WorldWideScience

Sample records for alloy-mar-m246

  1. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  2. Effect of temperature on gamma prime and coating in a super alloy MAR-M200 Hf

    International Nuclear Information System (INIS)

    Nusair, A.; Salam, I.; Tauqir, I.; Haq, A.U.

    1999-01-01

    Over temperature analysis was conducted on Mar M200-Hf, a Ni base super alloy used to cast turbine blades. The material has an aluminide coating. Samples cut from the coated material were exposed to temperatures from 1800 - 2000 deg. F in air, for 3.6 x 10/sup 3/ to 3.6 x 10/sup 5/ seconds. The processed samples were subjected to microstructural examination to study the behavior of gamma prime in the matrix and the effects on the coating. The exposure to temperatures ranging from 1800 to 2000 deg. F reveals the changes in microstructural features. The morphology of the gamma prime precipitates change from cuboidal to spherical as time and/or temperature is increased. At 2000 deg. F coalescence and then dissolution starts. The effect on coating is unusual and needle-like carbides dissolve while pores are generated. The study determines systematic relationships between exposure temperatures and the changes in microstructural changes. (author)

  3. The Evolution of Cast Microstructures on the HAZ Liquation Cracking of Mar-M004 Weld

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Cheng

    2018-01-01

    Full Text Available The causes of liquation cracking in the heat-affected zone (HAZ of a cast Mar-M004 superalloy weld were investigated. X-ray diffraction (XRD, electron probe microanalyzer (EPMA, and electron backscatter diffraction (EBSD were applied to identify the final microconstituents at the solidification boundaries of the cast alloy. Fine borides and lamellar eutectics were present in front of some γ-γ′ colonies, which were expected to be liquefied prematurely during welding. The metal carbide (MC enriched in Nb, Hf; M3B2 and M5B3 borides enriched in Cr and Mo; and lamellar Ni-Hf intermetallics were mainly responsible for the induced liquation cracking of the Mar-M004 weld, especially the MC carbides. Scanning electron microscope (SEM fractographs showed that the fracture features of those liquation cracks were associated with the interdendritic constituents in the cast superalloy.

  4. Effect of chemistry modifications and heat treatments on the mechanical properties of DS Mar-M200 superalloy

    International Nuclear Information System (INIS)

    Yunrong, Z.; Yuping, W.; Jizhou, X.; Caron, P.; Khan, T.

    1988-01-01

    This paper discusses how Hf and Zr can promote the formation of eutectic (γ + γ), MC 2 , and Ni 5 M phases. In the alloy with equal atomic percent Zr and Hf, the solubility of Zr in eutectic γ is lower than that of Hf, and Zr content in Ni 5 M is much higher than Hf. This distribution of Zr is beneficial to the formation of Ni 5 M and lowers the strengthening efficiency of Zr. A pretreatment of 1130 degrees C/3hr efficiently eliminates Ni 5 M and, as a consequence, increases the incipient melting temperature of the alloy. The precipitation treatment of 1100 degrees C/4hr leads to cuboidal γ precipitation of about 0.5 μm size and causes the Hf-containing alloy to have a much higher creep strength than the Hf-free alloy in the temperature range of 760 to 1050 degrees C. The Hf-containing alloy showed greater LCF (low cycle fatigue) life in comparison to the Hf-free alloy. A similar tendency was found when Zr was either partially or totally substituted for Hf. A higher rate of solidification facilitates enhanced LCF life due to a finer structure and more perfect orientation. Surface slip analysis showed that intersection of two sets of slip in adjacent grains occurred in the Hf-free and HF-containing alloys, but cracking at the columnar grain boundary easily took place in the Hf-free alloy. The number of surface cracks of LCF specimens and their length per unit area are much higher in the Mar-M200 alloy. Mc cracking preferentially occurs at long rod-shaped carbides perpendicular to the stress axis, and then propagates through the interdendritic region. The Hf-containing alloy cracks along the crystallographic planes by separation of slip bands

  5. Superplastic deformation of P/M and I/M Al-Li based alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1984-01-01

    Incremental strain-rate and constant strain-rate cone-forming tests have been carried out at 450-550 C to investigate the superplastic forming characteristics of Al-Li-Cu-Mn, Al-Li-Cu-Mg-Zr, and Al-Li-Zn-Mg alloys processed by powder-metallurgy (P/M) and ingot-metallurgy (I/M) techniques. It is found that P/M Al-Li alloys containing 0.2 pct Zr are inherently superplastically formable without the need for extensive thermomechanical processing. I/M Al-Li alloys containing Zr are also superplastically formable. The mechanical properties of the superplastically formed and solution-treated-and-aged alloys are comparable to those of solution-treated-and-aged alloys before superplastic forming. 6 references

  6. Prediction of maximum casting defect size in MAR-M-247 alloy processed by hot isostatic pressing

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Fintová, Stanislava; Kunz, Ludvík; Hutař, Pavel; Hrbáček, K.

    2015-01-01

    Roč. 22, č. 1 (2015), s. 25-32 ISSN 1335-0803 R&D Projects: GA MPO FR-TI4/030; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : MAR-M 247 * Superalloys * Fatigue * Casting defects * Elevated temperatures Subject RIV: JL - Materials Fatigue, Friction Mechanics http://ojs.mateng.sk/index.php/Mateng/article/view/160/249

  7. Steady State Structural Analysis of High Pressure Gas Turbine Blade using Finite Element Analysis

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Murari Pandey, Krishna

    2017-08-01

    In gas turbines the major portion of performance dependency lies upon turbine blade design. Turbine blades experience very high centrifugal, axial and tangential force during power generation. While withstanding these forces blades undergo elongation. Different methods have proposed for better enhancement of the mechanical properties of blade to withstand in extreme condition. Present paper describes the stress and elongation for blades having properties of different materials. Steady state structural analysis have performed in the present work for different materials (In 625, In 718, In 738, In 738 LC, MAR M246, Ni-Cr, Ti-alloy, Ti-Al, Ti-T6, U500). Remarkable finding is that the root of the blade is subjected to maximum stress for all blade materials and the blade made of MAR M246 has less stress and deformation among all other blade materials which can be selected as a suitable material for gas turbine blade.

  8. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  9. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    Science.gov (United States)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  10. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  11. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  12. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  13. PM alloy 625M for high strength corrosion resistant applications

    International Nuclear Information System (INIS)

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper

  14. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  15. Dicty_cDB: VHK246 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHK246 (Link to dictyBase) - - - Contig-U16440-1 VHK246P (Link to Original site) VHK2...46F 617 VHK246Z 760 VHK246P 1357 - - Show VHK246 Library VH (Link to library) Clone ID VHK2...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/VH/VHK2-B/VHK246Q.Seq.d/ Representative seq. ID VHK2...46P (Link to Original site) Representative DNA sequence >VHK246 (VHK246Q) /CSM/VH/VHK2-B/VHK2...y vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value VHK246 (VHK246Q) /CSM/VH/VHK2-B/VHK2

  16. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  17. 7 CFR 246.3 - Administration.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Administration. 246.3 Section 246.3 Agriculture... § 246.3 Administration. (a) Delegation to FNS. Within the Department, FNS shall act on behalf of the Department in the administration of the Program. Within FNS, SFPD and the Regional Offices are responsible...

  18. Correlation of microstructures, aging treatments, and properties of Al-Li-Cu-Mg-Zr I/M and P/M alloys

    International Nuclear Information System (INIS)

    Kar, R.J.; Bohlen, J.W.; Chanani, G.R.

    1984-01-01

    In a Northrop research program on Al-Li based alloys, the microstructures and heat treatment characteristics of two Al-Li-Cu-Mg-Zr alloys, one I/M (ingot metallurgy) and one P/M (powder metallurgy), were examined and correlated with properties obtained. Prior work had shown that this alloy system has a high payoff potential for aircraft applications. Following solution-heat-treatments, the artificial aging response of these alloys was determined, using hardness measurements. Microstructural characterization of these alloys was carried out using optical metallography and transmission electron microscopy (TEM) and phases were identified using X-ray methods, electron diffraction and Auger electron spectroscopy. The tensile and fracture toughness properties of the alloys were determined for selected tempers. Scanning electron microscopic (SEM) fracture examination was carried out on fractured tensile and fracture toughness coupons. The mechanical properties obtained and fracture behavior observed were correlated with significant microstructural features. 16 references

  19. New ternary ordered structures in CuMPt6 (M=3d elements) alloys

    International Nuclear Information System (INIS)

    Das, Ananda Kumar; Nakamura, Reo; Takahashi, Miwako; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    X-ray and electron diffraction measurements were performed to investigate the structure and ordering behaviour of the ternary alloys CuMPt 6 (M=Ti, V, Cr, Mn, Fe, Co, and Ni). X-ray polycrystalline diffraction patterns of all the speciments quenched from 1000degC have shown that a single phase is formed at this stoichiometric composition. The alloys with M=Cr, Mn, Co, and Ni have the face-centred cubic (fcc) structure, while in the alloys with M=Ti, V, and Fe ordering has occurred and the structure is of the Cu 3 Au type. On annealing at lower temperatures ordering has been induced in the alloys with M=Cr, Mn, and Co and the structure is of the Cu 3 Au type, though the ordering in the last alloy has remained incomplete. Detailed X-ray diffraction measurements on single crystals of the CuMnPt 6 alloy have revealed that further ordering takes place and structure changes from the Cu 3 Au type into the cubic ABC 6 type with the unit cell as large 2 x 2 x 2 as the fcc unit cell, a new observation of the double-step ordering in the ternary fcc alloy. The corresponding transition temperatures are T c =970(±5)degC and T cl =750(±5)degC. (author)

  20. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  1. 48 CFR 2453.246 - Quality Assurance.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Quality Assurance. 2453.246 Section 2453.246 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CLAUSES AND FORMS FORMS Prescription of Forms 2453.246 Quality Assurance. ...

  2. 1991 P/M in aerospace and defense technologies; Proceedings of the Symposium, Tampa, FL, Mar. 4-6, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The present conference discusses high-performance injection-molded metal components, the importance of phosphorus in P/M alloys, particle-metallurgy steels for antifriction bearings, P/M processing of metal-matrix composites (MMCs), SiC- and B4C-reinforced Mg MMCs for satellite applications, N13Al-based intermetallic MMCs, the synthesis and properties of nanophase ceramics, MMC spray-forming, the microstructure and properties of spray-cast Cu alloys, and the spray casting of hypoeutectic Cu-Cr alloy. Also discussed are the application of the Osprey preform process to light alloys and MMCs, P/M in lightweight aircraft engine components, the fabrication of oriented single-crystal wafer stock from Ni-Al-Mo-X alloy powders, higher-performance P/M Be materials for aerospace applications, the characteristics of electrodischarge compaction, and fatigue crack propagation in dispersion-strengthened P/M Al alloys at elevated and room temperatures

  3. Summary on out-of-pile and in-pile properties of M5 alloy

    International Nuclear Information System (INIS)

    Zhao Wenjin

    2001-01-01

    The out-of-pile and in-pile corrosion, mechanical properties, microstructure,hydrogen absorption, creep and growth resistances of M5 alloy using as PWR fuel rod cladding materials developed by FRAMATOME in France has been summarized with reference to the literatures. The results obtained from in-pile irradiation tests show that the corrosion and hydrogen absorption resistances, creep and irradiation growth resistances of M5 alloy cladding are superior to that of the optimized Zircaloy-4. It could be estimated that the M5 alloy enables rod burnups close to 65GWd/tU to be reached

  4. Effect of Annealing Temperature on the Corrosion Protection of Hot Swaged Ti-54M Alloy in 2 M HCl Pickling Solutions

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2017-01-01

    Full Text Available The corrosion of Ti-54M titanium alloy processed by hot rotary swaging and post-annealed to yield different grain sizes, in 2 M HCl solutions is reported. Two annealing temperatures of 800 °C and 940 °C, followed by air cooling and furnace cooling were used to give homogeneous grain structures of 1.5 and 5 μm, respectively. It has been found that annealing the alloy at 800 °C decreased the corrosion of the alloy, with respect to the hot swaged condition, through increasing its corrosion resistance and decreasing the corrosion current and corrosion rate. Increasing the annealing temperature to 940 °C further decreased the corrosion of the alloy.

  5. In vitro efficacy of ST246 against smallpox and monkeypox.

    Science.gov (United States)

    Smith, Scott K; Olson, Victoria A; Karem, Kevin L; Jordan, Robert; Hruby, Dennis E; Damon, Inger K

    2009-03-01

    Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of M against variola virus and <0.04 microM against monkeypox virus. In a dose-dependent manner, plaque size and comet tail formation were markedly reduced in the presence of the drug at low, noncytotoxic concentrations between 0.015 and 0.05 microM. Our in vitro phenotype data suggest that ST-246 inhibits variola and monkeypox viruses similarly by reducing the production and release of enveloped orthopoxvirus and support the development of ST-246 as an antiviral therapeutic compound for the treatment of severe systemic orthopoxvirus infections.

  6. 7 CFR 246.11 - Nutrition education.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Nutrition education. 246.11 Section 246.11 Agriculture... Participant Benefits § 246.11 Nutrition education. (a) General. (1) Nutrition education shall be considered a benefit of the Program, and shall be made available at no cost to the participant. Nutrition education...

  7. The development and characterization of a novel aluminum-copper-magnesium P/M alloy

    Science.gov (United States)

    Boland, Christopher Daniel

    Powder metallurgy (P/M) is a metal fabrication process that is characterized by high yield and ability to be automated, as well as the resultant part complexity and reproducibility. This press and sinter process is favoured by the automotive industry. Aluminum alloy P/M parts are particularly attractive because they have a high strength to weight ratio and they can be made to have high corrosion and wear resistance. There are few commercial Al P/M alloys currently in use and they occupy a small portion of the market. To expand the use of aluminum in the industry a new alloy was created, modeled after the wrought AC2024 family of alloys. P/M 2324, with a nominal composition of Al-4.4Cu-1.5Mg, was assessed using physical, chemical and mechanical methods to help maximize alloy properties through processing. The objective of this work was to develop a viable industrial alloy. The investigation of 2324 included the evaluation of starting powders, starting composition, processing methods, secondary treatments, and industrial response. All blending and compacting was completed at Dalhousie University, while sintering was undertaken at Dalhousie and GKN Sinter Metals. The green alloy was assessed for best compaction pressure using green density and strength. The sintered alloy was assessed to determine the best press and sinter variables, using dimensional change, sintered density, apparent hardness, tensile properties and microscopy. These same sintered properties were tested to determine if sintering done on a laboratory scale could be replicated industrially. The viability of heat treatment was tested using differential scanning calorimetry, hardness and tensile properties. The alloy was also subject to modifications of Cu and Mg amounts, as well as to the addition of tin to the base composition. It was determined that compaction at 400MPa and sintering at 600°C for 20min produced the best properties for the sintered bodies. The resultant mechanical properties were

  8. Effects of Grain Boundary Microconstituents on Heat-Affected Zone Cracks in a Mar-M004 Weldment

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Repair-welding of a cast Mar-M004 superalloy by gas tungsten arc welding was performed. Liquation cracks of the heat-affected zone (HAZ in a Mar-M004 weldment were closely related to the presence of low-melting constituents along the solidified boundaries in the weld. The metal carbides (MC, M3B2 and M5B3 borides, Ni7(Hf,Zr2 intermetallic compounds, and γ-γ′colonies were found at the interdendritic boundaries. Fine boride precipitates mixed with intermetallic compounds in lamellar form were more likely to liquate during repair-welding. The melting of borides and intermetallic compounds in 1180 °C/4 h treated samples confirmed the poor weldability of the Mar-M004 superalloy due to enhanced liquation cracking. In addition to boride formation, fractographs of liquation cracks revealed strong segregation of B element in carbides and intermetallics, which might further lower the solidus temperature of the repair weld.

  9. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  10. M5TM alloy high burnup behavior and worldwide licensing

    International Nuclear Information System (INIS)

    Mardon, J.P.; Hoffmann, P.B.; Garner, G.L.

    2005-01-01

    The in-reactor behavior of advanced PWR Zirconium alloys at burnups equal to or below licensing limits has been widely reported. Specifically, the advanced alloy M5 has demonstrated impressive improvements over Zircaloy-4 for fuel rod cladding and fuel assembly structural components. To demonstrate superiority of the alloy at burnups beyond current licensing limits, M5 has been operated in PWR at burnups exceeding 71 GWd/tU in the United States and 78 GWd/tU in Europe. Two extensive irradiation programs have been performed in the United States to demonstrate alloy M5 performance beyond current licensing limits. Four M5 TM fuel rods were exposed to four 24-month cycles in a 15x15 reactor beginning in 1995. Additionally, one 17x17 lead assembly containing M5 fuel rods and guide tubes was operated for four 18-month cycles beginning from 1997. Post-irradiation examinations (PIE) performed after all four cycles in the 15x15 demonstration program revealed excellent performance in the licensed burnup and in the high burnup stages of the experience. Examination of the 4th cycle 17x17 assembly will be accomplished in two stages the first of which is scheduled for June 2005. Moreover, several irradiation campaigns have been performed in Europe in order to confirm the excellent M5 in-pile behavior in demanding PWRs irradiation conditions with regard to void fraction, heat flux, lithium content and temperature. Results from the high burnup fuel examinations verify that the excellent performance achieved up to 62 GWd/tU was continued into higher burnup. The results of high burnup PIE campaigns for European and American PWR's are presented in this paper. Measured performance indicators include fuel assembly dimensional stability parameters (assembly length, fuel rod length, assembly bow, fuel rod bow, fuel rod radial creep and spacer grid width), oxidation measurements (fuel rod and guide tube) and hydrogen pick-up data (fuel rod). In the framework of PCI studies, power ramp

  11. Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Alok [Environmental Engineering and Management Programme, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bose, Purnendu [Environmental Engineering and Management Programme, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: pbose@iitk.ac.in

    2009-05-15

    Reductive dehalogenation of 2,4,6-trichlorophenol (2,4,6-TCP) by two types of high carbon iron filings (HCIF), HCIF-1 and HCIF-2 was studied in batch reactors. While the iron, copper, manganese and carbon content of the two types of HCIF was similar, the specific surface area of HCIF-1 and HCIF-2 were 1.944 and 3.418 m{sup 2} g{sup -1}, respectively. During interaction with HCIF-1, 2,4,6-TCP adsorbed on HCIF-1 surface resulting in rapid reduction of aqueous phase 2,4,6-TCP concentration. However, reductive dehalogenation of 2,4,6-TCP was negligible. During interaction between 2,4,6-TCP and HCIF-2, both 2,4,6-TCP adsorption on HCIF-2, and 2,4,6,-TCP dechlorination was observed. 2,4,6-TCP partitioning between solid and aqueous phase could be described by a Freundlich isotherm, while 2,4,6-TCP dechlorination could be described by an appropriate rate expression. A mathematical model was developed for describing the overall interaction of 2,4,6-TCP with HCIF-2, incorporating simultaneous adsorption/desorption and dechlorination reactions of 2,4,6-TCP with the HCIF surface. 2,4-Dichlorophenol (2,4-DCP), 2-chlorophenol (2-CP) and minor amounts of 4-chlorophenol (4-CP) evolved as 2,4,6-TCP dechlorination by-products. The evolved 2,4-DCP partitioned strongly to the HCIF surface. 4-CP and 2-CP accumulated in the aqueous phase. No transformation of 2-CP or 4-CP to phenol was observed.

  12. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  13. 7 CFR 246.13 - Financial management system.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Financial management system. 246.13 Section 246.13... State Agency Provisions § 246.13 Financial management system. (a) Disclosure of expenditures. The State agency shall maintain a financial management system which provides accurate, current and complete...

  14. The effect of heat treatment on the micro-structure and the mechanical properties of high-temperature nickel-base-superalloys

    International Nuclear Information System (INIS)

    Schubert, R.; Horn, E.

    1974-01-01

    General review of heat treatment applied to high-temperature nickel-base-superalloys as a function of the volume percent of the γ'-phase. Heat treatment schedule. γ'-morphology and γ'-distribution as well as their effect on mechanical properties. Values obtained from tensile tests up to 1,000 0 C. Results obtained from creep tests. Limitation for the heat treatment of alloys having an unstable γ'-phase. Alloys X 5 NiCrTi 26 15, ATS 270 (approximately INCO 718), NiCr 20 TiAl, NiCr 20 Co 18 Ti, ATS 342 (approximately Waspaloy), ATS 354 (approximately Udimet 520), NiCo 20 Cr 15 MoAlTi, ATS 382 (approximately Udimet 710), ATS 381-G (approximately Mar M 246), FIS 145 and ATS 391-G (aproximately IN 100). (orig.) [de

  15. 12 CFR 19.246 - Petition for reinstatement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Petition for reinstatement. 19.246 Section 19.246 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19.246 Petition...

  16. Two new Np--Ga phases: α-NpGa2 and metastable m-NpGa2

    International Nuclear Information System (INIS)

    Giessen, B.C.; Elliott, R.O.

    1976-01-01

    Following an earlier study of metastable Np-rich Np--Ga alloys, rapidly quenched Np--Ga alloys with 63 to 80 at. pct. Ga were prepared and studied. Two new NpGa 2 phases, both with an AlB 2 type structure, were found: α-NpGa 2 , with a = 4.246A, c = 4.060A, c/a = 0.956, and m-NpGa 2 , with a = 4.412A, c = 3.642A, c/a = 0.825. While m-NpGa 2 was observed only in very fast quenched (splat cooled) samples and appears to be metastable, α-NpGa 2 is probably an equilibrium phase. In a splat cooled alloy with 75 at. pct. Ga, another, unidentified, metastable phase was observed. Crystal chemical discussions of atomic volumes, interatomic distances and axial ratios are given; the volume difference between the two forms of NpGa 2 is correlated with a valence change of Np

  17. Hot corrosion of low cobalt alloys

    Science.gov (United States)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  18. 48 CFR 52.246-14 - Inspection of Transportation.

    Science.gov (United States)

    2010-10-01

    ... Transportation. 52.246-14 Section 52.246-14 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....246-14 Inspection of Transportation. As prescribed in 46.314, insert the following clause in solicitations and contracts for freight transportation services (including local drayage) by rail, motor...

