238 U was located immediately behind the Rh foil. The measured cross-section with the corresponding uncertainty in the stated energy range is more accurate than all previous measurements in spite of rather large corrections due to break-up neutrons. The update of the evaluation for the same reaction in the energy range from threshold up to 20 MeV was carried out by using the weighted average of cross-sections based on both the experimental data including the present one and theoretical model calculations. The experimental data were renormalized with respect to the recent precision KX-ray emission probability (7.66 + 0.14) % where necessary. To perform the evaluation, the whole excitation function was divided into 33 energy groups of 0.2-1.0 MeV widths. The uncertainties of the evaluated cross-sections especially 6-12 MeV have been improved due to the inclusion of the new measurement. Overall, the results of the updated evaluation are a considerable improvement compared to the previous evaluation of this reaction and also to the recommended cross-section data of IRDF (International Reactor Dosimetry File). (author)

  15. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  16. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.T.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Biaggio, S.R. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Piazza, S. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: piazza@dicpm.unipa.it; Sunseri, C. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Quarto, F. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2004-10-15

    The anodic behaviour of two titanium cast alloys, obtained by fusion in a voltaic arc under argon atmosphere, was analyzed in aerated aqueous solutions having different pH values. In all solutions the alloys, having nominal compositions Ti-50Zr at.% and Ti-13Zr-13Nb wt.%, displayed a valve-metal behaviour, owing to the formation of barrier-type oxide films. Passive films, grown potentiodynamically up to about 9 V, were investigated by photocurrent spectroscopy (PCS) and electrochemical impedance spectroscopy (EIS). These passive layers show photoactivity under anodic polarizations, with optical gaps close to 3.55 and 3.25 eV for the binary and the ternary alloy, respectively, independent of the anodizing electrolyte. Films grown on the binary alloy present insulating behaviour and anodic impedance spectra with one time constant; this was interpreted in terms of a single-layer mixed Ti-Zr oxide enriched in Ti with respect to the alloy composition. Also for the ternary alloy the results are consistent with the formation, upon anodization, of Ti-Nb-Zr mixed oxide films, but they display n-type semiconducting behaviour, owing to their poor content of ZrO{sub 2} groups.

  17. Oxidation performance of V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    2000-01-01

    Vanadium-base alloys are being considered as candidates for the first wall in advanced V-Li blanket concepts in fusion reactor systems. However, a primary deterrent to the use of these alloys at elevated temperatures is their relatively high affinity for interstitial impurities, i.e., O, N, H, and C. The authors conducted a systematic study to determine the effects of time, temperature, and oxygen partial pressure (pO 2 ) in the exposure environment on O uptake, scaling kinetics, and scale microstructure in V-(4--5) wt.% Cr-(4--5) wt.% Ti alloys. Oxidation experiments were conducted on the alloys at pO 2 in the range of 5 x 10 -6 -760 torr (6.6 x 10 -4 -1 x 10 5 Pa) at several temperatures in the range of 350--700 C. Models that describe the oxidation kinetics, oxide type and thickness, alloy grain size, and depth of O diffusion in the substrate of the two alloys were determined and compared. Weight change data were correlated with time by a parabolic relationship. The parabolic rate constant was calculated for various exposure conditions and the temperature dependence of the constant was described by an Arrhenius relationship. The results showed that the activation energy for the oxidation process is fairly constant at pO 2 levels in the range of 5 x 10 -6 -0.1 torr. The activation energy calculated from data obtained in the air tests was significantly lower, whereas that obtained in pure-O tests (at 760 torr) was substantially higher than the energy obtained under low-pO 2 conditions. The oxide VO 2 was the predominant phase that formed in both alloys when exposed to pO 2 levels of 6.6 x 10 -4 to 0.1 torr. V 2 O 5 was the primary phase in specimens exposed to air and to pure O 2 at 760 torr. The implications of the increased O concentration are increased strength and decreased ductility of the alloy. However, the strength of the alloy was not a strong function of the O concentration of the alloy, but an increase in O concentration did cause a substantial decrease

  18. Microstructure evolution and mechanical properties of Ti−22Al−25Nb alloy joints brazed with Ti−Ni−Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Cai, X.Q.; Yang, Z.W., E-mail: tjuyangzhenwen@163.com; Qiu, Q.W.; Wang, D.P.; Liu, Y.C.

    2016-10-01

    Ti{sub 45}Ni{sub 45}Nb{sub 10} (at.%) brazing alloy, fabricated by arc melting, was successfully used to braze Ti−22Al−25Nb (at.%) alloy. The microstructures of Ti{sub 45}Ni{sub 45}Nb{sub 10} brazing alloy and Ti−22Al−25Nb alloy brazed joints were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and micro-area X-ray diffraction (XRD). The effects of the brazing parameters on the interfacial microstructure and mechanical properties of the Ti−22Al−25Nb alloy brazed joints were investigated. The results showed that the joint was primarily comprised of two characteristic zones: diffusion zone I and central zone II, and the reaction phases formed in the brazed joint were the B2, O, τ{sub 3}, and Ti{sub 2}Ni phase. The crystal orientation of B2 phase in diffusion zone I was consistent with that in the Ti−22Al−25Nb substrate. The O phase was precipitated from the B2 phase. As the brazing temperature or holding time increased, τ{sub 3} was gradually replaced by the B2 phase, and the Ti{sub 2}Ni phase decreased and ultimately disappeared. The maximum shear strength achieved at room temperature was 318 MPa when the joint was brazed at 1180 °C for 20 min, whereas it was 278 MPa at 650 °C. Crack primarily propagated in the τ{sub 3} compound, which was extremely hard and brittle, and partially traversed the B2 and O phases. - Highlights: • Ti{sub 45}Ni{sub 45}Nb{sub 10} alloy was successfully developed to braze Ti−22Al−25Nb alloy. • Ti−22Al−25Nb alloy was transformed from B2 phase into the O + B2 duplex phase after brazing. • Crystal orientation of B2 in joint was dependent on metal substrate. • Correlation between joint microstructure and mechanical properties was revealed. • Ti−22Al−25Nb brazed joint had excellent ambient and high temperature strength.

  19. Two-step superconducting transition in Cu-V-Si alloys

    International Nuclear Information System (INIS)

    Sharma, R.G.; Krishna, M.M.; Narlikar, A.V.

    1980-01-01

    Copper ternary alloys containing small amounts of vanadium and silicon exhibit a two-step superconducting resistive transition. The first transition occurs around 17 K, the transition temperature of β-W V 3 Si, followed by a plateau and a second transition around 10 K. The resistivity, however, does not drop to zero down to 2.5 K. Reduction of the wire diameter causes the two transitions to shift to lower temperatures. Complete superconductivity in these specimens is absent for two reasons. Firstly, the superconducting volume fraction present in these alloy-wires is below the threshold given by either the effective-medium theory or the site percolation theory. Secondly, the superconducting phase V 3 Si does not precipitate in copper matrix in a fine structure and the proximity effect does not operate strongly. Annealing causes the superconducting particles to coalesce and grow in size and suppresses the proximity effect and superconductivity further in these alloy wires. (author)

  20. Móvil remisión de V. cinta del primer móvil.

    OpenAIRE

    2011-01-01

    [ES] Definición del término Móvil remisión de V. cinta del primer móvil. en el diccionario Dicter. [EN] Definition of the word Móvil remisión de V. cinta del primer móvil. in the dictionary Dicter.

  1. Superconductivity and specific heat measurements in V--Nb--Ta ternary alloys

    International Nuclear Information System (INIS)

    Wang, R.Y.P.

    1977-01-01

    The correlation between the superconducting transition temperature T/sub c/ with electronic specific heat coefficient γ and Debye temperature theta/sub D/ in some isoelectronic ternary V--Nb--Ta alloys is investigated. It has been known that the variation of theta/sub D/ with concentration in both V--Nb and V--Ta systems is clearly of the same curvature as that of T/sub c/ and γ. In Ta--Nb alloys, however, over most of the concentration range theta/sub D/ seems to have a slight negative curvature while T/sub c/ and γ curve upwards. (But beyond approx. 80 at. % Nb theta/sub D/ rises rapidly to the pure Nb value.) By choosing alloys along a line connecting Ta and V 25 --Nb 75 which is close to the Nb--Ta side of the Gibb's triangle the extent to which the Nb--Ta type of behavior persists in this ternary system can be estimated. A model proposed by Miedema that takes into account the variation of properties caused by possible charge transfer among constituent atoms in an alloy has been found to apply almost quantitatively for nearly all binary alloy systems whose experimental data are available, including those for which Hopfield's method fails. A previous test of the extension of Miedema's empirical model into ternary alloys shows qualitatively correct behavior for intra-row Zr/sub x/Nb/sub 1-2x/Mo/sub x/ alloys. The good agreement between the predicted values of γ and T/sub c/ and the experimental values in the inter-row ternary V--Nb--Ta system studied here gives another and better test of the application of Miedema's model

  2. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  3. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  4. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  5. Recovery of electron irradiated V-Ga alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Monge, M.; Pareja, R.; Hodgson, E.R.

    2000-01-01

    The recovery characteristics of electron-irradiated V-Ga alloys with 1.2 and 4.6 at.% Ga have been investigated by positron annihilation spectroscopy (PAS). It is found that vacancies created by electron irradiation become mobile in these alloys at ∼293 K. This temperature is noticeably lower than that in pure V and V-Ti alloys. The vacancies aggregate into microvoids in V-4.6Ga, but do not in V-1.2Ga. The results indicate that vacancies are bound to Ga-interstitial impurity pairs

  6. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  7. Internal friction and mechanical properties of Zr - 2.5% Nb alloy after programme loading

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Okovit, V.S.; Netesov, V.M.

    1984-01-01

    Temperature dependence of internal friction in the range 20-600 deg C of the alloy Zr-2.5% Nb in the initial state after programmed loading up to 0.1% of residual elongation and static deformation to the same deformation degree has been studied. It is shown, that the programmed loading promotes the decrease in relaxation rate at 20 and 200 deg C and the increase of strength characteristics of the alloy without the decrease in plasticity margin to fracture in the range 20-400 deg C

  8. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  9. Superconducting single-photon detectors designed for operation at 1.55m telecommunication wavelength

    International Nuclear Information System (INIS)

    Milostnaya, I; Korneev, A; Rubtsova, I; Seleznev, V; Minaeva, O; Chulkova, G; Okunev, O; Voronov, B; Smirnov, K; Gol'tsman, G; Slysz, W; Wegrzecki, M; Guziewicz, M; Bar, J; Gorska, M; Pearlman, A; Kitaygorsky, J; Cross, A; Sobolewski, Roman

    2006-01-01

    We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ∼30-40%, which is limited by the NbN film absorption. For the infrared range (1.55μm), QE is ∼6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ∼20% for 1.55m photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 μm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 μm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55m wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ∼1% system QE for 1.55 μm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications

  10. Changes of structure and properties of cast steels GX10NiCrNb32-20 and GX10NiCrNb3-25 after long-term tempering at 600-1000 C

    International Nuclear Information System (INIS)

    Gommans, R.; Schrijen, H.; Sundermann, J.; Steinkusch, W.; Hering, W.

    2001-01-01

    Low-alloy cast steels of type GX 10NiCrNb 32.20 are commonly used for the outlet section of reformer and cracker tubes for the temperature range of 600-1000 C. There was a lack of data on the ductility of the 25%Cr alloyed cast steel GX10NiCrNb 35.25 at room temperature after tempering, which was investigated in a joint project of Pose-Marre and DSM. Mechanical tests were carried out at room temperature and at elevated temperatures. Apart from light microscopy, also SEM/EDX, SAM and TEM analyses were carried out. The 25% alloy has lower ductility than the 20% alloy, owing primarily to the more pronounced development of M 6 C carbide from primary NbC carbide, which takes up Ni and Si during tempering. The microstructure and composition of the M 6 C carbide wre not fully clarified. Information is presented on the potential application of low-carbon materials of the type GX10NiCrNb35.25 [de

  11. Energy efficiency management in V and M from Brazil; Gestao de eficiencia energetica na V e M do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Felipe Castilho de Souza; Silva, Camila Soares Lana da; Marques, Sergio Grassi Ferreira [V e M do Brasil S.A., Belo Horizonte, MG (Brazil)

    2010-07-01

    This paper describes the management of the energy efficiency program, created by Vallourec Group in 2009, in V and M do Brazil, aiming to minimize the global warming impacts by reducing the greenhouse gases through the rational consumption of electricity and natural gas. The objective of this program is to reduce 20% of the energy consumption and, consequently, the equivalent CO{sub 2} emissions by 2020. From a centralized energy efficiency management, periodical committees and work groups were created to monitor the indicators and directing actions, generating 25% of the total economy of V and M do Brazil in 2010. (author)

  12. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Dakhlaoui, Hassen [Department of Physics, College of Science for Girls, University of Dammam (UOD), Saudi Arabia and Department of Physics, Faculty of Sciences of Bizerte, University of Carthage (Tunisia)

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  13. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    International Nuclear Information System (INIS)

    Lin Naiming; Huang Xiaobo; Zhang Xiangyu; Fan Ailan; Qin Lin; Tang Bin

    2012-01-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  14. 5.0 kV breakdown-voltage vertical GaN p-n junction diodes

    Science.gov (United States)

    Ohta, Hiroshi; Hayashi, Kentaro; Horikiri, Fumimasa; Yoshino, Michitaka; Nakamura, Tohru; Mishima, Tomoyoshi

    2018-04-01

    A high breakdown voltage of 5.0 kV has been achieved for the first time in vertical GaN p-n junction diodes by using our newly developed guard-ring structures. A resistance device was inserted between the main diode portion and the guard-ring portion in a ring-shaped p-n diode to generate a voltage drop over the resistance device by leakage current flowing through the guard-ring portion under negatively biased conditions before breakdown. The voltage at the outer mesa edge of the guard-ring portion, where the electric field intensity is highest and the destructive breakdown usually occurs, is decreased by the voltage drop, so the electric field concentration in the portion is reduced. By adopting this structure, the breakdown voltage (V B) is raised by about 200 V. Combined with a low measured on-resistance (R on) of 1.25 mΩ cm2, Baliga’s figure of merit (V\\text{B}2/R\\text{on}) was as high as 20 GW/cm2.

  15. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  16. New ternary ordered structures in CuMPt6 (M=3d elements) alloys

    International Nuclear Information System (INIS)

    Das, Ananda Kumar; Nakamura, Reo; Takahashi, Miwako; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    X-ray and electron diffraction measurements were performed to investigate the structure and ordering behaviour of the ternary alloys CuMPt 6 (M=Ti, V, Cr, Mn, Fe, Co, and Ni). X-ray polycrystalline diffraction patterns of all the speciments quenched from 1000degC have shown that a single phase is formed at this stoichiometric composition. The alloys with M=Cr, Mn, Co, and Ni have the face-centred cubic (fcc) structure, while in the alloys with M=Ti, V, and Fe ordering has occurred and the structure is of the Cu 3 Au type. On annealing at lower temperatures ordering has been induced in the alloys with M=Cr, Mn, and Co and the structure is of the Cu 3 Au type, though the ordering in the last alloy has remained incomplete. Detailed X-ray diffraction measurements on single crystals of the CuMnPt 6 alloy have revealed that further ordering takes place and structure changes from the Cu 3 Au type into the cubic ABC 6 type with the unit cell as large 2 x 2 x 2 as the fcc unit cell, a new observation of the double-step ordering in the ternary fcc alloy. The corresponding transition temperatures are T c =970(±5)degC and T cl =750(±5)degC. (author)

  17. Fatigue performance of copper and copper alloys before and after irradiation with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    1997-05-01

    The fatigue performance of pure copper of the oxygen free, high conductivity (OFHC) grade and two copper alloys (CuCrZr and CuAl-25) was investigated. Mechanical testing and microstructural analysis were carried out to establish the fatigue life of these materials in the unirradiated and irradiated states. The present report provides the first information on the ability of these copper alloys to perform under cyclic loading conditions when they have undergone significant irradiation exposure. Fatigue specimens of OFHC-Cu, CuCrZr and CuAl-25 were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of ∼2.5 x 10 17 n/m 2 s (E > 1 MeV) to fluence levels of 1.5 - 2.5 x 10 24 n/m 2 s (E > 1 MeV) at ∼47 and 100 deg. C. Specimens irradiated at 47 deg. C were fatigue tested at 22 deg. C, whereas those irradiated at 100 deg. C were tested at the irradiation temperature. The major conclusion of the present work is that although irradiation causes significant hardening of copper and copper alloys, it does not appear to be a problem for the fatigue life of these materials. In fact, the present experimental results clearly demonstrate that the fatigue performance of the irradiated CuAl-25 alloy is considerably better in the irradiated than that in the unirradiated state tested both at 22 and 100 deg. C. This improvement, however, is not so significant in the case of the irradiated OFHC-copper and CuCrZr alloy tested at 22 deg. C. These conclusions are supported by the microstructural observations and cyclic hardening experiments. (au) 4 tabs., 26 ills., 10 refs

  18. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  19. Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices

    Directory of Open Access Journals (Sweden)

    James (Zi-Jian Ju

    2016-04-01

    Full Text Available The thermoelectric properties of n-type InGaN alloys with high In-content and InN/InGaN thin film superlattices (SL grown by molecular beam epitaxy are investigated. Room-temperature measurements of the thermoelectric properties reveal that an increasing Ga-content in ternary InGaN alloys (0 < x(Ga < 0.2 yields a more than 10-fold reduction in thermal conductivity (κ without deteriorating electrical conductivity (σ, while the Seebeck coefficient (S increases slightly due to a widening band gap compared to binary InN. Employing InN/InGaN SLs (x(Ga = 0.1 with different periods, we demonstrate that confinement effects strongly enhance electron mobility with values as high as ∼820 cm2/V s at an electron density ne of ∼5×1019 cm−3, leading to an exceptionally high σ of ∼5400 (Ωcm−1. Simultaneously, in very short-period SL structures S becomes decoupled from ne, κ is further reduced below the alloy limit (κ < 9 W/m-K, and the power factor increases to 2.5×10−4 W/m-K2 by more than a factor of 5 as compared to In-rich InGaN alloys. These findings demonstrate that quantum confinement in group-III nitride-based superlattices facilitates improvements of thermoelectric properties over bulk-like ternary nitride alloys.

  20. 25 CFR 141.55 - Price monitoring and control.

    Science.gov (United States)

    2010-04-01

    ... be made a survey of the prices of flour, sugar, fresh eggs, lard, coffee, ground beef, bread, cheese... 25 Indians 1 2010-04-01 2010-04-01 false Price monitoring and control. 141.55 Section 141.55... THE NAVAJO, HOPI AND ZUNI RESERVATIONS Enforcement Powers, Procedures and Remedies § 141.55 Price...

  1. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    Science.gov (United States)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  2. The effect of the solidification mode on eutectic structure in Fe-C-V alloys

    International Nuclear Information System (INIS)

    Fras, E.; Guzik, E.

    1980-01-01

    The aim of the study was to determine such a chemical composition of Fe-C-V alloys which would ensure the formation of perfectly eutectic structures as well as to investigate the eutectic morphology of these alloys when undergoing bulk and directional solidification. Attempts have been done to get in situ composites from Fe-C-V alloys. The adopted testing methods as well as obtained results are described in detail. (H.M.)

  3. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  4. Systematic of fusion incompleteness in 20Ne induced reactions at energy 4-7 MeV/nucleon

    International Nuclear Information System (INIS)

    Ali, Sabir; Ahmad, Tauseef; Kumar, Kamal

    2016-01-01

    In the present work, a study of fusion incompleteness using the 20 Ne projectile over 51 V, 55 Mn and 59 Co and targets has been carried out. The experiment involving 20 N e+ 51 V system was performed at VECC, Kolkata, India. The targets of thickness range 1.19-1.50 rug/cm 2 of spectroscopically pure 51 V (purity 99.99%) were prepared by depositing on aluminum backing of thickness range 1.47-1.64 mg/cm 2 by the vacuum evaporation technique at the target lab of VECC. A stack of six 51 V targets was irradiated for ≈ 11 hrs by 20 Ne 6+ beam at ≈145 MeV. The irradiation of the stack covered the desired energy range of 82-145 MeV. The beam current was ≈ 40 nA during the irradiation hours. The energy of the 20 Ne ion beam incident on each target foil was calculated using stopping power software SRIM. The overall error in the present work is estimated to be ≤20%

  5. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  6. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  7. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  8. Synthesis and Determination of Acid Dissociation Constants in Dimethyl Sulfoxide–Water Hydroorganic Solvent of 5,5-Diphenylpyrrolidine N-Aroylthiourea Derivatives

    Directory of Open Access Journals (Sweden)

    Yahya Nural

    2017-08-01

    Full Text Available Novel 5,5-diphenylpyrrolidineN-aroylthioureas, containing 4-methylbenzoyl, 2-chlorobenzoyl,2,4-dichlorobenzoyl, and2-naphthoyl, were synthesized and their structural analysis was performed using 1H nuclear magnetic resonance (NMR, 13C NMR, Fourier transform infrared spectroscopy, mass spectrometry (MS, and high-resolution MS (HRMS techniques. The acid dissociation constants of the 5,5-diphenylpyrrolidineN-aroylthiourea derivative compounds were determined using Hyperquad computer program for data obtained using potentiometric titration method in 25% (v/v dimethyl sulfoxide–water hydroorganic solvent in the presence of 0.1 mol×L-1 ionic strength of NaCl and in the acidic medium at 25±0.1°C, using sodium hydroxide base as a titrant. Two acid dissociation constants were obtained for 3a, 3b, and 3d, and it was suggested that they were related to N-H and enol groups. Furthermore, three acid dissociation constants obtained for 3a indicated that they were related to N-H, enthiol, and enol groups, and four acid dissociation constants obtained for 3c suggested that they were related to N-H, enthiol, enol, and carboxyl groups.

  9. Reaction π-p → eta'n in the 15-40 GeV/c momentum range

    International Nuclear Information System (INIS)

    Apel, W.D.; Augenstein, K.H.; Krueger, M.; Mueller, H.; Schinzel, D.; Schneider, H.; Sigurdsson, G.; Bertolucci, E.; Mannelli, I.; Pierazzini, G.M.; Quaglia, M.; Scribano, A.; Sergiampietri, F.; Vincelli, M.L.; Donskov, S.V.; Inyakin, A.V.; Johnson, R.; Kachanov, V.A.; Krasnokutsky, R.N.; Lednev, A.A.; Mikhailov, Yu.V.; Prokoshkin, Yu.D.; Shuvalov, R.S.; Kittenberger, V.; Leder, G.; Steuer, M.

    1979-01-01

    Measurements were made of the cross section of the reactions π - p → eta'(958)n, eta' → 2γ at momenta of 15, 20, 25, 30, and 40 GeV/c. The experiment was carried out on the IHEP 70 GeV accelerator using the 648 channel hodoscope spectrometer NICE for γ-ray detection. A total of 6000 eta' mesons were recorded. A sharp drop is seen in the differential cross section for t → 0. The dependences of the differential cross sections π - p → eta'n and π-p → etan on t are identical. On the basis of the ratio of the cross sections for these reactions at t = 0, i.e. R(eta'/n)sub(t=0) = 0.55 +- 0.06, the singlet-octet mixing angle for pseudoscalar mesons was determined to be β = -(18.2 +- 1.4) 0 . (Auth.)

  10. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying

    International Nuclear Information System (INIS)

    Mohanty, Sutanuka; Gurao, N.P.; Biswas, Krishanu

    2014-01-01

    The present investigation reports for the first time, the sinter ageing of equiatomic Al 20 Co 20 Cu 20 Ni 20 Zn 20 high entropy alloy (HEA), being synthesized by high energy ball milling of elemental powder blend under protective argon atmosphere, followed by consolidation of the milled powder by spark plasma sintering at different temperatures and applied pressure of 50 MPa. The detailed X-ray diffraction and transmission electron microscopy (TEM) studies indicate the presence of single phase, FCC β supersaturated solid solution in the ball milled powder. However, the sintering of the as-milled powder reveals the formation of α with ordered FCC (L1 2 ) structure within the grains of FCC γ. The microstructural analysis using TEM shows the precipitation of near cuboidal shaped α phase within the grains of γ. The size and shape of the precipitates depend on the sintering temperature. Hardness measurement of the sintered alloys suggests age hardening of the as-milled powder during sintering. The sinter age hardening of HEA is attributed to the fine scale precipitation of α phase. Detailed variation of the hardness and microstructural evolution are reported here to elucidate this novel finding

  11. Ferroelectricity, Piezoelectricity, and Dielectricity of 0.06PMnN-0.94PZT(45/55 Thin Film on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-01-01

    Full Text Available The high piezoelectricity and high quality factor ferroelectric thin films are important for electromechanical applications especially the micro electromechanical system (MEMS. The ternary compound ferroelectric thin films 0.06Pb(Mn1/3, Nb2/3O3 + 0.94Pb(Zr0.45, Ti0.55O3 (0.06PMnN-0.94PZT(45/55 were deposited on silicon(100 substrates by RF magnetron sputtering method considering that Mn and Nb doping will improve PZT properties in this research. For comparison, nondoped PZT(45/55 films were also deposited. The results show that both of thin films show polycrystal structures with the main (111 and (101 orientations. The transverse piezoelectric coefficients are e31,eff=−4.03 C/m2 and e31,eff=-3.5 C/m2, respectively. These thin films exhibit classical ferroelectricity, in which the coercive electric field intensities are 2Ec=147.31 kV/cm and 2Ec=135.44 kV/cm, and the saturation polarization Ps=30.86 μC/cm2 and Ps=17.74 μC/cm2, and the remnant polarization Pr=20.44 μC/cm2 and Pr=9.87 μC/cm2, respectively. Moreover, the dielectric constants and loss are εr=681 and D=5% and εr=537 and D=4.3%, respectively. In conclusion, 0.06PMnN-0.94PZT(45/55 thin films act better than nondoped films, even though their dielectric constants are higher. Their excellent ferroelectricity, piezoelectricity, and high power and energy storage property, especially the easy fabrication, integration realizable, and potentially high quality factor, make this kind of thin films available for the realistic applications.

  12. Olei̇n turşusunun ami̇dləri̇ni̇n sulfat TÖRƏMƏLƏRİNİN duzlarinin SİNTEZİ və məhlullarinin XASSƏLƏRİNİN TƏDQİQİ

    OpenAIRE

    N.Ş.Rzayeva

    2014-01-01

    Olein turşusunun N-dimetil, N-dietil, N-tsikloheksilamidləri sintez edilb və onların sulfat törəmələri alınıb. Daha sonra alınmış sulfat törəmələrinin Na, K və NH4 duzları sintez olunub. Duzların izopropil spirtinin suda 30%-li məhlulunda 20%-li məhlulları hazırlanıb və fiziki-kimyəvi xassələri öyrənılıb. Məhlulların sıxlıqları bir-birinə yaxın olub 0.9431-0.9579 qr/sm3 arasında dəyişir. Məhlulların donma temperaturları amid qrupunda olan N-alkildən asılı olaraq fərqlənir. Belə ki, N-dimetil ...