  19. Decay study of {sup 246}Fm at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Venhart, M. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Slovak Academy of Sciences, Institute of Physics, Bratislava (Slovakia); Hessberger, F.P.; Ackermann, D.; Heinz, S.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Gray-Jones, C.; Herzberg, R.D.; Papadakis, P. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Greenlees, P.T.; Ketelhut, S.; Leino, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt am Main (Germany); Rostron, D. [Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt am Main (Germany); Rudolph, D. [Lund University, Department of Physics, Lund (Sweden); Sulignano, B. [CEA Saclay, DAPNIA/SPhN, Gif/Yvette Cedex (France)

    2011-02-15

    The decay chain of {sup 246}Fm has been investigated employing the SHIP separator at GSI Darmstadt. The {sup 246}Fm nuclei were produced via the {sup 40}Ar({sup 208}Pb, 2n){sup 246}Fm fusion-evaporation reaction. Improved values of the half-life, T{sub 1/2} = 1.54(4) s, and of the spontaneous fission branching ratio, b{sub SF} = 0.068(6), of {sup 246}Fm were obtained. The {beta}{sup +} /electron capture branching ratio, b{sub EC} = 0.39(3), of {sup 242}Cf was deduced. Possible structures of high-K states in {sup 246}Fm are discussed within the framework of a model calculation based on the Woods-Saxon potential. (orig.)

  20. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  1. Formation of long-period stacking ordered structures in Mg88M5Y7 (M = Ti, Ni and Pb) casting alloys

    International Nuclear Information System (INIS)

    Jin, Qian-Qian; Fang, Can-Feng; Mi, Shao-Bo

    2013-01-01

    Highlights: •Apart from 18R-LPSO, 14H-LPSO structure was determined in the Mg-Ni-Y alloys. •The appearance of twin-related structure in 18R-LPSO structure results from the stacking faults in the stacking sequence of the closely packed planes. •A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure was determined in the Mg-Pb-Y alloy. •No LPSO structures were found in the Mg-Pb-Y and Mg-Ti-Y casting alloys. -- Abstract: Formation of long-period stacking ordered (LPSO) structures is investigated in Mg 88 M 5 Y 7 (M = Ti, Ni and Pb) casting alloys by means of electron microscopy and X-ray diffraction. In the Mg 88 Ni 5 Y 7 casting alloy, 14H-LPSO structure is observed in a small amount, which coexists with 18R-LPSO structure. The appearance of stacking faults in 18R-LPSO structure results in twin-related structure in the stacking sequence of the closely packed planes. A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure is determined in the Mg 88 Pb 5 Y 7 alloy. No LPSO structures are found in the Mg 88 Pb 5 Y 7 and Mg 88 Ti 5 Y 7 casting alloys. In terms of the atomic radius and heat of mixing, the formation ability of LPSO structure in the present alloys is discussed

  2. 7 CFR 246.10 - Supplemental foods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Supplemental foods. 246.10 Section 246.10 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... nutritional needs of the participant. The food packages are as follows: (1) Food Package I—Infants birth...

  3. 7 CFR 246.1 - General purpose and scope.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false General purpose and scope. 246.1 Section 246.1... General § 246.1 General purpose and scope. This part announces regulations under which the Secretary of... health by reason of inadequate nutrition or health care, or both. The purpose of the Program is to...

  4. In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades.

    Science.gov (United States)

    Pires, Mariana A; Rodrigues, Nathália F S; de Oliveira, Danilo B; de Assis, Felipe L; Costa, Galileu B; Kroon, Erna G; Mota, Bruno E F

    2018-04-01

    The Orthopoxvirus (OPV) genus of the Poxviridae family contains several human pathogens, including Vaccinia virus (VACV), which have been implicating in outbreaks of a zoonotic disease called Bovine Vaccinia in Brazil. So far, no approved treatment exists for OPV infections, but ST-246 and Cidofovir (CDV) are now in clinical development. Therefore, the objective of this work was to evaluate the susceptibility of five strains of Brazilian VACV (Br-VACV) to ST-246 and Cidofovir. The susceptibility of these strains to both drugs was evaluated by plaque reduction assay, extracellular virus's quantification in the presence of ST-246 and one-step growth curve in cells treated with CDV. Besides that, the ORFs F13L and E9L were sequenced for searching of polymorphisms associated with drug resistance. The effective concentration of 50% (EC 50 ) from both drugs varies significantly for different strains (from 0.0054 to 0.051 μM for ST-246 and from 27.14 to 61.23 μM for CDV). ST-246 strongly inhibits the production of extracellular virus for all isolates in concentrations as low as 0.1 μM and it was observed a relevant decrease of progeny production for all Br-VACV after CDV treatment. Sequencing of the F13L and E9L ORFs showed that Br-VACV do not present the polymorphism(s) associated with resistance to ST-246 and CDV. Taken together, our results showed that ST-246 and CDV are effective against diverse, wild VACV strains and that the susceptibility of Br-VACV to these drugs mirrored the phylogenetic split of these isolates into two groups. Thus, both ST-246 and CDV are of great interest as compounds to treat individuals during Bovine Vaccinia outbreaks in Brazil. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  6. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    International Nuclear Information System (INIS)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 1.0 × 10"−"4 M with the detection limit (S/N = 3) of 8.0 × 10"−"1"0 M. And the linear concentration ranges for PCP were 2.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 9.0 × 10"−"5 M with the detection limit of 5.0 × 10"−"1"0 M

  7. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing, E-mail: yuanx@nenu.edu.cn

    2016-01-15

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 1.0 × 10{sup −4} M with the detection limit (S/N = 3) of 8.0 × 10{sup −10} M. And the linear concentration ranges for PCP were 2.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 9.0 × 10{sup −5} M with the

  8. Performance of V-4Cr-4Ti Alloy Exposed to the JFT-2M Tokamak Environment

    International Nuclear Information System (INIS)

    Johnson, W.R.; Trester, P.W.; Sengoku, S.; Ishiyama, S.; Fukaya, K.; Eto, M.; Oda, T.; Hirohata, Y.; Hino, T.; Tsai, H.

    1999-01-01

    A long-term test has been conducted in the JFT-2M tokamak fusion device to determine the effects of environmental exposure on the mechanical and chemical behavior of a V-4Cr-4Ti alloy. Test specimens of the alloy were exposed in the outward lower divertor chamber of JFT-2M in a region away from direct contact with the plasma and were preheated to 300 C just prior to and during selected plasma discharges. During their nine-month residence time in JFT-2M, the specimens experienced approximately 200 lower single-null divertor shots at 300 C, during which high energy particle fluxes to the preheated test specimens were significant, and approximately 2,010 upper single-null divertor shots and non-diverter shots at room temperature, for which high energy particle fluxes to and expected particle retention in the test specimens were very low. Data from post-exposure tests have indicated that the performance of the V-4Cr-4Ti alloy would not be significantly affected by environmental exposure to gaseous species at partial pressures typical for tokamak operation. Deuterium retention in the exposed alloy was also low (<2 ppm). Absorption of interstitial by the alloy was limited to the very near surface, and neither the strength nor the Charpy impact properties of the alloy appeared to be significantly changed from the exposure to the JFT-2M tokamak environment

  9. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    Science.gov (United States)

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  10. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    Science.gov (United States)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  11. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  12. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  13. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  14. 40 CFR 246.200 - High-grade paper recovery.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-grade paper recovery. 246.200 Section 246.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE... paper recovery. ...

  15. Thermodynamic properties of liquid silver-gallium alloys determined from e.m.f. and calorimetric measurements

    International Nuclear Information System (INIS)

    Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof

    2011-01-01

    The thermodynamic properties of the liquid Ag-Ga alloys were determined using e.m.f. and calorimetric methods. In the e.m.f. method, solid oxide galvanic cells were used with zirconia electrolyte. The cells of the type W,Ag x Ga (1-x) ,Ga 2 O 3 //ZrO 2 +(Y 2 O 3 )//FeO,Fe,W were used in the temperature range from 1098 K to 1273 K, and in the range of mole fraction from x Ga = 0.1 to x Ga = 1.0. At first, the Gibbs free energy of formation of pure solid gallium oxide, Ga 2 O 3 , from pure elements was derived. Using values of the measured e.m.f. for the cell with x Ga = 1.0, the following temperature dependence was obtained: Δ f G m,Ga 2 O 3 0 (±4kJ·mol -1 J)=-1061.7235+0.2899T/K. Next, the activity of the gallium was derived as a function of the alloy composition from the values of the measured e.m.f. Activities of silver were calculated using the Gibbs-Duhem equation. The drop calorimetric measurements were carried out at two temperatures, viz. 923 K and 1123 K, using a Setaram MHTC calorimeter. Integral enthalpies of mixing of liquid binary alloys were determined at those temperatures. Finally, thermodynamic properties of the liquid alloys were described with the Redlich-Kister equation using ThermoCalc software.

  16. 40 CFR 246.201-6 - Recommended procedures: Transportation to market.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Transportation to market. 246.201-6 Section 246.201-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 246.201-6 Recommended procedures: Transportation to market. Transportation to market may be...

  17. 48 CFR 52.246-5 - Inspection of Services-Cost-Reimbursement.

    Science.gov (United States)

    2010-10-01

    ...-Cost-Reimbursement. 52.246-5 Section 52.246-5 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.246-5 Inspection of Services—Cost-Reimbursement. As prescribed in 46.305, insert... furnishing of services, when a cost-reimbursement contract is contemplated: Inspection of Services—Cost...

  18. 48 CFR 52.246-3 - Inspection of Supplies-Cost-Reimbursement.

    Science.gov (United States)

    2010-10-01

    ...-Cost-Reimbursement. 52.246-3 Section 52.246-3 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.246-3 Inspection of Supplies—Cost-Reimbursement. As prescribed in 46.303, insert... furnishing of supplies, when a cost-reimbursement contract is contemplated: Inspection of Supplies—Cost...

  19. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  20. Guma, nobre cavaleiro do mar, e a lusitanidade mítica em Mar Morto = Guma, noble knight of the sea and the mythical lusitanidade in Mar Morto

    Directory of Open Access Journals (Sweden)

    Angelini, Paulo Ricardo Kralik

    2011-01-01

    Full Text Available Mar Morto, um dos textos mais representativos do escritor Jorge Amado, reatualiza importantes mitos de tradição lusitana, percebidos por Gilbert Durand, e apresenta um personagem que corporifica os ideais de uma lusitanidade mítica, através de seu caráter guerreiro. Guma, o marítimo mais popular de Amado, traz em sua trajetória uma conduta heroica digna do imaginário cavalheiresco. Sujeito predestinado, que não se conforma com os limites impostos, Guma carrega com ele uma audácia do impossível que o faz ser escolhido pela deusa Iemanjá, sua fiel protetora. Ao Galaaz da Bahia, em diálogo com A Demanda do Santo Graal, será destinado um lugar heroico no imaginário do povo do cais: o salvador oculto que um dia retornará

  1. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  2. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-01-01

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g −1 /366.6 mA h g −1 ) and optimal cycle stability (a specific reversible capacity of 240 mA h g −1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  3. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Huang, Hao, E-mail: huanghao@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Cao, Guozhong, E-mail: gzcao@u.washington.edu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States)

    2016-10-15

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.

  4. Pit nucleation on as-cast aluminiuim alloy AW-5083 in 0.01M NaCl

    Directory of Open Access Journals (Sweden)

    Dolić N.

    2011-01-01

    Full Text Available The use of aluminium alloys in a wide range of technical applications is related mostly to the two facts: they facilitate weight saving of final products (if compared to the steel and they are prone to spontaneous passivity due to the coherent surface oxide layer which impedes further reaction of aluminium with the environment. Among the commercial Al alloys, EN AW-5083 alloy is a representative non-heat treatable Al-Mg based alloy which possesses many interesting characteristics as a structural material, such as low price, moderately high strength, high formability in conjunction with superplasticity and good corrosion resistance in marine atmospheres. Aiming to enhance the knowledge of possible interactions of studied alloy EN AW-5083 in as-cast condition with chloride media, electrochemical measurements were used to follow the pitting behaviour in 0.01 M NaCl. The results of tests have shown that susceptibility of alloy to pitting corrosion is strongly influenced by the microstructural constituents of the alloy in as-cast condition.

  5. 7 CFR 246.6 - Agreements with local agencies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Agreements with local agencies. 246.6 Section 246.6 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL SUPPLEMENTAL NUTRITION PROGRAM FOR WOMEN, INFANTS AND CHILDREN...

  6. 48 CFR 852.246-72 - Frozen processed foods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Frozen processed foods. 852.246-72 Section 852.246-72 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS... Frozen processed foods. As prescribed in 846.302-72, insert the following clause: Frozen Processed Foods...

  7. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  8. 7 CFR 246.5 - Selection of local agencies.

    Science.gov (United States)

    2010-01-01

    ... consider how much of the current need is being met at each priority level. The selection criteria cited in... 7 Agriculture 4 2010-01-01 2010-01-01 false Selection of local agencies. 246.5 Section 246.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF...

  9. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Chlup, Zdeněk; Dlouhý, Antonín; Dobeš, Ferdinand; Roupcová, Pavla; Vilémová, Monika; Matějíček, Jiří

    2017-01-01

    Roč. 689, MAR (2017), s. 252-256 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Creep * High-entropy alloy (HEA) * Mechanical alloying * Oxide dispersion strength ened (ODS) alloy * Powder metallurgy * Spark plasma sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFM-A); Materials engineering (UFP-V) Impact factor: 3.094, year: 2016

  10. Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Liu, Shan; Hua, Xiaoxia; Xia, Fangquan; Tian, Dong; Zhou, Changli

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A novel electrochemical sensing platform by self-assembling of HS-β-cyclodextrin/gold nanoparticles onto indium tin oxide electrode (HS-β-CD/AuNPs/SAM/ITO electrode) surface was constructed. •The proposed electrochemical sensor exhibited high sensitivity for the determination 2,4,6-trichlorophenol which electrochemical activity is very weak. •The newly developed method was successfully applied to quantitatively determine 2,4,6-trichlorophenol in tap water samples. -- ABSTRACT: A new electrochemical sensor for determination of 2,4,6-trichlorophenol (2,4,6-TCP) was fabricated. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. The electrochemical behavior of 2,4,6-TCP was investigated using cyclic voltammetry and differential pulse voltammetry at the HS-β-cyclodextrin (HS-β-CD)/gold nanoparticles (AuNPs) composite modified indium tin oxide (ITO) electrode. The results showed that the current responses of 2,4,6-TCP greatly enhanced due to the high catalytic activity and enrichment capability of composites. The peak current of 2,4,6-TCP increases linearly with the increase of the 2,4,6-TCP concentration from 3.0 × 10 −9 to 2.8 × 10 −8 M, with the limit of detection of 1.0 × 10 −9 . Further more, the modified electrode was successfully applied to detect the level of 2,4,6-TCP in tap water samples with excellent sensitivity

  11. Monoklonale Antikörper zum Nachweis von 2,4,6-Trichloranisol in Kork

    OpenAIRE

    Lausterer, Ralph

    2005-01-01

    Die Verbindung 2,4,6-Trichloranisol (TCA) kann in Kork und Wein vorkommen. TCA entsteht durch mikrobielle Umsetzung von Chlorphenolen. In den betroffenen Industrien führt TCA zu jährlichen Verlusten von mehr als einer Milliarde €. Zur Bestimmung von TCA sollten enzymkoppelte Immunabsorptionstest (ELISAs) mit monoklonalen Antikörpern (mAk) entwickelt werden. Es wurden drei TCA-spezifische mAk-produzierende Zelllinien gewonnen. Mit diesen mAk wurden hochsensitive ELISAs hergstellt, die eine Nac...

  12. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  13. Microstructures, Corrosion and Tensile Properties of Ti-Al-Zr (PT-7M) Alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan

    2006-01-01

    The primary circuit with the primary coolant of SMART (System integrated Modular Advanced ReacTor) is much different from that of commercial PWRs, i.e., an ammonia is used as a pH raising agent. To be used and have long term sustainability from this coarser environment, the titanium alloys should be proved they are good to hydrogen embrittlement. Thus, excellent mechanical properties and hydriding resistance is required for the safe operation during the reactor lifetime. The effects of hydrogen on the microstructure, mechanical properties and corrosion behavior of the Ti- Al-Zr (so-called PT-7M) alloy were studied

  14. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine.

    Science.gov (United States)

    Karpas, Zeev; Guamán, Ana V; Calvo, Daniel; Pardo, Antonio; Marco, Santiago

    2012-05-15

    The off-flavor of "tainted wine" is attributed mainly to the presence of 2,4,6-trichloroanisole (2,4,6-TCA) in the wine. In the present study the atmospheric pressure gas-phase ion chemistry, pertaining to ion mobility spectrometry, of 2,4,6-trichloroanisole was investigated. In positive ion mode the dominant species is a monomer ion with a lower intensity dimer species with reduced mobility values (K(0)) of 1.58 and 1.20 cm(2)V(-1) s(-1), respectively. In negative mode the ion with K(0) =1.64 cm(2)V(-1)s(-1) is ascribed to a trichlorophenoxide species while the ions with K(0) =1.48 and 1.13 cm(2)V(-1)s(-1) are attributed to chloride attachment adducts of a TCA monomer and dimer, respectively. The limit of detection of the system for 2,4,6-TCA dissolved in dichloromethane deposited on a filter paper was 2.1 μg and 1.7 ppm in the gas phase. In ethanol and in wine the limit of detection is higher implying that pre-concentration and pre-separation are required before IMS can be used to monitor the level of TCA in wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    Science.gov (United States)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  16. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  17. Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Li Zongbin; Zhang Yudong; Esling, Claude; Zhao Xiang; Zuo Liang

    2011-01-01

    Highlights: → We determine orientation relationships of 5M modulated martensite in NiMnGa alloy. → Accurate EBSD mapping is performed using monoclinic superstructure. → Four distinct variants mutually twin-related to each other are revealed. → Three twinning types and full twinning elements are identified. → Twin interfaces do coincide with respective twinning planes. - Abstract: For Ni-Mn-Ga ferromagnetic shape memory alloys, the characteristic features of modulated martensite (including the number/shape of constituent variants, the inter-variant orientation relationship and the geometrical distribution of variant interfaces) determine the attainability of the shape memory effect. In the present work, a comprehensive microstructural and crystallographic investigation has been conducted on a bulk polycrystalline Ni 50 Mn 28 Ga 22 alloy. As a first attempt, the orientation measurements by electron backscatter diffraction (EBSD) - using the precise information on the commensurate 5M modulated monoclinic superstructure (instead of the conventionally simplified non-modulated tetragonal structure) - were successfully performed to identify the crystallographic orientations on an individual basis. Consequently, the morphology of modulated martensite, the orientation relationships between adjacent variants and the characters of twin interfaces were unambiguously determined. With the thus-obtained full-featured image on the configuration of martensitic variants, the possibility of microstructural modification by proper mechanical 'training' was further discussed. This new effort makes it feasible to explore the crystallographic/microstructural correlations in modulated martensite with high statistical reliability, which in turn provides useful guidance for optimizing the microstructure and shape memory performance.

  18. 48 CFR 52.246-8 - Inspection of Research and Development-Cost-Reimbursement.

    Science.gov (United States)

    2010-10-01

    ... Development-Cost-Reimbursement. 52.246-8 Section 52.246-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.246-8 Inspection of Research and Development—Cost-Reimbursement. As prescribed in... (b) a cost-reimbursement contract is contemplated; unless use of the clause is impractical and the...

  19. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  20. 48 CFR 52.246-17 - Warranty of Supplies of a Noncomplex Nature.

    Science.gov (United States)

    2010-10-01

    ... Noncomplex Nature. 52.246-17 Section 52.246-17 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-17 Warranty of Supplies of a Noncomplex Nature. As prescribed in 46.710(a)(1), insert a clause substantially as follows: Warranty of Supplies of a Noncomplex Nature (JUN 2003) (a) Definitions...

  1. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  2. 32 CFR 246.1 - Purpose.

    Science.gov (United States)

    2010-07-01

    ... STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS § 246.1 Purpose. This part: (a) Establishes policy... the S&S newspapers. (c) Authorizes the establishment, management, operation, and oversight of the... mission, production, distribution authority, and business operations as mission-essential activities of...

  3. 48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.

    Science.gov (United States)

    2010-10-01

    ... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...

  4. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  5. What can we learn about Mars from satellite magnetic field measurements?

    Science.gov (United States)

    Morschhauser, A.; Mittelholz, A.; Thomas, P.; Vervelidou, F.; Grott, M.; Johnson, C.; Lesur, V.; Lillis, R. J.

    2017-12-01

    The Mars orbiters MGS and MAVEN provide vector magnetic field data for Mars at a variety of altitudes, locations, and local times. In spite of the abundance of data, there are many open questions concerning the crustal magnetic field of Mars. In this contribution, we present our efforts to estimate the shutdown time of the Martian core dynamo and to estimate Martian paleopole locations, using magnetic field satellite data and models derived from these data [1]. Models are primarily based on MGS data, and we shortly present our recent advances to include MAVEN data. There exists some controversy concerning the timing of the Martian core dynamo shutdown [e.g., 2-5]. We address this question by studying the so-called visible magnetization [6-7] of impact craters larger than 400 km in diameter, and conclude that the dynamo ceased to operate in the Noachian period [8]. Further, paleopole locations have been used to constrain the dynamics of the Martian core dynamo [e.g. 4-5, 9]. However, such estimates are limited by the inherent non-uniqueness of inferring magnetization from magnetic field measurements. Here, we discuss how estimated paleopoles are influenced by this non-uniqueness and the limited signal-to-noise ratio of satellite measurements [6]. Furthermore, we discuss how paleopole locations may still be obtained from satellite magnetic field measurements. In this context, we present some new paleopole estimates for Mars including estimates of uncertainties. References: [1] A. Morschhauser et al. (2014), JGR, doi: 10.1002/2013JE004555 [2] R.J. Lillis et al. (2015), JGR, doi: 10.1002/2014je004774 [3] L.L. Hood et al. (2010), Icarus, doi: 10.1016/j.icarus.2010.01.009 [4] C. Milbury et al. (2012), JGR, doi: 10.1029/2012JE004099 [5] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [6] F. Vervelidou et al., On the accuracy of paleopole estimations from magnetic field measurements, GJI, under revision 2017 [7] D. Gubbins et al. (2011), GJI, doi: 10

  6. The magnetic field of Mars according to data of Mars-3 and Mars-5 space vehicles

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.; Eroshenko, E.G.; Zhuzgov, L.N.

    1975-01-01

    Magnitograms obtained by the space probe ''Mars-5'' on the evening and day sides as well as those from the ''Mars-3'' obtained earlier suggest the following: In the vicinity of Mars there exists a shock front and its disposition is tracked at various angles to the direction to the sun. Magnetometers have registered a region in space where magnetic field features the properties of a magnetosphere field in its topology and action on plasma. The magnetic field in the region of the ''magnitosphere'' does not change its sign when the interplanetary field does shile in adjacent boundary regions the regular part of the field changes its sign when that of the interplanetary field does. The configuration and dimensions of the ''magnitosphere'' depend on thesolar wind intensity. On the day side (''Mars-3'') the magnitospheric field ceases to be registered at an altitude of 2200km, whereas on the night side (''Mars-5'') the regular field is traced up to 7500-9500km from the planet surface. All the above unambiguously suggests that the planet Mars has its own magnetic field. Under the influence of the solar wind the field takes the characteristic form: it is limited on the day side and elongated on the night one. The topology oif force lines is explicable if one assumes that the axis of the Mars magnetic dipole is inclined to the rotation axis at an abgle of 15-20deg. The northern magnetic pole of the dipole is licated in the northern hemisphere, i.e. the Mars fields in their regularity are opposite to the geomagnetic field. The magnetic moment of the Mars dipole is equal to M=2.5x10 22 Gauss.cm 3 . (author)

  7. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  8. Perfil. María Rodilla

    OpenAIRE

    Rodilla, María

    2017-01-01

    [ES] Perfil sobre María Rodilla, ilustradora valenciana que centra su trabajo en el feminismo Rodilla, M. (2017). Perfil. María Rodilla. EME Experimental Illustration, Art & Design. (5):52-53. doi:10.4995/eme.2017.7616. 52 53 5

  9. 12 CFR 24.6 - Examples of qualifying public welfare investments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Examples of qualifying public welfare investments. 24.6 Section 24.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... finance small businesses or small farms, including minority- and women-owned small businesses or small...

  10. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    Science.gov (United States)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  11. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  12. 32 CFR 246.4 - Policy.

    Science.gov (United States)

    2010-07-01

    ... through newspaper sales, resale of commercial publications, authorized advertising, job printing, and... STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS § 246.4 Policy. It is DoD policy that: (a) The U.S... the Stars and Stripes editorial staffs the same help provided to commercial newspapers, in compliance...

  13. 32 CFR 246.6 - Procedures.

    Science.gov (United States)

    2010-07-01

    ... costs and to increase the efficiency and effectiveness of these audits. Information copies of the audit... STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS § 246.6 Procedures. (a) General. (1) Authority to...) The Stars and Stripes and the S&S business operations shall conform to applicable regulations and laws...

  14. Proyecto María María

    OpenAIRE

    Prieto Peña, Ana María

    2014-01-01

    María María es un proyecto que se desarrollara en sector de la Joyería y la Bisutería pero con un fuerte enfoque Cultural y artístico. Nuestro producto es más que un accesorio, por un lado es la belleza y distinción que buscan las mujeres y por otro lado es la experiencia del cliente, quien tendrá la oportunidad de personalizar su accesorio, ser diseñador por un rato y lucir su propia creación. Este accesorio pone en contacto al usuario con el mundo literario; es decir con pequeños universo...

  15. Solidification of eutectic system alloys in space (M-19)

    Science.gov (United States)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  16. AKTİF KARBON ÜZERİNE 2,4,6-TRİKLOROFENOLÜN ADSORPSİYONU

    OpenAIRE

    Tümsek, Fatma; Bayındır, Zekiye; Bodur, Gökçen; Koyuncu, Zelal

    2015-01-01

    2,4,6-Trichlorophenol is a phenolic compound which is widely used in the production of pesticides, herbicides, wood, leather and glue preservatives. In addition, 2,4,6- trichlorophenol may form during the treatment of phenol containing industrial wastewater with hypochlorite or during the disinfection of drinking-water sources. The removal of 2,4,6-trichlorophenol is significant because of its high toxicity, carcinogenic properties and persistence [1].In this study, the adsorption of 2,4,6-tr...

  17. Structural characterisation and mechanical FE analysis of conventional and M-Wire Ni-Ti alloys used in endodontic rotary instruments.

    Science.gov (United States)

    Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho

    2014-01-01

    The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.

  18. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  19. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  20. Synthesis of 2,4,6-trichlorophenyl hydrazones and their inhibitory potential against glycation of protein.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Jahan, Humera; Perveen, Shahnaz; Choudhary, M Iqbal

    2011-11-01

    2,4,6-Trichlorophenyl hydrazones 1-35 were synthesized and their in vitro antiglycation potential was evaluated. Compounds 14 (IC50 = 27.2 ± 0.00 μM), and 18 (IC50 = 55.7 ± 0.00 μM) showed an excellent activity against glycation of protein, better than the standard (rutin, IC50 = 70 ± 0.50 μM). This study thus identified a novel series of antiglycation agents. A structure-activity relationship has been studied, and all the compounds were characterized by spectroscopic techniques.

  1. Brominated dioxins/furans and hydroxylated polybrominated diphenyl ethers: Occurrences in commercial 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2,4,6-tribromophenol, and formation during synthesis of BTBPE.

    Science.gov (United States)

    Ren, Man; Zeng, Hao; Peng, Ping-An; Li, Hui-Ru; Tang, Cai-Ming; Hu, Jian-Fang

    2017-07-01

    Polybrominated dibenzo-p-dioxins (PBDDs) and hydroxylated polybrominated diphenyl ethers (OH-PBDEs) can be formed from bromophenols (BPs) by thermal degradation, biosynthesis or phototransformation. However, it is unknown whether PBDDs and OH-PBDEs can be formed during the chemical production processes that utilize BPs as raw materials. 2,4,6-tribromophenol (2,4,6-TBP) is an important raw material for the synthesis of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), a novel brominated flame retardant. In this study, PBDDs, polybrominated dibenzofurans (PBDFs) and OH-PBDEs have been identified and quantified in commercially available BTBPE and 2,4,6-TBP. Furthermore, their formation as unintentional by-products during the laboratory synthesis of BTBPE from 2,4,6-TBP and 1,2-dibromoethane in the presence of sodium carbonate has also been investigated. 2,3,7,8-substituted PBDDs and PBDFs (2,3,7,8-PBDD/Fs) were undetectable in commercial samples of BTBPE and present in low levels (nanogram per gram) in 2,4,6-TBP. Two tetrabrominated dibenzo-p-dioxins (TeBDDs), namely 1,3,6,8- and 1,3,7,9-TeBDD, and three hydroxylated pentabrominated diphenyl ethers (OH-pentaBDEs), namely 4'-OH-BDE121, 2'-OH-BDE121, and 6'-OH-BDE100, were identified or tentatively identified, and quantitatively estimated to be at concentrations in the range of undetectable to several thousands of nanograms per gram in commercial BTBPE and 2,4,6-TBP. TeBDDs and OH-pentaBDEs were formed as by-products from 2,4,6-TBP during BTBPE synthesis. Further studies need to be conducted in order to determine whether PBDD/Fs and OH-PBDEs are also formed during the industrial synthesis of other chemical compounds that utilize BPs as raw materials or intermediates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Damage and service life of nickel-base alloys under thermal-mechanical fatigue stress at different phase positions; Schaedigung und Lebensdauer von Nickelbasislegierungen unter thermisch-mechanischer Ermuedungsbeanspruchung bei verschiedenen Phasenlagen

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Stefan

    2016-07-01

    This work considers the behaviour of two nickel-base alloys (NiCr22Co12Mo9 and MAR-M247 LC) under thermo-mechanical fatigue loading with varying phase angles between mechanical strain and temperature. The investigations focus on the characterisation of microstructures and damage mechanisms as a function of the phase angle. Based on the results, a life prediction model is proposed.

  3. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films

    Science.gov (United States)

    Yang, A. L.; Song, H. P.; Liang, D. C.; Wei, H. Y.; Liu, X. L.; Jin, P.; Qin, X. B.; Yang, S. Y.; Zhu, Q. S.; Wang, Z. G.

    2010-04-01

    Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li et al. [Appl. Phys. Lett. 91, 232115 (2007)].

  4. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution

    International Nuclear Information System (INIS)

    Nam, Nguyen Dang; Thang, Vo Quoc; Hoai, Nguyen To; Hien, Pham Van

    2016-01-01

    Highlights: • Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper. • A high inhibition performance is attributed to the forming protective inhibiting deposits. • Yttrium 3-(4-nitrophenyl)-2-propenoate mitigates corrosion by promoting random distribution of minor anodes. - Abstract: Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper alloy in 0.1 M chloride solution. The results show that the surface of copper alloy coupons exposed to solutions containing 0.45 mM yttrium 3-(4-nitrophenyl)-2-propenoate had no signs of corrosion attack due to protective film formation, whereas the surface of copper alloy coupons exposed to non-inhibitor and lower concentrations of yttrium 3-(4-nitrophenyl)-2-propenoate containing solutions were severely corroded. A high inhibition performance is attributed to the forming protective inhibiting deposits that slow down the electrochemical corrosion reactions and mitigate corrosion by promoting random distribution of minor anodes.

  5. Alternative Flame Retardant, 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine, in an E-waste Recycling Facility and House Dust in North America.

    Science.gov (United States)

    Guo, Jiehong; Stubbings, William A; Romanak, Kevin; Nguyen, Linh V; Jantunen, Liisa; Melymuk, Lisa; Arrandale, Victoria; Diamond, Miriam L; Venier, Marta

    2018-03-20

    A high molecular weight compound, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), was detected during the analysis of brominated flame retardants in dust samples collected from an electrical and electronic waste (e-waste) recycling facility in Ontario, Canada. Gas chromatography coupled with both high-resolution and low-resolution mass spectrometry (MS) was used to determine TTBP-TAZ's chemical structure and concentrations. To date, TTBP-TAZ has only been detected in plastic casings of electrical and electronic equipment and house dust from The Netherlands. Here we report on the concentrations of TTBP-TAZ in selected samples from North America: e-waste dust ( n = 7) and air ( n = 4), residential dust ( n = 30), and selected outdoor air ( n = 146), precipitation ( n = 19), sediment ( n = 11) and water ( n = 2) samples from the Great Lakes environment. TTBP-TAZ was detected in all the e-waste dust and air samples, and in 70% of residential dust samples. The median concentrations of TTBP-TAZ in these three types of samples were 5540 ng/g, 5.75 ng/m 3 and 6.76 ng/g, respectively. The flame retardants 2,4,6-tribromophenol, tris(2,3-dibromopropyl) isocyanurate, and 3,3',5,5'-tetrabromobisphenol A bis(2,3-dibromopropyl) ether, BDE-47 and BDE-209 were also measured for comparison. None of these other flame retardants concentrations was significantly correlated with those of TTBP-TAZ in any of the sample types suggesting different sources. TTBP-TAZ was not detected in any of the outdoor environmental samples, which may relate to its application history and physicochemical properties. This is the first report of TTBP-TAZ in North America.

  6. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  7. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  8. Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP).

    Science.gov (United States)

    Koch, Christoph; Sures, Bernd

    2018-02-01

    2,4,6-Tribromophenol is the most widely produced brominated phenol. In the present review, we summarize studies dealing with this substance from an environmental point of view. We cover concentrations in the abiotic and biotic environment including humans, toxicokinetics as well as toxicodynamics, and show gaps of the current knowledge about this chemical. 2,4,6-Tribomophenol occurs as an intermediate during the synthesis of brominated flame retardants and it similarly represents a degradation product of these substances. Moreover, it is used as a pesticide but also occurs as a natural product of some aquatic organisms. Due to its many sources, 2,4,6-tribromophenol is ubiquitously found in the environment. Nevertheless, not much is known about its toxicokinetics and toxicodynamics. It is also unclear which role the structural isomer 2,4,5-tribromophenol and several degradation products such as 2,4-dibromophenol play in the environment. Due to new flame retardants that enter the market and can degrade to 2,4,6-tribromophenol, this compound will remain relevant in future years - not only in aquatic matrices, but also in house dust and foodstuff, which are an important exposure route for humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Degradation of 2,4,6-Trichlorophenol and hydrogen production simultaneously by TiO2 nanotubes/graphene composite

    Science.gov (United States)

    Slamet, Raudina

    2017-11-01

    Industrial waters in coal pyrolysis process, synthetic chemicals and oil and gas process contain phenol derivatives that are dangerous to the environment and needs to be removed, one of them is 2,4,6-Trichlorophenol. Degradation of 2,4,6-Trichlorophenol and hydrogen production simultaneously have been investigated using TiNT/Graphene composite at various graphene loading and initial concentration of 2,4,6-Trichlorophenol. Optimal graphene loading of 0.6 wt% was obtained in the simultaneous system with 89% elimination of 2,4,6-Trichlorophenol and 986 µmol of hydrogen production. Test results showed that addition of 2,4,6-Trichlorophenol would subsequently increased 2,4,6-Trichlorophenol conversion and enhanced hydrogen production linearly. 2.7 times greater hydrogen production was found in addition of 50 ppm 2,4,6-Trichlorophenol.

  10. 48 CFR 552.246-77 - Additional Contract Warranty Provisions for Supplies of a Noncomplex Nature.

    Science.gov (United States)

    2010-10-01

    ... Warranty Provisions for Supplies of a Noncomplex Nature. 552.246-77 Section 552.246-77 Federal Acquisition... a Noncomplex Nature. As prescribed in 546.710(a), insert the following clause in solicitations and contracts that include FAR 52.246-17, Warranty of Supplies of a Noncomplex Nature. Additional Contract...

  11. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  12. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Westall, Frances; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Goesmann, Fred; Steininger, Harald; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe

    2017-01-01

    Abstract The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510.

  13. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  14. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  15. Maria-Mercè Marçal, autora de contes

    Directory of Open Access Journals (Sweden)

    Carme Riera

    2004-01-01

    Full Text Available In this article Carme Riera talks about Marçal as a short-story writer, aspect of the author which is less discussed than her poems and novels, but, according to Riera, not at all insignificant. She discusses the three short stories Marçal wrote for adults: Joc de màscares, El retorn and Tronatrons (unpublished. Riera refers to the game of intertextualtity in Marçal’s work; Joc de màscares, which takes Riera´s novel, Te deix, amor, la mar com a penyora, as a starting point, and Tronatrons, which Riera feels could well be intended to pay a tribute to Víctor Català, whose work was well-known by Marçal. Finally, the author of this article talks about the importance of the recurring motif of the mirror in Marçal´s work, both in her poetry and novels.

  16. Relationship between Indian summer monsoon rainfall and position of Pacific Ocean warm pool

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.; Sastry, J

    stream_size 5 stream_content_type text/plain stream_name Indian_J_Mar_Sci_19_246.pdf.txt stream_source_info Indian_J_Mar_Sci_19_246.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles

    Science.gov (United States)

    Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas

    2017-09-01

    Since July of 2009, The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) has periodically obtained pole-to-pole observations (i.e., full MRO orbits) of limb scanned visible/near IR spectra (λ = 0.4 - 4.0 μ m, △λ ∼ 10 nm- Murchie et al., 2007). These CRISM limb observations support the first seasonally and spatially extensive set of Mars 1.27 μm O2(1△g) dayglow profile retrievals (∼ 1100) over ≥ 8-80 km altitudes. Their comparison to Laboratoire de Météorologie Dynamique (LMD) global climate model (GCM) simulated O2(1△g) volume emission rate (VER) profiles, as a function of altitude, latitude, and season (solar longitude, Ls), supports several key conclusions regarding Mars atmospheric water vapor (which is derived from O2(1△g) emission rates), Mars O3, and the collisional de-excitation of O2(1△g) in the Mars CO2 atmosphere. Current (Navarro et al., 2014) LMDGCM simulations of Mars atmospheric water vapor fall 2-3 times below CRISM derived water vapor abundances at 20-40 km altitudes over low-to-mid latitudes in northern spring (Ls = 30-60°), and northern mid-to-high latitudes over northern summer (Ls = 60-140°). In contrast, LMDGCM simulated water vapor is 2-5 times greater than CRISM derived values at all latitudes and seasons above 40 km, within the aphelion cloud belt (ACB), and over high-southern to mid-southern latitudes in southern summer (Ls = 190-340°) at 15-35 km altitudes. Overall, the solstitial summer-to-winter hemisphere gradients in water vapor are reversed between the LMDGCM modeled versus the CRISM derived water vapor abundances above 10-30 km altitudes. LMDGCM-CRISM differences in water vapor profiles correlate with LMDGCM-CRISM differences in cloud mixing profiles; and likely reflect limitations in simulating cloud microphysics and radiative forcing, both of which restrict meridional transport of water from summer-to-winter hemispheres on Mars (Clancy et al., 1996

  18. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    Science.gov (United States)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  19. Measurement of Mars Analog Soil Dielectric Properties for Mars 2020 Radar Science Applications

    Science.gov (United States)

    Decrossas, E.; Bell, D. J.; Jin, C.; Steinfeld, D.; Batres, J.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. One important planetary application is the identification of subsurface water ice at Mars. Low frequency, 15 MHz to 25 MHz, instruments like SHARAD have been used from Mars orbit to investigate subsurface features from 10's to 1000's of meters below the surface of Mars with a vertical resolution of 15m and a horizontal resolution of 300 to 3000 meters. SHARAD has been able to identify vast layers of CO2 and water ice. The ground-penetrating RIMFAX instrument that will ride on the back of the Mars 2020 rover will operate over the 150 MHz to 1200 MHz band and penetrate to a depth of 10 meters with a vertical resolution of 15 to 30 cm. RIMFAX will be able to identify near surface water ice if it exists below the travel path of the Mars 2020 rover. Identification of near surface water ice has science application to current and past Mars hydrologic processes and to the potential for finding remnants of past Mars biologic activity. Identification of near surface water ice also has application to future human missions that would benefit from access to a Mars local water source. Recently, JPL investigators have been pursuing a secondary use of telecom signals to capture bistatic radar signatures from subsurface areas surrounding the rover but away from its travel path. A particularly promising potential source would be the telecom signal from a proposed Mars Helicopter back to the Mars 2020 rover. The Mars 2020 rover will be equipped with up to three telecom subsystems. The Rover Relay telecom subsystem operates at UHF receiving at 435 MHz frequency. Anticipating opportunistic collection of near-surface bistatic radar signatures from telecom signals received at the rover, it is valuable to understand the dielectric properties of the Martian soil in each of these three

  20. Evaporation Rates of Brine on Mars

    Science.gov (United States)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  1. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  2. Size-Selective Modes of Aeolian Transport on Earth and Mars

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  3. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  4. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  5. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  6. The Human Mars Mission: Transportation assessment

    International Nuclear Information System (INIS)

    Kos, Larry

    1998-01-01

    If funding is available, and for NASA planning purposes, the Human Mars Mission (HMM) is baselined to take place during the 2011 and 2013/2014 Mars opportunities. Two cargo flights will leave for Mars during the first opportunity, one to Mars orbit and the second to the surface, in preparation for the crew during the following opportunity. Each trans-Mars injection (TMI) stack will consist of a cargo/payload portion (currently coming in at between 65 and 78 mt) and a nuclear thermal propulsion (NTP) stage (currently coming in at between 69 and 77 mt loaded with propellant) for performing the departure ΔVs to get on to the appropriate Mars trajectories. Three 66,700 N thrust NTP engines comprise the TMI stage for each stack and perform a ΔV ranging from 3580 to 3890 m/s as required by the trajectory (with gravity losses and various performance margins added to this for the total TMI ΔV performed). This paper will discuss the current application of this NTP stage to a Human Mars mission, and project what implications a nuclear trans-Earth injection (TEI) stage as well as a bi-modal NTP stage could mean to a human visit to Mars

  7. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology

    International Nuclear Information System (INIS)

    Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L.

    2009-01-01

    The effects of three preparation variables: CO 2 activation temperature, CO 2 activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO 2 activation temperature of 814 deg. C, CO 2 activation time of 1.9 h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m 2 /g, total pore volume of 0.6 cm 3 /g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.

  8. Thermal isocreep curves obtained during multi-axial creep tests on recrystallized Zircaloy-4 and M5™ alloy

    International Nuclear Information System (INIS)

    Rautenberg, M.; Poquillon, D.; Pilvin, P.; Grosjean, C.; Cloué, J.M.; Feaugas, X.

    2014-01-01

    Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ zz /σ θθ , σ zz and σ θθ being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence

  9. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  10. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  11. Development and Validation of the User Version of the Mobile Application Rating Scale (uMARS).

    Science.gov (United States)

    Stoyanov, Stoyan R; Hides, Leanne; Kavanagh, David J; Wilson, Hollie

    2016-06-10

    The Mobile Application Rating Scale (MARS) provides a reliable method to assess the quality of mobile health (mHealth) apps. However, training and expertise in mHealth and the relevant health field is required to administer it. This study describes the development and reliability testing of an end-user version of the MARS (uMARS). The MARS was simplified and piloted with 13 young people to create the uMARS. The internal consistency and test-retest reliability of the uMARS was then examined in a second sample of 164 young people participating in a randomized controlled trial of a mHealth app. App ratings were collected using the uMARS at 1-, 3,- and 6-month follow up. The uMARS had excellent internal consistency (alpha = .90), with high individual alphas for all subscales. The total score and subscales had good test-retest reliability over both 1-2 months and 3 months. The uMARS is a simple tool that can be reliably used by end-users to assess the quality of mHealth apps.

  12. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and 2,4,6-Tribromophenol in Human Placental Tissues

    Science.gov (United States)

    Leonetti, Christopher; Butt, Craig M.; Hoffman, Kate; Miranda, Marie Lynn; Stapleton, Heather M.

    2015-01-01

    Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely detected in human tissues. However, few studies have measured PBDEs in placental tissues, and there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. Measurements of these contaminants are important for understanding potential fetal exposures, as these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected between 2010–2011 in Durham County, North Carolina, USA. The most abundant PBDE congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 2,4,6-TBP were negatively associated with age (rs=−0.16; p=0.10 and rs=−0.17; p=0.08, respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in human placenta tissue and likely contribute to prenatal exposures to these environmental contaminants. Future studies are needed to determine if these joint exposures are associated with any adverse health measures in infants and children. PMID:26700418

  13. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  14. 33 CFR 148.246 - When is a document considered filed and where should I file it?

    Science.gov (United States)

    2010-07-01

    ... filed and where should I file it? 148.246 Section 148.246 Navigation and Navigable Waters COAST GUARD... Formal Hearings § 148.246 When is a document considered filed and where should I file it? (a) If a document to be filed is submitted by mail, it is considered filed on the date it is postmarked. If a...