  13. Evaluation of n+Mn-55 cross section data up to 150 MeV neutron energy

    International Nuclear Information System (INIS)

    Pereslavtsev, P.; Fischer, U.

    2008-01-01

    A new evaluation was performed for the reaction system n + 55 Mn in the neutron energy range from 0.001 to 150 MeV. The evaluation is based on the use of the ECIS96 and GNASH codes. A good description of available experimental data was achieved. A very limited set of existing evaluated data from the available international nuclear data libraries was used for the evaluation. The final general purpose data file was prepared in standard ENDF-6 format and was verified with standard format checking utilities. The data file will undergo benchmark testing and will be finally integrated into the JEFF-3.2 data library. (authors)

  14. A Decade-Bandwidth Distributed Power Amplifier MMIC Using 0.25 μm GaN HEMT Technology

    Directory of Open Access Journals (Sweden)

    Dong-Hwan Shin

    2017-10-01

    Full Text Available This study presents a 2–20 GHz monolithic distributed power amplifier (DPA using a 0.25 μm AlGaN/GaN on SiC high electron mobility transistor (HEMT technology. The gate width of the HEMT was selected after considering the input capacitance of the unit cell that guarantees decade bandwidth. To achieve high output power using small transistors, a 12-stage DPA was designed with a nonuniform drain line impedance to provide optimal output power matching. The maximum operating frequency of the proposed DPA is above 20 GHz, which is higher than those of other DPAs manufactured with the same gate-length process. The measured output power and power-added efficiency of the DPA monolithic microwave integrated circuit (MMIC are 35.3–38.6 dBm and 11.4%–31%, respectively, for 2–20 GHz.

  15. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  16. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  17. Structure change in 25 Cr - 20 Ni steels as a function of their Cr, Ni, Si and W content

    International Nuclear Information System (INIS)

    Gribaudo, L.M.; Durand, F.; Durand-Charre, M.

    1983-01-01

    The influence of varying the Cr, Ni, Si and W concentrations on the type and composition of the carbides of solidification and on the phase shift temperature is studied with 18 alloys of composition close to stainless steel-25-20 (AISI 310) composition. Experimental techniques used are differential thermal analysis, microprobe and scanning electron microscope. Crystallization is interpreted with the equilibrium diagram Ni-Cr-C. The formation of the interdendritic σ phase for a chromium rich alloys is interpreted with the phase equilibrium diagram of Fe-Ni-Cr-C. Mechanical properties and corrosion resistance are dependent on the morphology of the carbides M 7 C 3 and M 23 C 6 [fr

  18. A Selective Neutron Detector in the keV Region Utilizing the {sup 19}F (n, gamma) {sup 20}F Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J

    1963-05-15

    The Research Swimming-Pool Reactor R2-0 at Studsvik has been used to investigate some resonance and threshold reactions for neutron flux measurements. This reactor, equipped with MTR type fuel elements, has a maximum neutron flux of about 10{sup 12} n/cm{sup 2}/sec, giving a thermal output of 100 kW. A pneumatic rabbit was constructed to bring the samples in activation position, in which there was 15 cm H{sub 2}O and 1.2 cm Al between reactor and foil. A covering, containing 1.22 g {sup 10}B/cm{sup 2} was pushed over the cadmium-covered Al tube of the rabbit. The activation of the foil was measured with a Nal(Tl)-scintillation spectrometer. From the gamma ray spectrum, recorded on a 256 channel pulse height analyzer, the epithermal neutron flux per unit of In E interval was calculated. The activation cross section for {sup 19}F (n, {gamma}) {sup 20}F in the {sup 10}B-covering was computed to be 16 mb, and about 60 % of the induced activity is due to neutrons in the energy range of 20-70 keV. The experimental results were compared with those obtained from the more known resonance reactions {sup 63}Cu (n, {gamma}) {sup 64}Cu and {sup 27}Al (n, {gamma}) {sup 28}Al. The epithermal neutron flux experiments are in good agreement with each other. The fast neutron flux measurements were carried out with the following threshold detectors: {sup 197}Au (n, n') {sup 197m}Au, {sup 58}Ni (n, p) {sup 58}Co, {sup 27}Al (n, p) {sup 27}Mg and {sup 19}F (n, p) {sup 19}O. From these experiments the ratio of {phi}{sub epi}/{phi}{sub fiss} =0.045 {+-} 0.010 is determined at the activation position. The half-life of {sup 197}Au m was determined to 7.35 {+-} 0.25 sec.

  19. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  20. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Potentiodynamic polarization study of the corrosion behavior of palladium-silver dental alloys.

    Science.gov (United States)

    Sun, Desheng; Brantley, William A; Frankel, Gerald S; Heshmati, Reza H; Johnston, William M

    2018-04-01

    Although palladium-silver alloys have been marketed for over 3 decades for metal-ceramic restorations, understanding of the corrosion behavior of current alloys is incomplete; this understanding is critical for evaluating biocompatibility and clinical performance. The purpose of this in vitro study was to characterize the corrosion behavior of 3 representative Pd-Ag alloys in simulated body fluid and oral environments and to compare them with a high-noble Au-Pd alloy. The study obtained values of important electrochemical corrosion parameters, with clinical relevance, for the rational selection of casting alloys. The room temperature in vitro corrosion characteristics of the 3 Pd-Ag alloys and the high-noble Au-Pd alloy were evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. After simulated porcelain firing heat treatment, 5 specimens of each alloy were immersed in the electrolytes for 24 hours. For each specimen, the open-circuit potential (OCP) was first recorded, and linear polarization was then performed from -20 mV to +20 mV (versus OCP) at a rate of 0.125 mV/s. Cyclic polarization was subsequently performed on 3 specimens of each alloy from -300 mV to +1000 mV and back to -300 mV (versus OCP) at a scanning rate of 1 mV/s. The differences in OCP and corrosion resistance parameters (zero-current potential and polarization resistance) among alloys and electrolyte combinations were compared with the 2-factor ANOVA (maximum-likelihood method) with post hoc Tukey adjustments (α=.05). The 24-hour OCPs and polarization resistance values of the 3 Pd-Ag alloys and the Au-Pd alloy were not significantly different (P=.233 and P=.211, respectively) for the same electrolyte, but significant differences were found for corrosion test results in different electrolytes (Palloy and electrolyte (P=.249 and P=.713, respectively). The 3 Pd-Ag silver alloys appeared to be resistant to chloride ion corrosion, and passivation and de-alloying were identified for these

  2. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  3. Transformation behavior and shape memory characteristics of thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV (at%) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jae-young; Chun, Su-jin [Division of Materials Scince and Engineering and ERI, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongnam 660-701 (Korea, Republic of); Choi, Eunsoo [Department of Civil Engineering, Hongik University, Seoul (Korea, Republic of); Liu, Yinong; Yang, Hong [School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [Division of Materials Scince and Engineering and ERI, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2012-10-15

    Transformation behavior, shape memory characteristics and superelasticity of thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV (at%) (x = 0.5–2.0) alloys were investigated by means of differential scanning calorimetry, transmission electron microscopy, X-ray diffractions, thermal cycling tests under constant load and tensile tests. The B2–B19′ transformation occurred when V content was 0.5 at%, above which the B2–B19–B19′ transformation occurred. The B2–B19 transformation was not separated clearly from the B19–B19′ transformation. Thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV alloys showed perfect shape memory effect and transformation hysteresis(ΔT) of Ti–43.5Ni–5.0Cu–1.5V and Ti–43.0Ni–5.0Cu–2.0V alloys was about 9 K which was much smaller than that of a Ti–44.5Ni–5.0Cu–0.5V alloy(23.3 K). More than 90% of superelastic recovery ratio was observed in all specimens and transformation hysteresis (Δσ) of a Ti–44.5Ni–5.0Cu–0.5V alloy was about 70 MPa, which was much larger than that of a Ti–43.0Ni–5.0Cu–2.0V alloy (35 MPa).

  4. Recovery of point defects, created by neutron irradiation at 20 K, in ordered and disordered FeCo and FeCo2V alloys

    International Nuclear Information System (INIS)

    Dinhut, J.F.; Riviere, J.P.

    1978-01-01

    Samples of FeCo and FeCo2V ordered and disordered alloys were irradiated by fission neutrons at liquid hydrogen temperature up to an integrated dose of 7 x 10 17 n/cm 2 (E > 1 MeV), and then annealed. During the two first important recovery stages below 200 K, the annealing of about 60% of the radiation induced resistivity occurs. These two steps are respectively assigned to close pair recombination and rearrangement and detrapping of interstitials. During the annealing of the two other stages observed above 200 K, the migration and elimination of interstitials and vacancies involves ordering phenomena. These results and their interpretations are discussed in relation to those of pure metals and to those previously found in ordered and disordered alloys of the same type. (author)

  5. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  6. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Kadochkin, A.; Gaganidze, E.

    2009-01-01

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is ∼0.2 NRT that is slightly higher than for pure α-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  7. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)

    2009-12-15

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  8. ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation

    Science.gov (United States)

    Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.

    2018-02-01

    We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.

  9. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-30

    This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.

  10. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-01-01

    In the last years the V-Ti-Cr alloys were considered as candidate materials for different structures of fusion reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V-Ti-Cr alloys in FR. In this paper: hydrogen problems for V-Ti-Cr alloys are formulated; V-H system data base is analyzed; study results of the hydrogen mobility and trapping in V-4Ti-4Cr and V-10Ti-5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory'). (orig.)

  11. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei, 112 Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung, 413 Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao [Institute of Oral Biology, National Yang-Ming University, Taipei, 112 Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung, 402 Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung, 402 Taiwan (China)

    2013-12-31

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment.

  12. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment

  13. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  14. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  15. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.

    Science.gov (United States)

    V V, Anusha Thampi; Bendavid, Avi; Martin, P J; Vaithilingam, Vijay; Bean, Penelope A; Evans, Margaret D M; Subramanian, B

    2017-07-01

    Surface modifications of metallic implants are important in order to protect the underlying metals from the harsh corrosive environment inside the human body and to minimize the losses caused by wear. Recently, researches are carried out in developing bioactive surfaces on metallic implants, which supports the growth and proliferation of cells on to these surfaces. Titanium silicon nitride (TiSiN) hard nanocomposites thin films were fabricated on Ti alloys (Ti-6Al-4V) by pulsed direct current (DC) reactive magnetron sputtering. The films were characterized for its microstructural and electrochemical behavior. The higher charge transfer resistance (Rct) and positive shift in Ecorr value of TiSiN/Ti alloys than the bare Ti-alloys indicates a better corrosion resistance offered by the TiSiN thin films to the underlying substrates. The biological response to TiSiN/Ti alloys and control bare Ti-alloys was measured in vitro using cell-based assays with two main outcomes. Firstly, neither the Ti alloy nor the TiSiN thin film was cytotoxic to cells. Secondly, the TiSiN thin film promoted differentiation of human bone cells above the bare control Ti alloy as measured by alkaline phosphatase and calcium production. TiSiN thin films provide better corrosion resistance and protect the underlying metal from the corrosive environment. The thin film surface is both biocompatible and bioactive as indicated from the cytotoxicity and biomineralization studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N{sup +} ion irradiation for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Berneschi, S. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Fried, M.; Lohner, T. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Conti, G. Nunzi; Righini, G.C.; Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Zolnai, Z. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary)

    2013-08-31

    Irradiation with N{sup +} ions of the 1.5–3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten–tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi{sub 4}Ge{sub 3}O{sub 12} (eulytine) and Bi{sub 12}GeO{sub 20} (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten–tellurite glass using irradiation with N{sup +} ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N{sup +} ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm. - Highlights: ► Waveguides were fabricated in glass and crystals using MeV energy N{sup +} ions. ► SRIM simulation and spectroscopic ellipsometry yielded similar waveguide structures. ► Multi-wavelength m-line spectroscopy was used to study the waveguides. ► Waveguides fabricated in an Er-doped tungsten–tellurite glass worked up to 1.5 μm. ► Waveguides in Bi{sub 12}GeO{sub 20} remained operative up to 1.5 μm.

  17. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    Science.gov (United States)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  18. Deviations from Vegard’s law in ternary III-V alloys

    KAUST Repository

    Murphy, S. T.

    2010-08-03

    Vegard’s law states that, at a constant temperature, the volume of an alloy can be determined from a linear interpolation of its constituent’s volumes. Deviations from this description occur such that volumes are both greater and smaller than the linear relationship would predict. Here we use special quasirandom structures and density functional theory to investigate such deviations for MxN1−xAs ternary alloys, where M and N are group III species (B, Al, Ga, and In). Our simulations predict a tendency, with the exception of AlxGa1−xAs, for the volume of the ternary alloys to be smaller than that determined from the linear interpolation of the volumes of the MAs and BAs binary alloys. Importantly, we establish a simple relationship linking the relative size of the group III atoms in the alloy and the predicted magnitude of the deviation from Vegard’s law.

  19. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  20. Posouzení metody stanovení průtoku jímáním kapaliny do odměrné nebo vážicí nádoby

    OpenAIRE

    Valdová, Klára

    2016-01-01

    Tato diplomová práce se zabývá posouzením dvou metod měření průtoku používaných v oblasti úředního měření v profilech s volnou hladinou. A to metodou jímání kapaliny do odměrné nádoby a metodou jímání kapaliny do vážicí nádoby (vaku). Hlavním cílem práce bylo v rámci řešení Plánu rozvoje metrologie ÚNMZ zpřesnění nejistot určených způsobem A a B pro tyto dvě metody měření průtoku, protože v dřívější době byly tyto nejistoty stanoveny dle starších metodik a s etalony průtoku s nižší přesností....

  1. Study of the 1.25Cr-1Mo-0.25V steel microstructure after a carburization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Lanz, C. [Departamento de Ingenieria, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Brizuela, G.; Juan, A. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-08-20

    We studied the changes in the structure and carbide particle size in 1.25Cr-1Mo-0.25V steel under 600 deg. C and 168 MPa, after 4000 h service. We used microscopy and microanalysis techniques to analyze the carbide particles. We performed a complementary theoretical study on the chemical bonding and electronic structure of the carbide-Fe matrix interaction. The results contribute to the understanding of the changes in the alloy microstructure caused by the carburization phenomenon.

  2. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  3. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  4. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  5. 10 CFR 55.25 - Incapacitation because of disability or illness.

    Science.gov (United States)

    2010-01-01

    ... § 55.25 Incapacitation because of disability or illness. If, during the term of the license, the licensee develops a permanent physical or mental condition that causes the licensee to fail to meet the... 10 Energy 2 2010-01-01 2010-01-01 false Incapacitation because of disability or illness. 55.25...

  6. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior

    Science.gov (United States)

    Kucukgok, Bahadir; Wu, Xuewang; Wang, Xiaojia; Liu, Zhiqiang; Ferguson, Ian T.; Lu, Na

    2016-02-01

    The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown InxGa1-xN were investigated for x = 0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K-1 and 21.84 × 10-4 Wm-1K-1 were observed, respectively for In0.07Ga0.93N at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for In0.20Ga0.80N alloy at room temperature.

  7. Measurement of the energy spectrum with proportional counters with spherical cathodes between 20 keV and 2.5 MeV with the propagation of 14 MeV neutrons in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Schneider-Kuehnle, P.

    1974-01-01

    This work deals with the measurement of the energy spectrum of a 14 MeV neutron source in liquid nitrogen and liquid air in the energy region of 20 keV to 2.5 MeV as a function of the distance from the source. The measured results together with those of a scintispectrometer which measures the energies between 2.5 MeV and 14 MeV, are to serve as experimentally-supported input data for shielding calculations and are to enable the checking of transport theoretical calculations. (orig./LH) [de

  8. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    Science.gov (United States)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  9. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  10. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  11. Electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.75-xFex (x = 0.55 and 0.75) compounds

    International Nuclear Information System (INIS)

    Ben Moussa, M.; Abdellaoui, M.; Mathlouthi, H.; Lamloumi, J.; Guegan, A. Percheron

    2008-01-01

    The hydrogen storage alloys MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75-x Fe x (x = 0.55 and 0.75) were used as negative electrodes in the Ni-MH accumulators. The chronopotentiommetry and the cyclic voltammetry were applied to characterize the electrochemical properties of these alloys. The obtained results showed that the substitution of the cobalt atoms by iron atoms has a good effect on the life cycle of the electrode. For the MmNi 3.55 Mn 0.4 Al 0.3 Co 0.2 Fe 0.55 compound, the discharge capacity reaches its maximum of 210 mAh/g after 12 cycles and then decreases to 190 mAh/g after 30 charge-discharge cycles. However, for the MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound, the discharge capacity reaches its maximum of 200 mAh/g after 10 cycles and then decreases to 160 mAh/g after 30 cycles. The diffusion behavior of hydrogen in the negative electrodes made from these alloys was characterized by cyclic voltammetry after few activation cycles. The values of the hydrogen coefficient in MmNi 3.55 Mn 0.4 Al 0.3 Co 0.2 Fe 0.55 and MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 are, respectively, equal to 2.96 x 10 -9 and 4.98 x 10 -10 cm 2 s -1 . However, the values of the charge transfer coefficients are, respectively, equal to 0.33 and 0.3. These results showed that the substitution of cobalt by iron decreases the reversibility and the kinetic of the electrochemical reaction in these alloys

  12. Development of new low activation aluminum alloys for fusion devices

    International Nuclear Information System (INIS)

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  13. Deviations from Vegard’s law in ternary III-V alloys

    KAUST Repository

    Murphy, S. T.; Chroneos, Alexander; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2010-01-01

    the linear relationship would predict. Here we use special quasirandom structures and density functional theory to investigate such deviations for MxN1−xAs ternary alloys, where M and N are group III species (B, Al, Ga, and In). Our simulations predict a

  14. Defects and related phenomena in electron irradiated ordered or disordered Fe-Co and Fe-Co-V alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.; Desarmot, G.

    1983-01-01

    Two B 2 type alloys Fe 50 at.%-Co 50 at.% and Fe 49 at.%-Co 49 at.%-V 2 at.% either in the ordered or the disordered state have been irradiated with 2.5 MeV electrons at liquid hydrogen temperature. The recovery of the resistivity damage was studied during subsequent isochronal annealing up to 700 K. The resistivity damage rates for both initially disordered Fe-Co and Fe-Co-V alloys are interpreted in terms of point defect production. The intrinsic resistivities rhosub(F) of Frenkel pairs and the effective recombination volumes V 0 are determined. In the Fe-Co ordered alloy point defect production superimposed with a disordering process can account for the resistivity damage. The effective displacement rate causing disordering is determined, indicating that replacement collisions are the dominant disordering mechanism. A calculation of the average number of replacements along directions per Frenkel pair is proposed. During the recovery of the radiation induced resistivity three main stages are observed in both ordered and disordered alloys. The particular resistivity behavior of the Fe-Co-V alloy complicates the interpretation of production and recovery data. (author)

  15. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  16. The Wolff rearrangement of cyclic 2-diazo-1,3-diketones in electron impact - mass spectrometry - controlling the molecular fragmentation by means of low-energy electrons 18 to 70 eV

    International Nuclear Information System (INIS)

    Kuruc, J.; Kardosova, E.; Nikolaev, V. A.

    2016-01-01

    The electron-impact-induced fragmentations (the mass spectra, 17 - 70 eV) of cyclic 2-diazo-1,3-diketones were studied. As the suitable compounds were selected the following cyclic 2-diazo-1,3-diketones: 2-diazo-1,3-cyclohexanedione, Ia; 2-diazo-4,4-dimethyl-1,3-cyclohexanedione, Ib; 2-diazo-5,5-dimethyl-1,3-cyclohexanedione, Ic; 2-diazo-4,6-dioxa-5,5-dimethyl-1,3-cyclohexanedione, Id; and 2-diazo-5-phenyl-1,3-cyclohexanedione, Ie). The mass spectra were measured with Varian MAT 111 instrument with direct introduction of samples, with a source temperature of 120 grad C, energy of ionising electrons was in the range (17 - 70) eV. The elimination of the diazo group is the typical reaction of the fragmentation of the cyclic diazo-1,3-diketones after ionization of molecules by electron impact. All our studied cyclic diazo-1,3-diketones have a molecular ion with a relative intensity from 0.7 to 86.4%. Typical ions are [M]"+·, [M-N"_2]"+"·, [M-N_2-CO]"+"·, [M-N_2-CO-CH_2]"+"·, [M-N_2-CO-CH_3]"+"·. For all treatment cyclic diazo-1,3-diketones have been registered 3D mass spectra, for each cyclic diazo-1,3-diketone was proposed fragmentation scheme, including the general fragmentation scheme. The Wolff rearrangement is observed in all studied cyclic diazo-1,3-diketones after cleavage of nitrogen molecules. The energy of ionizing electrons ∼20 eV in the case of compounds Ib, Id - Ie dominating ions are fragments of the [M-N_2]"+"·, in the compound Ia at 18 and 20 eV is dominant fragment [M-N_2-CO-C_2H_2-H]"+"· and for the Ic at 30 eV becomes a dominant fragment [M-N_2-CH_3]"+"· (m/z = 123) but at (25 - 18) eV the most intensive ion is [M-N_2]"+"· (m/z = 138). (authors)

  17. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    OpenAIRE

    Xiao Wang; Wei Wang; Jingli Wang; Hao Wu; Chang Liu

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgG...

  18. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  19. Optical conductivity of Ni1 − xPtx alloys (025 from 0.76 to 6.6 eV

    Directory of Open Access Journals (Sweden)

    Lina S. Abdallah

    2014-01-01

    Full Text Available Using spectroscopic ellipsometry and Drude-Lorentz oscillator fitting, we determined the dielectric function and optical conductivity versus photon energy from 0.76 to 6.6 eV of 10 nm thick Ni1 − xPtx alloy (025 films deposited on thick thermal oxides. We find absorption peaks near 1.6 and 5.0 eV due to interband optical transitions. There is a significant broadening of the UV peak with increasing Pt content, since the bandwidth of the 3d electrons in Ni is smaller than that of the 5d bands in Pt. Our experimental observation is consistent with ab initio calculations of the density of states for Ni, Pt, and the Ni3Pt compound. Annealing the metals at 500°C for 30 s increases the optical conductivity.

  20. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  1. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    International Nuclear Information System (INIS)

    Li, X.; Al-Samman, T.; Mu, S.; Gottstein, G.

    2011-01-01

    Highlights: → Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. → New off-basal sheet texture during c-axis compression at low Z conditions. → Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T m . → Prismatic slip becomes equally important to deformation at 0.6T m . → Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  2. Slabý vztah strategií učení a výsledků vzdělávání: problém operacionalizace a měření?

    OpenAIRE

    Vlčková Kateřina; Bradová Jarmila

    2014-01-01

    Strategie učení jsou v praxi a teorii automaticky považovány za efektivní pro proces učení se a jeho výsledky, nicméně výzkumná zjištění toto očekávání dokládají jen v omezené míře. Tato metodologicko-teoretická studie diskutuje o konceptualizaci strategií učení a metodách jejich měření ve vazbě ke zjišťovaným vzdělávacím výsledkům. V diskusi a závěru jsou navržena doporučení, která by mohla umožnit zjišťování silnějšího vztahu strategií učení a vzdělávacích výsledků. Learning strategies a...

  3. Nitrogen-containing superlow-carbon austenitic steel 02Kh25N22AM2

    Science.gov (United States)

    Fe'ldgandler, É. G.; Svistunova, T. V.; Savkina, L. Ya.; Lapshina, O. B.

    1996-02-01

    At present the equipment for manufacturing carbamide mineral fertilizers is produced from domestic steel 03Kh17N14M3 having "carbamide quality." Imported equipment also used in the industry is produced from steel of the 25-22-2 (Cr -Ni-Mo) type shipped by various firms, namely, 2RE69 (Sandvik, Sweden), 254SFER (Avesta, Sweden), 2522LCN (VDM, Germany), DM 1.4466 (Germany), and X2CrNiMo 25-22-2 (Dalmine, Italy). The imported steels are used because in some units steel 03Khl7Nl4M3 does not provide the requisite corrosion resistance in an intensified process of carbamide manufacturing. We currently possess domestic high-alloyed steel for producing new and repairing imported equipment operating under the severe conditions of carbamide synthesis. The present paper concerns the structure, mechanical properties, and corrosion resistance of industrially produced steel 02Kh25N22AM2 (ChS-108) and the recommended range of its application.

  4. Superplastic deformation of P/M and I/M Al-Li based alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1984-01-01

    Incremental strain-rate and constant strain-rate cone-forming tests have been carried out at 450-550 C to investigate the superplastic forming characteristics of Al-Li-Cu-Mn, Al-Li-Cu-Mg-Zr, and Al-Li-Zn-Mg alloys processed by powder-metallurgy (P/M) and ingot-metallurgy (I/M) techniques. It is found that P/M Al-Li alloys containing 0.2 pct Zr are inherently superplastically formable without the need for extensive thermomechanical processing. I/M Al-Li alloys containing Zr are also superplastically formable. The mechanical properties of the superplastically formed and solution-treated-and-aged alloys are comparable to those of solution-treated-and-aged alloys before superplastic forming. 6 references

  5. Kirkpatrick-Baez microscope with spherical multilayer mirrors around 2.5keV photon energy

    Science.gov (United States)

    An, Ning; Du, Xuewei; Wang, Qiuping; Cao, Zhurong; Jiang, Shaoen; Ding, Yongkun

    2014-09-01

    A Kirkpatrick-Baez (KB) x-ray microscope has been developed for the diagnostics of inertial confinement fusion (ICF). The KB microscope system works around 2.5keV with the magnification of 20. It consists of two spherical multilayer mirrors. The grazing angle is 3.575° at 2.5keV. The influence of the slope error of optical components and the alignment errors is simulated by SHADOW software. The mechanical structure which can perform fine tuning is designed. Experiment result with Manson x-ray source shows that the spatial resolution of the system is about 3-4μm over a field of view of 200μm.

  6. Preparation and Properties of Ti-TiN-Zr-ZrN Multilayer Films on Titanium Alloy Surface

    Directory of Open Access Journals (Sweden)

    LIN Song-sheng

    2017-06-01

    Full Text Available 24 cycles Ti-TiN-Zr-ZrN soft-hard alternating multilayer film was deposited on TC11 titanium alloy by vacuum cathodic arc deposition method. The structure and performance of the multilayer film, especially wear and sand erosion resistance were investigated by various analytical methods including pin on disc wear tester, sand erosion tester, 3D surface topography instrument, scanning electron microscopy (SEM, X-ray diffraction(XRD, micro-hardness tester and scratch adhesion tester. The results indicate that the Vickers-hardness of the multilayer film with thickness of 5.8μm can reach up to 28.10GPa. The adhesive strength of these coatings can be as high as 56N. Wear rate of the multilayer coated alloy is one order of magnitude smaller than bare one, which decreased from 7.06×10-13 mN-1·m-1 to 3.03×10-14mN-1·m-1. Multilayer films can play the role in hindering the extension of cracks, and thus sand erosion properties of the TC11 titanium alloy substrates are improved.