  15. Argon-arc welding of heat resisting aluminium alloys

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Welding of aluminium heat resisting alloys of the Al-Cu-Mg system is studied. The hot-shortness of heat-resistant alloys M40, 1150 and 1151 are at the level of aluminium alloys 1201 and by 2-3 times lower as compared to the aluminium alloy AMg6. The M40, 1150 and 1151 alloys have unquestionable advantages against other know aluminium alloys only at temperatures of welded structures operation, beginning with 150-2000 deg C and especially at 250 deg C

  16. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Vago, Jorge L.; Westall, Frances; Pasteur Instrument Team; Pasteur Landing Team; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Rull, Fernando; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Vago, Jorge L.; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe; ExoMars Project Team

    2017-07-01

    The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.

  17. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    International Nuclear Information System (INIS)

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  18. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  19. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  20. 21 CFR 520.246 - Butorphanol tartrate tablets.

    Science.gov (United States)

    2010-04-01

    ....246 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Conditions of use. The drug is used for the treatment of dogs as follows: (1) Amount. 0.25 milligram of... associated with inflammatory conditions of the upper respiratory tract. (3) Limitations. For oral use in dogs...

  1. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  2. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Qu, Zhipeng; Li, Haipu; Yang, Zhaoguang

    2017-09-01

    In this study, the distribution of 2,4,6-trichloroanisole (2,4,6-TCA) in two water supply reservoirs and four associated drinking water treatment plants (DWTPs) were investigated. The 2,4,6-TCA concentrations were in the range of 1.53-2.36 ng L -1 in water supply reservoirs and 0.76-6.58 ng L -1 at DWTPs. To determine the contribution of filamentous fungi to 2,4,6-TCA in a full-scale treatment process, the concentrations of 2,4,6-TCA in raw water, settled water, post-filtration water, and finished water were measured. The results showed that 2,4,6-TCA levels continuously increased until chlorination, suggesting that 2,4,6-TCA could form without a chlorination reaction and fungi might be the major contributor to the 2,4,6-TCA formation. Meanwhile, twenty-nine fungal strains were isolated and identified by morphological and molecular biological methods. Of the seventeen isolated fungal species, eleven showed the capability to convert 2,4,6-trichlorophenol (2,4,6-TCP) to 2,4,6-TCA. The highest level of 2,4,6-TCA formation was carried out by Aspergillus versicolor voucher BJ1-3: 40.5% of the original 2,4,6-TCP was converted to 2,4,6-TCA. There was a significant variation in the capability of different species to generate 2,4,6-TCA. The results from the proportions of cell-free, cell-attached, and cell-bound 2,4,6-TCA suggested that 2,4,6-TCA generated by fungi was mainly distributed in their extracellular environment. In addition to 2,4,6-TCA, five putative volatile by-products were also identified by gas chromatography and mass spectrometry. These findings increase our understanding on the mechanisms involved in the formation of 2,4,6-TCA and provide insights into managing and controlling 2,4,6-TCA-related problems in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 48 CFR 246.370 - Material inspection and receiving report.

    Science.gov (United States)

    2010-10-01

    ... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 246.370... deliverable is a scientific or technical report; (5) Research and development contracts not requiring the...

  4. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution

    International Nuclear Information System (INIS)

    Granados, J.; Rodriguez, F.J.; Arganis, C.

    1999-01-01

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  5. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  7. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  8. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    Science.gov (United States)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  9. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  10. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  11. Levan-type fructooligosaccharide production using Bacillus licheniformis RN-01 levansucrase Y246S immobilized on chitosan beads

    Directory of Open Access Journals (Sweden)

    Surawut Sangmanee

    2016-06-01

    Full Text Available Bacillus licheniformis RN-01 levansucrase Y246S (LsRN-Y246S was immobilized by covalently linking onto chitosan, Sepabead EC-EP, and Sepabead EC-HFA, beads. The stability of immobilized LsRN-Y246S was found to be the highest with chitosan beads, retaining more than 70% activity after 13 weeks storage at 4 oC, and 68% activity after 12 hours incubation at 40°C. LsRN-Y246S immobilized on chitosan beads withstands sucrose concentrations up to 70% (w/v, retaining over 85% of its activity, significantly better than LsRN-Y246S immobilized on others supporting matrices. LsRN-Y246S immobilized on chitosan showed a 2.4 fold increase in activity in the presence of Mn2+, and gave slight protection against deactivation by of Cu2+, Zn2+, Fe3+, SDS and EDTA. A maximum of 8.36 g and an average of 7.35 g LFOS yield at least up to DP 11 can be produced from 25 g of sucrose, during five production cycles. We have demonstrated that LFOS can be effectively produced by chitosan immobilized LsRN-Y246S and purified.

  12. Laser-Induced Breakdown Spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements

    International Nuclear Information System (INIS)

    Salle, Beatrice; Lacour, Jean-Luc; Vors, Evelyne; Fichet, Pascal; Maurice, Sylvestre; Cremers, David A.; Wiens, Roger C.

    2004-01-01

    An international consortium is studying the feasibility of performing in situ geochemical analysis of Mars soils and rocks at stand-off distances up to several meters using the Laser-Induced Breakdown Spectroscopy (LIBS) technique. Stand-off analysis for Martian exploration imposes particular requirements on instrumentation, and it is necessary to first test the performance of such a system in the laboratory. In this paper, we test the capabilities of two different experimental setups. The first one is dedicated to the qualitative analysis of metals and rocks at distances between 3 and 12 m. With the second one, we have obtained quantitative results for aluminum alloys and developed a spectral database under Martian conditions for sulfur and chlorine, two elements that are geologically interesting but generally difficult to detect by LIBS under standard conditions (atmospheric pressure, close distance). These studies were carried out to determine an optimal instrumental design for in situ Mars analysis. The quality of analytical results affected by the optical elements and spectrometer has been particularly highlighted

  13. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    Science.gov (United States)

    Foing, Bernard

    2014-05-01

    Journal of Astrobiology , IJA 2011, 10, vol. 3. 137-305 [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141;[2] Clarke, J., Stoker, C. Concretions in exhumed & inverted channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162;[3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177;[4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191;[5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. (IJA 2011, 10 (3), 239; [9] Stoker C. et al (2011) Mineralogical, Chemical, Organic & Microbial Properties of Subsurface Soil Cores from Mars Desert Research Station, a Phyllosilicate and Sulfate Rich Mars Analog Site, IJA 2011, 10 (3), 269; [10] Rodrigues L. et al (2014, in preparation) Preventing biocontamination during sterile sampling; [11] Rodrigues L. et al (2014, in preparation) Microbial diversity in MDRS rocks and soils; [12] ILEWG EuroMoonMars Team, (2014, special issue in preparation) Results from ILEWG EuroMoonMars campaign 2013 **Acknowledgements: B.H.Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), K. Nebergall (6), M. Battler (6, 7), H. v't Houd (8), A. Bruneau (6

  14. 48 CFR 52.246-1 - Contractor Inspection Requirements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Contractor Inspection....246-1 Contractor Inspection Requirements. As prescribed in 46.301, insert the following clause: Contractor Inspection Requirements (APR 1984) The Contractor is responsible for performing or having...

  15. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    Science.gov (United States)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  16. APR-246/PRIMA-1Met Inhibits and Reverses Squamous Metaplasia in Human Conjunctival Epithelium.

    Science.gov (United States)

    Li, Jing; Li, Cheng; Wang, Guoliang; Liu, Zhen; Chen, Pei; Yang, Qichen; Dong, Nuo; Wu, Huping; Liu, Zuguo; Li, Wei

    2016-02-01

    Squamous metaplasia is a common pathologic condition in ocular surface diseases for which there is no therapeutic medication in clinic. In this study, we investigated the effect of a small molecule, APR-246/PRIMA-1(Met), on squamous metaplasia in human conjunctival epithelium. Human conjunctival explants were cultured for up to 12 days under airlifting conditions. Epithelial cell differentiation and proliferation were assessed by Cytokeratin 10 (K10), K14, K19, Pax6, MUC5AC, and p63 immunostaining patterns. β-catenin and TCF-4 immunofluorescent staining and real-time PCR characterized Wnt signaling pathway involvement. Pterygium clinical samples were cultured under airlifting conditions with or without APR-246 for 4 days. p63, K10, β-catenin, and TCF-4 expression in pterygial epithelium was determined by immunofluorescent staining and real-time PCR. Airlift conjunctival explants resulted in increased stratification and intrastromal epithelial invagination. Such pathology was accompanied by increases in K10, K14, and p63 expression, whereas K19 and Pax6 levels declined when compared to those in freshly isolated tissue. On the other hand, APR-246 reversed all of these declines in K10, K14, and p63 expression. Furthermore, K19 and Pax6 increased along with rises in goblet cell density. These effects of APR-246 were accompanied by near restoration of normal conjunctival epithelial histology. APR-246 also reversed squamous metaplasia in pterygial epithelium that had developed after 4 days in ex vivo culture. Reductions in squamous metaplasia induced by APR-246 suggest it may provide a novel therapeutic approach in different squamous metaplasia-associated ocular surface diseases.

  17. Titanium and zirconium based wrought alloys and bulk metallic glasses for fluoride ion containing 11.5 M HNO3 medium

    International Nuclear Information System (INIS)

    Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2016-01-01

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a catalyst in boiling nitric acid for an effective dissolution of the spent fuel. The corrosion behavior of the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO 3 + 0.05 M NaF has been established. High corrosion rates were obtained for Zr- 4 and CP-Ti in nitric acid containing fluoride ions. Complexing the fluoride ions either with Al(NO 3 ) 3 or ZrO(NO 3 ) 2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. High corrosion resistance is claimed as one of the principal property of the amorphous alloy when compared to the crystalline alloy. Thus Ni 60 Nb 40 and Ni 60 Nb 30 Ta 10 amorphous ribbons were prepared and exposed in boiling 11.5 M HNO 3 and 11.5 M HNO 3 + 0.05 M NaF. In nitric acid these alloys did not show any sign of corrosion attack. XPS analysis confirmed that the passivity was due to the formation passive films of thickness ≈3 nm enriched with Nb 2 O 5 and of ≈1.5 nm enriched with both Nb 2 O 5 and Ta 2 O 5 on the respective surfaces of the ribbons. In boiling 11.5 M HNO 3 + 0.05 M NaF, severe corrosion attack was observed on Ni 60 Nb 40 ribbon, due to the instability of the oxide/metal interface. The Ni 60 Nb 30 Ta 10 amorphous ribbon exhibited corrosion resistance of at least an order of magnitude higher than that for Ni 60 Nb 40 ribbon

  18. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    Science.gov (United States)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  19. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.

    Science.gov (United States)

    Guan, Ren-guo; Cipriano, Aaron F; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-10-01

    A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m(2)·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm(2), which was much lower than 1.67 mA/mm(2) for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evidence for a Large Natural Nuclear Reactor in Mars Past

    Science.gov (United States)

    Brandenburg, J. E.

    2006-05-01

    It has long been known that The isotopic ratios 129 Xe/132Xe and 40Ar/36Ar are very high in Mars atmosphere relative to Earth or meteoritic backgrounds. This fact has allowed the SNC meteorites to be identified as Martian based on their trapped gases (1). However, while the isotopic anomalies explained one mystery, the origin of the SNC meteorites, they created a new mystery: the rock samples from Mars show no evidence of the large amounts of Iodine or Potassium that would give naturally give rise to the Xenon and Argon isotopic anomalies (2). In fact, the Martian meteorites are depleted in Potassium relative to earth rocks. This is added to the fact that for other isotopic systems such as 80Kr, Mars rock samples must be irradiated by neutrons at fluences of 1015 /cm2 to explain observed abundances (1) . Compounding the mystery is the fact that Mars surface layer has elevated levels of Uranium and Thorium relative to Earth and even its own rocks, as determined from SNCs (3). These anomalies can be explained if some large nuclear energy release, such as by natural nuclear reactors known to have operated on Earth (4) in in some concentrated ore body, occurred with perhaps a large volcano like explosion that spread residues over the planets surface. Based on gamma ray observations from orbit (3), and the correlations of normally uncorrelated Th and K deposits , the approximate location of this event would appear to have been in the north of Mars in a region in Acidalia Planitia centered at 45N Latitude and 15W Longitude (5). The possibility of such a large radiological event in Mars past adds impetus to Mars exploration efforts and particularly to a human mission to Mars to learn more about this possible occurrence. (1) Swindle, T. D. , Caffee, M. W., and Hohenberg, C. M., (1986) "Xenon and other Noble Gases in Shergottites" Geochimica et Cosmochimica Acta, 50, pp 1001-1015. (2) Banin, A., Clark, B.C., and Wanke, H. "Surface Chemistry and Mineralogy" (1992) in "Mars

  1. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    Science.gov (United States)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  2. Degradation of 2,4,6-Trinitrophenol (TNP) by Arthrobacter sp. HPC1223 Isolated from Effluent Treatment Plant

    OpenAIRE

    Qureshi, Asifa; Kapley, Atya; Purohit, Hemant J.

    2012-01-01

    Arthrobacter sp. HPC1223 (Genebank Accession No. AY948280) isolated from activated biomass of effluent treatment plant was capable of utilizing 2,4,6 trinitrophenol (TNP) under aerobic condition at 30 °C and pH 7 as nitrogen source. It was observed that the isolated bacteria utilized TNP up to 70 % (1 mM) in R2A media with nitrite release. The culture growth media changed into orange-red color hydride-meisenheimer complex at 24 h as detected by HPLC. Oxygen uptake of Arthrobacter HPC1223 towa...

  3. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  4. Effect of transport on MAR in detached divertor plasma

    International Nuclear Information System (INIS)

    Miyamoto, Kenji; Hatayama, A.; Ishii, Y.; Miyamoto, T.; Fukano, A.

    2003-01-01

    The effect of H 2 transport on the onset of MAR in the relatively lower plasma parameter regime of a detached state (n e =1x10 19 m -3 , T e =1 eV) is investigated theoretically. The vibrationally excited molecular densities and the degree of MAR are evaluated by using a 1-D Monte Carlo method (with transport effect), and by solving time-dependent 0-D rate equations without the transport term (without transport effect), respectively. It is found that the degree of MAR with transport is smaller than that without transport under the same H 2 flow rate. Especially, the degree of MAR is negligible near the gas inlet. This smaller degree of MAR with transport is due to the lack of highly excited vibrational molecules which contribute to MAR. The hydrogen molecular density available for MAR is determined by the external hydrogen molecular source and the outflow due to transport, i.e., a 'net' confinement time

  5. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    Science.gov (United States)

    Aoki, S.; Sato, Y.; Giuranna, M.; Wolkenberg, P.; Sato, T. M.; Nakagawa, H.; Kasaba, Y.

    2018-03-01

    We have investigated mesospheric CO2 ice clouds on Mars through analysis of near-infrared spectra acquired by Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEx) from MY 27 to MY 32. With the highest spectral resolution achieved thus far in the relevant spectral range among remote-sensing experiments orbiting Mars, PFS enables precise identification of the scattering peak of CO2 ice at the bottom of the 4.3 μm CO2 band. A total of 111 occurrences of CO2 ice cloud features have been detected over the period investigated. Data from the OMEGA imaging spectrometer onboard MEx confirm all of PFS detections from times when OMEGA operated simultaneously with PFS. The spatial and seasonal distributions of the CO2 ice clouds detected by PFS are consistent with previous observations by other instruments. We find CO2 ice clouds between Ls = 0° and 140° in distinct longitudinal corridors around the equatorial region (± 20°N). Moreover, CO2 ice clouds were preferentially detected at the observational LT range between 15-16 h in MY 29. However, observational biases prevent from distinguishing local time dependency from inter-annual variation. PFS also enables us to investigate the shape of mesospheric CO2 ice cloud spectral features in detail. In all cases, peaks were found between 4.240 and 4.265 μm. Relatively small secondary peaks were occasionally observed around 4.28 μm (8 occurrences). These spectral features cannot be reproduced using our radiative transfer model, which may be because the available CO2 ice refractive indices are inappropriate for the mesospheric temperatures of Mars, or because of the assumption in our model that the CO2 ice crystals are spherical and composed by pure CO2 ice.

  7. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  8. Advanced processing of high temperature P/M copper alloy for aerospace applications

    International Nuclear Information System (INIS)

    Raman, R.V.; Rele, S.V.; Lasley, C.C.; Krotz, P.D.

    1991-01-01

    Copper Alloy 1035 is a rapidly solidified Cu-Cr-Zr alloy developed by Pratt and Whitney, which exhibits good elevated temperature strength and thermal conductivity. RSR Alloy 1035 powder has been consolidated utilizing the patented Ceracon Process. The Ceracon Process is a quasi-isostatic, hot consolidation technique which utilizes a proprietary particulate material as a pressure transmitting medium in place of a gas media as used in HIPping. Measured mechanical properties to 1200 F are compared to materials consolidated via vacuum plasma spraying (VPS), or VPS + HIPping processes. Advantages and disadvantages of these processing techniques are compared. Porosity and microstructural features are also evaluated

  9. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  10. Observational evidence of crystalline iron oxides on Mars

    International Nuclear Information System (INIS)

    Bell, J.F. III; McCord, T.B.; Owensby, P.D.

    1990-01-01

    Visible to near-IR (0.4-1.0 μm) spectral reflectance observations of Mars during the 1988 opposition were performed at Mauna Kea Observatory using a circular variable filter spectrometer at a spectral resolution R = λ/Δλ ∼ 80. On August 13 and 14 1988, UT, 41 regions 500-600 km in diameter were observed on Mars. The data have been reduced both to reflectance relative to solar analog (Mars/16 Cyg B) and to relative reflectance (spot/spot). The spectra show the strong near-UV reflectance dropoff characteristic of Mars as well as absorptions at 0.62-0.72 μm and 0.81-0.94 μm both seen here clearly for the first time. These absorption features are interpreted as Fe 3+ electronic transition bands that indicate the presence of crystalline ferric oxide or hydroxide minerals on the Martian surface. Comparison of these data with laboratory spectra obtained by other workers supports the conclusion that a single iron oxide phase, most likely hematite, could account for all of the observed spectral behavior of the Martian surface soils and airborne dust in the 0.4-1.0 μm region. This possibility must be reconciled with data from other possible spectral analogs and other wavelength regions as well as geochemical and mineral stability considerations to arrive at a more complete understanding of the role of ferric minerals in Martian surface mineralogy and weathering

  11. Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications — Alloy processing, microstructure, mechanical properties, and biodegradation

    International Nuclear Information System (INIS)

    Guan, Ren-guo; Cipriano, Aaron F.; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-01-01

    A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m 2 ·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm 2 , which was much lower than 1.67 mA/mm 2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. - Highlights: • Developed a new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy for medical implant applications • Reported Mg–Zn–Sr alloy processing and microstructure characterization • Improved mechanical properties of Mg alloy after aging treatment • Improved degradation properties of Mg alloy in simulated body fluid

  12. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  13. Initial stages of Zr-Fe-Si alloy formation on Zr(0001) surface

    Czech Academy of Sciences Publication Activity Database

    Horáková, Kateřina; Cichoň, Stanislav; Lančok, Ján; Sajdl, P.; Cháb, Vladimír

    2017-01-01

    Roč. 657, Mar (2017), s. 28-34 ISSN 0039-6028 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : leed crystallographic analysis * transition-metal alloys * zirconium * adsorption * oxidation * oxygen * segregation * kinetics * films Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.062, year: 2016

  14. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H2SO4 0.5M

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2007-01-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H 2 SO 4 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  15. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  16. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods

    Science.gov (United States)

    Pourghasemi, Hamid Reza; Rossi, Mauro

    2017-10-01

    Landslides are identified as one of the most important natural hazards in many areas throughout the world. The essential purpose of this study is to compare general linear model (GLM), general additive model (GAM), multivariate adaptive regression spline (MARS), and modified analytical hierarchy process (M-AHP) models and assessment of their performances for landslide susceptibility modeling in the west of Mazandaran Province, Iran. First, landslides were identified by interpreting aerial photographs, and extensive field works. In total, 153 landslides were identified in the study area. Among these, 105 landslides were randomly selected as training data (i.e. used in the models training) and the remaining 48 (30 %) cases were used for the validation (i.e. used in the models validation). Afterward, based on a deep literature review on 220 scientific papers (period between 2005 and 2012), eleven conditioning factors including lithology, land use, distance from rivers, distance from roads, distance from faults, slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, and profile curvature were selected. The Certainty Factor (CF) model was used for managing uncertainty in rule-based systems and evaluation of the correlation between the dependent (landslides) and independent variables. Finally, the landslide susceptibility zonation was produced using GLM, GAM, MARS, and M-AHP models. For evaluation of the models, the area under the curve (AUC) method was used and both success and prediction rate curves were calculated. The evaluation of models for GLM, GAM, and MARS showed 90.50, 88.90, and 82.10 % for training data and 77.52, 70.49, and 78.17 % for validation data, respectively. Furthermore, The AUC value of the produced landslide susceptibility map using M-AHP showed a training value of 77.82 % and validation value of 82.77 % accuracy. Based on the overall assessments, the proposed approaches showed reasonable results for landslide

  17. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    Science.gov (United States)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  18. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  19. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala

    2016-05-09

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  20. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2016-01-01

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  1. Mapping analysis of scaffold/matrix attachment regions (s/MARs) from two different mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd [School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Johari, Norazfa [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved from 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.

  2. Mapping analysis of scaffold/matrix attachment regions (s/MARs) from two different mammalian cell lines

    International Nuclear Information System (INIS)

    Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd; Johari, Norazfa

    2014-01-01

    Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved from 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively

  3. High-alloy steels and nickel alloys for construction of industrial plants. Pt. 2

    International Nuclear Information System (INIS)

    2007-01-01

    Vol. 2 of the 8. Dresden Corrosion Protection Seminar comprises eight papers, most of which are in the form of PowerPoint presentations: High-temperature materials and their applications in chemical engineering (J. Kloever); Alloy 602 CA in metal dusting conditions; Material requirements in future power plants (H. Schneider); Status report on material qualification for the 700 C technology in coal power plants (R. Mohrmann); Materials for nuclear fusion (M. Paju); The degradation mechanism relaxation cracking as exemplified by the alloys 800 H and 617 (H.C. van Wortel); Specific requirements on the design of a pressurised manifold of Alloy 800 H in refineries, a case study (I. Rommerskirchen et al.); Materials for electro-surfacing for corrosion protection in conditions of high-temperature corrosion (M.Spiegel) [de

  4. 32 CFR Appendix E to Part 246 - Stars and Stripes (S&S) Board of Directors

    Science.gov (United States)

    2010-07-01

    ... of directors shall monitor planning and execution of the S&S business activities. 2. The S&S board of... DEFENSE (CONTINUED) MISCELLANEOUS STARS AND STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS Pt. 246, App. E Appendix E to Part 246—Stars and Stripes (S&S) Board of Directors A. Organization and Management...