  7. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    International Nuclear Information System (INIS)

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  8. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  9. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior

    Directory of Open Access Journals (Sweden)

    Bahadir Kucukgok

    2016-02-01

    Full Text Available The III-Nitrides are promising candidate for high efficiency thermoelectric (TE materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown InxGa1-xN were investigated for x =  0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K−1 and 21.84 × 10−4 Wm−1K−1 were observed, respectively for In0.07Ga0.93N at room temperature. The highest value of figure-of-merit (ZT was calculated to be 0.072 for In0.20Ga0.80N alloy at room temperature.

  10. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kucukgok, Bahadir; Lu, Na, E-mail: Luna@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 (United States); Wu, Xuewang; Wang, Xiaojia [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Liu, Zhiqiang [Institute of Semiconductors, Chinese Academy of Science, Beijing (China); Ferguson, Ian T. [College of Engineering and Computing, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2016-02-15

    The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown In{sub x}Ga{sub 1-x}N were investigated for x =  0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K{sup −1} and 21.84 × 10{sup −4} Wm{sup −1}K{sup −1} were observed, respectively for In{sub 0.07}Ga{sub 0.93}N at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for In{sub 0.20}Ga{sub 0.80}N alloy at room temperature.

  11. The structural-phenomenological description of plastic anisotropy of H-1 and H-2.5 alloys, subjected to reactors irradiation

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Lebedinskij, K.B.

    1990-01-01

    The structural-phenomenological model of anisotropic single hpc textured polycrystals is described. The formulation of the present model is assumed that the polycrystal is continuous three-dimensional collection of transversal crystallites, the plastic properties which Hill's yield criteria are described. This model is allowed to determine six parameters in the Hill's yield criteria for ortho tropic materials based on only of uniaxial tension test in three directions and crystallographic texture. Yield surfaces of zircaloy alloys at 293 K and 623 K, subjected to irradiation in the reactor with total exposition dose 10 20 n/cm 2 are determined. Strongly influence of irradiation on the plastic behaviour of H-1 and H-2,5 alloys is observed. 2 refs.; 3 figs.; 2 tables. (author)

  12. Microstructural examination of several commercial ferritic alloys irradiated to high fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1981-01-01

    Microstructural observations are reported for a series of five commercial ferritic alloys, 2 1/4 Cr-1 Mo, H-11, EM-12, 416, and 430F, covering the composition range 2.25 to 17% chromium, following EBR-II irradiation over the temperature range 400 to 650 0 C and to a maximum fluence of 17.6 x 10 22 n/cm 2 (E > 0.1 MeV). These materials were confirmed to be low void swelling with maximum swelling of 0.63% measured in EM-12 following irradiation at 400 0 C to 14.0 x 10 22 n/cm 2 . A wide range of precipitation response was found both as a function of alloy and irradiation temperature. Precipitates observed included M 6 C, Mo 2 C, Chi, Laves, M 23 C 6 , α' and a low temperature phase as yet unidentified. It is predicted, based on these results, that the major impact of irradiation on the ferritic alloy class will be changes in postirradiation mechanical properties due to precipitation

  13. Microstructural examination of several commercial ferritic alloys irradiated to high fluence

    Science.gov (United States)

    Gelles, D. S.

    Microstructural observations are reported for a series of five commercial ferritic alloys, 2 {1}/{4}Cr-1Mo , H-11, EM-12, 416, and 430F, covering the composition range 2.25 to 17% chromium, following EBR-II irradiation over the temperature range 400 to 650°C and to a maximum fluence of 1.76 × 10 23 n/cm 2 (E >0.1 MeV). These materials were confirmed to be low void swelling with maximum swelling of 0.63% measured in EM-12 following irradiation at 400°C to 1.40 × 10 23 n/cm 2. A wide range of precipitation response was found both as a function of alloy and irradiation temperature. Precipitates observed included M 6C, Mo 2C, Chi, Laves, M 23C 6, α' and a low temperature phase as yet unidentified. It is predicted, based on these results, that the major impact of irradiation on the ferritic alloy class will be changes in postirradiation mechanical properties due to precipitation.

  14. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  15. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  16. Influence of thermo hydrogen treatment on microstructure and mechanical properties of Ti-5Al-2.5Sn ELI alloy

    Directory of Open Access Journals (Sweden)

    Ya-fei Ren

    2017-01-01

    Full Text Available Thermo hydrogen treatment (THT of titanium is a process in which hydrogen is used as a temporary alloying element in titanium alloys. It is an attractive approach for controlling the microstructure and thereby improving the final mechanical properties. In the present study, the microstructure of the original (non-hydrogenated sample has only α phase and the grains is coarse with an average size of ~ 650 μm. While the grain size of thermo hydrogen treated Ti-5Al-2.5Sn ELI alloy became finer and the mechanical properties were improved significantly. When the hydrogen content of the hydrogenated Ti-5Al-2.5Sn ELI alloy is 0.321wt.%, β phase and δ titanium hydride appear. Also the average grain size decreases to 450 μm. When the hydrogen content is 0.515wt.%, the grain size decreases to 220 μm. The mechanical properties were tested after dehydrogenation, and the mechanical properties improved significantly compared to the unhydrogenated specimens. The tensile strength of the Ti-5Al-2.5Sn ELI alloy improved by 17.7% when the hydrogen content increased to 0.920wt.%, at the same time the percentage reduction of area (Z increased by 33% and the impact toughness increased by 37%.

  17. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  18. Properties of hard alloys on the basis of WC-Co with the additives of nanodisperse TiN

    International Nuclear Information System (INIS)

    Ordanyan, S.S.; Andronova, T.E.; Vladimirova, M.A.; Pantelejev, I.B.; Zalite, I.

    2001-01-01

    The addition of nanodisperse titanium nitride (specific surface area of 20 - 30 m 2 /g, medium diameter of grains of 50 - 100 nm) to the starting hard alloy WC-Co in the stage of wet grinding allows to get some advantages: the growth of WC grains is retarded by the nanoparticles of TiN, being as a barrier for the process of secondary crystallization, and the toughness of hard alloy is being increased due to the formation of finely dispersed structure; the exploitation characteristics of cutting instruments are increased due to the volume alloying by means of titanium nitride having a decreased adhesion to the treated metal and decreased coefficient of friction; the formation of diffusion porosity is being eliminated due to the small size of TiN during the unavoidable dissolution of WC in TiN. (author)

  19. Teplovodní výměník pro krbovou vložku

    OpenAIRE

    Kněžínek, Petr

    2012-01-01

    Diplomová práce je zaměřena na problematiku zapojení krbových kamen a krbových vložek do teplovodních vytápěcích systémů. Práce obsahuje stručný popis krbů a otopných soustav. Konkrétně se zabývá návrhem teplovodního výměníku pro krbová kamna. Poslední část práce je věnována experimentálnímu ověření provozních parametrů a vyhodnocení získaných výsledků. The diploma thesis is focused on problems connecting of fireplace with water heating systems. The thesis comprises concise description of ...

  20. Claves de la publicidad viral: De la motivación a la emoción en los vídeos más compartidos

    Directory of Open Access Journals (Sweden)

    Alberto Dafonte Gómez

    2014-07-01

    Full Text Available Desde sus orígenes a mediados de los noventa, la aplicación del concepto de viralidad a la comunicación comercial ha representado para las marcas una oportunidad para franquear las tradicionales barreras de la audiencia ante la publicidad y convertirla en transmisora activa de los mensajes de la marca. El marketing viral se basa, desde entonces, en dos principios básicos: ofrecer al individuo contenidos gratuitos y atractivos que disfrazan su finalidad comercial y usar un sistema de difusión de usuario en usuario. La transformación del espectador pasivo en usuario activo que difunde mensajes de tipo publicitario promovidos por anunciantes, responde a una serie de necesidades y motivaciones de los individuos y a una serie de características de los contenidos que han sido descritos por la investigación previa en este campo, principalmente a través de metodologías de tipo cuantitativo basadas en las percepciones de los usuarios. El presente artículo analiza, a través de la metodología del análisis de contenido, la presencia de los elementos que trabajos de investigación anteriores han señalado como favorecedores de la acción de compartir en los 25 vídeos publicitarios virales con más «shares» entre 2006 y 2013. Los resultados obtenidos muestran las características más comunes en este tipo de vídeos y la presencia destacada de la sorpresa y la alegría como emociones dominantes en los vídeos virales más exitosos.

  1. 25 CFR 700.55 - Decent, safe, and sanitary dwelling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Decent, safe, and sanitary dwelling. 700.55 Section 700... PROCEDURES General Policies and Instructions Definitions § 700.55 Decent, safe, and sanitary dwelling. (a) General. The term decent, safe, and sanitary dwelling means a dwelling which— (1) Meets applicable federal...

  2. 20 CFR 222.55 - When a stepchild is dependent.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false When a stepchild is dependent. 222.55 Section 222.55 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT FAMILY RELATIONSHIPS Child Support and Dependency § 222.55 When a stepchild is dependent. An employee's...

  3. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  4. The effect of the melt spinning processing parameters on the solidification structures in Ti-30 at.% Ni-20 at.% Cu shape memory alloys

    International Nuclear Information System (INIS)

    Kim, Yeon-wook; Yun, Young-mok; Nam, Tae-hyun

    2006-01-01

    Solidification structures and shape memory characteristics of Ti-30 at.% Ni-20 at.% Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the ejection temperature of the melt from 1350 to 1500 deg. C and the velocity of cooling wheel from 33 to 55 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on solidification structures and martensitic transformation behaviors is discussed

  5. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  6. Design and construction of program frame software of 300 keV/20 mA EBM control panel computerized base

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2015-01-01

    The program frame software of computer based control panel for 300 keV/20 mA EBM has been designed and constructed. This software is used for EBM components operating system, EBM operating parameters monitor and control system. This software contain instructions program for acquisition, actuation, process and display operation parameters data which is made by using visual basic V.6. This software displays some menus i.e. cover menu, main menu, sub menu and sub-sub menu. Performance test was done by integrating software and hardware and then operated the EBM via computer device. The test show that data communication between software and hardware was suitable, EBM components can be operated via computer device, EMB operation parameters can be controlled and monitored in form digital number, bar graph and continuous graphics the device can execute properly all instruction output program of 300 keV/20 mA control panel so the device is ready to use as one of computerize operating system of 300 keV/20 mA. (author)

  7. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  8. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  9. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  10. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal)

    International Nuclear Information System (INIS)

    Uziel, A.; Bram, A.I.; Venkert, A.; Kiv, A.E.; Fuks, D.; Meshi, L.

    2015-01-01

    Th-T-Al system, where T-3d transition metals, was studied at ThT 2 Al 20 stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT 2 Al 20 phase adopts CeCr 2 Al 20 structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT 2 Al 20 alloys. • It was found that cubic ThT 2 Al 20 phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT 2 Al 10 are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results

  11. Využívání metod competitive intelligence v podnikovém prostředí

    OpenAIRE

    Budilová, Natálie

    2007-01-01

    Tématem práce je vymezení metod competitive intelligence a jejich využívání v podnikovém prostředí. Práce se také věnuje vymezení pojmu samotného a jeho souvislosti s ostatními disciplínami jako knowledge management, business intelligence, konkurence a konkurenceschopnost a účelnosti jejich procesů. Popsány jsou také speciální prostředky a nástroje využívané pro competitive intelligence. Vvěru práce je analýza situace v malých a středních podnicích.

  12. Creep and stress rupture behaviour of zircaloy-2 and Zr-2.5% Nb alloy tubes at 573 K

    International Nuclear Information System (INIS)

    Laha, K.; Bhanu Sankara Rao, K.; Chandravathi, K.S.; Mannan, S.L.

    1992-01-01

    Zirconium alloys are extensively used for coolant tubes of pressurised heavy water reactors. The choice of these materials is based on their good corrosion resistance in water, low capture cross section for thermal neutrons and good mechanical properties. In this paper the results of an investigation performed on the creep and rupture behaviour of indigenously produced zircaloy-2 and Zr-2.5% Nb alloy are presented. Samples for creep testing were cut longitudinally from finished pressure tubes. Creep rupture tests were carried out in air under constant load conditions at 300 C employing five stress levels in the range 300-360 MPa. Zr-2.5% Nb alloy displayed higher rupture lives at all stress levels compared to zircaloy-2. Steady state creep rate of Zr-2.5%Nb was lower than that zircaloy-2 at identical stress levels. In the stress range of the experiments, the dependence of the steady state creep rate (ε s ) on applied stress (σ) for both the alloys could be represented by a power law, ε s =A σ n The stress sensitivity (n) for Zr-2.5% Nb was lower than that of zircaloy-2. For both the alloys the time to creep rupture t r was found related to the steady state creep rate through the modified Monkman-Grant relation (ε s ) α . t r = constant. Similar value of α was obtained for both the materials. Zr-2.5%Nb exhibited higher ductility (% elongation to rupture) compared to zircaloy-2 at stress levels ≥ 320 MPa. At lower stresses significant difference in ductility was not noticed. Percentage reduction in area was lower in Zr-2.5%Nb at all stress levels indicating better resistance for necking. The time for onset of tertiary was longer for Zr-2.5% Nb alloy. The proportion of life spent by Zr-2.5% Nb in steady state creep regime was higher compared to that of zircaloy-2. Metallographic investigations on longitudinal sections in both the alloys showed large number of intragranular pores close to the fracture surface. A few number of cracks which are characteristic of

  13. Evaluation of Some (n,n'), (n,γ), (n,p), (n,2n) and (n,3n) Reaction Excitation Functions for Fission and Fusion Reactor Dosimetry Applications; Evaluation of the Excitation Functions for the 54Fe(n,p)54Mn, 58Ni(n,2n)57Ni, 67Zn(n,p)67Cu, 92Mo(n,p)92mNb, 93Nb(n,γ)94Nb, 113In(n,n')113mIn, 115In(n,γ) 116mIn, and 169Tm(n,3n)167Tm Reactions. Progress Report on Research Contract No 16242

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Zolotarev, P.K.

    2013-12-01

    Cross section data for the 54 Fe(n,p) 54 Mn, 58 Ni(n,2n) 57 Ni, 67 Zn(n,p) 67 Cu, 92 Mo(n,p) 92m Nb, 93 Nb(n,γ) 94 Nb, 113 In(n,n') 113m In, 115 In(n,γ) 116m In, 169 Tm(n,3n) 167 Tm reactions are needed to solve a wide spectrum of scientific and technical tasks. Activation detectors based on these reactions may be used in the field of reactor dosimetry. Furthermore, the 54 Fe(n,p) 54 Mn reaction is often used in experimental nuclear physics as a monitor reaction for measurements of unknown cross sections by means of the activation method over the neutron energy range from 5 to 15 MeV. The 93 Nb(n,γ) 94 Nb reaction is also very promising for using in retrospective neutron dosimetry for determination of total neutron fluence during a campaign of a reactor. In the existing version of the International Reactor Dosimetry File and the new extended version named as IRDFF data for excitation functions of 67 Zn(n,p) 67 Cu, 92 Mo(n,p) 92m Nb, 113 In(n,n') 113m In, and 169 Tm(n,3n) 167 Tm reactions are absent. Data for these reactions are also absent in the JENDL/D-99 dosimetry file. Excitation functions of 67 Zn(n,p) 67 Cu and 169 Tm(n,3n) 167 Tm are presented in the TENDL-2012, EAF-2010, JENDL-4.0, JEFF-3.1/A, MENDL-2 libraries. Cross section data for the 67 Zn(n,p) 67 Cu reaction up to 20 MeV are given also in the JENDL/HE-2007 library. Excitation functions of the 92 Mo(n,p) 92m Nb and 113 In(n,n') 113m In reactions are evaluated in the EAF-2010 and JEFF-3.1/A libraries. Cross section data for the 113 In(n,n') 113m In reaction are given also in the TENDL-2010 library. It is necessary to note that neutron data in the JEFF-3.1/A and JENDL-4.0 libraries were evaluated up to 20 MeV. Neutron data in the TENDL-2012, EAF-2010, MENDL-2 and TENDL-2010 libraries had been evaluated up to 30 MeV, 60 MeV, 100 MeV and 200 MeV, respectively. Neutron cross sections in the MENDL-2, TENDL-2010 and TENDL-2012 libraries had been obtained on the basis of pure theoretical model calculations

  14. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  15. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  16. Calculations of (n,2n) reaction cross sections for Barium isotopes from 5 to 20 MeV

    Science.gov (United States)

    Sahan, Halide; Sahan, Muhittin; Tel, Eyyup

    2017-09-01

    In this study, the excitation functions of (n,2n) reactions for 30,32,34,35,37,38Ba isotopes are calculated using TALYS 1.6, EMPIRE-3.2.2, and ALICE-GDH codes based on statistical model up to 20 MeV. Moreover, the cross section for each isotope have also been estimated at 14.2 MeV using semi empirical formula developed by four different authors. The calculated and estimated cross-sections are compared with experimental cross-sections from EXFOR and compared with the evaluation data in ENDF/B-VII.1 library. Results are close agreement with the experimental data from literature.

  17. Development and testing ov danadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  18. Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling

    International Nuclear Information System (INIS)

    Duan, Yuping; Gu, Shuchao; Zhang, Zhonglun; Wen, Ming

    2012-01-01

    Highlights: ► The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by ball-milling. ► The microstructure and magnetic properties of alloy changed following milling. ► The powders milled for 10 h have the largest M s and strongest reflection loss. ► The permeability of the powders milled for 2 h is the largest. ► The charge exchange between Fe and Si is discussed base on first-principles. - Abstract: The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by a high-energy planetary ball-milling. The characterization of morphology, microstructure, and electromagnetic properties were measured by scanning electron microscope (SEM), X-ray diffractometer, vibrating sample magnetometer (VSM), vector network analyzer and the first principle method. The analysis results showed that the powders shape became flaky from fusiform. The powders showed a reduction of the average grain size and the increase of the internal strain, and then presented an adverse variation trend after 55 h milling. The powders that milled 10 h had the largest saturation magnetization M S (131 emu/g). The value μ′ of the powders decreased with increasing milling time at relatively lower frequency (2–8 GHz), but opposite variation tendency happened at higher frequency (8–18 GHz). Also, only short time milling can enhance the value of μ″ in the test frequency. The powders after 10 h milling showed excellent microwave absorption (RL < −10 dB) at the frequency 9.0–15.6 GHz and the absorption peak shifted regularly to the high frequency as the increased milling time. Furthermore, the effect of charge exchange between the Fe and Si on the saturation magnetization in the ball-milling process was also investigated by using density functional theory (DFT) of first principle.

  19. Study of the Mechanical Properties of Ti-3Al-2.5V after Surface Plasma Gas Treatment with Indirect Plasma Torch

    Directory of Open Access Journals (Sweden)

    Rosen Vasilev

    2015-11-01

    Full Text Available Commercial titanium alloy Ti-3Al-2.5V became one of the most widely used titanium alloys after its introduction in the early seventies. It has a very attractive combination of tensile strength, creep strength, toughness and high-temperature stability for long-term applications up to 425ºC. It is used for gas turbine components and in other applications where this good combination of properties is required [1]. At the same time it has poor tribological properties that are typical of most of the titanium alloys. It has low surface hardness and wear resistance. These disadvantages of the material limit its application [1], [2]. Ti-3Al-2.5V was chosen for this experimental work because it showed a good plasma gas nitriding performance in comparison with the other alloys during the tests.

  20. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  1. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    Science.gov (United States)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  2. Marketing v cestovním ruchu

    OpenAIRE

    Bogner, Josef

    2013-01-01

    Tato práce analyzuje mikroregion Moravskokrumlovsko v oblasti cestovního ruchu a navrhuje řešení pro zvýšení jeho turistické atraktivity. Teoretická část práce je zaměřena na marketingový výzkum, marketing cestovního ruchu a s ním spojené pojmy. V praktické části je provedena analýza atraktivity mikroregionu, analýza návštěvníků, analýza marketingového mixu, analýza konkurence, sekundární výzkum, týkající se návštěvnosti mikroregionu, primární výzkum, týkající se vnímání propagace mikroregion...

  3. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  4. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  5. W-band power amplifier MMIC with 400 mW output power in 0.1 μm AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen,M. van; Rodenburg, M.; Vliet, F.E. van; Massler, M.; Tessmann, A.; Brückner, F.; Müller, S.; Schwantuschke, D.; Quay; Narhi, T.

    2012-01-01

    The 0.1 μm AlGaN/GaN technology and design of two W-band power amplifiers in this technology are described. The dual-stage amplifier reaches an output power of 400 mW at 90 GHz at an operation bias of 20 V. Two designs with different driver to final stage gate width ratio are discussed. More than 10

  6. Informační systém pro správu rezervací v restauracích

    OpenAIRE

    Slanař, David

    2009-01-01

    Tato bakalářská práce pojednává o stávajícím stavu fungování rezervací v restauracích a jeho inovaci pomocí zavedení informačního systému pro vytváření a správu rezervací. Popisuje návrh internetové webové aplikace umožňující on-line vytváření rezervací samotnými uživateli a jejich následnou správu zaměstnanci. Dále popis ekonomického přínosu a jiných výhod plynoucích ze zavedení tohoto systému v reálném světě a v neposlední řadě řešení případných problémů při nasazování systému v praxi. T...

  7. Biological effect of 20 keV N+ ion implantation on Stevia rebaudianum

    International Nuclear Information System (INIS)

    Su Tingting; Yang Tingting; Ji Guohong; Xiang Xingjia; Chen Xuetao; Wang Yu; Wu Yaojin

    2010-01-01

    The germinability and gemination rate of Stevia rebaudianum seeds implanted with 20 keV N + ions in doses of 0 (CK), 100 x 2500, 400 x 2500 and 1000 x 2500 N + /cm 2 were studied by analyzing the differences in seed germinability and gemination rate between the groups. By statistical analysis, the germinability and gemination rate were affected at the level of α=0.05 by the implantation dose. The results showed that the germinability and gemination rate increased with the dose first and then decreased. At 400 x 2500 N + /cm 2 , the seeds had the largest germinability and the gemination rate. (authors)

  8. Cross-sections for formation of {sup 89}Zr{sup m} through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction over neutron energy range 13.73 MeV to 14.77 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D. [Department of Physics, University of Pune, Pune-411007 (India); Mandal, R. [Department of Physics, University of Pune, Pune-411007 (India); Indian Institute of Technology, Kharagpur (India); Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Saxena, A. [Nuclear Physics Division, BARC, Mumbai (India); Ashokkumar,; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2008-04-01

    The cross-sections for formation of metastable state of {sup 89}Zr ({sup 89}Zr{sup m}, 0.588 MeV, 4.16 m) through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction induced by 13.73 MeV to 14.77 MeV neutrons were measured for the first time and also theoretically estimated using Empire-II and Talys programs. At 13.73 MeV neutron energy, the {sup 89}Zr nuclei can be excited to metastable state, {sup 89}Zr{sup m}, when the first and the second emitted neutrons have energies lower than the most probable energy {approx}0.64 MeV. The probability of exciting {sup 89}Zr nuclei to energy levels higher than 0.588 MeV and therefore of populating the metastable state through decay process increases with increasing neutron energy. The measured cross-sections vary from 41{+-}3mb to 221{+-}15mb over neutron energies 13.73 MeV to 14.77 MeV, and are in agreement with the cross-sections estimated using Empire-II code. The formation of {sup 89}Zr{sup m} is favoured when the first and the second reaction neutrons are emitted with the most probable energies rather than lower energy, except for 13.73 MeV neutrons.

  9. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    International Nuclear Information System (INIS)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-01

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  10. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  11. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in

  12. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  13. Heat affected zone structure in welded joints of 15Kh1M1FL, 25Kh2NMFA and 20KhN2MFA steels

    International Nuclear Information System (INIS)

    Levenberg, N.E.; German, S.I.; Fomina, O.P.; Netesa, E.M.; Tsaryuk, A.K.; Kornienko, T.A.

    1983-01-01

    Heat affected zone (HAZ) structure of thick-walled, nature joints of 15Kh1M1FL steel for block structure of power reactors and 25Kh2NMFA and 20KhN2MFA steels for rotors - is investigated. Multi-layer arc welding is performed under conditions being created for standard components of turbines. Thermokinetics diagrams of austenite decomposition are built, phase composition and character of the structure forming at HAZ in the process of welding with preheating are studied. It is shown that at HAZ in joints of the steels under consideration in the process of welding with preheating is formed a structure of a grained bainite which is uniform in its structure and phase composition. Small volumes of round and elongated forms consisting of martensite and residual austenite are distributed in α-solid solution of the bainite. The bainite of the HAZ in welded joints possesses high hardness and great stability in the process of tempering

  14. Precipitation structures and mechanical properties of Al-Li-Zr alloy containing V

    International Nuclear Information System (INIS)

    Ying, J.K.; Ohashi, T.

    1999-01-01

    It is known that Al-Li alloys possess high elastic modulus and low density, and the metastable δ' (Al 3 Li) precipitate in these alloys affords considerable strengthening effect. However, with the strengthening resulting from the precipitation of δ' which is coherent with the matrix, these alloys suffer from low ductility and fracture toughness. It seems that the loss of ductility is the slip localization which occurs as a result of slip planes during deformation in connection with the specific hardening mechanism. As a result it indicates typical intergranular fracture. On the one hand, zirconium is used in many aluminum alloys to inhibit recrystallization during alloy processing. When zirconium is present in the alloy grain refinement occurs, which consequently, is considered as a factor that reduces the slip distance, and lowers the stress concentration across grain boundaries and at grain boundary triple points. Nevertheless, if only zirconium is added in Al-Li alloy it still shows intergranular fracture. By Zedaris et al., equilibrium phase Al 3 (Zr,V) in Al-Zr alloy containing V reduces the lattice mismatch along the c-axis with Al and, the L1 2 -structure metastable precipitates Al 3 (Zr,V) in Al-Zr-V alloys are stable at elevated temperature. Therefore, it is interesting to elucidate the effect of V in Al-Li-Zr alloy at the precipitation structures and mechanical properties of these alloys

  15. Measurements of (n,xp), (n,xd) double differential cross sections of Al and C for neutrons at 75 and 65 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Iwasaki, Tomohiko [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1998-03-01

    The (n,xp) and (n,xd) double differential cross sections (DDXs) of Al and C were measured at 6 angles (12deg, 17deg, 25deg, 40deg, 55deg and 70deg) for neutrons En=65 and 75 MeV. These data are compared with theoretical calculations of ISOBAR and GNASH. A new wide range spectrometer under fabrication to down the detection threshold is also described. (author)

  16. Broad bandwidth and 600 μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm

    Science.gov (United States)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-02-01

    A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.

  17. Cross section of the 197Au(n,2n196Au reaction

    Directory of Open Access Journals (Sweden)

    Kalamara A.

    2017-01-01

    Full Text Available The 197Au(n,2n196Au reaction cross section has been measured at two energies, namely at 17.1 MeV and 20.9 MeV, by means of the activation technique, relative to the 27Al(n,α24Na reference reaction cross section. Quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR “Demokritos”, by means of the 3H(d,n4He reaction, implementing a new Ti-tritiated target of ∼ 400 GBq activity. The induced γ-ray activity at the targets and reference foils has been measured with HPGe detectors. The cross section for the population of the second isomeric (12− state m2 of 196Au was independently determined. Auxiliary Monte Carlo simulations were performed using the MCNP code. The present results are in agreement with previous experimental data and with theoretical calculations of the measured reaction cross sections, which were carried out with the use of the EMPIRE code.

  18. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  19. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  20. Effect of Y2O3 on microstructure and mechanical properties of hypereutectic Al-20% Si alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-feng; XU Chang-lin; WANG Hui-yuan; LIU Chang; JIANG Qi-chuan

    2006-01-01

    The effect of Y2O3 on the microstructure and mechanical properties of the hypereutectic Al-20%Si(mass fraction) alloy was investigated. The results show that, with the addition of Y2O3 into the Al-P-Ti-TiC modifier, the average size of primary silicon in th.e Al-20%Si alloy modified by Al-P-Ti-TiC-Y2O3 modifier (approximately 15μm or less) is significantly reduced, and the morphology of eutectic silicon changes from coarse acicular and plate like to refined fibrous. The Brinell hardness (HB189) and tensile strength (301 MPa) of Al-20%Si alloy modified by the Al-P-Ti-TiC-Y2O3 increase by 11.6% and 10.7%, respectively, for the alloys afrer heat treatment.

  1. Changes in decision-making skill and skill execution in soccer performance: The intervention study [Změny dovednosti v rozhodování a provedení činnosti ve fotbalovém výkonu: Intervenční studie

    Directory of Open Access Journals (Sweden)

    Andrew Martin

    2011-06-01

    Full Text Available BACKGROUND: Previous studies have provided controversal results on the development of the skills of decision-making skill and skill execution when tactical models of the teaching of a game were used. OBJECTIVE: The purpose of the study was to examine the effects of two different combined technical-tactical instructional models on the development of decision-making skill and ball skill execution during a soccer match in female students. METHODS: Two groups of female students aged 20.9±0.7 years underwent the 5-week soccer training intervention, consisting of two 90 min. training units a week, based on the technical-tactical model with an emphasis on orientation to tactical and technical skills, respectively (CTA and CTE students, respectively. Before and after the intervention, students' decision-making skill and ball skill execution in a match were assessed from videorecords of matches using the Soccer performance observation system (SPOS. In addition, the Soccer skill test battery (Mor, & Christian, 1979 was used to assess the ball skills under control environment. RESULTS: The skill execution index (SEI after intervention in both CTA and CTE students (0.58 ± 0.15 and 0.65 ± 0.11 found using SPOS were significantly higher in comparison to SEI before the intervention (0.46 ± 0.13 and 0.50 ± 0.09; p CONCLUSIONS: This study showed that instructional models with both dominant tactical tasks and dominant technical tasks can result in the significant improvement of both decision-making and skill execution performance in young adult subjects. The study suggested that both decision-making in game situations and ball skill execution can be developed through implicit learning.[VÝCHODISKA: Předchozí studie přinesly kontroverzní výsledky o vývoji dovednosti v rozhodování a dovednosti v provedení činností míčem při uplatnění taktického modelu vyučování sportovní hře. CÍLE: Cílem studie bylo prozkoumat efekty dvou kombinovan

  2. The role of particle size on the electrochemical properties at 25 and at 55 deg. C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Aklalouch, Mohamed; Rojas, Rosa M.; Rojo, Jose Maria; Saadoune, Ismael; Amarilla, Jose Manuel

    2009-01-01

    The role of the particle size on the electrochemical properties at 25 and at 55 deg. C of the LiCr 0.2 Ni 0.4 Mn 1.4 O 4 spinel synthesized by combustion method has been determined. Samples with different particle size were obtained by heating the raw spinel from 700 to 1100 deg. C, for 1 h in air. X-ray diffraction patterns revealed that all the prepared materials are single-phase spinels. The main effect of the thermal treatment is the remarkable increase of the particles size from ∼60 to ∼3000 nm as determined by transmission electron microscopy. The electrochemical properties were determined at high discharge currents (1C rate) in two-electrode Li-cells. At 25 and at 55 deg. C, in spite of the great differences in particle size, the discharge capacity drained by all samples is similar (Q dch ∼ 135 mAh g -1 ). Instead, the cycling performances strongly change with the particle size. The spinels with Φ > 500 nm show better cycling stability at 25 and at 55 deg. C than those with Φ -1 ), and remarkable cycling performances (capacity retention after 250 cycles >96%) are very attractive materials as 5V-cathodes for high-energy Li-ion batteries.

  3. Effect of partial substitution of Fe by Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on its microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Babu, P.D.; Kaushik, S.D. [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Srivastava, Amita [Seismology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Siruguri, Vasudeva [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-02-15

    Highlights: • Effect of Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on microstructure and MCE is presented. • Mn stabilizes 14M martensite in place of NM martensite. • Increasing Mn also leads to a drastic reduction in γ-phase content. • MCE shows significant improvement with increasing Mn. • A maximum value of ΔS{sub M}= −19.8 J/kg K has been observed at 9 T for the Mn-10 alloy. -- Abstract: Ni–Fe–Ga-based Ferromagnetic Shape Memory Alloys (FSMAs) show considerable formability because of the presence of a disordered FCC γ-phase, but they lack in magnetocaloric property. Addition of Mn has been explored as a way to improve their magnetocaloric property. The current study presents a detailed structural and magnetization analyses of a two-phase ternary Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy and its quaternary counterparts obtained by partial replacement of Fe by Mn, Ni{sub 55}Fe{sub 19−x}Mn{sub x}Ga{sub 26} (x = 2.5, 2.75, 3, 5, 10). Characterization of these alloys has been carried out using Optical and Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray (XRD) and Neutron Diffraction (ND), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC) and DC magnetization measurement. Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy shows predominantly non-modulated (NM) internally-twinned martensite, with traces of a modulated 14M martensite and the parent L2{sub 1} phase along with the FCC γ-phase. Quaternary addition of Mn in partial replacement of Fe stabilizes 14M martensite, drastically reduces the amount of γ-phase, keeps the martensitic transition temperatures unchanged, but raises T{sub C} considerably. Magnetocaloric effect improves significantly with increasing Mn-content and a maximum value of −19.8 J/kg K for ΔS{sub M} has been observed at 9 T for the alloy containing 10 at.% Mn.

  4. Creep deformation behaviour and microstructural changes in Zr-2.5% Nb alloy

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Singh, R.; Ghosh, R.N.; Sinha, T.K.; Banerjee, S.

    2002-01-01

    Cold worked and stress relieved Zr-2.5% Nb alloy is a well-known material used as pressure tubes in Pressurised Heavy Water Reactors. The pressure tubes, made of a typical Zr-alloy, consisting of 2.54% Nb, 0.1175% oxygen and less than 100 ppm impurities, are expected to withstand 9.5 MPa to 12.5 MPa pressure at 250 degC to 310 degC under fast neutron fluxes of 3.5 x 10 17 nm -2 s -1 . These tubes are made by hot extrusion at 780 degC with an extrusion ratio 8.3:1 and 40% cold pilgering followed by annealing at 550 degC for 3 hours and subsequently by 20-30% cold pilgering and stress relieving at 400 degC for 24 hours. The microstructure of such cold worked and stress relieved alloy consists of Β-Zr precipitates in the matrix of elongated Α-Zr grains. Although various factors such as irradiation creep, thermal creep, irradiation growth etc are responsible for limiting the life of pressure tubes; the thermal creep contributes significantly in overall creep deformation. Keeping this in view as well as due to non-availability of adequate published information including creep database on this alloy, an extensive investigation on the thermal creep behaviour of indigenously produced Zr-2.5% Nb alloy was undertaken. The creep tests in air using Mayes' creep testing machines were carried out in the temperature range of 300 degC to 450 degC under stresses in the range of 50 to 550 MPa. Analysis of data revealed that the mechanism of creep deformation remains the same in this range

  5. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  6. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  7. Dynamic behaviour of TM380 mild steel and Ti6Al4V alloy subjected to blast loading

    CSIR Research Space (South Africa)

    Shoke, Lerato

    2016-10-01

    Full Text Available and Base Metals Development Network Conference 2016, 19-20 October 2016, KwaZulu Natal, Maharani Hotel Dynamic behaviour of TM380 mild steel and Ti6Al4V alloy subjected to blast loading L. Shoke,1* K. Mutombo2, I.M. Snyman1 and T. Sono1 1... Landwards Sciences, Defence Peace Safety and Security (DPSS), 2 Material Sciences and Manufacturing (MSM), Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa Lshoke@csir.co.za Abstract This paper deals...

  8. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  9. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  10. Development and industrial mastering hot rolling procedure for low-ductile steels and alloys

    International Nuclear Information System (INIS)

    Degterenko, V.K.; Sokolov, V.A.

    1980-01-01

    The technique for the development of the sheet hot rolling procedure for low-ductile steels and alloys (0Kh17N14M2, 12Kh21N5T, 20Kh25N20C2,40Kh13, 36NKhTYu etc.) is proposed, using plastometer which permits to obtain the data on the deformation resistance in the wide range of temperatures (800-1300 deg C), of deformation degrees (0.1-0.3) and deformation rates (0.001-300 c -1 ). With the help of the plastometric data processed on the computer the calculation of the rolling regimes for the sheet with improved surface quality is carried out at the more uniform loading on the mill stands

  11. WP5 Evaluation: D54-D55 Evaluation Results V2 (V3)

    NARCIS (Netherlands)

    Van Rosmalen, Peter

    2011-01-01

    Van Rosmalen, P. (2010, 19 May). WP5 Evaluation: D54-D55 Evaluation Results V2 (V3). Presentation at idSpace Final Review, Heerlen, The Netherlands: Open University of the Netherlands. idSpace-project.

  12. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    Science.gov (United States)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  13. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  14. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin

    2011-02-19

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  15. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin; Arif, Suneela K.; Ahmad, Iftikhar; Maqbool, Muhammad; Ahmad, Roshan; Goumri-Said, Souraya; Prisbrey, Keith A.

    2011-01-01

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  16. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  17. Identificación de la fuente en vídeos de dispositivos móviles

    OpenAIRE

    Arenas González, David Manuel; Rosales Corripio, Jocelin; Sandoval Orozco, Ana Lucila; Romo Torres, Hiram Jafet; García Villalba, Luis Javier

    2014-01-01

    La realización de vídeos con dispositivos móviles se ha convertido en una actividad común dado su alto grado de utilización y el gran número de usuarios. Además, la portabilidad de este tipo de dispositivos hace que estén a mano de los usuarios gran cantidad de tiempo facilitando que se utilicen para generar vídeos en una gran diversidad de situaciones. Por tanto, estos vídeos pueden ser utilizados como evidencias en procesos judiciales. Todo lo anterior hace necesario contar con técnicas de ...

  18. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  19. Upgrading of sesame from 800 MeV to 2.5 GeV (Summary of the Technical Design)

    International Nuclear Information System (INIS)

    Asfour, F.I.

    2004-01-01

    A Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), was decided to be built in Jordan as a gift by Germany, based on BESSY 800 MeV synchrotron in Berlin after upgrading to serve as a seed for a new research center in 1998. The initial proposal for SESAME issued in 1999 to move BESSY to the Middle East in a modified form to high performance machine that would cover a broad spectral range, including hard X-rays. For chat BESSY-1, is changed to six-fold symmetry by changing the circumference from 64 to 100 meters and modification of bending magnets, thus the energy was increased to 1 GeV. To reach hard X-ray the intention was to introduce two 13 - pole superconducting wigglers with magnetic field 7.5 tesla, these wigglers provide a critical energy of 5 KeV and useful flux up to 20 KeV. However these wigglers have some disadvantages :1) they are costly, 2) need a special knowledge for running and 3) have an influence on beam behavior. In 2000 - 2001 appeared a scientific need of more beam lines in this spectral range (most users require hard X-ray). The simplest way of doing this is by getting hard X-ray from bending magnets. This is possible by increasing the energy to 2 GeV. Since Jordan will provide the building as a copy of the ANKA (60 m x 60 m) Synchrotron Light Source with 2.5 GeV storage ring. The design of SESAME project has been worked with maximum circumference 124 m. It is a 8- fold symmetry machine with energy 2 GeV. By using gradient bending magnets it is possible to have 12 for the installation of insertion devices and furthermore a reduction of natural emittance down to 18 nm rad. This is really the art of synchrotron light source. This was done in July 2002. To enhance the hard X-ray capability to be more in line, it was suggested to increase the energy up to 2.5 GeV. The option of 2.5 GeV machine is to explore its use with 2 in vacuum undulators, and of running the 2.5 machine at 2 GeV if that is needed for ultra

  20. Study of nitrogen solubility in multicomponent iron alloys at its pressure in gaseous phase up to 1000kPa

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.; Latash, Yu.V.; Kanibolotskij, S.A.

    1983-01-01

    A facility in which metal is melted in a weighed state and nitrogen partical pressure during relting may be charge from 0 to 1000 kPa is developed to investigate nitrogen solubility is liquim metals and alloys. Investigation of nitrogen solubility was performed using samples of 03Kh25N5AM3 steel and Kh20N5, Kh20N10, Kh40N10, Kh40N20 alloys. Positive deflection of [N]=f(√Psub(Nsub(2))) dependence from the Henry law is shown to be observed in the Kh40N10 alloy in the 100-1000 kPa pressure range. In this case the vatue of positive deflection decreases with temperature growth and at T=2273 K nitrogen solubility in the alloy submits to the law of square root. An equation permitting to calculate nitrogen solubility in alloys of Fe-Cr-Ni and Fe-Cr-Mn systems in the 0 to 1000 kPa range of nitrogen partial pressures is obtained

  1. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  2. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  3. DFT study of small fullerene dimer complexes C_2_0-N_m@C_n (m = 1-6 and n = 24, 28, 32, 36 and 40)

    International Nuclear Information System (INIS)

    Kaur, Sandeep; Sharma, Amrish; Mudahar, Isha

    2016-01-01

    First principle calculations based on density functional theory were performed to calculate the structural and electronic properties of C_2_0-N_m@C_n dimer complexes. The calculated binding energies of the complexes formed are comparable to C_6_0 dimer which ensures their stability. The bond lengths of these dimer complexes were found to be nearly same as pure complexes C_2_0-C_n. Further, nitrogen (N) atoms were encapsulated inside the secondary cage (C_n) of dimer complexes and the number of N atoms depends on diameter of the cage. The HOMO-LUMO gaps of new proposed complexes indicate the increase in gap as compared to pure complexes. Mulliken charge analysis of these complexes has been studied which shows the significant charge transfer from the N atoms to the secondary cage of these complexes. The study propose the formation of the new dimer complexes which are stable and are able to encapsulate atoms which are otherwise reactive in free space.

  4. Structural changes IN THE Kh20N45M4B nickel alloys and THE Kh16N15M3B steel due to helium ion bombardment

    International Nuclear Information System (INIS)

    Kalin, B.A.; Chernikov, U.N.; Chernov, I.I.; Kozhevnikov, O.A.; Shishkin, G.N.; Yakushin, V.L.

    1986-01-01

    Using transmission electron microscopy, x-ray structural analysis, and the thermal desorption techniques, the authors carried out a detailed study of the structural and phase changes, defect formation, and helium accumulation in the He + -bombarded 16-15 austenitic steels and 20-45 nickel alloys. Microstructure of the bombarded specimens was studied using the methods of transmission electron microscopy of thin foils in the EVM-100, and EM-301G electron microscopes. Results of x-ray studies on the bombarded specimens are presented. The conducted studies show that bombardment of structural materials with light ions can lead to significant structural damages and changes in the chemical and phase composition of the surface layer. The possible mechanisms of the changes in the chemical and phase composition include selective sputtering and radiation-induced accelerated diffusion of elements in the field of internal lateral stresses developing during the He + implantation process

  5. 5@5 - A 5 GeV Energy Threshold Array of Imaging Atmospheric Cherenkov Telescopes at 5 km Altitude

    Science.gov (United States)

    Aharonian, F. A.; Konopelko, A. K.; Voelk, H. J.; Quintana, H.

    2000-10-01

    We discuss the concept and the performance of 5@5 - a stereoscopic array of several large imaging atmospheric Cherenkov telescopes installed at a very high mountain elevation of about 5 km a.s.l. or more - for the study of the gamma-ray sky at energies from several GeV to 100 GeV. With its capability to detect the ``standard'' EGRET sources with spectra extending up to 10 GeV in exposure times from 1 to 103 seconds, such a detector may serve as an ideal "Gamma-Ray Timing Explorer" for the study of transient non-thermal phenomena like gamma-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of Gamma Ray Bursts, etc. Such an instrument would also allow detailed studies of the spectral characteristics of persistent gamma-ray sources like pulsars, supernova remnants, plerions, radiogalaxies, etc, in the energy region between 10 GeV and 100 GeV, where the capabilities of both the current space-based and ground-based gamma-ray projects are quite limited. The existing technological achievements in the design and construction of multi (1000) pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of the "5@5" in a foreseeable future. The Llano de Chajnantor (or the neighboring Cerro Toco) in the Atacama desert of Northern Chile seems an ideal site for such a ``post - CANGAROO/H.E.S.S./MAGIC/VERITAS'' era ground-based gamma-ray detector. The large flat area of that site, which was recently chosen for the installation of one of the most powerful future astronomical instruments - the Atacama Large Millimeter Array (ALMA) - could accomodate also an additional Cherenkov telescope array which requires a relatively compact area with a radius of about 100 m.

  6. Sputtering of two-phase AgxCuγ alloys

    International Nuclear Information System (INIS)

    Bibic, N.; Milosavljevic, M.; Perusko, D.; Wilson, I.H.

    1992-01-01

    Elemental sputtering yields from two phase AgCu alloys were measured for 20, 40 and 50 at % Ag. Argon ion bombardment energies were in the range 35-55 keV and the ion dose was 1 x 10 19 ions cm -2 . The sputtering yield for silver was found to be considerably below what was expected by simple selective sputtering of a two component alloy. Analysis by electron probe X-ray microanalysis and scanning electron microscopy of the eroded surface indicated that surface diffusion of copper from copper rich grains and geometrical constraints in the dense cone forest on Cu/Ag eutectic regions combine to reduce the sputtering yield for silver. (author)

  7. Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR)

    International Nuclear Information System (INIS)

    Taylor, C.

    1983-01-01

    The effects of irradiation on the microstructure of AGR fuel rod cladding have been studied by analytical electron microscopy. Two alloys were investigated, the standard 20 Cr-25 Ni steel stabilised with Nb and a variant containing less Nb but strengthened with a dispersion of TiN precipitates. Irradiation at 360 deg C to 480 deg C produced (Ni, Si)-rich precipitates in both alloys; additionally the standard alloy contained (Ni, Nb, Si)-rich precipitates when irradiated at 440 deg C to 640 deg C. While similar features have been observed in other austenitic stainless steels irradiated in fast reactors, where the lattice-damage rate is greater than in a thermal reactor, their formation is not predicted by isothermal equilibrium diagrams. It is suggested here that the phases are irradiation-induced and that the total displacement damage is the controlling factor. Cladding solution-treated above 1050 deg C then irradiated at 2 -based reactor coolant occurred in cladding with low levels of cold-work at the outer surface, also resulting in Cr-rich carbide formation. (author)

  8. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  9. Study of Kπ and Nπ systems in the K+n→KπN reaction at 8.25GeV/c

    International Nuclear Information System (INIS)

    Vignaud, Daniel.

    1976-10-01

    The reaction K + n→KπN is studied at 8.25GeV/c from a 25000 picture exposure to the CERN 2m deuterium bubble chamber. The main results concern the channel K + n→K + π - p for which data at 4.6 and 12 GeV/c are also available. The K + π - system is dominated by K*(892) and K*(1420) which are studied separately. A partial wave analysis is performed for K + π - effective mass smaller than 1,6 GeV. This analysis shows an important S wave contribution which is smooth and broad and peaks around 1250 MeV. However a small narrower peak around 1350 MeV cannot be excluded. The pπ - system shows a wide bump at threshold. The properties of this bump are mainly diffractive. It is globally interpreted by a reggeised Deck model with π exchange but the data show that nucleon exchange must be considered for a complete interpretation of the phenomenon. An s-channel analysis is also discussed [fr

  10. Light charged particle production induced by fast neutrons (En=25-65 MeV) on 209Bi

    International Nuclear Information System (INIS)

    Raeymackers, Erwin; Slypen, Isabelle; Benck, Sylvie; Meulders, Jean-Pierre; Nica, Ninel; Corcalciuc, Valentin

    2002-01-01

    This paper presents the experimental set-up and data reduction procedures regarding the measurement of double-differential cross sections for light charged particle production in fast neutron induced reactions (n, px), (n, dx), (n, tx) and (n, αx) on bismuth in the incident neutron energy range 25-65 MeV and at laboratory angles from 20deg to 160deg. preliminary double-differential and energy-differential cross sections for hydrogen isotopes are presented. (author)

  11. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  12. Tensile properties of Zr-2.5 Nb pressure tube alloy between 25 and 800 degC

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Sinha, T.K.; Banerjee, S.

    2000-10-01

    Tensile properties of zirconium-2.5 wt. % niobium pressure tube material were evaluated by uniaxial tension tests at temperatures between 25 and 800 degC and under strain-rates varying from 3.3 x 10 -5 to 3.3 x 10 -3 /s. Tests were carried out on specimens fabricated from the sections of finished (autoclaved) tubes as well as on those machined from the sections of cold worked (2 nd pilgered) tubes. Moreover, specimens fabricated from finished tubes belonging to twenty different heats were tested at 300 degC to study the heat to heat variation in tensile properties of this alloy. In order to study the effect of the crystallographic texture on the tensile properties, specimens oriented in longitudinal as well as, in transverse directions of the tubes were also tested. Results showed that both yield and ultimate tensile strengths of this alloy decreased monotonically with increasing test temperatures, with a rapid fall in strengths above a temperature of 350 degC (623 K). The tensile ductility did not change appreciably up to 400 degC (673K) but increased rapidly above this temperature. The observed results on the temperature dependence of the strength and ductility indicated the possible occurrence of dynamic strain-ageing in this alloy in the temperature range of 200-300 degC (473 to 573 K). The transverse specimens showed higher strengths and lower ductility as compared to those of the longitudinal specimens up to a temperature of 350 degC (623 K). Above 350 degC, the difference in the strengths and the ductility of the two types of the specimens, became negligibly small indicating that the texture did not appreciably influence the tensile properties of this alloy at temperatures exceeding 350 degC. The alloy developed extensive superplasticity (ductility exceeding 100 %), when tested in the temperature range of 650-800 degC. Maximum ductility values of 650 % for longitudinal and 900 % for the transverse orientation with strain-rate sensitivity (m) exceeding 0

  13. Microstructural changes of Y-doped V-4Cr-4Ti alloys after ion and neutron irradiation

    Directory of Open Access Journals (Sweden)

    H. Watanabe

    2016-12-01

    Full Text Available High-purity Y-doped V-4Cr-4Ti alloys (0.1–0.2wt. % Y, manufactured by the National Institute for Fusion Science (NIFS, were used for this study. Heavy-ion and fission-neutron irradiation was carried out at temperatures 673–873K. During the ion irradiation at 873K, the microstructure was controlled by the formation of Ti(C,O,N precipitates lying on the (100 plane. Y addition effectively suppressed the growth of Ti(C,O,N precipitates, especially at lower dose irradiation to up to 4 dpa. However, at higher dose levels (12.0 dpa, the number density was almost at the same levels irrespective of the presence of Y. After neutron irradiation at 873K, fine titanium oxides were also observed in all V alloys. However, smaller oxide sizes were observed in the Y-doped samples under the same irradiation conditions. The detailed analysis of EDS showed that the center of the Ti(C,O,N precipitates was mainly enriched by nitrogen. The results showed that the contribution of not only oxygen atoms picked up from the irradiation environment but also nitrogen atoms is essential to understand the microstructural evolution of V-4Cr-4Ti-Y alloys.

  14. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  15. Preparation and Properties of EPDM/Silicone Alloy Using Maleated EPDM-polydimethylsiloxane Compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doo Whan; Kim, Bum Jin [Hyperstructured Organic Materials Research Center, Department of Polymer Science and Engineering, Dankook University, Seoul (Korea); Shim, Dae Sup [Korea Electrotechnology Research Institute, Euiwang (Korea)

    2001-05-01

    EPDM used as an electrical insulating material was blended with silicone rubber and compatibilizer to improve weatherability, ozone resistance, and dielectric strength. The compatibilizer was prepared by imidizing maleated EPDM with {alpha},{omega}-aminopropyl polydimethylsiloxane. EPDM/ silicone alloy was prepared by blending EPDM and silicone rubber with weight ratio of 9/1, 7/3, 5/5, 3/7 and 1/9, maleated EPDM-polydimethylsiloxane copolymer, and dicumyl peroxide (DCP). The maximum tensile strength of 0.177 kgf/mm{sup 2}, elongation at break of 257%, and dielectric breakdown voltage 362.25 kV/cm were obtained from the alloy prepared with 9 to 1 weight ration of EPDM/silicone. The compatibility of the alloy was confirmed from the thermal characteristics measured using DMA and DSC. The morphology of the alloys was observed with SEM. 7 refs., 8 figs., 1 tab.

  16. In-situ SCC observation on thermally-sensitized type 304 stainless steel irradiated to 1 x 10{sup 25} n/m{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, J.; Nemoto, Y.; Tsukada, T.; Usami, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hide, K. [Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Irradiation assisted stress corrosion cracking (IASCC) is concerned as being one of the specific problems for water-cooled first wall/blanket components in the design activity of international thermonuclear experimental reactor (ITER). To examine the crack initiation and growth behaviors of IASCC, in-situ observation on gage length of specimens was conducted during slow strain rate tests (SSRT) in high temperature water. Results from in-situ observation on Type 304 stainless steel (SS) irradiated to 1.0 x 10{sup 26} n/m{sup 2} have been reported already. Type 304 SS was subjected to a solution annealing (SA), a thermally sensitization (TS) or a cold working (CW, 20%) and irradiated to 1.0 x 10{sup 25} n/m{sup 2} in the Japan Materials Testing Reactor (JMTR). After neutron irradiation, SSRT for the specimens was conducted in oxygenated high purity water at 561 K. The gage length of the specimen was observed through a window equipped on an autoclave during the SSRT. Subsequently, fracture surface examination was performed using a scanning electron microscope (SEM). In fracture surface examination of the specimens irradiated to 1.0 x 10{sup 25} n/m{sup 2}, almost entire intergranular stress corrosion cracking (IGSCC) was exhibited for the TS material while mixtures of transgranular stress corrosion cracking (TGSCC) and ductile dimple fracture were observed for the SA and the CW materials. Although crack initiation was observed immediately after maximum stress for the CW irradiated to 1.0 x 10{sup 26} n/m{sup 2}, crack initiation was observed immediately before maximum stress (99% of maximum stress) for the CW irradiated to 1.0 x 10{sup 25} n/m{sup 2} in in-situ observation. (authors)

  17. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Gorlova, M.N.; Feofanova, N.M.; Kornyushkova, Yu.D.

    1977-01-01

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF 4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl 3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  18. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  19. Anion photoelectron spectroscopy of germanium and tin clusters containing a transition- or lanthanide-metal atom; MGe(n)- (n = 8-20) and MSn(n)- (n = 15-17) (M = Sc-V, Y-Nb, and Lu-Ta).