  5. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  6. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  7. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    Science.gov (United States)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  8. Spectral Evidence for Hydrated Salts in Seasonal Brine Flows on Mars

    Science.gov (United States)

    Ojha, L.

    2015-12-01

    Recurring Slope Lineae (RSL) are narrow, low-reflectance features forming on present-day Mars that have been hypothesized to be due to the transient flow of liquid water. RSL extend incrementally downslope on steep, warm slopes, fade when inactive, and reappear annually over multiple Mars years as monitored by the HiRISE camera on board the Mars Reconnaissance Orbiter (MRO). In the southern mid-latitudes of Mars, RSL are observed to form most commonly on equator facing slopes, but in equatorial regions RSL often "follow the sun", forming and growing on slopes that receive the greatest insolation during a particular season. The temperature on slopes where RSL are active typically exceeds 250 K and often but not always exceeds 273 K, although sub-surface temperatures would be colder. These characteristics suggest a possible role of salts in lowering the freezing point of water, allowing briny solutions to flow. Confirmation of this wet origin hypothesis for RSL would require either (i) detection of liquid water absorptions on the surface, or (ii) detection of hydrated salts precipitated from that water. The mineralogical composition of RSL and their surroundings can be investigated using orbital data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) also on board MRO, which acquires spectral cubes with 544 spectral channels in the visible to near-infrared range of ~0.36 μm to 3.92 μm [13], within which both liquid water and hydrated salts have diagnostic absorption bands at ~1.4 μm, ~1.9 μm, ~3.0 μm. Additionally, hydrated salts may have combination of overtones at other wavelengths from 1.7 μm to 2.4 μm. We present results from examination of individual pixels containing RSL at four different sites that confirm the hypothesis that RSL are due to present-day activity of briny water.

  9. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  10. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  11. A comparing study of alloy 600 and alloy 690 on resistance to intergranular stress corrosion cracking(IGSCC)

    International Nuclear Information System (INIS)

    Lee, Jae Hun

    1993-02-01

    In order to compare the effect of senitization on the intergranular stress corrosion cracking(IGSCC) between Alloy 600 and Alloy 690, these alloys have been sensitized for 1 to 100 hours at 700 .deg. C. The degree of sensitization(DOS) has evaluated by the ratio of Ir(the maximum current density at anodic scan) to Ia(the maximum current density at reverse scan) in the modified double loop EPR(electrochemical potentiokinetic reactivation) test in 0.01M H 2 SO 4 + 0.0001M KSCN at 25 .deg. C and at scan rate of 0.5mV/sec. The susceptibility to IGSCC has been measured in 0.01M Na 2 S 4 O 6 solution using CERT(constant extension rate tester) at strain rate of 1.0 x 10 -6 S -1 . With increasing sensitization time the DOS of Alloy 600 increases to the maximum value at 5 hours and decreases gradually due to the replenishment of Cr to the Cr-depleted grain boundaries. For Alloy 600 samples except those sensitized for less than 1 hour, the DOS measured by the modified EPR test parallel to susceptibility to IGSCC revealed by the ratio of strain to failure (εf, Na 2 S 4 O 6 /εf, Air). It appears that the susceptibility to IGSCC is closely associated with the depth in Cr-depleted concentration profile across grain boundary. For the sensitized Alloy 690 samples exhibited extremely low value of Ir/Ia less than 0.074% and also were immune to IGSCC. The good resistance of Alloy 690 to IGSCC is considered to be attributed to the higher Cr concentration to avoid serious Cr-depletion problems adjacent to grain boundary

  12. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    Science.gov (United States)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  13. De-Lubrication Behavior Of Novel EBS Based Admixed Lubricant In Aluminum P/M Alloy

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The objective of the present research is to develop a novel lubricant for Al-Cu-Mg P/M alloy and to address the effects of the lubricant and compaction pressure on sintered properties. A lubricant mixture consisting of Ethylene Bis Stearamide, Zn-Stearate, and fatty acid was newly developed in this study, and the de-lubrication behavior was compared with that of other commercial lubricants, such as Ethylene Bis Stearamide, Zn-Stearate, and Al-Stearate. Density and transverse rupture strength of sintered materials with each lubricant were examined, respectively. The microstructural analysis was conducted using optical microscope.

  14. Potentiodynamic polarization study of the corrosion behavior of palladium-silver dental alloys.

    Science.gov (United States)

    Sun, Desheng; Brantley, William A; Frankel, Gerald S; Heshmati, Reza H; Johnston, William M

    2018-04-01

    Although palladium-silver alloys have been marketed for over 3 decades for metal-ceramic restorations, understanding of the corrosion behavior of current alloys is incomplete; this understanding is critical for evaluating biocompatibility and clinical performance. The purpose of this in vitro study was to characterize the corrosion behavior of 3 representative Pd-Ag alloys in simulated body fluid and oral environments and to compare them with a high-noble Au-Pd alloy. The study obtained values of important electrochemical corrosion parameters, with clinical relevance, for the rational selection of casting alloys. The room temperature in vitro corrosion characteristics of the 3 Pd-Ag alloys and the high-noble Au-Pd alloy were evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. After simulated porcelain firing heat treatment, 5 specimens of each alloy were immersed in the electrolytes for 24 hours. For each specimen, the open-circuit potential (OCP) was first recorded, and linear polarization was then performed from -20 mV to +20 mV (versus OCP) at a rate of 0.125 mV/s. Cyclic polarization was subsequently performed on 3 specimens of each alloy from -300 mV to +1000 mV and back to -300 mV (versus OCP) at a scanning rate of 1 mV/s. The differences in OCP and corrosion resistance parameters (zero-current potential and polarization resistance) among alloys and electrolyte combinations were compared with the 2-factor ANOVA (maximum-likelihood method) with post hoc Tukey adjustments (α=.05). The 24-hour OCPs and polarization resistance values of the 3 Pd-Ag alloys and the Au-Pd alloy were not significantly different (P=.233 and P=.211, respectively) for the same electrolyte, but significant differences were found for corrosion test results in different electrolytes (Palloy and electrolyte (P=.249 and P=.713, respectively). The 3 Pd-Ag silver alloys appeared to be resistant to chloride ion corrosion, and passivation and de-alloying were identified for these

  15. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  16. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  17. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  18. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  19. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    OpenAIRE

    Olgierd Janusz Goroch; Zbigniew Gulbinowicz

    2017-01-01

    The results of studies concerning friction welding of Weight Heavy Alloy (WHA) with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum i...

  20. Distribution of water on Mars: Implications from SNC meteorites

    Science.gov (United States)

    Jones, J. H.

    1992-01-01

    There has been much speculation about the abundance of water and other volatiles on Mars. Attempts to calculate abundances of water on Mars indicate that Mars contains approx. 10-100 m of water. Numerous models have been put forth to determine the amount of water on Mars more closely. Some researchers infer that Chassigny parent magma contained greater than 1.5 percent water by weight and that the Martian mantle contained greater than 1000 parts per million water. This is too much water for a depleted region. Perhaps some of the water in Chassigny was assimilated at shallow depths, either in a crustal magma chamber or by interaction with superficial permafrost. Either is possible and provides an alternative to the dilemma of water-rich to depleted regions.

  1. Mars, High-Resolution Digital Terrain Model Quadrangles on the Basis of Mars-Express HRSC Data

    Science.gov (United States)

    Dumke, A.; Spiegel, M.; van Gasselt, S.; Neu, D.; Neukum, G.

    2010-05-01

    -image mosaics, the use of the improved data (single strips and also image blocks) is essential because, among other things, they adapt the HRSC-derived data to the global Mars-reference system very well. The Q-DTM quadrangles will be distributed to the community as files in VICAR as well as Geo-JP2000 format. The map projection of the Q-DTM quadrangles will be, however, slightly different from the MC 140 scheme in the way that all quadrangles will be released in equidistant cylindric map projection except for the polar areas which will be stereographically projected. References: [1] Neukum, G., et al. (2004), ESA SP-1240, 17-35. [2] Jaumann, R., et al. (2007), Planet. Space. Sci. [3] Dumke, A. et al. (2008), IntArchPhRS, 37, Part B4, 1037-1042. [4] Greeley, R. and Batson, R. M. (1990), Planetary Mapping, Cambridge University Press, New York, 266. [5] Spiegel, M. (2007), IntArchPhRS, 36 (3/W49B), 161-166. [6] Spiegel, M. (2007), Dissertation, DGK C, 610, Verlag der Bayerischen Akademie der Wissenschaften, München. [7] Schmidt, R. (2008), Dissertation, DGK C, 623, Verlag der Bayerischen Akademie der Wissenschaften, München.. Acknowledgement: We thank the HRSC Experiment Teams at the German Aerospace Center (DLR), Institute of Planetary Research Berlin as well as the Mars Express Project Teams at ESTEC and ESOC for their successful planning and acquisition of data. This work is carried out as a pre-assessment of upcoming systematic tasks funded by the German Space Agency (DLR) Bonn through grant no. 50 QM 1001 and 50 QM 0301.

  2. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  3. Cars on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  4. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  5. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  6. PBCDD/F formation from radical/radical cross-condensation of 2-Chlorophenoxy with 2-Bromophenoxy, 2,4-Dichlorophenoxy with 2,4-Dibromophenoxy, and 2,4,6-Trichlorophenoxy with 2,4,6-Tribromophenoxy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiangli [Environment Research Institute, Shandong University, Jinan 250100 (China); Yu, Wanni [Environment Research Institute, Shandong University, Jinan 250100 (China); College of Resources and Environment, Linyi University, Linyi 276000 (China); Xu, Fei [Environment Research Institute, Shandong University, Jinan 250100 (China); Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn [Environment Research Institute, Shandong University, Jinan 250100 (China); Hu, Jingtian; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan 250100 (China)

    2015-09-15

    Highlights: • We studied the formation of PBCDD/Fs from the reaction of three CPRs with BPRs. • The substitution pattern of halogenated phenols determines those of PBCDD/Fs. • The substitution of halogenated phenols influence the coupling of phenoxy radicals. • The rate constants of the crucial elementary steps were evaluated. - Abstract: Quantum chemical calculations were carried out to investigate the homogeneous gas-phase formation of mixed polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from the cross-condensation of 2-chlorophenoxy radical (2-CPR) with 2-bromophenoxy radical (2-BPR), 2,4-dichlorophenoxy radical (2,4-DCPR) with 2,4-dibromophenoxy radical (2,4-DBPR), and 2,4,6-trichlorophenoxy radical (2,4,6-TCPR) with 2,4,6-tribromophenoxy radical (2,4,6-TBPR). The geometrical parameters and vibrational frequencies were calculated at the MPWB1K/6-31+G(d,p) level, and single-point energy calculations were performed at the MPWB1K/6-311+G(3df,2p) level of theory. The rate constants of the crucial elementary reactions were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) correction over a wide temperature range of 600–1200 K. Studies show that the substitution pattern of halogenated phenols not only determines the substitution pattern of the resulting PBCDD/Fs, but also has a significant influence on the formation mechanism of PBCDD/Fs, especially on the coupling of the halogenated phenoxy radicals.

  7. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  8. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  9. Grain refinement of an AZ63B magnesium alloy by an Al-1C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yichuan Pan; Xiangfa Liu; Hua Yang [The Key Lab. of Liquid Structure and Heredity of Materials, Shandong Univ., Jinan (China)

    2005-12-01

    In order to develop a refiner of Mg-Al alloys, an Al-1C (in wt.%) master alloy was synthesized using a casting method. The microstructure and grain-refining performance of the Al-1C master alloy were investigated using X-ray diffraction (XRD), electron probe microanalysis (EPMA) and a grain-refining test. The microstructure of the Al-1C master alloy is composed of {alpha}-Al solid solution, Al{sub 4}C{sub 3} particles, and graphite phases. After grain refinement of AZ63B alloy by the Al-1C master alloy, the mean grain size reached a limit when 2 wt.% Al-C master alloy was added at 800 C and held for 20 min in the melt before casting. The minimum mean grain size is approximately 48 {mu}m at the one-half radius of the ingot and is about 17% of that of the unrefined alloy. The Al-1C master alloy results in better grain refinement than C{sub 2}Cl{sub 6} and MgCO{sub 3} carbon-containing refiners. (orig.)

  10. Pratt and Whitney ESCORT derivative for mars surface power

    International Nuclear Information System (INIS)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to address the applicability of a common reactor system design from the Pratt and Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 mx4.5 mx4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability

  11. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  12. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    International Nuclear Information System (INIS)

    He Zhirong; Liu Manqian

    2011-01-01

    Highlights: → New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. → The effect laws of annealing on transformation temperature and hysteresis of the alloy. → The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A → R/R → A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A → R → M/M → R → A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A → R → M/M → A type transformation occurs in 550 deg. C annealed alloy, and A → M/M → A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A → R/R → A, and that of 500 deg. C aged alloy is A → R → M/M → A, while that of 400 deg. C aged alloy changes from A → R/R → A to A → R → M/M → R → A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  13. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  14. Z dependence of the N=152 deformed shell gap: In-beam γ-ray spectroscopy of neutron-rich 245,246Pu

    International Nuclear Information System (INIS)

    Makii, H.; Ishii, T.; Asai, M.; Tsukada, K.; Toyoshima, A.; Ichikawa, S.; Matsuda, M.; Makishima, A.; Kaneko, J.; Toume, H.; Shigematsu, S.; Kohno, T.; Ogawa, M.

    2007-01-01

    We have measured in-beam γ rays in the neutron-rich 246 Pu 152 and 245 Pu 151 nuclei by means of 244 Pu( 18 O, 16 O) 246 Pu and 244 Pu( 18 O, 17 O) 245 Pu neutron transfer reactions, respectively. The γ rays emitted from 246 Pu ( 245 Pu) were identified by selecting the kinetic energy of scattered 16 O ( 17 O) detected by Si ΔE-E detectors. The ground-state band of 246 Pu was established up to the 12 + state. We have found that the shell gap of N=152 is reduced in energy with decreasing atomic number by extending the systematics of the one-quasiparticle energies in N=151 nuclei into those in 245 Pu. This reduction of the shell gap clearly affects the 2 + energy of the ground-state band of 246 Pu

  15. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  16. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys.

    Science.gov (United States)

    Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A

    2015-05-01

    To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Construction and validation of a Tamil logMAR chart.

    Science.gov (United States)

    Varadharajan, Srinivasa; Srinivasan, Krithica; Kumaresan, Brindha

    2009-09-01

    To design, construct and validate a new Tamil logMAR visual acuity chart based on current recommendations. Ten Tamil letters of equal legibility were identified experimentally and were used in the chart. Two charts, one internally illuminated and one externally illuminated, were constructed for testing at 4 m distance. The repeatability of the two charts was tested. For validation, the two charts were compared with a standard English logMAR chart (ETDRS). When compared to the ETDRS chart, a difference of 0.06 +/- 0.07 and 0.07 +/- 0.07 logMAR was found for the internally and externally illuminated charts respectively. Limits of agreement between the internally illuminated Tamil logMAR chart and ETDRS chart were found to be (-0.08, 0.19), and (-0.07, 0.20) for the externally illuminated chart. The test - retest results showed a difference of 0.02 +/- 0.04 and 0.02 +/- 0.06 logMAR for the internally and externally illuminated charts respectively. Limits of agreement for repeated measurements for the internally illuminated Tamil logMAR chart were found to be (-0.06, 0.10), and (-0.10, 0.14) for the externally illuminated chart. The newly constructed Tamil logMAR charts have good repeatability. The difference in visual acuity scores between the newly constructed Tamil logMAR chart and the standard English logMAR chart was within acceptable limits. This new chart can be used for measuring visual acuity in the literate Tamil population.

  18. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  19. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  20. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  1. Building Virtual Mars

    Science.gov (United States)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  2. Bibliography on Hot Isostatic Pressing (HIP) Technology

    Science.gov (United States)

    1992-11-01

    Nimonic API, Rene’ 77 2. MA753, IN-853 7 3. C-103,WC-103 4. Alloy 454, PWA 1480 5. Mar- M250 , Maraging (250) 6. Rene 150, PA 101 (low C) 7. Inconel 718...Pressure Welding Parameters Bryant. W. A. Weld J 54 (12), 433-S-435-S, 1975 ( AD-DI02 316 Key Words: AISI 4340. MAR- M250 . AISI 1020, 9Ni-4Co steel. Inconel...creep rupture. hot corrosion, oxidation, grain size, thermomechanical treatment MAR- M250 1. Microstructures and Mechanical Properties of HIP

  3. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  4. Development of the small-molecule antiviral ST-246® as a smallpox therapeutic

    Science.gov (United States)

    Grosenbach, Douglas W; Jordan, Robert; Hruby, Dennis E

    2011-01-01

    Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246® (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the ‘animal rule’). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency. PMID:21837250

  5. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  6. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    Science.gov (United States)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  7. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  8. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  9. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Science.gov (United States)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  10. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  11. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  12. Life on Mars

    International Nuclear Information System (INIS)

    Venkatavaradan, V.S.

    1976-01-01

    The miniature biological laboratory of the Viking-1 lander had three experiments to determine, whether the micro-organisms of the Martian soil has: (1) photo-synthetic activity (2) metabolic process activity (utilisation of nutrients) and (3) respiration. The Martian soil was warmed in an incubator and exposed to carbon dioxide (containing C 14 ) in presence of xenon arc lamp to simulate the Sun. If the Martian organisms of the expected type are present in the soil, the gas released during the heating would be radio-active which can be detected by a radiation counter. The three experiments had given positive signals denoting the presence of micro-organisms on the surface of Mars. The presence of superoxide in the soil would be poisonous to life but it is likely that organisms may survive deeper below the soil, where the chemicals would not be formed. The Viking-2 results also offered similar results. However, the basic question whether there is life on Mars still remains unanswered. (K.M.)

  13. 8 CFR 246.4 - Immigration judge's authority; withdrawal and substitution.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Immigration judge's authority; withdrawal... IMMIGRATION REGULATIONS RESCISSION OF ADJUSTMENT OF STATUS § 246.4 Immigration judge's authority; withdrawal and substitution. In any proceeding conducted under this part, the immigration judge shall have...

  14. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    trajectory with Mars, on 20 December. It will enter the Martian atmosphere on Christmas day, after five days’ ballistic flight. As it descends, the lander will be protected in the first instance by a heat-shield; two parachutes will then open to provide further deceleration. With its weight down to 30 kg at most, it will land in an equatorial region known as Isidis Planitia. Three airbags will soften the final impact. This crucial phase in the mission will last just ten minutes, from entry into the atmosphere to landing. Meanwhile, the Mars Express probe proper will have performed a series of manœuvres through to a capture orbit. At this point its main motor will fire, providing the deceleration needed to acquire a highly elliptical transition orbit. Attaining the final operational orbit will call for four more firings. This 7.5 hour quasi-polar orbit will take the probe to within 250 km of the planet. Getting to know Mars - inside and out Having landed on Mars, Beagle 2 - named after HMS Beagle, on which Charles Darwin voyaged round the world, developing his evolutionary theory - will deploy its solar panels and the payload adjustable workbench, a set of instruments (two cameras, a microscope and two spectrometers) mounted on the end of a robot arm. It will proceed to explore its new environment, gathering geological and mineralogical data that should, for the first time, allow rock samples to be dated with absolute accuracy. Using a grinder and corer, and the “mole”, a wire-guided mini-robot able to borrow its way under rocks and dig the ground to a depth of 2 m, samples will be collected and then examined in the GAP automated mini-laboratory, equipped with 12 furnaces and a mass spectrometer. The spectrometer will have the job of detecting possible signs of life and dating rock samples. The Mars Express orbiter will carry out a detailed investigation of the planet, pointing its instruments at Mars for between half-an-hour and an hour per orbit and then, for the

  15. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  16. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  17. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  18. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  19. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Science.gov (United States)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-01-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  20. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Science.gov (United States)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  1. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  2. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  3. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  4. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  5. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  6. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques

    Science.gov (United States)

    Ivanov, Anton; Oberst, Jürgen; Yershov, Vladimir; Muller, Jan-Peter; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004, the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25 m nadir images) with 87% coverage with more than 65% useful for stereo mapping. NASA began imaging the surface of Mars, initially from flybys in the 1960s and then from the first orbiter with image resolution less than 100 m in the late 1970s from Viking Orbiter. The most recent orbiter, NASA MRO, has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈20 cm) and ≈5% from CTX (≈6 m) in stereo. Within the iMars project (http://i-Mars.eu), a fully automated large-scale processing (“Big Data”) solution is being developed to generate the best possible multi-resolution DTM of Mars. In addition, HRSC OrthoRectified Images (ORI) will be used as a georeference basis so that all higher resolution ORIs will be co-registered to the HRSC DTMs (50-100m grid) products generated at DLR and, from CTX (6-20 m grid) and HiRISE (1-3 m grids) on a large-scale Linux cluster based at MSSL. The HRSC products will be employed to provide a geographic reference for all current, future and historical NASA products using automated co-registration based on feature points and initial results will be shown here. In 2015, many of the entire NASA and ESA orbital images will be co-registered and the updated georeferencing

  7. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    Science.gov (United States)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  8. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  9. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  10. Study of the pyrophoric characteristics of uranium-iron alloys

    International Nuclear Information System (INIS)

    Duplessis, X.