    Science.gov (United States)

    Atobe, Junko; Koyasu, Kiichirou; Furuse, Shunsuke; Nakajima, Atsushi

    2012-07-14

    The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.

  20. Thermal creep behavior of N36 zirconium alloy cladding tube

    International Nuclear Information System (INIS)

    Wang, P.; Zhao, W.; Dai, X.

    2015-01-01

    N36 is an alloy containing Zr, Sn, Nb and Fe that is developed by China as a superior cladding material to meet the performance of PWR fuel assembly at the maximum fuel rod burn-up. The creep characteristics of N36 zirconium alloy cladding tube were investigated at temperature from 593 K to 723 K with stress ranging from 20 MPa to 160 MPa. Transitions in creep mechanisms were noted, showing the distinct three rate-controlled creep mechanisms for the alloy at test conditions. In the region of low stresses with stress exponent n ∼ 1 and activation energy Q ∼ (104±4) kJ.mol -1 , Coble creep, based on diffusion of materials through grain boundaries, is the dominant rate-controlling mechanism, which contributes to the creep deformation. The formation of slip bands acts as an accommodation mechanism. In the region of middle stress with stress exponent n ∼ 3 and activation energy Q ∼ (195±7) kJ.mol -1 , micro-creep, caused by viscous gliding of dislocations due to the interaction of O atoms with dislocations, controls the deformation. In the high stress region with stress exponent n ∼ 5-6 and activation energy Q ∼ (210±10) kJ.mol -1 , two mechanisms of the climb of edge dislocations (EDC) and the motion of jogged screw dislocation (MJS) contribute to rate controlling process. In test conditions N36 alloy cladding tube behaves a type of creep similar to that noted in class-I (A) alloys

  1. ELECTRICAL PROPERTIES OF COMPOUNDS AND ALLOYS OF RARE-EARTH METALS WITH ELEMENTS OF GROUPS V AND VI

    Energy Technology Data Exchange (ETDEWEB)

    Reid, F. J.; Matson, L. K.; Miller, J. F.; Himes, R. C.

    1963-04-15

    The electric properties of rare earth compounds and alloys with As, Sb, Se, and Te are reported. Without exception, samples of Se and Te compounds with normally trivalent Nd, Gd, and Ce having synthetic compositions, MX and M/sub 3/X/ sub 4/, are n-type wrth free electron concentrations in the range 10/sup 20/ to 10 /sup 22//cm/sup 3/, and have very low electric resistivities. Room temperature electric properties and thermoelectric data are tabulated. (P.C H.)

  2. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  4. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  5. Re-evaluation of microscopic and integral cross-section data for important dosimetry reactions. Re-evaluation of the excitation functions for the 24Mg(n,p)24Na, 32S(n,p)32P, 60Ni(n,p)60m+gCo, 63Cu(n,2n)62Cu, 65Cu(n,2n)64Cu, 64Zn(n,p)64Cu, 115In(n,2n)114mIn, 127I(n,2n)126I, 197Au(n,2n)196Au and 199Hg(n,n')199mHg reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2008-08-01

    Re-evaluations of cross sections and their associated covariance matrices have been carried out for ten dosimetry reactions: - excitation functions for the 63 Cu(n,2n) 62 Cu, 65 Cu(n,2n) 64 Cu, 64 Zn(n,p) 64 Cu, 115 In(n,2n) 114m In and 199 Hg(n,n') 199m Hg reactions were re-evaluated over the neutron energy range from threshold to 20 MeV; - excitation functions for the 24 Mg(n,p) 24 Na, 32 S(n,p) 32 P and 60 Ni(n,p) 60m+g Co were reevaluated in the energy range from threshold to 21 MeV; - excitation functions for the 127 I(n,2n) 126 I and 197 Au(n,2n) 196 Au reactions were reevaluated in the energy range from threshold to 32 and 40 MeV, respectively. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections derived from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  6. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  7. Analysis of the Air Cooling for 350 keV/20 mA Electron Beam Machine Rooms

    International Nuclear Information System (INIS)

    Sutadi; Suprapto; Suyamto; Sukaryono

    2003-01-01

    It has been analyzed the cooling capacity for 350 keV/20 mA electron beam machine rooms at P3TM. The analysis of cooling load based on the building construction and the device for supported the electron beam machines operation, were obtained head dissipation and provided the cooling load. From the result it can be determined that for cooling the electron beam machine rooms with 945 m cubic of volume and supporter device in the room, in order to reach the air condition about 20 o C of temperatures and 50 % of relative humidity for the electron beam machine rooms, it was needed the air conditioning system with total cooling capacity about 213.000 BTU/Hours. (author)

  8. Electrochemical hydrogen storage of Ti-V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles

    International Nuclear Information System (INIS)

    Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.

    2005-01-01

    A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries

  9. 55Co level properties

    International Nuclear Information System (INIS)

    Lodin, G.; Nilsson, L.; Erlandsson, B.; Lyttkens, J.

    1975-01-01

    The decay pf low-lying levels in 55 Co has been studied by means of the 54 Fe(d,nγ) 55 Co reaction. Neutron energies were determined by time-of-flight techniques using a pulsed incident beam and a large liquid scintillator. Gamma rays in coincidence with neutrons were detected by a Ge(Li)spectrometer, Three levels at 4720.8+-0.6, 4747.1+-0.6 and 5172.4+-0.6 keV were strongly populated. The 4720 and 5172 keV levels have earlier been identified as the isobaric analogues of the 55 Fe ground state and first excited state. On the basis of a comparison of the present results with previous particle-transfer reaction studies it is suggested that the ground state analogue is split into the 4720 and 4747 keV levels. A study of excitation functions of 54 Fe(d,n)transitions at incident deuteron energies between 5.0 and 6.0 MeV show that the spectroscopic strengths obtained from (d,n) experiments in this mass region at these energies depend strongly on the incident energy. (Auth.)

  10. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  11. Highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Jae; Byeon, In-Seop [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative Sciences and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2015-12-01

    The purpose of this study was to investigate the highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf, examining the roles of niobium, zirconium, tantalum and hafnium alloying elements. The Ti–25Nb–xZr and Ti–25Ta–xHf ternary alloys contained 0, 7 and 15 wt.% of these alloying elements and were manufactured using a vacuum arc-melting furnace. Cast ingots of the alloys were homogenized in Ar atmosphere at 1050 °C for 2 h, followed by quenching into ice water. Formation of nanotubular films was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 30 V and 1 h for the Ti–25Nb–xZr alloys and 2 h for the Ti–25Ta–xHf alloys. Microstructures of the Ti–25Ta–xHf alloys transformed from α″ phase to β phase, changing from a needle-like structure to an equiaxed structure as the Hf content increased. In a similar manner, the needle-like structure of the Ti–25Nb–xZr alloys transformed to an equiaxed structure as the Zr content increased. Highly ordered nanotubes formed on the Ti–25Ta–15Hf and Ti–25Nb–15Zr alloys compared to the other alloys, and the nanotube layer thickness on Ti–25Ta–15Hf and Ti–25Nb–15Zr was greater than for the other alloys. Nanotubes formed on Ti–25Ta–15Hf and Ti–25Nb–15Zr showed two sizes of highly ordered structures. The diameters of the large nanotubes decreased and the diameters of the small nanotubes increased as Zr and Hf contents increased. It was found that the layer thickness, diameter, surface density and growth rate of nanotubes on the Ti–25Ta–xHf and Ti–25Nb–xZr alloys can be controlled by varying the Hf and Zr contents. X-ray diffraction analyses revealed only weak peaks for crystalline anatase or rutile TiO{sub 2} phases from the nanotubes on the Ti–25Nb–xZr and Ti–25Ta–xHf alloys, indicating a largely amorphous condition. - Highlights: • Nanotubular film formation on anodized Ti-25Nb-xZr and Ti-25Ta-xHf (x = 0, 7 and

  12. Comportamiento a tracción a temperaturas ambiente y elevadas de nuevos composites basados en aleaciones hipereutécticas de Al-Si

    Directory of Open Access Journals (Sweden)

    Valer, J.

    1997-02-01

    Full Text Available This work shows the improvement obtained on tensile stress at room and high temperatures of hypereutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusión and thixoforming process, in comparison with conventional casting alloys. Al-25%Si-5%Cu, Al- 25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si, Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes.

    En este trabajo se muestra la mejora obtenida en la resistencia a la tracción a temperatura ambiente y a elevadas temperaturas de aleaciones hipereutécticas de Al-Si producidas por una combinación de un proceso de solidificación rápida y del conformado en estado semisólido, en comparación con aleaciones obtenidas por procedimientos convencionales de inyección en estado líquido. Se han estudiado las aleaciones Al-25%Si-5%Cu, Al-25%Si-5%Cu-2%Mg y Al-30%Si-5%Cu, relacionando sus parámetros microestructurales con las resistencias a tracción obtenidas, y se han comparado con las aleaciones binarias Al-20%Si, Al-36%Si y Al-50%Si. La aleación Al-25%Si-5%Cu se ha ensayado antes y después del conformado en estado semisólido, lo que ha permitido conocer la diferencia en el comportamiento de la aleación como consecuencia de la distinta microestructura. También se comparan las propiedades obtenidas en estas aleaciones con las que presentan composites de aleaciones de aluminio reforzados con partículas de SiC y procesados por métodos similares.

  13. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  14. Morphologies of nanostructured TiO{sub 2} doped with F on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matykina, E.; Hernandez-Lopez, J.M.; Conde, A. [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Damborenea, J.J. de [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Arenas, M.A., E-mail: geles@cenim.csic.e [Departamento de Corrosion y Proteccion, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2011-02-01

    The formation of nanotubes in sulphuric/hydrofluoric acid electrolyte at controlled voltage is investigated on Ti-6Al-4V alloy used for load-bearing prosthetic applications. The effects of anodizing time and voltage on film morphology, composition and microstructure are studied by scanning and transmission electron microscopy, Rutherford backscattering spectroscopy (RBS), and Raman spectroscopy. Fluorine content in the films was of a particular interest for enhancement of antibacterial properties of the surface. The efficiencies of film formation are determined as about 40% and 80% for anodizing at 20 V and 60 V respectively for shorter anodizing time and as about 1 and 5% for longer anodizing time. For 5 min of anodizing, higher voltage conditions results in a thicker barrier layer. At extended anodizing time a further disruption of the nanotubular morphology and formation of approximately 1.5 {mu}m-thick nanoporous film is promoted. The films grown at 20 V contain from 4 at.% to 6 at.% of fluorine. RBS detects about 13 at.% of fluorine incorporated in the film formed at 60 V for 60 min, possibly associated with a greater film thickness. The oxide film material consists of amorphous titania matrix doped with V{sub 2}O{sub 5} and Al{sub 2}O{sub 3}.

  15. 25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55m III-V/SOI DML

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Da Ros, Francesco; Ozolins, Oskars

    2017-01-01

    The use of a micro-ring resonator (MRR) to enhance the modulation extinction ratio and dispersion tolerance of a directly modulated laser (DML) is experimentally investigated with a bit rate of 25 Gb/s as proposed for the next generation data center communications. The investigated system combines...

  16. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  17. In situ variations of the scintillation characteristics in GaN and CdS layers under irradiation by 1.6 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Tekorius, A.

    2015-12-15

    Evolution of the non-radiative and radiative recombination in GaN and CdS 2.520 μm thick layers has been examined by the in situ measurements of the 1.6 MeV proton induced luminescence and laser excited photoconductivity characteristics. The introduction rate of radiation defects has been evaluated by the comparative analysis of the laser and proton beam induced luminescence for the examined GaN and CdS layers.

  18. Effects of multi-pass arc welding on mechanical properties of carbon steel C25 plate

    International Nuclear Information System (INIS)

    Adedayo, S.M.; Babatunde, A.S.

    2013-01-01

    The effects of multi-pass welding on mechanical properties of C25 carbon steel plate were examined. Mild steel plate workpieces of 90 x 55 mm 2 area and 10 mm thickness with a 30 degrees vee weld-grooves were subjected to single and multi-pass welding. Toughness, hardness and tensile tests of single and multi-pass welds were conducted. Toughness values of the welds under double pass welds were higher than both single pass and unwelded alloy, at respective maximum values of 2464, 2342 and 2170 kN/m. Hardness values were reduced under double pass relative to single pass welding with both being lower than the value for unwelded alloy; the values were 40.5, 43.2 and 48.5 Rs respectively at 12 mm from the weld line. The tensile strength of 347 N/mm 2 under multi-pass weld was higher than single pass weld with value of 314 N/mm 2 . Therefore, the temperature distribution and apparent pre-heating during multi-pass welding increased the toughness and tensile strength of the weldments, but reduced the hardness. (au)

  19. Corrosion characteristics of Hastelloy N alloy after He+ ion irradiation

    International Nuclear Information System (INIS)

    Lin Jianbo; Yu Xiaohan; Li Aiguo; He Shangming; Cao Xingzhong; Wang Baoyi; Li Zhuoxin

    2014-01-01

    With the goal of understanding the invalidation problem of irradiated Hastelloy N alloy under the condition of intense irradiation and severe corrosion, the corrosion behavior of the alloy after He + ion irradiation was investigated in molten fluoride salt at 700 °C for 500 h. The virgin samples were irradiated by 4.5 MeV He + ions at room temperature. First, the virgin and irradiated samples were studied using positron annihilation lifetime spectroscopy (PALS) to analyze the influence of irradiation dose on the vacancies. The PALS results showed that He + ion irradiation changed the size and concentration of the vacancies which seriously affected the corrosion resistance of the alloy. Second, the corroded samples were analyzed using synchrotron radiation micro-focused X-ray fluorescence, which indicated that the corrosion was mainly due to the dealloying of alloying element Cr in the matrix. Results from weight-loss measurement showed that the corrosion generally correlated with the irradiation dose of the alloy. (author)

  20. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  1. 25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-mu m III-V/SOI DML

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Da Ros, Francesco; Ozolins, Oskars

    2017-01-01

    The use of a micro-ring resonator (MRR) to enhance the modulation extinction ratio and dispersion tolerance of a directly modulated laser is experimentally investigated with a bit rate of 25 Gb/s as proposed for the next generation data center communications. The investigated system combines a 11...

  2. Radiation damage simulation studies in the Harwell VEC of selected austenitic and ferritic alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Mazey, D J; Walters, G P; Buckley, S N; Hanks, W; Bolster, D E.J.; Murphy, S M

    1988-07-01

    Three austenitic (316 L, 316-Ti, 316-Nb); four high-nickel (IN 625, IN 706, PE 16, Fe-25Ni-8Cr) and four ferritic (CRM 12, FV 448, FV 607, FI) alloys have been irradiated with 46 MeV Ni or 20 MeV Cr ions in the Harwell VEC to simulated fusion-reactor doses up to 110 dpa (proportional to 10 MW-yr m/sup -2/) at temperatures from 425 to 625/sup 0/C. Gas production rates appropriate to fusion were obtained from a mixed beam of He+H/sub 2/ in the ratio 1:4 He:H with gas/dpa ratios of 13 appm He/dpa and 52 appm H/dpa. The 316 alloys showed irradiation-induced precipitation and swelling as high as 40% in ST 316-Ti after 110 dpa at 625/sup 0/C. Low swelling (e.g. <2% at 110 dpa) was observed in the high-nickel alloys. The ferritic/martensitic alloys showed negligible swelling (e.g. <0.2% in FV 607 after 100 dpa at 475/sup 0/C). The results demonstrate the high swelling behaviour of 316 alloys and the better swelling resistance of high-nickel and ferritic alloys under simulated fusion conditions.

  3. Alloy spreading and filling of gaps in brazing of VDU-2 and KhN50VMTYuB heat resistant nickel alloys with VPr3K and VPr10 alloys

    International Nuclear Information System (INIS)

    Shapiro, A.E.; Podol'skij, B.A.; Lepisko, M.R.; Borzyak, A.G.; Moryakov, V.F.; Rostislavskaya, T.T.

    1984-01-01

    A study was made on contact interaction of VDU-2 and KhN50VMTYuB alloys with VPr3K and VPr10 alloys at 1325 and 1220 deg C in argon and industrial vacuum. The contact angles and wettability indexes were determined. The solders fill the vertical gaps of up to 0.25 mm width through 80 mm height. Spreading and filling of gaps proceeds better during soldering in argon with boron trifluoride addition as compared to soldering in industrial vacuum. VPr10 alloy is divided into two phases when wetting KhN50VMTYuB alloy: fusible one on the base of nickel-chromium-manganese solution and infusible one on the base of nickel-niobium eutectics. The square of fusible phase spreading is 2.5...3 times larger as compared to infusible one

  4. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  5. Průvlekový transformátor proudu 25 kV, 400/5/5 A

    OpenAIRE

    Bálint, Zoltán

    2009-01-01

    Cílem této diplomové práce je návrh průvlekového transformátoru proudu dvoujádrového provedení. Tento přístroj slouží k měření a jištění rozvodných zařízení vysokého napětí vnitřního provedení pro nejvyšší napětí soustavy 25 kV. Diplomová práce se skládá ze čtyř částí. První část se zabývá rozborem funkce přístrojového transformátoru proudu. Dále následuje rozbor fázorového diagramu a podstaty vzniku chyb daného transformátoru. V hlavní části práce je popsán návrh měřicího a jisticího jádra. ...

  6. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shaobo; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Peng, Hui; Zhang, Hu

    2016-04-06

    Atomized, pre-alloyed Al-8.5Fe-1.3V-1.7Si (wt%) powder was used to fabricate solid components by electron beam melting (EBM). The residual porosity, chemical composition, microstructure and mechanical properties have been investigated. Results show that the relative density of as-built alloy under the optimized processing parameters was 98.2%. Compare to the initial alloy powder, the EBM parts demonstrated a restricted aluminum loss (~1 wt%) and a quite low oxygen pickup. The microstructure of the deposits was non-uniform. The fusion zone and heat affected zone exhibited a large number of fine spherical Al{sub 12}(Fe,V){sub 3}Si particles (30–110 nm) distributed uniformly in the α-Al matrix. Some coarser Fe- and V-riched rectangle-like Al{sub m}Fe phase (m=4.0–4.4) with 100–400 nm in size was precipitated in the melting boundary zone. The microhardness of the EBM samples was 153 HV in average. The average ultimate tensile strength (UTS) reached 438 MPa with the elongation of 12%. A ductile fracture mode of the tensile specimens was also revealed.

  7. Study by electrical resistivity measurements of the radiation induced defects in gold-copper alloys

    International Nuclear Information System (INIS)

    Alamo, A.

    1983-09-01

    Point defect production rate in Cu 3 Au and CuAu ordered and disordered alloys was studied by electrical resistivity measurements, as function of electron energy ranging from 0.4 to 2.5 MeV. The irradiations were performed at 20 K. The production curves are analysed using a displacement model for diatomic materials and the following values are found for the average displacement threshold energies: Esub(d)sup(Cu) approximately 22 eV and Esub(d)sup(Au) approximately 18 eV, for both alloys. Elementary defect migration was examined during isochronal annealing performed after irradiations. A simple type of self-interstitial seems to migrate in the ordered alloys: probably a split-interstitial of Cu-Cu type. Interstitial migration seems to be very difficult and complex in the disordered alloys. Vacancy mobility was detected after recovery at temperature above 300 K and was responsible of an increase of long range order. Fast neutron irradiations at 20 K produce disordering in the initially ordered alloys. Ratios of 38 and 18 antistructure defects per atomic displacement are estimated for Cu 3 Au and CuAu respectively [fr

  8. A 2.5-V 56-mW baseband chain in a multistandard TV tuner for mobile and multimedia applications

    International Nuclear Information System (INIS)

    Yang Zhou; Wen Guangjun; Feng Xiao

    2011-01-01

    This paper presents post-layout simulated results of an analog baseband chain for mobile and multimedia applications in a 0.13-μm SiGe BiCMOS process. A programmable 7th-order Chebyshev low pass filter with a calibration circuit is used in the analog baseband chain, and the programmable bandwidth is 1.8/2.5/3/3.5/4 MHz with an attenuation of 26/62 dB at offsets of 1.25/4 MHz. The baseband programmable gain amplifier can achieve a linear 40-dB gain range with 0.5-dB steps. Design trade-offs are carefully considered in designing the baseband circuit, and an automatic calibration circuit is used to achieve the bandwidth accuracy of 2%. ADC offset cancellation loop is also introduced to remove the offset from the layout and self-mixing, and the remaining offset voltage is only 1.87 mV Implemented in a 0.13-μm SiGe technology with a 0.6-mm 2 die size, this baseband achieves IIP3 of 23.16 dBm and dissipates 22.4 mA under a 2.5-V supply. (semiconductor integrated circuits)

  9. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1995-01-01

    the potential in the double-layer charging region from 500 to -100 mV and back to 500 mV at a sweep rate of 1 mV/s in an acidified copper sulfate electrolyte (0.01M H2SO4, 0.01M CuSO4, and Millipore water). After completion of the first cycle the gold surface had recrystallized and nuclei of an alloy phase were...... in peak potential for the anodic current transient from E = 20 mV to E = -2 mV was observed after completion of four subsequent cycles of copper electrodeposition/dissolution. The shift is suggested to be equal to the change in potential of the working electrode owing to the formation of the alloy phase....

  10. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  11. Electrochemical polymerization of pyrrole over AZ31 Mg alloy for biomedical applications

    International Nuclear Information System (INIS)

    Srinivasan, A.; Ranjani, P.; Rajendran, N.

    2013-01-01

    Highlights: ► Polymerization of pyrrole over AZ31 Mg was carried out using cyclic voltammetry. ► Pyrrole concentration was optimized to accomplish the adherent and uniform coating. ► Effect of monomer concentration on the surface morphology was discussed. ► Corrosion resistance of AZ31 Mg in SBF was studied as a function of Py concentration. ► PPy coated AZ31 Mg alloy exhibited enhanced corrosion resistance at 0.25 M of Py. -- Abstract: Electrochemical polymerization of pyrrole (Py) from aqueous salicylate solution over AZ31 Mg alloy was carried out using cyclic voltammetry (CV). The effect of monomer concentration on the surface and electrochemical corrosion in simulated body fluid (SBF) were analysed. Attenuated total reflection-infrared (ATR-IR) spectra showed the characteristic ring stretching peaks for polypyrrole (PPy). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited typical cauliflower morphology with rough surface for PPy coated AZ31 Mg alloy. Open circuit potential measurement and potentiodynamic polarization studies revealed that the coating prepared using 0.25 M of Py had positive shift of about 120 mV in corrosion potential and lower corrosion current density (0.03 mA/cm 2 ) compared to other concentrations and uncoated AZ31 Mg alloy (0.25 mA/cm 2 ). Electrochemical impedance spectroscopic (EIS) studies of uncoated and PPy coated Mg alloy in SBF revealed three-time constants behaviour with about one order of increment in impedance value for 0.25 M of Py

  12. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  13. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  14. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  15. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  16. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  17. REMOCIÓN DE ARSÉNICO (V ASISTIDA POR OXIDACIÓN UV SOLAR EN UN FOTO-REACTOR TUBULAR DE SECCIÓN CIRCULAR

    Directory of Open Access Journals (Sweden)

    Ramiro Escalera Vásquez

    2010-01-01

    Full Text Available Se ha construido y caracterizado un foto-reactor tubular de sección circular para su aplicación al tratamiento de aguas subterráneas contaminadas con Arsénico, As(V, utilizando las técnica de la Remoción de Arsénico por Oxidación Solar (RAOS. El concentrador solar que posee una capacidad de radiación equivalente a 2,8 soles, fue construido reciclando materiales desechados: tubos de vidrio proveniente de lámparas de Ne y tubos de desagüe sanitario de 6” (PVC, recubiertos por láminas de aluminio. Pruebas simultáneas sin agitación,realizadas aplicando la radiación UV solar a aguas sintéticas, demostraron que la remoción de As(V en el foto-reactor es más rápida queen un tubo de vidrio sólo y en una botella PET de 2 litros, logrando remociones mayores al 98% en todos los casos. Los tiempos para la aparición de los flóculos de complejo Fe-citrato fueron de 40, 50 y 90 min respectivamente, para intensidades de radiación UVA integral (290-390 nm entre 50 y 70 Wm-2. Pruebas de irradiación seguidas de agitación controlada a 30-33 s-1 de gradiente de velocidad, demostraron que el foto-reactor acelera el proceso de formación de flóculos fácilmente sedimentables al cabo de 20-30 min de agitación. Los tiempos de irradiación óptimos para el foto-reactor, el tubo y la botella son de 15, 25 y 60 min, respectivamente. Pruebas en régimen de flujo continuo en un foto-reactor de aproximadamente 1 m2 de área, con un tiempo de residencia hidráulica (igual al tiempo de irradiación de 15 min, mostraron la formación inmediata de flóculos fácilmente sedimentables cuando se agitan a 33 s-1 durante 20-30 min, lográndose una remoción del 98,36% una concentración remanente de 16,5 mgL-1 de As(V en aguas decantadas. Esto significa que se pueden tratar aproximadamente 130 Lm-2 en una jornada de 6 horas de radiación UVA de 50-70 Wm-2 de intensidad.

  18. Influence of Li₂Sb Additions on Microstructure and Mechanical Properties of Al-20Mg₂Si Alloy.

    Science.gov (United States)

    Yu, Hong-Chen; Wang, Hui-Yuan; Chen, Lei; Zha, Min; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan

    2016-03-29

    It is found that Li₂Sb compound can act as the nucleus of primary Mg₂Si during solidification, by which the particle size of primary Mg₂Si decreased from ~300 to ~15-25 μm. Owing to the synergistic effect of the Li₂Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg₂Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg₂Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg₂Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.

  19. Np(VI)/Np(V) in concentrated carbonate medium; Np(VI)Np(V) en milieu carbonate concentre

    Energy Technology Data Exchange (ETDEWEB)

    Offerle, S.; Capdevila, H.; Vitorge, P.

    1995-02-01

    The formal potential, E, of the Np (VI)Np(V) redox couple is measured versus a Ag/AgC1 electrode with junction potential less than 0.002 V, by using cyclic voltammetry in 0.22, 0.55, 1, 1.25 and 1.5 M Na{sub 2}CO{sub 3} solutions, and at T = 5, 15, 25, 35, 45, 55 and 60 deg. C. At each T, E is extrapolated to I 0 (I: ionic strength) by using the Specific Interaction Theory (SIT) formula E(I) E(0) + 9 a{radical}I/1+ Ba{sub i}{radical}I + 2 {delta}{xi}m. At each I, E data are fitted to a second order polynomial expression as a function of T, to deduce the entropy change, {delta}S, and the heat capacity change, {delta}Cp. The variations of {delta}S and {delta}Cp with I calculated by using formulae deduced from the SIT one, are consistent with the data. In the standard conditions E deg.=0.341 {+-} 0.017 V/ESH, {delta}Sdeg. = -190 {+-} 5 J/K/mol, {delta}Cpdeg. -345{+-}750 J/K/mol. {delta}{xi} = 0,15 + 0,05 -(0,005{+-}0,001){delta}T + 0,00004 {delta}T{sup 2} kg /mol, where {delta}T=T-25 deg.C. These numerical values are consistent with the U and Pu ones. The redox potential measured in 1 M Na{sub 2}CO{sub 3} solution, is greater by about 0.06 V than the published ones. Junction potentials might account for this difference. Supplementary materials are added, concerning the calculation of activity of water in a weak electrolyte, and on correlation between the numerical values of {xi}, or with ionic radius. (authors). 12 refs., 20 figs., 19 tabs.

  20. Ground-state and isomeric-state cross sections for the {sup 138}Ce(n,2n){sup 137}Ce reaction from its threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). Inst. of Theoretical Physics; Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; An, Li; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2015-07-01

    The cross sections of the {sup 138}Ce(n,2n){sup 137}Ce reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} were measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. CeO{sub 2} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the {sup 3}H(d,n){sup 4}He reaction. The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also estimated using the nuclear model code, TALYS-1.6 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature data.

  1. Estudio de la bioacústica del zorzal andino (Turdus chiguanco con la aplicación del software Audacity, v. 2.0

    Directory of Open Access Journals (Sweden)

    Aldo Hugo Miguel Orellana

    2014-12-01

    Full Text Available Objetivos: Determinar las características bioacústicas del Turdus chiguanco; entre estas, la amplitud, la frecuencia y la duración en las distintas voces. Métodos: Investigación descriptiva en la cual se recolectaron datos bioacústicos durante los años 2011-2012, luego fueron procesados con el software Audacity versión 2.0. Resultados: Se identificaron cuatro tipos de voces: Voz de huida, voz estacionaria, voz de contacto y voz de canto. En la voz de huida, se determinaron valores promedio: amplitud máxima 52,82 dB; amplitud media 0,05 dB; amplitud mínima -13,91 dB; frecuencia máxima 6,8 kHz; frecuencia media 0,63 kHz; frecuencia mínima 0,27 kHz; la duración 1,05 segundos. En la voz estacionaria: amplitud máxima 31,22 dB; amplitud media -0,19 dB; amplitud mínima -16,45 dB; frecuencia máxima 4,31 kHz; frecuencia media 1,63 kHz; frecuencia mínima 0,52 kHz; duración de 0,29 segundos. En la voz de contacto: amplitud máxima 55,22 dB; amplitud media 0,8 dB; amplitud mínima -16,33 dB; frecuencia máxima 2,87 kHz; frecuencia media 0,41 kHz; frecuencia mínima 0,2 kHz; duración 1,28 segundos. Y en la voz de canto: amplitud máxima 50,22 dB; amplitud media 0,08 dB; amplitud mínima -7,38 dB; frecuencia máxima 3,85 kHz; frecuencia media 0,71 kHz; frecuencia mínima 0,33 kHz; duración 1,34 segundos. Conclusiones: El Turdus chiguanco emite cuatro tipos de voces: de huida, estacionaria, de contacto y de canto. Los valores de las variables bioacústicas: amplitud, frecuencia y duración, varían entre los cuatro tipos de voces.

  2. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  3. Cap casting and enveloped casting techniques for Zr55Cu30Ni5Al10 glassy alloy rod with 32 mm in diameter

    International Nuclear Information System (INIS)

    Yokoyama, Yoshihiko; Inoue, Akihisa; Mund, Enrico; Schultz, Ludwig

    2009-01-01

    In order to produce centimetre-sized bulk glassy alloys (BMGs), various cast techniques have been developed. We succeed in the development of cap casting and enveloped casting technique to accomplish the fabrication of centimetre sized BMGs. The former has an advantage to increase cooling rate and the later has an advantage to joint another materials instead of welding. This paper presents the production of a glassy Zr 55 Cu 30 Ni 5 Al 10 alloy rod with a diameter of 32 mm and joined glassy Zr 55 Cu 30 Ni 5 Al 10 alloy parts with another materials for industrial applications.

  4. Ruderman--Kittel--Kasuya--Yosida interaction in amorphous La80Au20 alloys with dilute Gd impurities

    International Nuclear Information System (INIS)

    Poon, S.J.; Durand, J.

    1976-09-01

    From magnetization measurements on some amorphous dilute La/sub 79-x/Gd/sub x/Au 20 alloys with x less than or equal to 1, it is shown that the magnetic behavior follows the scaling laws of a spin-glass system, characteristic of the 1/r 3 dependence of the pairwise interaction. The strength of the Ruderman-Kittel-Kasuya-Yosida interaction, V(r) = (V/sub o/cos 2k/sub F/r)/r 3 , was determined to be V/sub o/ = 0.20 x 10 -37 erg cm 3 . The corresponding value of the s-f exchange integral is vertical bar J/sub sf/ vertical bar = 0.14 eV, which is compared with values determined from other experiments. 4 figures, 1 table

  5. Achieving a table-like magnetocaloric effect and large refrigerant capacity in in situ multiphase Gd65Mn25Si10 alloys obtained by crystallization treatment

    International Nuclear Information System (INIS)

    Shen, X Y; Zhong, X C; Huang, X W; Mo, H Y; Feng, X L; Liu, Z W; Jiao, D L

    2017-01-01

    In situ multiphase structure Gd 65 Mn 25 Si 10 alloys were fabricated by melt spinning and subsequent crystallization treatment. In the process of crystallization, the α -Gd, GdMn 2 and Gd 5 Si 3 phases precipitate in the amorphous matrix in turn. The Curie temperature ( T C ) values for the α -Gd crystallization phase and amorphous matrix can be tailored by tuning the crystallization treatment time. All three multiphase alloys obtained by crystallization treatment at 637 K for 20, 30 and 40 min, respectively, undergo multiple successive magnetic phase transitions. A table-like magnetic entropy change over a wide temperature range (∼90–120 K) and a large full width at half maximum (Δ T FWHM ) magnetic entropy change (∼230 K) were achieved in the above-mentioned crystallized alloys, resulting in large refrigerant capacities (RCs). The enhanced RCs of the three crystallized alloys for a magnetic field change of 0–5 T are in the range of 541–614 J kg −1 . Large Δ T FWHM and RC values and a table-like (−Δ S M ) max feature obtained in in situ multiphase Gd 65 Mn 25 Si 10 crystallized alloys make them suitable for potential application in efficient Ericsson-cycle magnetic refrigeration working in a temperature range from 74 to 310 K. (paper)

  6. The massive transformation in Ti-Al alloys: mechanistic observations

    International Nuclear Information System (INIS)

    Zhang, X.D.; Godfrey, S.; Weaver, M.; Strangwood, M.; Kaufman, M.J.; Loretto, M.H.

    1996-01-01

    The massive α→γ m transformation, as observed using analytical transmission electron microscopy, in Ti-49Al, Ti-48Al-2Nb-2Mn, Ti-55Al-25Ta and Ti-50Al-20Ta alloys is described. Conventional solution heating and quenching experiments have been combined with the more rapid quenching possible using electron beam melting in order to provide further insight into the early stages of the transformation of these alloys. It is shown that the γ develops first at grain boundaries as lamellae in one of the grains and that these lamellae intersect and spread into the adjacent grain in a massive manner. Consequently, there is no orientation relationship between the massive gamma (γ m ) and the grain being consumed whereas there is the expected relation between the γ m and the first grain which is inherited from the lamellae. It is further shown that the γ m grows as an f.c.c. phase after initially growing with the L1 0 structure. Furthermore, it is shown that the massive f.c.c. phase then orders to the L1 0 structure producing APDB-like defects which are actually thin 90 degree domains separating adjacent domains that have the same orientation yet are out of phase. The advancing γ m interface tends to facet parallel either to one of its four {111} planes or to the basal plane in the grain being consumed by impinging on existing γ lamellae. Thin microtwins and α 2 platelets then form in the γ m presumably due, respectively, to transformation stresses and supersaturation of the γ m with titanium for alloys containing ∼48% Al; indeed, there is a local depletion in aluminium across the α 2 platelets as determined using fine probe microanalysis

  7. Evaluation of the 93Nb (n,n')93mNb reaction cross section from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Badikov, S.A.; Zolotarev, K.I.; Pashchenko, A.B.

    1992-01-01

    The data base comprising the results of the 93 Nb(n,n') 93m Nb reactions cross section measurements up to 1991 has been compiled. The experimental data have been renormalized to new values of standard cross-sections from the ENDF/B-6 and the IRDF-90 libraries. The evaluation of excitation function for the 93 Nb(n,n') 93m Nb reaction was carried out on the basis of procedure taking the correlation of experimental data into account. The files of evaluated cross-sections and covariance were prepared in the ENDF/B-6 format. The cross-section evaluations from present work and the IRDF-90 library are compared. 37 refs.; 3 figs.; 6 tabs

  8. Microstructure and mechanical properties of Ti–22Al–25Nb alloy fabricated by vacuum hot pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo, E-mail: jiajianbohit@163.com [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical Engineering, Beihua University, Jilin 132021 (China); Zhang, Kaifeng; Jiang, Shaosong [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-20

    A study has been undertaken to verify the feasibility of using a powder metallurgy (P/M) approach to fabricate Ti–22Al–25Nb alloys. Pre-alloyed powders with a nominal composition of Ti–22Al–25Nb (at%) obtained by argon atomization were sieved to the spherical size less than 180 μm and used for the fabrication of P/M Ti–22Al–25Nb alloys via hot pressing in vacuum. Vacuum hot pressing sintering was carried out in a temperature range of 950–1200 °C with a pressure of 35 MPa for 1 h followed by furnace cooling. Microstructure and phase composition examinations of the as-atomized powders and hot pressed (HP'ed) samples were conducted by applying optical microscopy, back-scatter electron imaging and X-ray diffraction analysis. Tensile tests were studied at room temperature and 650 °C, respectively. The results showed that all HP'ed samples were composed of coarse equiaxed B2 grains, fine lamellar O phase inside the B2 grains, and some α{sub 2} along B2 grain boundaries. The elongations of HP'ed samples were less than 3.95%, indicating the bad ductility at room temperature. However, the elongations were improved as the tensile temperature increased to 650 °C. The sample sintered at 1050 °C exhibited a better ductility with the elongation of 7.97% at 650 °C than that of other samples.

  9. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  10. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  11. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.

    Science.gov (United States)

    Wang, Yuanxin; Lu, Zhen; Zhang, Kaifeng; Zhang, Dalin

    2016-03-11

    This work illustrates the effect of thermal mechanical processing parameters on the microstructure and mechanical properties of the Ti-22Al-25Nb alloy prepared by reactive sintering with element powders, consisting of O, B2 and Ti₃Al phases. Tensile and plane strain fracture toughness tests were carried out at room temperature to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. The results show that the increased tensile strength (from 340 to 500 MPa) and elongation (from 3.6% to 4.2%) is due to the presence of lamellar O/B2 colony and needle-like O phase in B2 matrix in the as-processed Ti-22Al-25Nb alloys, as compared to the coarse lath O adjacent to B2 in the sintered alloys. Changes in morphologies of O phase improve the fracture toughness ( K IC ) of the sintered alloys from 7 to 15 MPa·m -1/2 . Additionally, the fracture mechanism shifts from cleavage fracture in the as-sintered alloys to quasi-cleavage fracture in the as-processed alloys.

  12. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.

    Science.gov (United States)

    Kuroda, Pedro Akira Bazaglia; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2016-10-01

    Titanium has an allotropic transformation around 883°C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862°C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α' phase without molybdenum, α'+α″ phases with 2.5wt% of molybdenum, α″+β phases with 5 and 7.5wt% of molybdenum, and only β phase with 10wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α' and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Validación de un método analítico alternativo para la cuantificación de hidralazina en un inyectable de 20 mg/mL

    Directory of Open Access Journals (Sweden)

    Lisette Martínez Miranda

    2004-04-01

    Full Text Available Se desarrolló un método analítico por espectrofotometría ultravioleta para la cuantificación de hidralazina en un inyectable de 20 mg/mL. En la validación se evaluaron los parámetros de especificidad para estos fines, linealidad del sistema, exactitud y precisión expresada en sus 2 formas, repetibilidad y reproducibilidad. El método analítico resultó ser sencillo y rápido, además de específico, lineal, preciso, exacto en el rango de concentraciones estudiadas.An analytical method was developed by ultraviolet spectrophotometry to quantify hydralazine in an injection of 20 mg/mL. In the validation, the parameters of specificity to these ends, lineality of the system, accuracy and precision expressed in its 2 forms, repeatablity and reproducibility, were evaluated. The analytical method proved to be simple, fast, linear, accurate and exact in the range of the studied concentrations.

  14. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  15. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  16. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  17. Damage rates in neutron irradiated FeCo and FeCo2V ordered and disordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1979-01-01

    Ordered and disordered samples of FeCo and FeCo2V alloys have been irradiated at liquid hydrogen temperature with fission neutrons up to an integrated dose of about 7.2 x 10 17 n/cm 2 (E > 1 MeV). During the irradiation, the resistivity increases continuously due to point defect production. (author)

  18. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  19. Electronic structure of disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Krause, J.C.; Paduani, C.; Schaff, J.; Costa, M.I. Jr. da

    1998-01-01

    The first-principles discrete variational method is employed to investigate the electronic structure and local magnetic properties of disordered Fe-V alloys. The spin-polarized case is considered in the formalism of the local-spin-density approximation, with the exchange-correlation term of von Barth endash Hedin. The effect on the local magnetic properties of adding V atoms in the immediate neighborhood of iron atoms is investigated. The partial density of states, hyperfine field (H c ), magnetic moment (μ), and isomer shift are obtained for the central atom of the cluster. For the impurity V atom in the bcc iron host the calculated values for H c and μ are -203 kG and -0.86μ B , respectively. The isolated Fe atom in a bcc vanadium host exhibits a collapsed moment and acts as a receptor for electrons. In ordered alloys the calculations indicate also a vanishing moment at iron sites. copyright 1998 The American Physical Society

  20. Thermal stability of TaN Schottky contacts on n-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.R.; Kim, D-W.; Meidia, H.; Mahajan, S

    2003-02-07

    The thermal stability and electrical characteristics of tantalum-nitrogen alloy Schottky contacts on n-GaN were investigated. Non-stoichiometric {delta}-phase (40 atomic percent nitrogen) tantalum nitride contacts exhibited good electrical properties up to an annealing temperature of 600 deg. C. However, they degrade rapidly above this temperature due to outward diffusion of Ga and presumably nitrogen into the {delta}-phase tantalum nitride. It is surmised that excess Ta reacts with N at the GaN surface, freeing Ga which then diffuses into the TaN layer. Stoichiometric TaN Schottky contacts were stable at temperatures as high as 800 deg. C and had far superior electrical performance. This stems from the thermodynamic stability of the stoichiometric TaN/GaN interface. {delta}-phase TaN had I-V and C-V barrier heights of 0.55 eV and 0.8 eV respectively. On the other hand, TaN had an I-V barrier height near 0.7 eV and a C-V barrier height near 1.2 eV. The ideality factors for both {delta}-phase TaN and TaN were above 1.8 at all annealing temperatures, suggesting tunneling contributes significantly to current transport.

  1. Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode

    NARCIS (Netherlands)

    Jayasayee, K.; Veen, van J.A.R.; Hensen, E.J.M.; Bruijn, de F.A.

    2011-01-01

    The dependence of the rate of Ni dissolution from PtNi alloys on the chloride concentration was studied electrochemically in 0.5 M HClO4 at room temperature. Electrodeposited PtNi catalysts were subjected to extensive potential cycling between 20 mV and 1.3 V at various Cl- concentrations and the

  2. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  3. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  4. Phase Content and Equilibrium Relationships in Ternary Systems MOx/VO2,5/PO2,5 (M = TiIV, ZrIV, NbV; x = 2 or 2,5) with Additions for Four-Component System Ti/Cr/P/O

    International Nuclear Information System (INIS)

    Titlbach, Sven

    2014-01-01

    In the systems TiO 2 / V 2 O 5 / P 2 O 5 , ZrO 2 / V 2 O 5 / P 2 O 5 and Nb 2 O 5 / V 2 O 5 / P 2 O 5 studies on phase composition and the equilibrium relations were performed in the context of the heterogeneously catalyzed gas-phase oxidation of n-butane to maleic anhydride. Here is a selection of the research findings: in the system TiO 2 / V 2 O 5 / P 2 O 5 the hitherto unknown orthophosphate (VO)Ti 6 (PO 4 ) 9 and the mixed crystal series Ti(P 1-x V x ) 2 O 7 (0 ≤ x ≤ 0,24; 0,30 ≤ x ≤ 0,43) with miscibility gap was detected. In the quasi-ternary system ZrO 2 / V 2 O 5 / P 2 O 5 the literature well described gapless solid solution Zr(P 1-x V x ) 2 O 7 was confirmed and investigated radiographically and by NMR spectroscopy. In the system Nb 2 O 5 / V 2 O 5 / P 2 O 5 the mixed crystal series Nb 1-x V x O(PO 4 ) (0 ≤ x ≤ 0,36), P 1-x V x Nb 9 O 25 (0 ≤ x ≤ 1) and NbOP 1-x V x O 4 (0 ≤ x ≤ 0,20) were found.

  5. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    DEFF Research Database (Denmark)

    Fantegrossi, William E; Gray, Bradley W; Bailey, Jessica M

    2015-01-01

    RATIONALE: 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally...... an intermediate degree of generalization (55 %) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. CONCLUSIONS: 25CN-NBOH was behaviorally active, but less effective...

  6. Quality of the KhN73MBTYu alloy after electroslag remelting and vacuum arc remelting

    International Nuclear Information System (INIS)

    Shelgaeva, A.V.; Krichevets, M.I.; Shinkina, N.S.; Komissarov, A.I.

    1978-01-01

    The structure and properties of the heat-resisting KhN73MBTYu alloy are investigated after electroslag remelting (ESR) and vacuum arc (VAR) remelting in commercial furnaces. The complex investigations of the casted metal were carried out by modern methods along with the standard acceptance tests, and a number of service properties were determined. It is established that the ESR metal contains magnesium and has the reduced sulphur concentration; the alloy has more fine-grained structure at high isotropy of the properties at room and operating temperatures; higher endurance is achieved under reversal rotational bending; no laminated fractures are observed. According to the basic quality factors the ESR metal satisfies all requirements for the VAR metal. Due to exclusion of strippling of ESR electrodes and ingots the yield of steel forgings increases by 20-25% and the prime cost decreases in comparison with the industrial production of VAR metal

  7. Fatigue resistance of Cr-Ni-Mo-V steel

    International Nuclear Information System (INIS)

    Naumchenkov, N.E.; Filimonova, O.V.; Borisov, I.A.

    1985-01-01

    A study was made on the effect of additional alloying (Ni, Ni+Co), stress concentration, surface plastic strain on fatigue resistance of rotor steel of Cr-Ni-Mo-V-composition. It is shown that the steel with decreased carbon content possesses high complex of mechanical properties. Fatigue characteristics are not inferior to similar characteristics of steels of 25KhN3MFA type. Additional alloying of the steel containing 0.11...0.17% C and 4.5...4.7% N:, with niobium separately or niobium and cobalt in combination enabled to improve fatigue resistance of samles up to 25%. Strengthening of stress concentration zones by surface plastic strain is recommended for improving rotor suppporting 'nower under cyclic loading

  8. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH 2 levels of 0.01 and 3 x 10 -6 torr showed negligible effect of H 2 on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H 2 environments on specimens annealed at different temperatures showed that grain-size variation by a factor of ∼2 had little or no effect on tensile properties

  9. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  10. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  11. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  12. Measurement of the cross sections for the 175Lu(n,2n)174m,gLu reaction

    International Nuclear Information System (INIS)

    Yu Weixiang; Zhao Wenrong; Lu Hanlin; Han Xiaogang

    1998-01-01

    The 175 Lu(n,2n) 174m,g Lu reaction is an important indicator. There are 10 sets of measured data since 1960 (total 58 experimental values). Most of the data are finished at 14 MeV with 20%∼30% discrepancy. So the authors measured the cross section by activation method in neutron energies of 14 MeV and 10∼12 MeV. The measurement is carried out at the Cockcroft-Walton and HI-13 Tandem accelerator of CIAE

  13. Fabrication of welded pipes of the KhN45Yu alloy

    International Nuclear Information System (INIS)

    Lyapunov, A.I.; Krichevskij, E.M.; L'vov, V.N.; Kozlov, N.N.; Kireeva, T.S.

    1977-01-01

    A highly heat-resistant KhN45Yu (EP 747) alloy has been developed; the alloy is designed to withstand prolonged service in the temperature range of 1000-1300 deg C, or short-term service at 1300-1400 deg C. The satisfactory ductility and good weldability of the alloy have made it possible to obtain sheets and pipes (32 x 2.0 mm) by argon arc welding. The ductility of pipes from EP 747 alloy exceeds that of pipes from KhN78T (EI 435) alloy by 5.10%, the strength being approximately equal. In regard to strength the welded joint differs little from the base metal. The ductility characteristics up to 900 deg C are also equal, since failure occurs in the base metal. At higher temperatures the welded joint fails in the metal of the weld, and its ductility drops sharply. The grain size of the base metal corresponds to No. 3-4. The welded joint has a cast structure with a grain size larger than No. 1, but its ductility characteristics are satisfactory. This structure ensures an increased long-term strength of the material at 1000-1200 deg C

  14. Microstructure of ordered (Co078Fe022)3V alloy

    International Nuclear Information System (INIS)

    Braski, D.N.; Carpenter, R.W.; Bentley, J.

    1981-05-01

    The (Co 0 78 Fe 0 22 ) 3 V alloy belongs to a class of long-range-ordered alloys that are being developed for elevated-temperature applications. The microstructure after quenching and after subsequent aging at temperatures between 973 and 1073 0 K has been characterized by analytical electron microscopy. Short-range order (SRO) and small VC matrix precipitate particles were observed in the as-quenched material. At 973 0 K VC precipitated discontinuously in grain boundaries and on extrinsic stacking faults. Aging at 1073 0 K precipitated VC in grain boundaries and on extrinsic stacking faults, and produced intrinsic stacking faults that were precipitate-free. Ordered domains grew upon aging at rates proportional to t/sup 1/2/; the activation energy for growth was 222 +- 20 J/mol. Thermal antiphase boundaries (APBs) had isotropic energies and (a/2) displacement vectors. Intrinsic and extrinsic stacking faults also serve as APBs, with displacement vectors of (a/6) and (a/3) , respectively

  15. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  16. Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kamil.kowalski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, M.U. [Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Wirstlein, P.K. [Department of Gynecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Jakubowicz, J.; Jurczyk, M. [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-05-15

    Highlights: • Ultrafine grained composites were formed by consolidating mechanically alloyed powders. • Mechanical properties were sensitive to the content of 45S5 Bioglass in Mg-4Y-5.5Dy-0.5Zr alloy. • Fluoride treated composites displayed superior corrosion resistance in Ringer solution. • Composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material. - Abstract: Bulk samples of an ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-x wt% 45S5 Bioglass (x = 0, 5) and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites have been synthesized by consolidating mechanically alloyed powders. The influence of the chemical composition on the microstructure, mechanical properties and corrosion behavior of bulk composites were studied. The sintering of (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass powders led to the formation of a bulk composite with grain size of approx. 95 nm. The corrosion behavior of Mg-based composites before and after hydrofluoric acid treatment was also investigated. The ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass composite was more corrosion resistant than the bulk Mg-4Y-5.5Dy-0.5Zr alloy after HF treatment. The in vitro biocompatibility of synthesized composites was evaluated and compared with microcrystalline magnesium. Magnesium, (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material.

  17. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  18. The Al Effects of Co-Free and V-Containing High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Songqin Xia

    2017-01-01

    Full Text Available In this study, five-component high-entropy alloys (HEAs AlxCrFeNiV (where x denotes the molar ratio, x = 0, 0.1, 0.3, 0.5, 0.75, 1, and 1.5 were prepared using an arc-melting furnace. The effects of the addition of the Al on the crystal structures were investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Also, two non-equiatomic ratio HEAs, AlxCrFeNiV (x = 0.3, and 0.5, were systematically studied through the use of various characterization methods in the as-cast state. The Al0.3CrFeNiV alloy displayed typical duplex body-centered cubic (BCC structures, including disordered BCC (A2, and NiAl-type ordered BCC (B2 phases. Meanwhile, in regard to the Al0.5CrFeNiV alloy, this alloy was found to contain an unknown phase which was enriched in Cr and V, as well as the coherent A2/B2 phases. Both of these alloys displayed very high yield and fracture strengths. However, their compression fracture strains were approximately 10%. Also, the fracture surfaces showed mainly cleavage fracture modes.

  19. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  20. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Mamoun Fellah

    2014-01-01

    Full Text Available The aim of the study is to evaluate the friction and wear behavior of high-strength alloys Ti-6Al-7Nb used in femoral stem and compare it with a Ti-6Al-4V alloy cylindrical bar corresponding to ISO 5832-3 part 3/01-07-199 standard. The tribological behavior was investigated by wear tests, using ball-on-disc and pin-on-disc tribometers. These tests consisted of measuring the weight loss and the friction coefficient of samples. The oscillating friction and wear tests have been carried out in ambient with oscillating tribotester in accordance with standards ISO 7148, ASTM G99-95a, and ASTM G133-95 under different conditions of normal loads (3, 6, and 10 N and sliding speeds (1, 15, and 25 mm·s−1. As counter pairs, a 100Cr6 steel ball with 10 mm in diameter was used. Results show that the two alloys had similar friction and wear performance, although their grain structures and compositions are different. Occurrence of large frictional occurred, is probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction with larger fluctuation and higher wear rate was observed at the higher siding speed. The Ti-6Al-4V wear mechanism transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear.

  1. Peculiarities of single track formation from TI6AL4V alloy at different laser power densities by selective laser melting

    Directory of Open Access Journals (Sweden)

    Yadroitsava, I.

    2015-11-01

    Full Text Available This paper describes the geometrical characteristics of single tracks manufactured by selective laser melting (SLM at different laser powers (20-170 W and scanning speeds (0.1-2.0 m/s. Simulation of temperature distribution during processing is carried out. A conclusion about the optimal process parameters and peculiarities of selective laser melting of Ti6Al4V alloy at low and high laser powers and scanning speeds is reached. The analysis of temperature fields creates opportunities to build parts with the desired properties by using SLM.

  2. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.; Kitowski, K.; Wilczynska, T.; Hofman, A.; Kulikauskas, V.; Shiryaev, A.A.; Zubavichyus, Ya.V.