    2000-01-01

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 μm and 1000 μm diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  11. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    Science.gov (United States)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  12. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    ferritic alloys showing slight decreases (Grade 92) or significant decreases (14YWT) in fracture toughness at elevated temperatures, the fracture toughness of the austenitic stainless steels and Ni-base superalloys were not strongly dependent upon the test temperatures. The fracture toughness of the alloys at the LWR-relevant temperatures was estimated by averaging the toughness values within 250– 350°C, which suggested the fracture toughness of the alloys in a descending order as 316L (752±98 MPa√m), 310 (513±66 MPa√m), 718A (313±43 MPa√m), 690 (267±48 MPa√m), 725 (218±55 MPa√m), X750 (145±16 MPa√m), Grade 92 (112±12 MPa√m), and 14YWT (63±3 MPa√m). Tearing modulus of the alloys was analyzed in the meantime, which were not strongly dependent upon the test temperatures. The high-strength alloys 718A, 725, X750, and 14YWT had the lowest tearing modulus, ranging from ~45 to ~7. Alloy 690 exhibited the highest tearing modulus on the order of 450, followed by 316L and 310 on the order of 260. Grade 92 had a noticeably lower tearing modulus on the order of 70.

  13. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    OpenAIRE

    Mohamadreza Etminanfar; Jafar Khalil-Allafi; Kiyumars Jalili

    2017-01-01

    In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone)–poly(ethylene glycol) bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized fl...

  14. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  15. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  16. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  17. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  18. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.

    Science.gov (United States)

    Wang, Pan; Feng, Yan; Liu, Fengchao; Wu, Lihong; Guan, Shaokang

    2015-06-01

    The Ti-15Zr-xCr (0≤x≤10, wt.%) alloys were investigated to develop new biomedical materials. It was found that the phase constitutions and mechanical properties strongly depended on the Cr content. The Ti-15Zr alloy was comprised of α' phase and a small fraction of β phase was detected with adding 1wt.% Cr. With addition of 5wt.% or more, the β phase was completely retained. In addition, the ω phase was detected in the Ti-15Zr-5Cr alloy and Ti-15Zr-7Cr alloy which exhibited the highest compressive Young's modulus and the lowest ductility. On the other hand, all the Ti-15Zr-xCr alloys without ω phase exhibited high microhardness, high yield strength and superior ductility. Furthermore, the elastic energy of Ti-15Zr-10Cr alloy (5.89MJ/m(3)) with only β phase and that of Ti-15Zr-3Cr alloy (4.04MJ/m(3)) with α' phase and small fraction of β phase was higher than the elastic energy of c.p. Ti (1.25MJ/m(3)). This study demonstrated that Ti-15Zr-3Cr alloy and Ti-15Zr-10Cr alloy with superior mechanical properties are potential materials for biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  19. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    Science.gov (United States)

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  20. The CanMars Analogue Mission: Lessons Learned for Mars Sample Return

    Science.gov (United States)

    Osinski, G. R.; Beaty, D.; Battler, M.; Caudill, C.; Francis, R.; Haltigin, T.; Hipkin, V.; Pilles, E.

    2018-04-01

    We present an overview and lessons learned for Mars Sample Return from CanMars — an analogue mission that simulated a Mars 2020-like cache mission. Data from 39 sols of operations conducted in the Utah desert in 2015 and 2016 are presented.

  1. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility\

    Czech Academy of Sciences Publication Activity Database

    Kopová, Ivana; Stráský, J.; Harcuba, P.; Landa, Michal; Janeček, M.; Bačáková, Lucie

    2016-01-01

    Roč. 60, Mar 1 (2016), s. 230-238 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GAP107/12/1025 Institutional support: RVO:67985823 ; RVO:61388998 Keywords : elastic modulus * alloy hardening * cell growth * osteogenic cell differentiation * bone implants Subject RIV: EI - Biotechnology ; Bionics; BI - Acoustics (UT-L) Impact factor: 4.164, year: 2016

  2. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  3. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    Science.gov (United States)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  4. Effects of LaB{sub 6} additions on the microstructure and mechanical properties of a sintered and hot worked P/M Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jia; Gabbitas, Brian, E-mail: briang@waikato.ac.nz; Yang, Fei; Raynova, Stella; Lu, Huiyang

    2016-07-25

    A trace amount of LaB{sub 6} powder was added to P/M Ti and Ti–6Al–4V alloy to improve mechanical properties and refine the microstructure. After sintering, TiB whiskers and La{sub 2}O{sub 3} dispersoids had formed in the microstructure. In a CP Ti alloy, the generation of secondary phases leads to a much refined microstructure, but the alignment of TiB whiskers led to a variation in mechanical properties. Open die forging (ODF) or powder compact extrusion (PCE) was carried out on sintered Ti–6Al–4V alloy to further improve the mechanical properties. This caused severe deformation and re-alignment of the TiB whiskers. Comparing the properties of hot worked Ti–6Al–4V alloy and Ti–6Al–4V alloy with boron additions, an addition of LaB{sub 6} leads to slightly lower strength but gives significant better ductility. - Highlights: • LaB{sub 6} powder was added to sintered and hot worked Ti and Ti–6Al–4V alloy. • TiB whiskers and La{sub 2}O{sub 3} dispersoids formed in the microstructure. • Different alignments of TiB{sub w} led to a variation in mechanical properties. • Hot working caused severe deformation and re-alignment of TiB{sub w}. • An addition of LaB{sub 6} is better than pure boron additions.

  5. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  6. Estimating Collisionally-Induced Escape Rates of Light Neutrals from Early Mars

    Science.gov (United States)

    Gacesa, M.; Zahnle, K. J.

    2016-12-01

    Collisions of atmospheric gases with hot oxygen atoms constitute an important non-thermal mechanism of escape of light atomic and molecular species at Mars. In this study, we present revised theoretical estimates of non-thermal escape rates of neutral O, H, He, and H2 based on recent atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission and related theoretical models. As primary sources of hot oxygen, we consider dissociative recombination of O2+ and CO2+ molecular ions. We also consider hot oxygen atoms energized in primary and secondary collisions with energetic neutral atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases1,2. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism3. This approach allows us to construct distributions of vibrationally and rotationally excited states and predict the products' emission spectra. In addition, we estimate formation rates of excited, translationally hot hydroxyl molecules in the upper atmosphere of Mars. The escape rates are calculated from the kinetic energy distributions of the reaction products using an enhanced 1D model of the atmosphere for a range of orbital and solar parameters. Finally, by considering different scenarios, we estimate the influence of these escape mechanisms on the evolution of Mars's atmosphere throughout previous epochs and their impact on the atmospheric D/H ratio. M.G.'s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Universities Space Research Association under contract with NASA. 1N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014) 2M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", arXiv:1607

  7. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    International Nuclear Information System (INIS)

    Lu, Wei; Asher, Sanford A.; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-01-01

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  8. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Asher, Sanford A., E-mail: asher@pitt.edu [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min, E-mail: minxue@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yi, Da [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2016-10-05

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  9. 25 CFR 1000.246 - Must an AFA that contains a construction project or activity incorporate provisions of Federal...

    Science.gov (United States)

    2010-04-01

    ... as possible in the construction process. If Tribal construction standards are consistent with or... 25 Indians 2 2010-04-01 2010-04-01 false Must an AFA that contains a construction project or activity incorporate provisions of Federal construction standards? 1000.246 Section 1000.246 Indians OFFICE...

  10. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  11. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    Science.gov (United States)

    Foing, Bernard H.

    We give an update on the astrobiology results from a series of field research campaigns (ILEWG EuroMoonMars) in the extreme environment of the Utah desert. These are relevant to prepare future lunar landers and polar sample return missions, interpret Moon-Mars data (eg SMART1, LRO, Mars Express, MRO, MER, MSL), study habitability and astrobiology in Moon-Mars environments, or to test human-robotic surface EVA or base operations. In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station near Hanksville Utah, a suite of instruments and techniques [0, 1, 2, 9-11] including sample collection, context imaging from re-mote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geo-chemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Results: Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [0-9] to new measurements from 2010-2013 campaigns relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. We acknowledge team members and supporting institutes: B.H. Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), I. Schlacht (2), K. Nebergall (6), M. Battler (6, 7), H

  12. Gas-liquid reactive crystallization kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene in the semi-batch procedure

    Science.gov (United States)

    Liu, Ruqin; Huang, Ming; Yao, Xiaolu; Chen, Shuang; Wang, Shucun; Suo, Zhirong

    2018-06-01

    2,4,6-Triamino-1,3,5-trinitrobenzene is the attractive insensitive high energetic material used extensively in the military and civil fields. Combined with the double-films theory, the global gas-liquid chemical reaction kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene was developed by means of the infinitesimal material balance calculation. The raw material concentration and reactive temperature effects on the crystallization of 2,4,6-triamino-1,3,5-trinitrobenzene were investigated by the batch experiments. The reactive crystallization kinetics associated ammonia feeding rate of 2,4,6-triamino-1,3,5-trinitrobenzene, including nucleation as well as crystal growth, was systematically investigated in the heterogonous semi-batch procedure. The nucleation and crystal growth kinetic exponents were estimated by the linear least-squares method. The crystallization kinetic results indicated that nucleation rate strongly increased but liner growth rate decreased with the increasing of ammonia feeding rate. In terms of manufacturing coarse 2,4,6-triamino-1,3,5-trinitrobenzene, it was found that a slow ammonia feeding rate and a low raw material concentration were feasible under the present experimental conditions.

  13. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  14. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    Science.gov (United States)

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  15. Mirror Advanced Reactor Study (MARS): executive summary and overview

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes ( 2 ), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li 17 Pb 83 ) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000 0 C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter

  16. History of Mars

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The origin and early history of Mars and the relationship between Mars and the other planets are reviewed. The solar system formation and planetary differentiation are examined using data from planetary missions. Different views of Mars are presented, showing how ideas about the planet have changed as the amount of available observational data has increased. Viking aerography and surface characterization are discussed, including the nature of specific atmospheric components and the implications of surface phenomena. Models for the planetary formation and accretion processes are considered. The value of future missions to Mars is stressed

  17. Improved Mo-Re VPS Alloys for High-Temperature Uses

    Science.gov (United States)

    Hickman, Robert; Martin, James; McKechnie, Timothy; O'Dell, John Scott

    2011-01-01

    Dispersion-strengthened molybdenum- rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications. The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion- strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 m, ZrO2 particles having sizes of about 1 m, HfO2 particles having sizes <45 m, or HfN particles having sizes <1 m. These materials were chosen for evaluation on the basis of previously published thermodynamic stability data. For comparison, Mo-Re feedstock powders without dispersoids were also prepared.

  18. 100 New Impact Crater Sites Found on Mars

    Science.gov (United States)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  19. Investigating the Acid Failure of Aluminium Alloy in 2 M Hydrochloric Acid Using Vernonia amygdalina

    Directory of Open Access Journals (Sweden)

    Olugbenga A. Omotosho

    2012-04-01

    Full Text Available The acid failure of aluminium alloy in 2 M hydrochloric acid solution in the presence of Vernonia amygdalina extract was investigated using gasometric technique. Aluminium alloy coupons of dimension 4 cm by 1 cm were immersed in test solutions of free acid and also those containing extract volumes of 2, 3, 4 and 5 cm3 at ambient temperature for 30 minutes. The volumes of hydrogen gas evolved as a result of the rate of reaction were recorded and analyzed. Analysis revealed that maximum inhibitor efficiency which corresponds to the lowest corrosion rate was obtained at optimum inhibitor volumes of 5 cm3, with reduction in the corrosion rate observed to follow in order of increasing extract volumes. Adsorption study revealed that Temkin isotherm best described the metal surface interaction with the extract phytochemicals, with 12 minutes becoming the best exposure time for the phytochemicals to adsorb to the metal surface at all volumes. Statistical modelling of the corrosion rate yielded an important relationship suitable for estimating corrosion rate values once volumes of the extract is known. Microstructural studies, showed an indirect relationship between crack growth rates and extract volumes, while consistency of the irregular intermetallic phases increases with increasing extract volumes.

  20. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    Science.gov (United States)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  1. Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  2. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  3. Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion.

    Science.gov (United States)

    Chen, Jung-Hsuan; Shen, Yen-Chen; Chao, Chuen-Guang; Liu, Tzeng-Feng

    2017-11-16

    Mg-5wt.% Sn alloy is often used in portable electronic devices and automobiles. In this study, mechanical properties of Mg-5wt.% Sn alloy processed by Equal Channel Angular Extrusion (ECAE) were characterized. More precisely, its hardness and wear behavior were measured using Vickers hardness test and a pin-on-disc wear test. The microstructures of ECAE-processed Mg-Sn alloys were investigated by scanning electron microscope and X-ray diffraction. ECAE process refined the grain sizes of the Mg-Sn alloy from 117.6 μm (as-cast) to 88.0 μm (one pass), 49.5 μm (two passes) and 24.4 μm (four passes), respectively. Meanwhile, the hardness of the alloy improved significantly. The maximum wear resistance achieved in the present work was around 73.77 m/mm³, which was obtained from the Mg-Sn alloy treated with a one-pass ECAE process with a grain size of 88.0 μm. The wear resistance improvement was caused by the grain size refinement and the precipitate of the second phase, Mg₂Sn against the oxidation of the processed alloy. The as-cast Mg-Sn alloy with the larger grain size, i.e., 117.6 μm, underwent wear mechanisms, mainly adhesive wear and abrasive wear. In ECAE-processed Mg-Sn alloy, high internal energy occurred due to the high dislocation density and the stress field produced by the plastic deformation, which led to an increased oxidation rate of the processed alloy during sliding. Therefore, the oxidative wear and a three-body abrasive wear in which the oxide debris acted as the three-body abrasive components became the dominant factors in the wear behavior, and as a result, reduced the wear resistance in the multi-pass ECAE-processed alloy.

  4. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  5. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  6. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  7. La pintura como metáfora y máscara: la concepción del arte en María Zambrano

    Directory of Open Access Journals (Sweden)

    Heura Posada

    2012-03-01

    Full Text Available En este artículo se aborda el pensamiento de María Zambrano como una losofía inspiradora para la ciudadanía de hoy. Dentro de los múltiples temas tratados por la autora, la pintura gura entre ellos como “un lugar privilegiado donde detener la mirada”. La mirada, un aspecto primordial para la autora, se entrena y nos revela aspectos de la vida que no podemos retener sin detener el tiempo en la contemplación de ciertas imágenes, como para ella será la imagen de Santa Bárbara del Maestro de Flémalle en el mueso del Prado. Años más tarde, después de su largo exilio, María Zambrano escribe sobre lo que ha representado para ella mirar a Bárbara “en su Ser, estando en ella misma”. La pintura, nos dice Zambrano, es agua y “nace de las cavernas, en la noche perenne, al resplandor desigual del fuego, adherida a la roca desnuda”. Pensar y contemplar la pintura es hacerlo acerca del origen de lo humano, del trabajo y de su condición de posibilidad, así como de su porvenir. El tiempo para contemplar la pintura nos devuelve un tiempo humanizado donde es posible el pensamiento y la proyección, con sentido, de la vida humana. Desde el pensamiento de la autora podemos hacer conexiones hacia otros pensadores, a menudo más conocidos y difundidos que ella, a través de algunos conceptos como el tiempo, la persona, la razón (poética, la democracia o el arte.

  8. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  9. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  10. Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA) as Critical In Situ Investigation for Targeting Mars Returned Samples

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team

    2018-04-01

    SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.

  11. 1,3,5-Triazine-2,4,6-triyltrisulfamic acid (TTSA)

    Indian Academy of Sciences (India)

    Melamine reacted with chlorosufonic acid (ClSO3H) to form a new sulfamic-type acid, 1,3,5-triazine-2,4,6-triyltrisulfamic acid (TTSA). Both nitrosation of secondary amines and oxidation of urazoles were accomplished by using TTSA/NaNO2 system under mild and heterogeneous conditions with good to excellent yields.

  12. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    Science.gov (United States)

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    1996-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide. in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  13. Marés, fases principais da lua e bebês

    OpenAIRE

    Silveira, Fernando Lang da

    2003-01-01

    Os mecanismos responsáveis pelas marés são discutidos, utilizando-se uma matemática acessível a alunos de ensino médio; demonstra-se que tanto a Lua, quanto o Sol são responsáveis pelos efeitos de maré nos oceanos. Apesar da força gravitacional do Sol na Terra ser aproximadamente 200 vezes maior do que a da Lua, os efeitos solares de maré são aproximadamente 2 vezes menores do que os lunares. Uma crença popular muito difundida afirma que o número de nascimentos de bebês está correlacionado co...

  14. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  15. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  16. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  17. Stress corrosion cracking of nickel alloys in bicarbonate and chloride solutions

    International Nuclear Information System (INIS)

    Ares, A. E.; Carranza, R. M.; Giordano, C. M.; Zadorozne, N. S.; Rebak, R.B.

    2013-01-01

    Alloy 22 is one of the candidates for the manufacture of high level radioactive waste containers. These containers provide services in natural environments characterized by multi-ionics solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate at temperatures above 60°C and applied potentials around +400 mVSCE are necessary in order to produce cracking, . This susceptibility may be associated to the instability of the passive film formed and to the formation of an anodic current peak in the polarization curves in these media. Until now, it is unclear the role played by each alloying element (Ni, Cr or Mo) in the SCC susceptibility of Alloy 22 in these media The aim of this work is to evaluate the SCC susceptibility of nickel-based alloys in media containing bicarbonate and chloride ions, at high temperature. Slow Strain Rate Testing (SSRT) was conducted to samples of different alloys: 22 (Ni-Cr-Mo), 600 (Ni-Cr-Fe), 800H (Ni-Fe-Cr) y 201 (99.5% Ni).This tests were conducted in 1.1 mol/L NaHCO 3 +1.5 mol/L NaCl a 90°C and different applied potentials (+200mVSCE,+300 mVSCE, +400 mVSCE). These results were complemented with those obtained in a previous work, where we studied the anodic electrochemical behavior of nickel base alloys under the same conditions. It was found that alloy 22 showed a current peak in a potential range between +200 mVSCE and +300 mVSCE when immersed in bicarbonate ions containing solutions. This peak was attributed to the presence of chromium in the alloys. The SSRT showed that only alloy 22 has a clear indication of stress corrosion cracking. The current results suggested that the presence of an anodic peak in the polarization curves was not a sufficient condition for cracking. (author)

  18. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  19. Integral design method for simple and small Mars lander system using membrane aeroshell

    Science.gov (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  20. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  1. Quick trips to Mars

    International Nuclear Information System (INIS)

    Hornung, R.

    1991-01-01

    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed

  2. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  3. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  4. Sistemas de información para el centro médico “María de los Angeles” de Juliaca

    OpenAIRE

    Laura Coaquira, Rossbelú

    2015-01-01

    Nuestra investigación abarca el sistema de información, del centro Médico María de los Ángeles para asegurar la administración de las actividades que este presenta, con la finalidad de adaptarse a los cambios de un contexto cuya característica principal es, precisamente, la innovación conjugada con la tecnología. Para cumplir este rol, el sistema de información constituye la pieza fundamental de un sistema de regulación y control aplicado al sistema-objeto, es decir, al centro médico. Este ro...

  5. Burfellshraun - a terrestrial analogue to recent volcanism on mars

    DEFF Research Database (Denmark)

    Haack, Henning; Dall, Jørgen; Rossi, Matti

    2004-01-01

    The up to 2000 km long and very young lava flows from Elysium Planitia to Amazonis Planitia on Mars often include km-sized rafting plates. We have studied the unique Burfellshraun lava field east of lake Myvatn in Iceland that, although on a much smaller scale, share many characteristics of the M...... of the formation of Burfellshraun provides new constraints and insight into the extensive recent volcanic activity on Mars....... of the Martian flows. Up to km-sized plates have flowed several km downsteam from the vent area. Our remote sensing studies and field work suggest that the type of eruption seen in Burfellshraun can be found nowhere else on Earth. The only similar lava flows that we have found are those on Mars. Our study...

  6. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  7. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  8. Radiation stability of chromium low alloys

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.

    1990-01-01

    Radiation effect on the behaviour of mechanical properties and structure of chromium low alloys such as VKh-2K, KhP-3, VKhM in the wide range of temperatures and neutron fluences is studied. Radiation stability of the alloys is shown to be limited by low-temperature radiation embrittlement (LTRE), caused by radiation hardening as a result of formation of radiation-induced defects such as dislocation loops and vacancy voids in the structure. The methods for prevention LTRE of chromium alloys are suggested. 8 refs.; 8 figs

  9. Scaling of light emission from detonating bare Composition B, 2,4,6-trinitrotoluene [C7H5(NO2)3], and PE4 plastic explosive charges

    CSIR Research Space (South Africa)

    Mostert, FJ

    2011-10-01

    Full Text Available and configuration. In this study, the emission characteristics at wavelengths between 650 and 940 nm were experimentally investigated for cylindrical bare Composition B, 2,4,6-trinitrotoluene [C7H5(NO2)3], and PE4 plastic explosive charges in the mass (M) range of 0...

  10. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution

    International Nuclear Information System (INIS)

    Chen, Jian; Wang, Jianqiu; Han, Enhou; Dong, Junhua; Ke, Wei

    2007-01-01

    The corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution at the corrosion potential (E corr ) was investigated using electrochemical impedance spectroscopy (EIS), environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results showed that when the immersion time was less than 18th, general corrosion occurred on the surface and the main corrosion products were hydroxides and sulfates. The film coverage effect was the main mechanism for the corrosion process of AZ91 alloy. At this stage, the matrix had a better corrosion resistance. With the increasing immersion time, pitting occurred on the surface. At this stage, the corrosion process was controlled by three surface state variables: the area fraction θ 1 of the region controlled by the formation of Mg(OH) 2 , the area fraction θ 2 of the region controlled by the precipitation of MgAl 2 (SO 4 ) 4 .2H 2 O, and the metastable Mg + concentration C m

  11. Guidelines for 2008 MARS exercise

    CERN Multimedia

    HR Department

    2008-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://cern.ch/hr-dept/ https://cern.ch/hr-eguide/mars/mars.asp You will find on these pages: MARS procedures including the MARS timetable for proposals and decisions; Regulations with links to the scheme’s statutory basis; Frequently Asked Questions; Useful documents with links to relevant documentation; e.g. mandate of the Senior Staff Advisory Committee (SSAC); Related links and contacts. HR Department Tel. 73566

  12. New insights on the collisional escape of light neutrals from Mars

    Science.gov (United States)

    Gacesa, Marko; Zahnle, Kevin

    2017-04-01

    Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).

  13. Dune-Yardang Interactions in Becquerel Crater, Mars

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.

    2018-02-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  14. Dune-Yardang Interactions in Becquerel Crater, Mars.

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A

    2018-01-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  15. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  16. Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging

    Science.gov (United States)

    Keszthelyi, L.P.; Jaeger, W.L.; Dundas, C.M.; Martinez-Alonso, S.; McEwen, A.S.; Milazzo, M.P.