    2011-01-01

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25-keV deuterium ions at fluences in the range (1.2-2.3) x 10 22 D + /m 2 . The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation by using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed us to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions from V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium

  3. The development and characterization of a novel aluminum-copper-magnesium P/M alloy

    Science.gov (United States)

    Boland, Christopher Daniel

    Powder metallurgy (P/M) is a metal fabrication process that is characterized by high yield and ability to be automated, as well as the resultant part complexity and reproducibility. This press and sinter process is favoured by the automotive industry. Aluminum alloy P/M parts are particularly attractive because they have a high strength to weight ratio and they can be made to have high corrosion and wear resistance. There are few commercial Al P/M alloys currently in use and they occupy a small portion of the market. To expand the use of aluminum in the industry a new alloy was created, modeled after the wrought AC2024 family of alloys. P/M 2324, with a nominal composition of Al-4.4Cu-1.5Mg, was assessed using physical, chemical and mechanical methods to help maximize alloy properties through processing. The objective of this work was to develop a viable industrial alloy. The investigation of 2324 included the evaluation of starting powders, starting composition, processing methods, secondary treatments, and industrial response. All blending and compacting was completed at Dalhousie University, while sintering was undertaken at Dalhousie and GKN Sinter Metals. The green alloy was assessed for best compaction pressure using green density and strength. The sintered alloy was assessed to determine the best press and sinter variables, using dimensional change, sintered density, apparent hardness, tensile properties and microscopy. These same sintered properties were tested to determine if sintering done on a laboratory scale could be replicated industrially. The viability of heat treatment was tested using differential scanning calorimetry, hardness and tensile properties. The alloy was also subject to modifications of Cu and Mg amounts, as well as to the addition of tin to the base composition. It was determined that compaction at 400MPa and sintering at 600°C for 20min produced the best properties for the sintered bodies. The resultant mechanical properties were

  4. First experiments with a liquid-lithium based high-intensity 25-keV neutron source

    International Nuclear Information System (INIS)

    Paul, M.

    2014-01-01

    A high-intensity neutron source based on a Liquid-Lithium Target (LiLiT) and the 7 Li(p,n) reaction was developed at SARAF (Soreq Applied Research Accelerator Facility, Israel) and is used for nuclear astrophysics experiments. The setup was commissioned with a 1.3 mA proton beam at 1.91 MeV, producing a neutron yield of ~ 2 ×10 10 n/s, more than one order of magnitude larger than conventional 7 Li(p,n)-based neutron sources and peaked at ~25 keV. The LiLiT device consists of a high-velocity (> 4 m/s) vertical jet of liquid lithium (~200 °C) whose free surface is bombarded by the proton beam. The lithium jet acts both as the neutron-producing target and as a power beam dump. The target dissipates a peak power areal density of 2.5 kW/cm 2 and peak volume density of 0.5 MW/cm 3 with no change of temperature or vacuum regime in the vacuum chamber. Preliminary results of Maxwellian-averaged cross section measurements for stable isotopes of Zr and Ce, performed by activation in the neutron flux of LiLiT, and nuclear-astrophysics experiments in planning will be described. (author)

  5. Electronic structure and lattice properties of metastable III-(N,V) semiconductor systems; Elektronische Struktur und Kristallgittereigenschaften von metastabilen III-(N,V)-Halbleitersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Guengerich, M.

    2007-12-18

    This thesis gives an overview of these influences for Ga-V semiconductors (V=P,As,Sb). Lattice vibrations of the ternary alloys Ga(N,P), Ga(N,As) und Ga(N,Sb) are studied and analyzed with respect to the local binding of the N atoms in the host lattices. For the first time, pressure coefficients of the extended host phonons as well as of the N local vibrational modes in Ga(N,As) und Ga(N,P) are determined by Raman spectroscopy under hydrostatic pressure. The relationship between the force constant of the Ga-N bond and the bond length is determined. A central aspect of the thesis is the concentration dependence of optical transitions in Ga(N,P) and Ga(N,As), studied by spectroscopic methods. The impurity levels in both materials are determined by the spatial statistics of the N atoms. (orig.)

  6. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    Science.gov (United States)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  8. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  9. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  10. Sedimenty ve Sloupsko-šošůvských jeskyních a v Kůlně – klíč k porozumění podzemním procesům

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav

    2012-01-01

    Roč. 31, - (2012), s. 26-33 ISSN 1211-8397. [Speleofórum 2012 : setkání speleologů v Moravském krasu. Moravský kras, 20.04.2012-22.04.2012] Institutional research plan: CEZ:AV0Z30130516 Keywords : cave sediment s * Moravian Karst * paleomagnetic and radiomentric datings Subject RIV: DB - Geology ; Mineralogy

  11. Reflexe reklamy v předškolním vzdělávání

    OpenAIRE

    Sialini, Kateřina

    2017-01-01

    The bachelory work "Reflexe reklamy v předškolním vzdělávání" is focused on the theme of advertising in pre-school marketing with conotations to my conclusions developed for pedagogical employees in pre-matery schools. The theoretical part is based on texts, which are defined by the art-didactical-psychological literature applied to develope of advertise making and its forms and advertisement focused on children. The practical part of the bachelory work is based on percieveng impacts of the T...

  12. Computational modelling of Ti50Pt50-xMx shape memory alloys (M: Ni, Ir or Pd and x = 6.25-43.75 at.%)

    CSIR Research Space (South Africa)

    Modiba, Rosinah M

    2017-09-01

    Full Text Available The ab initio density functional theory approach was employed to study the effect of Ni, Ir or Pd addition to the TiPt shape memory alloy. The supercell approach in VASP was used to substitute Pt with 6.25, 18.75, 25.00, 31.25 and 43.75 at.% Ni, Ir...

  13. Recobrimento da liga Ti-6Al-4V com hidroxiapatita pelo método sol-gel e sua aplicação a hastes femorais não-cimentadas Coating of Ti-6Al-4V alloy with hydroxyapatite by using sol-gel method and its application to non-cemented femoral stem

    Directory of Open Access Journals (Sweden)

    E. P. Avés

    2008-12-01

    Full Text Available O recobrimento de ligas metálicas com cerâmicas bioativas visa acelerar a formação óssea ao redor do implante, contribuindo para a sua estabilização. Neste trabalho estudou-se a fase cerâmica de hidroxiapatita depositada pelo processo sol-gel em chapas da liga metálica Ti-6Al-4V. A camada de recobrimento foi caracterizada por microscopia eletrônica de varredura, por difração de raios X e sua adesão ao substrato foi avaliada pelo teste de cisalhamento O teste de citocompatibilidade mostrou que o processo de recobrimento por sol-gel não promoveu morte celular significativamente maior que o controle (p > 0,05. Além disso, hastes femorais removidas de pacientes (explantes foram adequadamente recobertas utilizando-se o processo sol-gel.The coating of metallic alloys with bioactive ceramics aims to accelerate bone formation around the implant, contributing to its fixation. In this paper, the deposition of hydroxyapatite ceramic on Ti-6Al-4V alloy sheets by the sol-gel method was studied. The coating layer was characterized by scanning electron microscopy, X-ray diffraction and its adhesion to substrate was evaluated by shear testing. The citocompatibility test shows that the sol-gel coating did not provoke the cell death significantly higher than the control (p > 0.05. Moreover, femoral stems removed from patient (explants were adequately coated using the sol-gel process.

  14. Revised ANL-reported tensile data for unirradiated and irradiated (FFTF, HFIR) V-Ti and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Billone, M.C.

    1998-01-01

    The tensile data for all unirradiated and irradiated vanadium alloys samples tested at Argonne National Laboratory (ANL) have been critically reviewed and, when necessary, revised. The review and revision are based on reanalyzing the original load-displacement strip chart recordings by a methodology consistent with current ASTM standards. For unirradiated alloys (162 samples), the revised values differ from the previous values as follows: -11±19 MPa (-4±6%) for yield strength (YS), -3±15 MPa (-1±3%) for ultimate tensile strength (UTS), -5±2% strain for uniform elongation (UE), and -4±2% strain for total elongation (TE). Of these changes, the decrease in -1±6 MPa (0±1%) for UTS, -5±2% for UE, and -4±2% for TE. Of these changes, the decrease in UE values for alloys irradiated and tested at 400--435 C is the most significant. This decrease results from the proper subtraction of nongauge-length deformation from measured crosshead deformation. In previous analysis of the tensile curves, the nongauge-length deformation was not correctly determined and subtracted from the crosshead displacement. The previously reported and revised tensile values for unirradiated alloys (20--700 C) are tabulated in Appendix A. The revised tensile values for the FFTF-irradiated (400--600 C) and HFIR-irradiated (400 C) alloys are tabulated in Appendix B, along with the neutron damage and helium levels. Appendix C compares the revised values to the previously reported values for irradiated alloys. Appendix D contains previous and revised values for the tensile properties of unirradiated V-5Cr-5Ti (BL-63) alloy exposed to oxygen

  15. Measurement of proton induced thick target γ-ray yields on B, N, Na, Al and Si from 2.5 to 4.1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ferraccioli, G.; Melon, B.; Nannini, A.; Perego, A.; Salvestrini, L. [INFN-Florence and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lagoyannis, A.; Preketes-Sigalas, K. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece)

    2016-01-01

    Thick target yields for proton induced γ-ray emission (PIGE) on low-Z nuclei, namely B, N, Na, Al and Si, were measured for proton energies from 2.5 to 4.1 MeV and emission angles of 0°, 45° and 90°, at the 3 MV Tandetron laboratory of INFN-LABEC in Florence. The studied reactions were: {sup 10}B(p,α′γ){sup 7}Be (E{sub γ} = 429 keV), {sup 10}B(p,p′γ){sup 10}B (E{sub γ} = 718 keV) and {sup 11}B(p,p′γ){sup 11}B (E{sub γ} = 2125 keV) for boron; {sup 14}N(p,p′γ){sup 14}N (E{sub γ} = 2313 keV) for nitrogen; {sup 23}Na(p,p′γ){sup 23}Na (E{sub γ} = 441 and 1636 keV) and {sup 23}Na(p,α′γ){sup 20}Ne (E{sub γ} = 1634 keV) for sodium; {sup 27}Al(p,p′γ){sup 27}Al (E{sub γ} = 844 and 1014 keV) and {sup 27}Al(p,α′γ){sup 24}Mg (E{sub γ} = 1369 keV) for aluminum; {sup 28}Si(p,p′γ){sup 28}Si (E{sub γ} = 1779 keV) and {sup 29}Si(p,p′γ){sup 29}Si (E{sub γ} = 1273 keV) for silicon. The PIGE thick target yields have been measured with an overall uncertainty typically better than 10%. The use of the measured thick target yield to benchmark and validate experimental cross sections available in the literature is demonstrated.

  16. Calculations of complete data for n + 89Y in the energy region 0.001∼20 MeV

    International Nuclear Information System (INIS)

    Cai Chonghai

    1998-01-01

    All reaction cross sections, secondary neutron spectra and elastic scattering angular distributions of n + 89 Y in E n = 0.001 ∼20 MeV are calculated. Pretty good results in accordance with experimental data are obtained. And the data results are given in ENDF/B-6 format

  17. Interfacial microstructure of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} brazing joint with Cu-Zn-Ti filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: hitzhangjie@hit.edu.cn; Zhang, X.M.; Zhou, Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Naka, M. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Svetlana, Atroshenko [Faculty of Mathematics and Mechanics, Saint-Petersburg State University (Russian Federation)

    2008-11-15

    In this study, Si{sub 3}N{sub 4} ceramic was jointed by a brazing technique with a Cu-Zn-Ti filler alloy. The interfacial microstructure between Si{sub 3}N{sub 4} ceramic and filler alloy in the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joint was observed and analyzed by using electron-probe microanalysis, X-ray diffraction and transmission electron microscopy. The results indicate that there are two reaction layers at the ceramic/filler interface in the joint, which was obtained by brazing at a temperature and holding time of 1223 K and 15 min, respectively. The layer nearby the Si{sub 3}N{sub 4} ceramic is a TiN layer with an average grain size of 100 nm, and the layer nearby the filler alloy is a Ti{sub 5}Si{sub 3}N{sub x} layer with an average grain size of 1-2 {mu}m. Thickness of the TiN and Ti{sub 5}Si{sub 3}N{sub x} layers is about 1 {mu}m and 10 {mu}m, respectively. The formation mechanism of the reaction layers was discussed. A model showing the microstructure from Si{sub 3}N{sub 4} ceramic to filler alloy in the Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joint was provided as: Si{sub 3}N{sub 4} ceramic/TiN reaction layer/Ti{sub 5}Si{sub 3}N{sub x} reaction layer/Cu-Zn solution.

  18. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    Science.gov (United States)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  19. Development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy

    International Nuclear Information System (INIS)

    Machado, Geraldo Correa

    2014-01-01

    The autocthonal production of nuclear fuel in Brazil for test and research reactors is restricted to MTR (Material Test Reactor) fuel type dispersion plate, using U3Si2 alloy, coated and dispersed in aluminum, developed by IPEN-SP for use in IEA-R1 reactor. Moreover, the UO 2 fuel rod type for power reactors is manufactured by Rezende (RJ) with a German technology by INB under license. Currently, Brazil is performing two programs of developing reactors. Currently, Brazil is developing two reactors. One of them is the development, by CNEN, the Brazilian Multipurpose Reactor (RMB), for testing, research and radioisotope production. The other one is the development a power reactor for naval propulsion, conducted by the Brazilian Navy. This dissertation presents the development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy (ZRY), on a laboratory scale. Due to its innovative features and properties, this fuel can be used as fuel in both test reactors, research and producing radioisotopes for power reactors as small and medium sizes. Thus, this high potential fuel can be used in domestic reactors currently under development. The development of monolithic fuel plate type is made using the technique called 'picture-frame' where a sandwich composed of a monolith alloy U-2.5Zr- 7.5Nb coupled to a frame and coated sheets of Zry is obtained. The alloy U-2.5Zr-7.5Nb was obtained by melting in an induction furnace and then was cast into rectangular ingots of graphite, thus achieving an ingot with approximate dimensions of 170 x 50 x 60 mm. The obtained ingot was hot rolled at 850 ºC, with a 50 % reduction in thickness, in order to refine the raw structure of fusion. Samples cut from the alloy U-2.5Zr-7.5Nb, with dimensions 20 x 20 x 6 mm were placed in frames and plates Zry and joined by TIG (Tungsten Inert Gas) under an atmosphere of argon, obtaining a set of 10 mm thick, 45 mm wide and 100 mm long. The sandwiches were hot rolled to

  20. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  1. Phase martensitic transformation study in mechanically alloyed Ti{sub 50}Ni{sub 25}Fe{sub 25} alloy via high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Joao Cardoso de; Ferreira, Ailton da Silva, E-mail: joao.cardoso.lima@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil); Rovani, Pablo Roberto; Pereira, Altair Soria [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: Alloys based on titanium and nickel with shape memory effect (SME) have been widely investigated due to potential use in different areas of science and technology, such as electronics, medicine, and space.1 Among them, the superalloys Ti-Ni-Fe show high corrosion resistance and good mechanical properties even at high temperatures that make them suitable for use in applications such as power plant components that work under aggressive conditions. At room temperature, the TiNi alloy has a monoclinic (B19'), known as the martensitic phase. With increasing temperature, the B19' phase transforms into a trigonal/hexagonal (B19) phase, known as the R- or pre martensitic phase, which, in its turn, transforms into a cubic (B2) structure, known as the austenitic phase. On cooling to room temperature, the reverse B2→B19→B19' phase transformations are observed. Since the B19↔B19' transformation occurs at a temperature low enough to inhibit diffusion-controlled processes, it belongs to a class of diffusionless phase transformations known as martensitic transformations. For this study, a Ti{sub 50}Ni{sub 25}Fe{sub 25} (B2) alloy was prepared by mechanical alloying, and the effects of high pressures up to 18 GPa will be presented. The structural changes with increasing pressure were followed by recording in situ angle-dispersive X-ray diffraction (ADXRD) diffractograms, in transmission geometry, using a long fine focus Mo X-ray tube and an imaging plate detector. The obtained results were already reported in Ref [1]. (1) A. S. Ferreira, P. R. Rovani, J. C. de Lima, A. S. Pereira, J. Appl. Phys. 117 (2015). (author)

  2. (γ,n) reaction in nuclei of the 12<=A<=238 interval in the intermediate energy region (300 MeV-1000MeV)

    International Nuclear Information System (INIS)

    Martins, J.B.

    1974-01-01

    The absolute cross section of the 12 C(γ,n) 11 C, 19 F(γ,n) 18 F, 23 Na(γ,n) 22 Na, 31 P(γ,n) 30 P, 52 Cr(γ,n) 51 Cr, 55 Mn(γ,n) 54 Mn, 59 Co(γ,n) 58 Co, 75 As(γ,n) 74 As, 103 Rh(γn) 102 Rh, 127 I(γ,n) 126 I, 197 Au(γ,n) 196 Au and 238 U(γ,n) 237 U reactions were determined, experimentally, in the energy range from 300 MeV to 1000 MeV, using Bremsstrahlung photons. The measured cross sections were compared with results estimated by Monte Carlo Method applied to intranuclear cascades initiated by phothons. A functional dependence between the average value of (γ,n) absolute cross section and the mass number, were established. The (γ,n) absolute cross sections from simple relations, which transparencies of complexe nuclei for mesons and nucleons photo produced were also determined. (M.C.K.) [pt

  3. Structural study of (CdS/ZnSe)/BeTe superlattices for λ=1.55 μm intersubband transition

    International Nuclear Information System (INIS)

    Li, B.S.; Akimoto, R.; Akita, K.; Hasama, H.

    2004-01-01

    A (CdS/ZnSe)/BeTe superlattice (SL), based on wide band gap II-VI compounds, with a large band offset of 3.1 eV was grown on a GaAs (001) substrate using molecular-beam epitaxy and an intersubband transition (ISB-T) of 0.78 eV (λ=1.58 μm) with a full width at half maximum (FWHM) of 96 meV observed. We studied structural properties using high-resolution x-ray diffraction combined with dynamic simulation and found through the strain state in samples that a ZnSe/BeTe interface having a quaternary interface layer (ZnTe) 0.45 (BeSe) 0.55 is preferentially formed despite the promotion of one molecular layer (ML) ZnTe interface formation. Be-Se bonds thus replace the Zn-Te bond in the transition region. For the CdS/ZnSe interface, an approximately 1 ML Zn 0.75 Cd 0.25 S ternary layer accompanied by ∼1 ML Zn 0.85 Cd 0.15 Se forms at the transition region due to Cd diffusion. X-ray (002) ω/2θ scan curves for (CdS/ZnSe)/BeTe SLs show sharp, intense satellite peaks exceeding ten orders, indicating high structure quality. We obtained excellent agreement between experimental diffraction patterns and the calculated curve via dynamic simulation for (CdS/ZnSe)/BeTe SLs. The good fits allows us to identify structure parameters in (CdS/ZnSe)/BeTe SLs, which are consistent with results of high-resolution transmission electron microscopy measurement. Based on dynamic simulated results, we obtained a structure of (CdS/ZnSe)/Be 1-x Mg x Te (x=1.2%) with an average lattice constant a SL matching the GaAs substrate. An ISB-T located at wavelength λ=1.55 μm with a narrow FWHM of 90 meV was thus realized at room temperature

  4. Chalcopyrite Dissolution at 650 mV and 750 mV in the Presence of Pyrite

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2015-08-01

    Full Text Available The dissolution of chalcopyrite in association with pyrite in mine waste results in the severe environmental issue of acid and metalliferous drainage (AMD. To better understand chalcopyrite dissolution, and the impact of chalcopyrite’s galvanic interaction with pyrite, chalcopyrite dissolution has been examined at 75 °C, pH 1.0, in the presence of quartz (as an inert mineral and pyrite. The presence of pyrite increased the chalcopyrite dissolution rate by more than five times at Eh of 650 mV (SHE (Cu recovery 2.5 cf. 12% over 132 days due to galvanic interaction between chalcopyrite and pyrite. Dissolution of Cu and Fe was stoichiometric and no pyrite dissolved. Although the chalcopyrite dissolution rate at 750 mV (SHE was approximately four-fold greater (Cu recovery of 45% within 132 days as compared to at 650 mV in the presence of pyrite, the galvanic interaction between chalcopyrite and pyrite was negligible. Approximately all of the sulfur from the leached chalcopyrite was converted to S0 at 750 mV, regardless of the presence of pyrite. At this Eh approximately 60% of the sulfur associated with pyrite dissolution was oxidised to S0 and the remaining 40% was released in soluble forms, e.g., SO42−.

  5. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  6. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  7. Synthesis and in vivo evaluation of [{sup 11}C]p-P.V.P.-M.E.M.A. as a PET radioligand for imaging nicotinic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Langle, S.; Roger, G.; Lagnel-de Bruin, B.; Hinnen, F.; Bottlaender, M.; Dolle, F. [Service Hospitalier Frederic Joliot 91 - Orsay (France); Fulton, R.; Henderson, D. [RPAH, NSW (Australia); Kassiou, M. [Sydney Univ., NSW (Australia)

    2008-02-15

    Nicotinic acetylcholine receptors (n.A.Ch.R.) are crucial to many brain physiological functions and they are involved in a wide range of diseases of the brain making them attractive targets for tomographic imaging. Of particular interest, (((R)-2- [6-chloro-5-((E)-2-pyridin-4-yl-vinyl)-pyridin-3-yloxy]-1- methyl-ethyl)-methyl-amine) (p-P.V.P.-M.E.M.A.) displayed an affinity of Ki 0.077 nM for n.A.Ch.R. when using [{sup 3}H]cytisine and whole rat brain membrane [1]. p-P.V.P.-M.E.M.A. and its corresponding nor-methyl derivative where obtained using a multistep synthesis. [{sup 11}C]p-P.V.P.-M.E.M.A. prepared from the nor-methyl derivative as precursor and labeled with carbon-(T1/2 = 20.4 min) using [{sup 11}C]CH{sub 3}I. The reaction was conducted in D.M.F. using tetra-butyl ammonium hydroxide (T.B.A.H.) as base and allowed to react at room temperature for 2 min, followed by heating at 80 degrees C for 5 min. The reaction mixture was diluted with 0.5 m L of a solution of 0.1 M NH{sub 4}Ac (pH 10):A.C.N. (70:30; v:v) and injected onto a HPLC X Terra R.P. C-18 (7.8 x 300 mm, 10 mm) semi preparative reversed-phase column. Using a mobile phase of 0.1 M NH{sub 4}Ac (pH 10):A.C.N. (70:30; v:v) and a flow rate of 6.0 m L/min, the retention time (t.R.) of [{sup 11}C]p-P.V.P.-M.E.M.A. was 8.6 min. [{sup 11}C]p-P.V.P.-M.E.M.A. was isolated in a 1.5% (n = 4) non decay corrected radiochemical yield based on starting [{sup 11}C]CH{sub 3}I in an average synthesis time of 33.6 min (including H.P.L.C. purification and formulation). In the final product solution, radiochemical and chemical purity was greater than 99% with a specific activity of 86.4 GBq/mmol (2334 mCi/mmol). (authors)

  8. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  9. BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs

    Science.gov (United States)

    Williams, Logan; Kioupakis, Emmanouil

    2017-11-01

    InGaN-based visible light-emitting diodes (LEDs) find commercial applications for solid-state lighting and displays, but lattice mismatch limits the thickness of InGaN quantum wells that can be grown on GaN with high crystalline quality. Since narrower wells operate at a higher carrier density for a given current density, they increase the fraction of carriers lost to Auger recombination and lower the efficiency. The incorporation of boron, a smaller group-III element, into InGaN alloys is a promising method to eliminate the lattice mismatch and realize high-power, high-efficiency visible LEDs with thick active regions. In this work, we apply predictive calculations based on hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BInGaN alloys. Our results show that BInGaN alloys with a B:In ratio of 2:3 are better lattice matched to GaN compared to InGaN and, for indium fractions less than 0.2, nearly lattice matched. Deviations from Vegard's law appear as bowing of the in-plane lattice constant with respect to composition. Our thermodynamics calculations demonstrate that the solubility of boron is higher in InGaN than in pure GaN. Varying the Ga mole fraction while keeping the B:In ratio constant enables the adjustment of the (direct) gap in the 1.75-3.39 eV range, which covers the entire visible spectrum. Holes are strongly localized in non-bonded N 2p states caused by local bond planarization near boron atoms. Our results indicate that BInGaN alloys are promising for fabricating nitride heterostructures with thick active regions for high-power, high-efficiency LEDs.

  10. Design of power oscillator for 500 keV/20 mA Cockroft-Walton high voltage supply

    International Nuclear Information System (INIS)

    Djasiman; Sudjatmoko; Suprapto

    1999-01-01

    A design of power oscillator for Cockroft-Walton high voltage supply was carried out. This high voltage supply would be used as the acceleration voltage supply of an electron beam machine designed to have 500 keV/20 mA capacity. The power oscillator design consisted of output specification, circuit diagram, power supply and oscillator main components determinations. The power oscillator output wave power, voltage and frequency designed according to voltage multiplier input requirements. The design results showed that the circuit was class-c tickler oscillator having an output specification of 12.1 kW, 15 kV and 40 kHz sinus wave. The main component was a ITK 15-2 triode tube. (author)

  11. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  12. Measurements of neutron emission spectra and 7Be production in Li(d, n) and Be(d, n) reactions for 25 and 40 MeV deuterons

    International Nuclear Information System (INIS)

    Hagiwara, Masayuki; Baba, Mamoru; Aoki, Takao; Kawata, Naoki; Hirabayashi, Naoya; Itoga, Toshiro

    2003-01-01

    The neutron spectra in Li(d, n) and Be(d, n) reactions for Ed = 25, 40 MeV were measured from ∼1 MeV to highest energy of secondary neutrons at ten laboratory angles between 0- and 110-deg with the time-of-flight (TOF) method. In addition, the number of 7 Be accumulated in the targets was also measured by counting the γ-rays from 7 Be using a pure Ge detector to obtain 7 Be production cross-section and yields. (author)

  13. Hydrogen traps in the oxide/alloy interface region of Zr-Nb alloys

    International Nuclear Information System (INIS)

    Khatamian, D.

    1995-03-01

    In this study the 1 H( 15 N,αγ) 12 C nuclear reaction has been used to measure hydrogen profiles of anodically oxidized Zr-Nb specimens containing various amounts of niobium. The profiles have been correlated with oxygen profiles, obtained using a Scanning Auger Microprobe (SAM), and with X-ray diffraction patterns. In addition, unoxidized Zr-2.5Nb (Zr-2.5 wt% Nb) samples were implanted with oxygen and hydrogen to study the interaction between these two species when dissolved in the alloy. All the anodically oxidized specimens, except the pure Zr and the single-phase β-Zr (Zr-20Nb) samples, displayed hydrogen peaks beneath the oxide layer. These results, in conjunction with the results from the implanted specimens, indicate that the hydrogen moves under the influence of a stress gradient to the sub-oxide region, where the metal lattice has been expanded due to superficial oxide growth. The results show that dissolved oxygen sites in Zr-2.5Nb alloy do not trap hydrogen. (author). 16 refs., 6 figs

  14. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    International Nuclear Information System (INIS)

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael D.; Jump, David; Fernandes, Samuel

    2016-01-01

    Highlights: • A testing procedure and metrics to asses the performance of whole-building M&V methods is presented. • The accuracy of ten baseline models is evaluated on measured data from 537 commercial buildings. • The impact of reducing the training period from 12-months to shorter time horizon is examined. - Abstract: Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V 2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure

  15. Elastic scattering of polarized protons by 20Ne between 4.5 Mev and 5.5 Mev

    International Nuclear Information System (INIS)

    Avila A, O.L.