    2010-01-01

    We provide an overview of features indicative of the interaction between water and lava and/or magma on Mars as seen by the High Resolution Imaging Science Experiment (HiRISE) camera during the Primary Science Phase of the Mars Reconnaissance Orbiter (MRO) mission. The ability to confidently resolve meter-scale features from orbit has been extremely useful in the study of the most pristine examples. In particular, HiRISE has allowed the documentation of previously undescribed features associated with phreatovolcanic cones (formed by the interaction of lava and groundwater) on rapidly emplaced flood lavas. These include "moats" and "wakes" that indicate that the lava crust was thin and mobile, respectively [Jaeger, W.L., Keszthelyi, L.P., McEwen, A.S., Dundas, C.M., Russel, P.S., 2007. Science 317, 1709-1711]. HiRISE has also discovered entablature-style jointing in lavas that is indicative of water-cooling [Milazzo, M.P., Keszthelyi, L.P., Jaeger, W.L., Rosiek, M., Mattson, S., Verba, C., Beyer, R.A., Geissler, P.E., McEwen, A.S., and the HiRISE Team, 2009. Geology 37, 171-174]. Other observations strongly support the idea of extensive volcanic mudflows (lahars). Evidence for other forms of hydrovolcanism, including glaciovolcanic interactions, is more equivocal. This is largely because most older and high-latitude terrains have been extensively modified, masking any earlier 1-10 m scale features. Much like terrestrial fieldwork, the prerequisite for making full use of HiRISE's capabilities is finding good outcrops.

  17. Superplastic Deformation of TC6 Alloy

    Directory of Open Access Journals (Sweden)

    DING Ling

    2016-12-01

    Full Text Available The superplastic tensile tests of TC6 alloy were conducted in the temperature range of 800-900℃ by using the maximum m value superplasticity deformation (Max m SPD method and the constant strain rate deformation method at the strain rate range of 0.0001-0.1 s-1. The stress-strain curve of the tensile tests was obtained and the microstructure near the fracture were analyzed by metallographic microscope. The result shows that the superplasticity of TC6 alloy is excellent, and the elongation increases first and then decreases with the increase of strain rate or temperature. When the temperature is 850℃ and strain rate is 0.001 s-1 at constant stain rate tensile tests, the elongation reaches up to 993%. However, the elongation using Max m SPD method at 850℃ is 1353%. It is shown that the material can achieve better superplasticity by using Max m SPD tensile compared to constant stain rate tensile under the same temperature. The superplastic deformation of TC6 alloy can enhance the dynamic recrystallization behavior significantly, the dynamic recrystallization behavior is promoted when strain rate and temperature are increased.

  18. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Science.gov (United States)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  19. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  20. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  1. Electroplating technologies of alloys

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, Seung Ho; Jeong, Hyun Kyu; Hwnag, Sung Sik; Seo, Yong Chil; Kim, Dong Jin; Seo, Moo Hong

    2001-12-01

    In localization of electrosleeving technique, there are some problems like the following articles. Firstly, Patents published by OHT have claimed Ni-P, Ni-B alloy plating and Mo, Mn Cr, W, Co as a pinning agent. Secondly, alloy platings have many restrictions. There are some method to get alloy plating in spite of the various restrictions. If current density increase above limiting current density in one of the metals, both of the metals discharge at the same time. The addition of surface active agent(sufactant) in the plating solution is one of the methods to get alloy plating. Alloy plating using pulse current easily controls chemical composition and structure of deposit. Ni-Fe alloy plating is known to exhibit anomalous type of plating behavior in which deposition of the less noble metal is favoured. Presence of hypophohphite ion can control the iron codeposition by changing the deposition mechanism. Hypophohphite suppresses the deposition of Fe and also promotes Ni. Composite plating will be considered to improve the strength at the high temperature. Addition of particle size of 10δ400μm makes residual stress compressive in plate layer and suppress the grain growth rate at the high temperature. Addition of particle makes suface roughness high and fracture stress low at high temperature. But, selection of the kinds of particle and control of additives amount overcome the problems above

  2. Influence of Friction Stir Welding (FSW on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys

    Directory of Open Access Journals (Sweden)

    Dudzik Krzysztof

    2016-09-01

    Full Text Available Friction welding associated with mixing the weld material (FSW - Friction Stir Welding is an alternative to MIG and TIG welding techniques for Al-alloys. This paper presents experimental results obtained from static tension tests on specimens made of AW-7020M and AW-7020 alloys and their joints welded by using FSW method carried out on flat specimens, according to Polish standards : PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Results of corrosion resistance tests are also presented. The tests were performed by using the electrochemical impedance spectroscopy (EIS. EIS measurement was conducted with the use of three-electrode system in a substitute sea water environment (3,5% NaCl - water solution. The impedance tests were carried out under corrosion potential. Voltage signal amplitude was equal to 10mV, and its frequency range - 100 kHz ÷ 0,1 Hz. Atlas 0531 EU&IA potentiostat was used for the tests. For the tested object an equivalent model was selected in the form of a substitute electric circuit. Results of the impedance spectroscopy tests are presented in the form of parameters which characterize corrosion process, as well as on Nyquist’s graphs together with the best-fit theoretical curve.

  3. Fatigue behavior of alloy 600 in sodium chloride solution at room temperature

    International Nuclear Information System (INIS)

    Ho, J.-T.; Yu, G.-P.

    2004-01-01

    Fatigue crack growth (FCG) rates of mill annealed Alloy 600 in NaCI solution were studied by a fracture mechanics test method. Compact tension (CT) specimens were tested under load control with a sinusoidal wave form, in accordance with ASTM specification E647-83, to investigate the effects of environment, load frequency (f), load ratio (R=Pmin/Pmax). The FCG rates of Alloy 600, R=0.1, f=1Hz, were quite similar in air, distilled water, and NaCI (0.6 M, 0.1 M, and 0.001 M) solution at room temperature. Environmental enhancement effect on the FCG rate of Alloy 600 was not significant in NaCI solution. Variations of the load frequency (0.03Hz-3Hz) did not influence the FCG rates of Alloy 600 significantly in air and 0.1 M NaCI solution. The FCG rates of Alloy 600 in air and 0.1 M NaCI solution increased with increasing the load ratio. Compared with the corrosion effects, test results showed that the mechanical effects dominated on the FCG rates of Alloy 600 in chloride solution at room temperature. The SEM fractographs showed that significant striations and transgranular fracture modes were observed on tested specimens. (author)

  4. 'Mars-shine'

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three

  5. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  6. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  7. Influence of microstructure on the accelerated corrosion in Zr-Nb alloys

    International Nuclear Information System (INIS)

    Muller, S; Lanzani, L

    2012-01-01

    The influence of microstructure on the accelerated corrosion of Zr-1%Nb and Zr-2.5%Nb (CANDU's pressure tube material) has been studied. The behavior of Zircaloy-4 was also studied in order to compare the Zr-Nb alloys with an alloy that does not have niobium as an alloying element. The corrosion tests were carried out in LiOH 0.1M at 340 o C, in LiOH 1M at the same temperature and in steam at 400 o C. The results showed that the behavior of Zr-Nb alloys in steam at 400 o C is similar to that of Zircaloy-4 in this medium. However, Zr-Nb alloys are more sensitive than Zircaloy-4 to the presence of LiOH. The results suggest that the niobium concentration in the matrix is the parameter that defines the oxidation rate in Zr-Nb alloys, while the presence of second phases in these alloys (β--Zr/β-Nb/Zr-Nb-Fe) could be related with the growth of non-protective oxides in LiOH solutions. In LiOH 1M, the corrosion resistance of Zr-Nb alloys is similar to that of Zircaloy-4, except for the Zr-1Nb martensitic material which showed a sharp increase in the oxidation rate in this medium (author)

  8. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms.

    Science.gov (United States)

    Aissa, Joel; Boos, Johannes; Sawicki, Lino Morris; Heinzler, Niklas; Krzymyk, Karl; Sedlmair, Martin; Kröpil, Patric; Antoch, Gerald; Thomas, Christoph

    2017-11-01

    The purpose of this study was to evaluate the impact of three novel iterative metal artefact (iMAR) algorithms on image quality and artefact degree in chest CT of patients with a variety of thoracic metallic implants. 27 postsurgical patients with thoracic implants who underwent clinical chest CT between March and May 2015 in clinical routine were retrospectively included. Images were retrospectively reconstructed with standard weighted filtered back projection (WFBP) and with three iMAR algorithms (iMAR-Algo1 = Cardiac algorithm, iMAR-Algo2 = Pacemaker algorithm and iMAR-Algo3 = ThoracicCoils algorithm). The subjective and objective image quality was assessed. Averaged over all artefacts, artefact degree was significantly lower for the iMAR-Algo1 (58.9 ± 48.5 HU), iMAR-Algo2 (52.7 ± 46.8 HU) and the iMAR-Algo3 (51.9 ± 46.1 HU) compared with WFBP (91.6 ± 81.6 HU, p algorithms, respectively. iMAR-Algo2 and iMAR-Algo3 reconstructions decreased mild and moderate artefacts compared with WFBP and iMAR-Algo1 (p algorithms led to a significant reduction of metal artefacts and increase in overall image quality compared with WFBP in chest CT of patients with metallic implants in subjective and objective analysis. The iMARAlgo2 and iMARAlgo3 were best for mild artefacts. IMARAlgo1 was superior for severe artefacts. Advances in knowledge: Iterative MAR led to significant artefact reduction and increase image-quality compared with WFBP in CT after implementation of thoracic devices. Adjusting iMAR-algorithms to patients' metallic implants can help to improve image quality in CT.

  9. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  10. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  11. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    Science.gov (United States)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  12. ''Fast track'' lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    International Nuclear Information System (INIS)

    Borowski, S.K.; Alexander, S.W.

    1993-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportion system (STS) based on nuclear thermal rocket (NTR) technology. A ''standardized'' set of engine and stage components are identified and used in a ''building block'' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I sp ) of 900 seconds, and an engine thrust-to-weight ratio of 4.3. For the National Aeronautics and Space Administration's (NASA) First Lunar Outpost (FLO) mission, an expendable NTR stage powered by two such engines can deliver ∼96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of ∼198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH 2 ) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH 2 capacity to ∼20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH 2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The ''modular'' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions

  13. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  14. The microstructures of ordered alloys

    International Nuclear Information System (INIS)

    Sarma, G.M.K.; Ranganathan, S.

    1977-01-01

    The phenomenon of ordering in substitutional alloys confers special properties on them by introducing various types of structures and structural defects. Some of the important structural defects (translational and rotational antiphase boundaries, dissociated antiphase boundaries and superdislocations) and their observation by various microscopical methods, with particular emphasis on the applications of the electron microscope are described with illustrations drawn from the studies on nickel-molybdenum and nickel-tungsten alloys. (M.G.B.)

  15. Complete dissipation of 2,4,6-trinitrotoluene by in-vessel composting

    NARCIS (Netherlands)

    Gümüscü, B.; Cekmecelioglu, Deniz; Tekinay, Turgay

    2015-01-01

    We demonstrate complete removal of 2,4,6-trinitrotoluene (TNT) in 15 days using an in-vessel composting system, which is amended with TNT-degrading bacteria strains. A mixture of TNT, food waste, manure, wood chips, soil and TNT-degrading bacteria consortium are co-composted for 15 days in an

  16. Servicios auxiliares asociados al transporte marítimo

    OpenAIRE

    Godes Gallardo, Daniel

    2014-01-01

    En este proyecto, mi intención es profundizar en los servicios auxiliares asociados al transporte marítimo, como su título indica. En él haré referencia a todos los servicios que el transporte marítimo en sí, y más en concreto los buques, utilizan cada vez que entran a puerto.En algunos casos, estos servicios no se prestan en las instalaciones del puerto, como pueden ser los servicios exclusivospara la explotación comercial del buque. Hay que tener en cuenta que, se podría hacer un trabajo...

  17. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  18. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  19. Considerations for Integrating Women into Closed Occupations in the U.S. Special Operations Forces

    Science.gov (United States)

    2015-05-01

    dysregulation can result in altered stress reactivity to subsequent life stressors and can be inherited by the next generation (Francis et al., 1999; Champagne ...of Management Reviews, Vol. 11, No. 2, 2009, pp. 223–246. Champagne , F. A., D. D. Francis, A. Mar, and M. J. Meaney, “Variations in Maternal Care in...Substance-Abusing Women,” Harvard Review of Psychiatry, Vol. 17, No. 2, 2009, pp. 103-119. Francis, D. D., F. A. Champagne , D. Liu, and M. J. Meaney

  20. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    Science.gov (United States)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  1. Evaluation of neutron cross sections for 244Cm, 246Cm, and 248Cm

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McCrosson, F.J.; Gettys, W.E.

    1977-01-01

    An evaluation of neutron cross sections for 244 246 248 Cm using the ENDF/B format is presented. Primary data input included differential measurements, integral measurements, nuclear model calculations, and reactor production experience

  2. PNN NGC 246: A Complex Photometric Behaviour That Requires Wet

    Directory of Open Access Journals (Sweden)

    Pérez J. M. González

    2003-03-01

    Full Text Available We present a study over three single-site campaigns to investigate the photometric behaviour of the PNN NGC 246. We observed this object in 2000 and 2001. The analysis of the light curves indicates complex and variable temporal spectra. Using wavelet analysis we have found evidences for changes on time scales of hours in the 2000 dataset. The temporal spectra obtained during 2001 are quite different from the results of the previous year. The modulations in the light curve are more noticeable and the temporal spectra present a higher number of modulation frequencies. One peculiar characteristic is the presence of a variable harmonic structure related to one of these modulation frequencies. This complex photometric behaviour may be explained by a more complicated unresolved combination of modulation frequencies, but more likely due to a combination of pulsations of the star plus modulations related to interaction with a close companion, maybe indicating a disc. However, these characteristics cannot be confirmed from single site observations. The complex and variable behaviour of NGC 246 needs the WET co-operation in order to completely resolve its light curve.

  3. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  4. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  5. Emissivity measurements on aeronautical alloys

    International Nuclear Information System (INIS)

    Campo, L. del; Perez-Saez, R.B.; Gonzalez-Fernandez, L.; Esquisabel, X.; Fernandez, I.; Gonzalez-Martin, P.; Tello, M.J.

    2010-01-01

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 μm), sample temperature (200-650 o C) and emission angle (0-85 o ) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  6. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  7. SGTR assessment using MARS

    International Nuclear Information System (INIS)

    Raines, J.C.; Dawson, S.M.; Deitke, B.; Henry, R.E.

    1996-01-01

    During the course of a plant accident, a consistent understanding of the plant response is vital to support an accident manager's decision making process. One tool that can provide assistance to the plant staff in assessing conditions in the plant during accident conditions is the MAAP Accident Response System (MARS) software. During an accident, MARS utilizes the on-line data from the plant instrumentation to initialize the Modular Accident Analysis Program (MAAP) code. Once initialized, MARS tracks and characterizes the plant behavior through the use of integrated logic modules. These logic modules provide the user with important information about the status of systems and the possible cause of the accident. The MARS logic modules evaluate relevant available plant instrumentation and the observations of the operating staff using fuzzy logic. The fuzzy logic is applied to provide a transition between areas where one is absolutely sure that a situation has not occurred to a condition where one is absolutely certain that a situation has occurred. One example of the use of logic modules in MARS is illustrated by that used to assess if a steam generator tube rupture (SGTR) event has occurred. Each piece of relevant plant data is evaluated to determine if it is consistent with the symptoms of a SGTR. Each of the evaluations for the individual plant instruments and the operating staff observations are assembled to determine an overall confidence which characterizes the likelihood that a SGTR is occurring. Additional MARS logic modules are used to determine confidence levels for other types of accident events. The conclusions arrived at by each individual logic module are expressed as confidence levels. The logic module confidence levels can be graphically displayed using the MARS Graphical Users Interface (GUI), to indicate the confidence level MARS has assessed for each accident type. The GUI shows the identification of the possible accident types, but is not limited

  8. Synthesis of bis(3-{[2-(allyloxyethoxy]methyl}-2,4,6-trimethylbenzoyl(phenylphosphine oxide – a tailor-made photoinitiator for dental adhesives

    Directory of Open Access Journals (Sweden)

    Norbert Moszner

    2010-03-01

    Full Text Available Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxyethoxy]methyl}-2,4,6-trimethylbenzoyl(phenylphosphine oxide (WBAPO was synthesized starting from 3-(chloromethyl-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxyethanol. In the second step, 3-{[2-(allyloxyethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 °C resulted in a fast formation of 3-(chloromethyl-2,4,6-trimethylbenzoic acid 2-(allyloxyethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxyethoxy]methyl}-2,4,6-trimethylbenzoyl(phenylphosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by 1H NMR, 13C NMR, 31P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV–vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations.

  9. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  10. The characteristics of corrosion, radiation degradation and dissolution of titanium alloys

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Choi, B. S.; Lee, D. J.; Chang, M. H.

    2001-12-01

    In order to establish the technical bases of water chemistry design requirement related titanium alloys, we investigated the characteristics of corrosion, activation, radiation degradation, radiation hydrogen embrittlement of titanium alloys and dissolution of titanium dioxide. Titanium alloys generally have high corrosion resistance. Corrosion product release from PT-7M and PT-3V titanium alloy surface for 18 months of operation is negligible, and the corrosion penetration for about 30 years is about 1 μm, while the corrosion rates is not higher than one third of that of austenitic steel. Titanium only converts into Sc-46 with 85 day halflife after neutron irradiation, and its radioactivity is not higher than one thousandth of that produced from nickel. Therefore, under the condition without any neutron irradiation, the radiation damage of titanium alloys would have no problem. Titanium dioxide, that protects the metals from the corrosion, has retrograde solubility in neutral solutions. It does not form any complexes with ligands such as ammonia, but Ti(IV) gets more stable by complexing with water molecules. In conclusion, it is estimated that titanium alloys such as PT-7M would be applicable to steam generator materials

  11. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2018-01-01

    Utilization of hybrid treatment schemes involving advanced oxidation processes and hydrodynamic cavitation in the wastewater treatment forms the prime focus of the present work. The initial phase of the work includes analysis of recent literature relating to the performance of combined approach based on hydrodynamic cavitation (HC) for degradation of different pollutants followed by a detailed investigation into degradation of 2,4,6-trichlorophenol (2,4,6-TCP). The degradation of the priority pollutant, 2,4,6-TCP, using combination of HC based on slit-venturi used as the cavitating device, ozone and H 2 O 2 has been investigated. The effect of operating pressure (2-5bar) and initial pH (3-11) have been investigated for the degradation using only HC. The degradation using only ozone (100-400mg/h) and only H 2 O 2 has also been studied. The efficacy of the combined operation of HC+O 3 at different ozone flow rates (100-400mg/h) and the combined operation of HC+H 2 O 2 at different loadings of H 2 O 2 (2,4,6-TCP:H 2 O 2 as 1:1-1:7) have been subsequently investigated. The degradation efficacy has also been established for the combined treatment strategies of O 3 +H 2 O 2 and HC+O 3 +H 2 O 2 at the optimum conditions of temperature as 30°C, inlet pressure of 4bar and initial pH of 7. Extent of 2,4,6-TCP degradation, TOC and COD removal obtained for HC+O 3 process were 97.1%, 94.4% and 78.5% respectively whereas for O 3 +H 2 O 2 process, the values were 95.5%, 94.8% and 76.2% and for HC+O 3 +H 2 O 2 process the extent of reduction were 100%, 95.6% and 80.9% in the same order. The combined treatment approach as HC+O 3 +H 2 O 2 was established as the most efficient approach for complete removal of 2,4,6-TCP with near complete TOC removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  13. Examining Mars with SPICE

    Science.gov (United States)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  14. Mars: Periglacial Morphology and Implications for Future Landing Sites

    Science.gov (United States)

    Heldmann, Jennifer L.; Schurmeier, Lauren; McKay, Christopher; Davila, Alfonso; Stoker, Carol; Marinova, Margarita; Wilhelm, Mary Beth

    2015-01-01

    At the Mars Phoenix landing site and in much of the Martian northern plains, there is ice-cemented ground beneath a layer of dry permafrost. Unlike most permafrost on Earth, though, this ice is not liquid at any time of year. However, in past epochs at higher obliquity the surface conditions during summer may have resulted in warmer conditions and possible melting. This situation indicates that the ice-cemented ground in the north polar plains is likely to be a candidate for the most recently habitable place on Mars as near-surface ice likely provided adequate water activity approximately 5 Myr ago. The high elevation Dry Valleys of Antarctica provide the best analog on Earth of Martian ground ice. These locations are the only places on Earth where ice-cemented ground is found beneath dry permafrost. The Dry Valleys are a hyper-arid polar desert environment and in locations above 1500 m elevation, such as University Valley, air temperatures do not exceed 0 C. Thus, similarly to Mars, liquid water is largely absent here and instead the hydrologic cycle is dominated by frozen ice and vapor phase processes such as sublimation. These conditions make the high elevation Dry Valleys a key Mars analog location where periglacial processes and geomorphic features can be studied in situ. This talk will focus on studies of University Valley as a Mars analog for periglacial morphology and ice stability. We will review a landing site selection study encompassing this information gleaned from the Antarctic terrestrial analog studies plus Mars spacecraft data analysis to identify candidate landing sites for a future mission to search for life on Mars.

  15. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part II: NASA 1.1, Glidcop, and sputtered copper alloys. Contractor report, Mar.--Sep. 1974

    International Nuclear Information System (INIS)

    Conway, J.B.; Stentz, R.H.; Berling, J.T.

    1974-11-01

    Short-term tensile and low-cycle fatigue data are reported for five advance Cu-base alloys: Sputtered Zr--Cu as received, sputtered Zr--Cu heat-treated, Glidcop AL-10, and alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. Fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatigue life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/s and effect of strain rates of 0.0004 and 0.01/s at 538 0 C were evaluated. Hold-time data are reported for the NASA 1-1B alloy at 538 0 C using 5 minute hold periods in tension only and compression only at two different strain range values. (U.S.)