    1979-01-01

    Starting with the study of 20 Ne(p,p) 20 nuclear reaction, we obtained information about the nuclear structure of 21 Na. The experiment was made at Notre Dame University; a target of 20 Ne was bombarded with polarized protons, changing the incident energy of them between 4.5 Mev and 5.5 Mev at intervals of 10 keV. Fourteen detectors were set covering angles from 35 degrees until 165 degrees, with intervals of 10 degrees each. In this form measurements for computing polarization and differential sections were obtained, with them an analysis of runnings of phase was made, and the parameters associated with two of the excited levels of the composed formed nucleous 21 Na, that are viewed as resonances in the section were settled; those resonances correspond to a level Psub(3/2) of energy excitation 6.877, a total width of 36 keV, and a level Fsub(7/2) of energy excitation 6.992 and total width of 48 keV. I hope that these results will be part of a set of values that will be utilized in order to confront them with the existent nuclear models. (author)

  16. Analysis of polarized photoluminescence emission of ordered III–V semiconductor quaternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, Tatiana, E-mail: tatiana.prutskij@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Makarov, Nykolay, E-mail: nykolay.makarov@correo.buap.mx [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, Col. San Miguel Huyeotlipan, 72050 Puebla, Pue., México (Mexico); Attolini, Giovanni, E-mail: giovanni@imem.cnr.it [IMEM/CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy)

    2016-04-15

    Ternary and quaternary III–V alloys obtained by metal-organic vapor-phase epitaxy (MOVPE) grow very often with some degree of atomic ordering. Atomic ordering reduces the symmetry of the crystal lattice and thus drastically changes optical properties of the alloy. Moreover, the photoluminescence (PL) emission becomes polarized and its study helps to understand the atomic arrangement within the crystal lattice. In this work we experimentally studied the polarization of the PL emission from different crystallographic planes of several quaternary III–V semiconductor alloys grown on GaAs substrates by MOVPE. We compare the measured PL emission polarization angular patterns with those calculated with a model made for ternary alloys and discuss the limits of application of this model for quaternaries. It is found that the experimentally obtained polarization patterns are consistent with the existence of different ordering crystallographic planes for III- and for V-group atoms.

  17. Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2014-09-01

    Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.

  18. DRG systém v ČR

    OpenAIRE

    Hodyc, Daniel MUDr.

    2007-01-01

    Diplomová práce hodnotí historický proces implementace klasifikačního systému DRG v České republice a srovnává jej s vývojem analogických systémů v ostatních zemích světa. Na podkladě platné metodiky IR DRG užívané v ČR v roce 2006 analyzuje hospitalizační část lékařské péče poskytované ve Fakultní nemocnici v Motole. Zkoumá rozdíly v nákladovosti při srovnání rozdílných pacientských skupin (děti – dospělí, operovaní – léčení konzervativně) a ukazuje výhody užití DRG systému pro hodnocení kva...

  19. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  20. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo

  1. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.

  2. High thermoelectric figure of merit by resonant dopant in half-Heusler alloys

    Science.gov (United States)

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-06-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.

  3. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  4. Phase selection during pulsed laser annealing of Fe-V alloys

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Follstaedt, D.M.; Peercy, P.S.

    1987-01-01

    Pulsed laser melting of the low-temperature σ (tetragonal, D8/sub b/) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by -- 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (-- 10/sup 10/ K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the σ phase in the near-surface after melting σ with incident laser energies (1.0-1.41 J/cm/sup 2/) which are well above the melt threshold as determined by changes in reflectivity (-- 0.7 J/cm/sup 2/). The α phase nucleated from the undercooled liquid within -- 20 ns

  5. Validación de un instrumento para medir el nivel de conocimiento sobre depresión mayor en médicos de atención primaria en Chiclayo, Perú

    Directory of Open Access Journals (Sweden)

    Aldo Ríos-Flores

    2013-01-01

    Full Text Available Objetivo: Diseñar y validar un instrumento para evaluar el nivel de conocimientos sobre Depresión mayor en médicos de atención primaria en Chiclayo. Material y Métodos: Estudio descriptivo, trasversal, tipo validación de un instrumento. El primer constructo se desarrolló en el 2010 en base al marco teórico y sometido a juicio de expertos. En el 2011 nuevamente se sometió el cuestionario a 12 expertos según la metodología Delphi, obteniéndose un constructo de 14 preguntas: 7 de diagnóstico y 7 de tratamiento; se realizó un estudio piloto para evaluar la inteligibilidad y pertinencia del instrumento. Se evaluó la confiabilidad con el coeficiente de Kuder-Richardson y el Alfa de Cronbach. La validez de constructo se realizó mediante análisis factorial. Se utilizó SPSS v. 15. Resultados: Se entrevistaron 34 médicos generales (90% y 6 alumnos (10% que habían terminado el curso de Salud mental: 36 (90% fueron varones; la media de edad fue de 37,5 ± 15 años. Los percentiles 25, 50 y 75 de la puntuación total del instrumento fueron: 4, 6 y 9, respectivamente. El Coeficiente de Kuder-Richardson fue 0,62; el Alfa de Cronbach de cada una de las preguntas fue mayor de 0,55. Las pruebas de Kaiser Meyer Olkin y de esfericidad de Bartlett mostraron que el instrumento era unidimensional. Conclusiones: Se obtuvo un instrumento válido, confiable y unidimensional para determinar el nivel de conocimientos sobre depresión mayor en médicos de atención primaria.

  6. Characteristics of hydrostatically extruded Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Jie, Z.; Jiaqi, D.; Tieqi, Y.; Wenxian, H.; Yan, L.; Yunxia, Z.; Zhenhe, L.

    1984-01-01

    Hydrostatic extrusion is a new production technology. Zr-2.5Nb alloy tubes cold hydrostatically extruded possess excellent mechanical properties similar to heat-treated tubes and better than cold-worked tubes. Examination by transmission electron microscope shows that the alloy is of a uniform cell substructure containing the (α + β) phases, which is one of important factors improving properties of the alloy. The study of texture, stress, and reorientation of the hydride shows that hydrostatically extruded tubes with basal plane normals in the radial direction have obviously higher hydride reorientation threshold stress than tubes with basal plane normals in the circumferential direction. Moreover, investigation of fracture toughness reveals that hydride distributed perpendicular to the crack propagation direction restrains further propagation of the crack. It is favorable for preserving the fracture resistance of the material

  7. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  8. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    Science.gov (United States)

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20-xLaxNi10 (x = 0, 2) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huiping; Guo Shihai; Wu Zhongwang; Wang Xinlin

    2009-01-01

    Mg 2 Ni-type hydrogen storage alloys Mg 20-x La x Ni 10 (x = 0, 2) were prepared by casting and rapid quenching. The structures and morphologies of the as-cast and quenched alloys were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). Thermal stability of the as-quenched alloys was researched by differential scanning calorimetry (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus, and their electrochemical properties were measured by a tri-electrode open cell. The results showed that the no amorphous phase formed in the as-quenched La-free alloy, but the as-quenched alloys containing La held a major amorphous phase. The quenching rate induced a light influence on the crystallization temperature of the amorphous phase, and it significantly improved the initial hydrogenation rate and the hydrogen absorption capacity of the alloys. The discharge capacity and the cycle stability of the alloys grew with the increase of the quenching rate. When the quenching rate increased from 0 (as-cast was defined at a quenching rate of 0 m s -1 ) to 30 m s -1 , the hydrogen absorption capacity of the alloys for x = 0 and 2 at 200 deg. C and 1.5 MPa in 10 min changed from 1.21 to 3.10 wt.% and from 1.26 to 2.60 wt.%, the maximum discharge capacity from 30.26 to 135.51 mAh g -1 and from 197.23 to 406.51 mAh g -1 at a current density of 20 mA g -1 , and the capacity retaining rate at 20th cycle from 36.71 to 27.06% and from 37.26 to 78.33%, respectively

  10. Carbides precipitated from the melt in a Zr-2.5 Nb alloy

    International Nuclear Information System (INIS)

    Piotrkowski, R.; Garcia, E.A.; Vigna, G.L.; Bermudez, S.E.

    1993-01-01

    An experimental method is presented which leads to the formation of carbides similar in size (3 to 8 microns) and composition to those observed in some pressure tubes of CANDU type reactors. The method is based on melting the Zr-2.5 Nb alloy in a graphite crucible, where isothermal C diffusion in the Zr-Nb melt took place. It can be inferred that the carbides observed in pressure tubes could be originated in high temperature stages of the manufacture process. Otherwise, they could have been incorporated in the Zr sponge. As a result of the diffusion couple Liquid Zr-2.5 Nb/Solid Graphite, a carbide layer, up to 100μm thick, grew attached to the crucible wall, together with carbide particles whose size was in the some microns range. The smallest particles were arranged in rows determined by the prior β phase grains. The main carbide phase detected was the cubic MC 1-x ; the hexagonal M 2 C was also detected; M for metal. (Author)

  11. Phase transition induced anelasticity in Fe–Ga alloys with 25 and 27%Ga

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, I.S., E-mail: i.golovin@misis.ru [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Balagurov, A.M., E-mail: bala@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Bobrikov, I.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Palacheva, V.V. [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Cifre, J. [Universitat de les Illes Balears, Ctra. De Valldemossa, km.7.5, E-07122, Palma de Mallorca (Spain)

    2016-08-05

    Neutron diffraction and mechanical spectroscopy techniques were applied to study phase transitions in Fe–Ga alloys with 25 and 27 at.% Ga. The following sequences of phase transitions at continuous heating and subsequent cooling in the 20–900 °C temperature range were recorded: D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at heating and A2(B2) → D0{sub 3} at cooling for Fe-24.8Ga alloy, and the D0{sub 3} → L1{sub 2} → D0{sub 19} → A2(B2) was recorded at heating and A2(B2) → L1{sub 2} at cooling for Fe-27.4Ga alloy. Thus, the difference in 2.6 at.%Ga between two studied compositions with D0{sub 3} structure leads to their different structures after heating to 900 °C. These transition sequences determine different temperature dependencies of elastic and anelastic properties. The D0{sub 3} → A2(B2) transition (in Fe-25Ga) does not lead to a well-pronounced anelastic effect, in contrast the D0{sub 3} → L1{sub 2} transition (in Fe-27Ga) generates internal stresses due to a different rate of an increase in the lattice parameter with temperature and leads to a well-pronounced transient internal friction effect. - Highlights: • Neutron diffraction technique is used to study in situ phase transitions in Fe-25 and 27 at.% Ga. • D0{sub 3} → L1{sub 2} → D0{sub 19} → A2/B2 transitions were recorded at instant heating in Fe-27 at.% Ga. • D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at instant heating in Fe-25 at.% Ga • The D0{sub 3} → L1{sub 2} transition generates internal stresses and leads to elastic and anelastic response.

  12. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    Science.gov (United States)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  13. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  14. La2O3-reinforced W and W-V alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Savoini, B.; Rabanal, M.E.; Garces, G.; Pareja, R.

    2011-01-01

    W and W-V alloys reinforced with La 2 O 3 particles have been produced by MA and subsequent HIP at 1573 K and 195 MPa. The microstructure of the consolidated alloys has been characterized by scanning electron microscopy, energy dispersive spectroscopy analyses and X-ray diffraction. The mechanical properties were studied by nanoindentation measurements. The results show that practically full dense billets of W-V, W-V-La 2 O 3 and W-La 2 O 3 alloys can be produced. The microstructure analysis has shown that islands of V are present in W-V and W-V-1La 2 O 3 alloys. In W-1La 2 O 3 islands of La 2 O 3 are also present. The nanohardness of the W matrix increases with the addition of V, while decreases with the addition of La 2 O 3 .

  15. In vitro measurement of CT density and estimation of stenosis related to coronary soft plaque at 100 kV and 120 kV on ECG-triggered scan

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Jun, E-mail: horiguch@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Fujioka, Chikako, E-mail: fujioka@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Kiguchi, Masao, E-mail: kiguchi@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Yamamoto, Hideya, E-mail: hideyayama@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Shen, Yun, E-mail: Yuna.Shen@ge.com [CT Lab of Great China, GE Healthcare, L12 and L15, Office Tower, Langham Place, 8 Argyle Street, Mongkok Kowloon (Hong Kong); Kihara, Yasuki, E-mail: ykihara@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan)

    2011-02-15

    Purpose: The purpose of the study was to compare 100 kV and 120 kV prospective electrocardiograph (ECG)-triggered axial coronary 64-detector CT angiography (64-MDCTA) in soft plaque diagnosis. Materials and methods: Coronary artery models (n = 5) with artificial soft plaques (-32 HU to 53 HU at 120 kV) with three stenosis levels (25%, 50% and 75%) on a cardiac phantom (mimicking slim patient's environment) were scanned in heart rates of 55, 60 and 65 beats per minute (bpm). Four kinds of intracoronary enhancement (205 HU, 241 HU, 280 HU and 314 HU) were simulated. The soft plaque density and the measurement error of stenosis (in percentage), evaluated by two independent observers, were compared between 100 kV and 120 kV. The radiation dose was estimated. Results: Interobserver correlation of the measurement was excellent (density; r = 0.95 and stenosis measure; r = 0.97). Neither the density of soft plaque nor the measurement error of stenosis was different between 100 kV and 120 kV (p = 0.22 and 0.08). The estimated radiation doses were 2.0 mSv and 3.3 mSv (in 14 cm coverage) on 100 kV and 120 kV prospective ECG-triggered axial scans, respectively. Conclusion: The 100 kV prospective ECG-triggered coronary MDCTA has comparable performance to 120 kV coronary CTA in terms of soft plaque densitometry and measurement of stenosis, with a reduced effective dose of 2 mSv.

  16. Issues associated with the metalorganic chemical vapor deposition of ScGaN and YGaN alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, Daniel David; Knapp, James Arthur; Lee, Stephen Roger; Crawford, Mary Hagerott; Creighton, James Randall; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    The most energy efficient solid state white light source will likely be a combination of individually efficient red, green, and blue LED. For any multi-color approach to be successful the efficiency of deep green LEDs must be significantly improved. While traditional approaches to improve InGaN materials have yielded incremental success, we proposed a novel approach using group IIIA and IIIB nitride semiconductors to produce efficient green and high wavelength LEDs. To obtain longer wavelength LEDs in the nitrides, we attempted to combine scandium (Sc) and yttrium (Y) with gallium (Ga) to produce ScGaN and YGaN for the quantum well (QW) active regions. Based on linear extrapolation of the proposed bandgaps of ScN (2.15 eV), YN (0.8 eV) and GaN (3.4 eV), we expected that LEDs could be fabricated from the UV (410 nm) to the IR (1600 nm), and therefore cover all visible wavelengths. The growth of these novel alloys potentially provided several advantages over the more traditional InGaN QW regions including: higher growth temperatures more compatible with GaN growth, closer lattice matching to GaN, and reduced phase separation than is commonly observed in InGaN growth. One drawback to using ScGaN and YGaN films as the active regions in LEDs is that little research has been conducted on their growth, specifically, are there metalorganic precursors that are suitable for growth, are the bandgaps direct or indirect, can the materials be grown directly on GaN with a minimal defect formation, as well as other issues related to growth. The major impediment to the growth of ScGaN and YGaN alloys was the low volatility of metalorganic precursors. Despite this impediment some progress was made in incorporation of Sc and Y into GaN which is detailed in this report. Primarily, we were able to incorporate up to 5 x 10{sup 18} cm{sup -3} Y atoms into a GaN film, which are far below the alloy concentrations needed to evaluate the YGaN optical properties. After a no-cost extension was

  17. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  18. STUDY OF THERMAL BEHAVIOUR ON TITANIUM ALLOYS (TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    VASUDEVAN D

    2017-08-01

    Full Text Available Titanium is recognized for its strategic importance as a unique lightweight, high strength alloyed structurally efficient metal for critical, high-performance aircraft, such as jet engine and airframe components. Titanium is called as the "space age metal" and is recognized for its high strength-to-weight ratio. Today, titanium alloys are common, readily available engineered metals that compete directly with stainless steel and Specialty steels, copper alloys, nickel based alloys and composites. Titanium alloys are needed to be heat treated in order to reduce residual stress developed during fabrication and to increase the strength. Titanium (Ti-6Al-4V alloy is an alpha, beta alloy which is solution treated at a temperature of 950 ºC to attain beta phase. This beta phase is maintained by quenching and subsequent aging to increase strength. Thermal cycling process was carried out for Ti-6Al-4V specimens using forced air cooling. Heat treated titanium alloy specimen was used to carry out various tests before and after thermal cycling, The test, like tensile properties, co-efficient of thermal expansion, Microstructure, Compression test, Vickers Hardness was examined by the following test. Coefficient of Thermal expansion was measured using Dilatometer. Tensile test was carried out at room temperature using an Instron type machine. Vickers's hardness measurement was done on the same specimen as used for the microstructural observation from near the surface to the inside specimen. Compression test was carried out at room temperature using an Instron type machine. Ti‐6Al‐4V alloy is a workhorse of titanium industry; it accounts for about 60 percent of the total titanium alloy production. The high cost of titanium makes net shape manufacturing routes very attractive. Casting is a near net shape manufacturing route that offers significant cost advantages over forgings or complicated machined parts.

  19. Phase analysis and magnetocaloric properties of Zr substituted Gd-Si-Ge alloys

    International Nuclear Information System (INIS)

    Prabahar, K.; Raj Kumar, D.M.; Manivel Raja, M.; Chandrasekaran, V.

    2011-01-01

    The structure, microstructure, magneto-structural transition and magnetocaloric effect have been investigated in series of (Gd 5-x Zr x )Si 2 Ge 2 alloys with 0≤x≥0.20. X-ray powder diffraction analysis revealed the presence of orthorhombic structure for Zr containing alloys at room temperature in contrast to the monoclinic structure observed in the parent Gd 5 Si 2 Ge 2 alloy. The microstructural studies reveal that, low Zr addition (x≤0.1) resulted in low volume fraction of detrimental Gd 5 Si 3 -type secondary phase compared to that present in the parent alloy. All the Zr containing alloys have shown the presence of only second order magnetic transition unlike the parent alloy showing both first order structural and second order magnetic transition. A moderate (ΔS) M value of -5.5 J/kg K was obtained for the x=0.05 alloy at an enhanced operating temperature of 292 K compared to -7.8 J/kg K at 274 K of the parent alloy for an applied field of 2 T. The interesting feature of Zr (x=0.05) containing alloy is the wide operating temperature range of ∼25 K than that of ∼10-12 K for the parent, which resulted in enhanced net refrigerant capacity of 103 J/kg compared to that of 53 J/kg for the parent alloy. - Research highlights: → Zr addition in Gd 5 Si 2 Ge 2 alloy has been investigated for the first time to reduce the 5:3-type (Gd 5 Si 3 ) secondary phase formed when using commercial grade elements in Gd 5 Si 2 Ge 2 alloy. → It is interesting to observe that Zr addition decrease the volume fraction 5:3. → The refrigerator capacity and transition temperature of Zr added alloy is greater than the pure Gd 5 Si 2 Ge 2 which makes this alloy promising for room temperature application.

  20. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  1. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  2. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  3. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bathula, Sivaiah [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  4. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  5. SCC and Corrosion Fatigue characterization of a Ti-6Al-4V alloy in a corrosive environment – experiments and numerical models

    Directory of Open Access Journals (Sweden)

    S. Baragetti

    2014-10-01

    Full Text Available In the present article, a review of the complete characterization in different aggressive media of a Ti-6Al-4V titanium alloy, performed by the Structural Mechanics Laboratory of the University of Bergamo, is presented. The light alloy has been investigated in terms of corrosion fatigue, by axial fatigue testing (R = 0.1 of smooth and notched flat dogbone specimens in laboratory air, 3.5% wt. NaCl–water mixture and methanol–water mixture at different concentrations. The first corrosive medium reproduced a marine environment, while the latter was used as a reference aggressive environment. Results showed that a certain corrosion fatigue resistance is found in a salt water medium, while the methanol environment caused a significant drop – from 23% to 55% in terms of limiting stress reduction – of the fatigue resistance of the Ti-6Al-4V alloy, even for a solution containing 5% of methanol. A Stress Corrosion Cracking (SCC experimental campaign at different methanol concentrations has been conducted over slightly notched dog-bone specimens (Kt = 1.18, to characterize the corrosion resistance of the alloy under quasi-static load conditions. Finally, crack propagation models have been implemented to predict the crack propagation rates for smooth specimens, by using Paris, Walker and Kato-Deng-Inoue-Takatsu propagation formulae. The different outcomes from the forecasting numerical models were compared with experimental results, proposing modeling procedures for the numerical simulation of fatigue behavior of a Ti-6Al-4V alloy.

  6. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-01-01

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g −1 /366.6 mA h g −1 ) and optimal cycle stability (a specific reversible capacity of 240 mA h g −1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  7. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Huang, Hao, E-mail: huanghao@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Cao, Guozhong, E-mail: gzcao@u.washington.edu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States)

    2016-10-15

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  8. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. Black-Right-Pointing-Pointer The bonding force between the coating and the magnesium alloy was optimized. Black-Right-Pointing-Pointer The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS {<=} 0.25 g, nHA {<=} 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA {<=} 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating

  9. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    International Nuclear Information System (INIS)

    Zhang Jie; Dai Changsong; Wei Jie; Wen Zhaohui

    2012-01-01

    Highlights: ► Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. ► The bonding force between the coating and the magnesium alloy was optimized. ► The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG–DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca 10 (PO 4 ) 6 (OH) 2 ) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40–110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS–acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in

  10. Analysis of the width correlation in 54Fe(nγ)55Fe reaction

    International Nuclear Information System (INIS)

    Knat'ko, V.A.; Shimanovich, E.A.

    1982-01-01

    To find out structural effects manifesting themselves in the form of correlation between widths of different channels of γ decay of levels and violation of Porter-Thomas distribution, calculated are partial widths of levels for 20 high-energy γ transitions in the 54 Fe(nγ) 55 Fe reaction. Calculations are carried out for widths in relation to γ transitions on 8 low p levels of 55 Fe, for 100 sets of partial γ widths (20 widths in a set). Results of analysis of theoretical values of partial γ widths of s resonances are presented in the form of the table. Results, obtained, show that consideration of contributions into γ decay of one-particle-vibrational configurations improve the accordance with experimental data, in comparison with calculations according to the model of valent capture. It is concluded that properties of γ widths of 55 Fe resonances, calculated in studied model, agree satisfactorily with properties of experimental γ widths [ru

  11. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  12. Measurement of the 58Ni(n,α)55Fe reaction

    International Nuclear Information System (INIS)

    Ketlerov, V.V.; Goverdovskij, A.A.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Khryachkov, V.A.

    1997-01-01

    Results of the measurement of the 58 Ni(n,α) 55 Fe reaction in the 3.5 - 6.8 MeV energy range is presented. The measurements were performed using a gridded ionization chamber with a gas mixture of 95% Xe and 3% CO 2 . The corrections made to the experimental data, which took a large number of factors into account, are presented. The nature of the measured cross-section uncertainties are discussed, and the results are compared with the data of other authors. (author). 9 refs, 2 figs

  13. SU-E-T-10: A Dosimetric Comparison of Copper to Lead-Alloy Apertures for Electron Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusk, B; Hogstrom, K; Gibbons, J; Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate dosimetric differences of copper compared to conventional lead-alloy apertures for electron beam therapy. Methods: Copper apertures were manufactured by .decimal, Inc. and matching lead-alloy, Cerrobend, apertures were constructed for 32 square field sizes (2×2 – 20×20 cm{sup 2}) for five applicator sizes (6×6–25×25 cm{sup 2}). Percent depth-dose and off-axis-dose profiles were measured using an electron diode in water with copper and Cerrobend apertures for a subset of aperture sizes (6×6, 10×10, 25×25 cm{sup 2}) and energies (6, 12, 20 MeV). Dose outputs were measured for all field size-aperture combinations and available energies (6–20 MeV). Measurements were taken at 100 and 110 cm SSDs. Using this data, 2D planar absolute dose distributions were constructed and compared. Passing criteria were ±2% of maximum dose or 1-mm distance-to-agreement for 99% of points. Results: A gamma analysis of the beam dosimetry showed 93 of 96 aperture size, applicator, energy, and SSD combinations passed the 2%/1mm criteria. Failures were found for small field size-large applicator combinations at 20 MeV and 100-cm SSD. Copper apertures showed a decrease in bremsstrahlung production due to copper's lower atomic number compared to Cerrobend (greatest difference was 2.5% at 20 MeV). This effect was most prominent at the highest energies with large amounts of shielding material present (small field size-large applicator). Also, an increase in electrons scattered from the collimator edge of copper compared to Cerrobend resulted in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV). Conclusion: Apertures for field sizes ≥6×6 cm{sup 2} at any energy, or for small fields (≤4×4 cm{sup 2}) at energies <20 MeV, showed dosimetric differences less than 2%/1mm for more than 99% of points. All field size-applicator size-energy combinations passed 3%/1mm criteria for 100% of points. Work partially

  14. The Tribological Performance of Surface Treated Ti6A14V as Sliding Against Si3N4 Ball and 316L Stainless Steel Cylinder

    Science.gov (United States)

    Kao, W. H.; Su, Y. L.; Horng, J. H.; Huang, H. C.

    2016-12-01

    Closed field unbalanced magnetron sputtering was used to deposit diamond-like carbon (Ti-C:H) coatings on Ti6Al4V alloy and gas nitrided Ti6Al4V alloy. Four different specimens were prepared, namely untreated Ti6Al4V alloy (Ti6Al4V), gas nitrided Ti6Al4V alloy (N-Ti6Al4V), Ti-C:H-coated Ti6Al4V alloy (Ti-C:H/Ti6Al4V) and Ti-C:H-coated gas nitrided Ti6Al4V alloy (Ti-C:H/N-Ti6Al4V). The tribological properties of the four specimens were evaluated using a reciprocating wear tester sliding against a Si3N4 ball (point contact mode) and 316L stainless steel cylinder (line contact mode). The wear tests were performed in a 0.89 wt.% NaCl solution. The results showed that the nitriding treatment increased the surface roughness and hardness of the Ti6Al4V alloy and improved the wear resistance as a result. In addition, the Ti-C:H coating also improved the tribological performance of Ti6Al4V. For example, compared to the untreated Ti6Al4V sample, the Ti-C:H coating reduced the wear depth and friction coefficient by 340 times and 10 times, respectively, in the point contact wear mode, and 151 times and 9 times, respectively, in the line contact wear mode. It is thus inferred that diamond-like carbon coatings are of significant benefit in extending the service life of artificial biomedical implants.

  15. The effect of primary recoil spectrum on radiation induced segregation in nickel-silicon alloys

    Science.gov (United States)

    Averback, R. S.; Rehn, L. E.; Wagner, W.; Ehrhart, P.

    1983-08-01

    Segregation of silicon to the surface of Ni-12.7 at% Si alloys during 2.0-MeV He and 3.25-MeV Kr irradiations was measured using Rutherford backscattering spectrometry. For equal calculated defect production rates the Kr irradiation was Ni-Si alloys is presented which qualitatively explains the segregation results. The model assumes that small interstitial-atom-clusters form in individual cascades and that these clusters become trapped at silicon solute atoms. The vacancy thereby becomes the more mobile defect. The model should also have relevance for the observation that void swelling in nickel is suppressed by the addition of silicon solute.

  16. High-