  16. Grain refinement of AZ91D magnesium alloy by a new Mg–50%Al4C3 master alloy

    International Nuclear Information System (INIS)

    Liu, Shengfa; Chen, Yang; Han, Hui

    2015-01-01

    A novel and simple method for preparing Mg–50%Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in-situ synthesis process under argon atmosphere. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After adding 1.8% Mg–50%Al 4 C 3 master alloy, the average grain size of α-Mg decreased from 360 μm to 154 μm. Based on the DTA test results and calculation of the planar disregistry between Al 4 C 3 and α-Mg, Al 4 C 3 particles located in the central regions of magnesium grains can act as the heterogeneous nucleus of primary α-Mg phase

  17. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  18. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  19. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan, E-mail: liuhuanseu@hotmail.com [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Xue, Feng, E-mail: xuefeng@seu.edu.cn [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Bai, Jing; Zhou, Jian [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, Xiaodao [Nanjing Yunhai Special Metals Co., Ltd., Nanjing 211200 (China)

    2013-11-15

    The microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} and Mg{sub 94}Y{sub 4}Zn{sub 1}Ni{sub 1} alloys have been systematically investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and an electronic universal testing machine. The as-cast WZ42 alloy is composed of α-Mg matrix, 18R LPSO (long period stacking ordered) phase and a small fraction of Mg{sub 24}(Y,Zn){sub 5} phases. With the replacement of 1 at% Ni atoms, the phase structures in WZN411 alloy remain unchanged, but their chemical compositions vary obviously. A great number of stacking faults exist in α-Mg grains of WZ42 alloy, while they are barely observed in WZN411 alloy. After annealing at 500 °C for 12 h, there are plenty of 14H LPSO lamellas formed in WZ42 alloy and many nano-scale α-Mg slices generated between 18R phases. In contrast, the 18R in WZN411 alloy is thermally stable, and both the formation of α-Mg slices and 14H lamellas are restricted for annealed WZN411 alloy. Tensile tests indicate that the as-extruded WZ42 alloy exhibits ultimate tensile strength of 390 MPa, tensile yield strength of 246 MPa and elongation of 2.8% at room temperature. With the replacement of 1 at% Ni, the UTS and TYS of WZN411 alloy increase by 20 MPa and the ductility improves as well. The improvement of comprehensive mechanical properties could be ascribed to the substitution of 1 at% Ni element, which could enhance the degree of solid-solution strengthening and stimulate the thermal stability of 18R phase during annealing and extrusion processes.

  20. Exploring the potential of MAR

    International Nuclear Information System (INIS)

    Vanderzalm, Joanne

    2014-01-01

    Despite numerous benefits, the full potential for uptake of MAR for use of treated wastewater and urban stormwater has not been realised. CSIRO is currently leading research to address some of the major impediments to uptake of MAR. These include the clogging of the soil or aquifer matrix, leading to reduced infiltration rates; water quality impacts on the receiving aquifer; and uncertainty regarding the economics of MAR schemes. Field-scale application of MAR through national demonstration projects aims to reduce the uncertainty associated with technical and economic feasibility and facilitate water recycling via the aquifer. Current research in the Managed Aquifer Recharge and Recycling Options (MARRO) project provides two case studies using novel infiltration techniques, soil aquifer treatment (SAT) and infiltration galleries, to recharge treated wastewater for non-potable use. SAT at Alice Springs supplements existing groundwater resources for future irrigation supplies, while an infiltration gallery at Floreat (Western Australia) is evaluating the potential of MAR to sustain groundwater-fed wetlands. These infiltration techniques provide an opportunity to optimise the passive treatment processes and minimise water quality impacts on the receiving groundwater. SAT uses open infiltration basins operated intermittently to create alternate wet and dry cycles and optimise natural treatment processes within the subsurface. Power and Water Corporation's Alice Springs SAT scheme has been in operation since 2008 to prevent overflow of treated wastewater to surface water systems and augment the groundwater resource. Wastewater for recharge to a Quaternary sand and gravel aquifer is treated by stabilisation ponds and dissolved air flotation, with filtration added to the treatment train in late 2013. The scheme commenced as four basins with a total recharge area of 7,640 sq.m, but was increased to allow 600,000 m 3 /year recharge to the current, larger capacity of

  1. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  2. A study of anti-inflammatory and analgesic activity of new 2,4,6-trisubstituted pyrimidines.

    Science.gov (United States)

    Yejella, Rajendra Prasad; Atla, Srinivasa Rao

    2011-01-01

    Chalcone derivatives (3a-m) were prepared by condensing 4-aminoacetophenone with various substituted aromatic and hetero aromatic aldehydes according to Claisen-Schmidt condensation. These chalcones, on reaction with guanidine hydrochloride under basic alcoholic conditions gave 2,4,6-trisubstituted pyrimidines (5a-m) in quantitative yields. All the newly synthesized pyrimidines were characterized by means of IR, ¹H- and ¹³C-NMR, Electron Ionization (EI)-mass and elemental analyses and screened for anti-inflammatory and analgesic activities by in vivo. 2-amino-4-(4-aminophenyl)-6-(2,4-dichlorophenyl)pyrimidine (5b) and 2-amino-4-(4-aminophenyl)-6-(3-bromophenyl) pyrimidine (5d) were found to be the most potent anti-inflammatory and analgesic activity compared with ibuprofen, reference standard. And also it was found that compound 5b identified as lead structure among all in both the activities. Pyrimidines which showed good anti-inflammatory activity also displayed better analgesic activity.

  3. Adaptable Deployable Entry & Placement Technology (ADEPT) for Cubesat Delivery to Mars Surface

    Science.gov (United States)

    Wercinski, Paul

    2014-01-01

    The Adaptable, Deployable Entry and Placement Technology (ADEPT), uses a mechanical skeleton to deploy a revolutionary carbon fabric system that serves as both heat shield and primary structure during atmospheric entry. The NASA ADEPT project, currently funded by the Game Changing Development Program in STMD is currently focused on 1m class hypersonic decelerators for the delivery of very small payloads ( 5 kg) to locations of interest in an effort to leverage low-cost platforms to rapidly mature the technology while simultaneously delivering high-value science. Preliminary mission design and aerothermal performance testing in arcjets have shown the ADEPT system is quite capable of safe delivery of cubesats to Mars surface. The ability of the ADEPT to transit to Mars in a stowed configuration (similar to an umbrella) provides options for integration with the Mars 2020 cruise stage, even to consider multiple ADEPTs. System-level test campaigns are underway for FY15 execution or planning for FY16. These include deployment testing, wind tunnel testing, system-level arc jet testing, and a sounding rocket flight test. The goal is system level maturation (TRL 6) at a 1m class Mars design reference mission configuration.

  4. Long range ordered alloys modified by addition of niobium and cerium

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    A long range ordered alloy composition is described consisting essentially of iron, nickel, cobalt, vanadium and a ductility enhancing metal, having the nominal composition (Fe, Ni,Co)/sub 3/(V,M) where M is the ductility enhancing metal selected from the group Ti, Zr, Hf and mixtures thereof. Effective amounts of creep property enhance elements selected from the group cerium, niobium and mixtures thereof sufficient to enhance creep properties in the resulting alloy without adversely affecting the fabrication of the alloy

  5. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  6. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  7. MARS, a new beamline for radioactive matter studies at SOLEIL

    International Nuclear Information System (INIS)

    Solari, Pier Lorenzo; Schlutig, Sandrine; Hermange, Herve; Sitaud, Bruno

    2009-01-01

    MARS (Multi Analyses on Radioactive Samples) beamline is the hard X-ray bending magnet beamline dedicated to the study of radioactive matter of the new French synchrotron SOLEIL. The beamline, which has been built thanks to a close partnership and support by the CEA, has been designed to provide X-rays in the energy range of 3.5 keV to 35 keV. This allows to encompass M and L absorption edges of actinides, as well as K edges of transition metals (that are present in alloys and fuel claddings) up to heavy halogens, rare gases and alkalis (fission products in nuclear fuels). The MARS project aims to extend the possibilities of synchrotron based X-ray characterizations towards a wider variety of radioactive elements and a wider variety of techniques than what is currently available at other facilities. Thus, its specific and innovative infrastructure has been optimized in order to carry out analyses on materials with activities up to 18.5 GBq per sample for α and β emitters and 2 GBq for γ and n emitters. So, today, more than 70 different elements and more than 350 different isotopes have been proposed for studies on the beamline by the involved user community. The arrangement of the different elements in the optics hutch is based on an original scheme which permits to have two alternative optical configurations (monochromatic or dispersive) depending on the nature of experiments to be performed. At least three main techniques are progressively being proposed on the three complementary end-stations located in the experimental hutch: transmission and high resolution powder diffraction (TXRD and HRXRD), standard and dispersive X-ray absorption spectroscopy (XAS and EDXAS) and X-ray fluorescence (XRF). In addition, by using the KB optics, a micro-focused beam will be available on the second station of the monochromatic branch. The beamline is currently under commissioning. The first two experimental stations, using the monochromatic branch, are scheduled to be

  8. Effect of strontium on the texture and mechanical properties of extruded Mg–1%Mn alloys

    International Nuclear Information System (INIS)

    Borkar, Hemant; Hoseini, Majid; Pekguleryuz, Mihriban

    2012-01-01

    Highlights: ► Mg–1%Mn and Mg–1%Mn–(0.3–2)Sr alloys were extruded at elevated temperature. ► Strontium additions refine extruded microstructure of M1 alloys. ► Sr additions weaken the basal texture of extruded M1, improve the ductility and reduce the yield asymmetry. ► Texture weakening with increasing strontium additions is the result of particle stimulated nucleation (PSN). - Abstract: Magnesium–manganese, M1, alloy is preferred for extrusion applications due to its extrudability. It is mainly used as a sacrificial anode or as a creep resistant alloy at elevated temperatures in the nuclear industry. Since Mn does not provide a significant strengthening effect, the alloy is not considered for structural applications. The basal texture which forms after extrusion orients the basal planes parallel to the extrusion direction causing anisotropy in mechanical properties. This basal texture, as well as the low strength of the alloy are the main challenges in its widespread applications. In this study, the effect of Sr addition on the texture and mechanical properties of M1 alloy was studied. M1–Sr alloys showed weakened texture by developing random texture components during extrusion. The texture randomisation is attributed to particle stimulated nucleation (PSN) around Mg–Sr intermetallics during recrystallisation. M1–Sr compositions are found to show improved strength and ductility as well as reduced yield asymmetry.

  9. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  10. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  11. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  12. Magnetic properties of the binary Nickel/Bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  13. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Science.gov (United States)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  14. El tiempo en las ciudades míticas de la literatura hispanoamericana: Macondo, Comala y Santa María

    Directory of Open Access Journals (Sweden)

    Ksenija Vulović

    2012-12-01

    Full Text Available En este trabajo vamos a abordar el tema del tiempo en las ciudades míticas en las obras Cien años de soledad de Gabriel García Márquez, Pedro Páramo de Juan Rulfo y El astillero de Juan Carlos Onetti. Vamos a investigar los problemas siguientes: las relaciones entre distintas presentaciones del tiempo (lineal o circular, la supresión de las diferencias entre pasado, presente y futuro y la analogía con el concepto de la eternidad en el mito, la memoria y el olvido, la ambigüedad entre la muerte y la vida que se basa en el concepto mítico de la muerte. Por ejemplo, en Macondo de García Márquez se entrelazan el tiempo lineal de la habitación de Melquíades con el tiempo cíclico de la ficción, en Comala de Juan Rulfo se borran las fronteras entre la vida y la muerte y existe un tiempo común para todos, en Santa María de Onetti se altera el orden del tiempo común con la estructura de narradores múltiples, etc.

  15. Red Planet Mania: The Public Response to the 2003 Mars Opposition

    Science.gov (United States)

    Albin, E. F.; Dundee, D. A.

    2003-12-01

    Interest in Mars is at an all time high. For many weeks leading up to and after August 27th or, the date of opposition, record crowds flocked to observatories for a look at Mars. Even after the media "dropped" the event and moved on to other stories, the public response was still unusually strong. It is suggested that such an overwhelming public enthusiasm can be taken as good reason to seek a higher level of government funding for astronomy and the exploration of the Red Planet. Our observations and impressions of the public response to the close approach of Mars were taken from the authors affiliation with the Fernbank Science Center in Atlanta, Georgia - a museum which houses a well-equipped planetarium and observatory. The 500 seat planetarium features a Zeiss Mark V projector beneath a 21 meter diameter dome. A 0.9 meter reflecting telescope, situated not far from the planetarium, provided for stunning views of the Red Planet. Fernbank staff produced an original planetarium presentation entitled "Visions of Mars." Due to overflow crowds, special extended showings were offered. After the planetarium program, members of the public were invited to the observatory for a look at Mars. An average of approximately 120 people each hour looked through the telescope. On many evenings, centered around opposition, the observatory remained open from 9:00 p.m. until 5:30 a.m. the following morning. On each of these nights, we estimate that at least 950 people saw Mars through our telescope. An important tool, an Astrovid CCD video camera, was attached to a piggybacked 11-inch telescope. This instrument proved invaluable in preparing observers for their actual observation. Features such as a Polar Ice Cap, Syrtis Major, and Tharsis were easily identified on the TV monitor and then readily spotted through the telescope.

  16. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  17. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    Science.gov (United States)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  18. Microstructural characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)], E-mail: vanessa.decastro@materials.ox.ac.uk; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2009-04-30

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3}-free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes <10 nm were also observed. Both alloys also contained M{sub 3}C and M{sub 23}C{sub 6} carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M{sub 23}C{sub 6} carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  19. The New Mars Synthesis: A New Concept Of Mars Geo-Chemical History

    Science.gov (United States)

    Brandenburg, J. E.

    2005-02-01

    A new concept of Mars climatic and geo-chemical evolution is proposed, called the NMS (New Mars Synthesis) drawing on the full spectrum of available Mars data. The proposed synthesis is that Mars and Earth, having begun with similar surface conditions, did not strongly diverge from their similar paths 4.0 Billion years ago, in the Early Noachian, instead, under the NMS, they diverged much more recently in geologic time, in the Early Amazonian. Under the NMS, biology strongly affected the geo-chemical evolution of Mars, and allowed a stable and persistent greenhouse by producing a large oxygen component in the atmosphere. The NMS assumes Mars held biology form early on, has been geologically active throughout its history, that it had a northern paleo-ocean, that it has high, approximately, 4xLunar, cratering rates and that its climate changed recently in geologic time from being basically terrestrial to its present conditions. The proposed mechanism for the stability of the Mars greenhouse was a large oxygen component in the atmosphere that created acidic and highly oxidized conditions that prevented formation of Carbonates, and the thermal and gas buffering of the paleo-ocean. The greenhouse was thus biologically and hydrologically stabilized. The greenhouse was terminated by a large atmospheric cooling event in the Early Amazonian that killed the biosphere and froze the ocean stabilizing the greenhouse. This cooling event was probably caused by the formation of the Lyot impact basin. Given the long duration of this terrestrial biosphere in this NMS, the possible appearance of fossils in some rover images is not to be unexpected and the colonization of Mars by humanity may be aided extensive fossil biomass to use as raw material.

  20. A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhang, Haiwei; Gao, Long; Zhang, Jiaoling; Li, Weihui; Yang, Min; Zhang, Hua; Gao, Chunhui; He, Zheng-Guo

    2014-01-01

    The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509-6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509-Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.

  1. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys

    International Nuclear Information System (INIS)

    Castro, V. de; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R.; Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L.

    2009-01-01

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y 2 O 3 and the other Y 2 O 3 -free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes 3 C and M 23 C 6 carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M 23 C 6 carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  2. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  3. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the

  4. Preparation and characterization of molecularly-imprinted magnetic microspheres for adsorption of 2,4,6-trichlorophenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ping; Pan, Jianming; Yan, Yongsheng [Jiangsu University, Zhenjiang (China); Sun, Qilong; Li, Jianfeng; Tan, Zhenjiang [Jilin Normal University, Siping (China)

    2015-04-15

    Magnetic molecularly imprinted microspheres (MMIS) were successfully prepared by suspension polymerization, and then as-prepared MMIS were used as adsorbents for selective recognition of 2,4,6-trichlorophenol (2,4,6-TCP) from aqueous solutions. The results composites were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results demonstrated that MMIS possesses porous spherical morphology, and exhibits good thermal stability and magnetic property (Ms=10.14 emu g{sup -1}). Then batch mode of binding experiments was used to determine the equilibrium, kinetics and selectivity recognition. The Langmuir isotherm model fitted the equilibrium data better than did the Freundlich model, and the maximum adsorption capacity on MMIS was about 1.7 times higher than that of MNIS. Kinetics behaviors of MMIS were well described by the pseudo-second-order model. MMIS possessed outstanding selectivity recognition for 2,4,6-TCP in the presence of other competitive phenols (such as sesamol, 3-CP, thymol, 2,4-DCP). Furthermore, the reusability performance of MMIS showed about 17.53% loss after five repeated cycles. Finally, the MMIS were successfully applied to the selective extraction of 2,4,6-TCP from the vegetable samples.

  5. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  6. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    Science.gov (United States)

    Marov, Mikhail YA.; Duke, Michael B.

    1993-01-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  7. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  8. LCF behavior of Zr-4 alloy at elevated temperature

    International Nuclear Information System (INIS)

    Ye Yuming; Cai Lixun

    2006-01-01

    A series of strain fatigue tests were carried out on small bugle-like slice-specimens of Zr-4 alloy at room temperature and 400 degree C. According to Elastic and Plastic Finite Element Analysis and assumption of local damage equivalence, a strain conversion equation was given to transform the transverse strain of the specimen to the axial strain. Based on the test results of the alloy and the strain conversion equation, fatigue life estimation equations of Zr-4alloy, or M-C (Manson-Coffin) models, were obtained. The results showed that, Zr-4 alloy had obvious cyclic hardening character during high amplitude strain at different temperatures, but showed reverse character during low amplitude strain. Elevated temperature lowered seriously the fatigue life of Zr-4 alloys, ann as the increasing of amplitude strain, temperature effect impaired gradually. Analysis showed that the prediction life by using M-C model based on the traditional strain conversion equation was quite conservative when axial strain amplitude was less than 5000 micro-strain. (authors)

  9. Magnetic properties of centrifugally prepared melt-spun Nd-Fe-B alloys and their powders

    International Nuclear Information System (INIS)

    Andreev, S.V.; Kudrevatykh, N.V.; Kozlov, A.I.; Markin, P.E.; Pushkarskiy, V.I.

    1998-01-01

    Magnetic hysteresis properties and microstructure peculiarities of melt spun Nd-Fe-B alloys (ribbons) prepared by melt quenching on to the internal surface of an iron spinning wheel at the tangential speeds in the range 5-20 m/sec are reported. The alloy composition was Nd-36% wt. B-1.2% wt. and Fe-reminder. It was found that the coercivity of ribbons does not practically depend on the wheel speed in the applied range (1430 kA/m at 5 m/sec and 1750 kA/m at 20 m/sec), whereas the grain size of the basic phase (2-14-1) steadily decreases when the speed rises, starting from 2-3 μm for 5 m sec alloy down to the 200-300 nm for 20 m/sec alloy. All ribbons have normal convex demagnetization curves, even those prepared at low wheel speeds (without peculiar step near H∝0, which usually exists on such curves for traditionally prepared underquenched melt-spun Nd-Fe-B alloys). Grinding the ribbons subjected to hydrogen and annealing treatments causes the coercivity drop. However, this operations increase the powder alignment ability and, as a result, the energy product for fully dense magnet from such powder rises to 160-180 kJ/m 3 . (orig.)

  10. Guidelines for 2007 MARS exercise

    CERN Multimedia

    HR Department

    2007-01-01

    Following the introduction of the new Merit Appraisal and Recognition Scheme (MARS), full details of the scheme are now available via the HR Department's homepage or directly on the Department's MARS web page: in English: http://humanresources.web.cern.ch/HumanResources/internal/personnel/pmd/cr/MARS.asp or French: http://humanresources.web.cern.ch/humanresources/internal/personnel/pmd/cr/mars_fr.asp You will find on this page: 'Introduction to MARS' with detailed information presented in Frequently Asked Questions; these include the MARS timetable for proposals and decisions; 'Regulations' with links to the scheme's statutory documents; 'Procedures and Forms' and 'Useful Information' with links to all the relevant documentation; these include the mandates of the Senior Staff Advisory Committee (SSAC) and the Technical Engineers and Administrative Careers Committee (TEACC). HR Department Tel. 73566

  11. Preparation of Pr-Fe-Co-B-Nb-M (M= Al, P, Cu, Ga and/or Gd) HDDR magnets and alloys and characterization of their magnetic properties and corrosion resistance

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de

    2009-01-01

    HDDR process has attracted great interest for producing polymer- bonded rare earth based magnets. It presents commercial advantages when compared with conventional sintered magnets owing to easy and low cost manufacturing. With the development of anisotropic powders using praseodymium, the expectations about this process grow e also the need for studying new compositions and alloy additions. In this work the magnetic properties of polymer-bonded magnets prepared with PrFeB magnetic alloys using HDDR process have been studied. Pr 14 Fe bal Co 16 B 6 Nb 0,1 was used as the reference alloy Phosphorus, copper, aluminium, gallium and gadolinium additions have been performed to increase the magnetic properties of the reference alloy. The microstructural characterization of the magnets has been carried out through optical microscopy and SEM. The complex microstructure influences the electrochemical behavior of the magnetic alloys. The literature about this subject is scarce. Thus, the corrosion resistance of the different alloys prepared during this work was evaluated using electrochemical impedance spectroscopy and potentiodynamic polarization curves. A correlation between the microstructural features and the electrochemical behavior of the alloys has been established. The results showed that phosphorus and aluminium additions up to 1.0wt% had a beneficial effect on the magnetic properties and corrosion resistance of the alloys. Copper additions, on the other hand, strongly diminished the magnetic properties of the reference alloy. (author)

  12. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  13. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  14. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  15. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  16. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  17. Guidelines for the 2011 MARS exercise

    CERN Multimedia

    HR Department

    2011-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://admin-eguide.web.cern.ch/admin-eguide/mars/mars.asp You will find on these pages: MARS procedures, including the MARS timetable for proposals and decisions; regulations with links to the scheme’s statutory basis; a list of frequently asked questions; useful documents with links to relevant documentation, e.g. mandate of the Senior Staff Advisory Committee (SSAC); and related links and contacts. Tel. 70674 / 72728  

  18. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  19. Mars Scenario-Based Visioning: Logistical Optimization of Transportation Architectures

    Science.gov (United States)

    1999-01-01

    The purpose of this conceptual design investigation is to examine transportation forecasts for future human Wu missions to Mars. - Scenario-Based Visioning is used to generate possible future demand projections. These scenarios are then coupled with availability, cost, and capacity parameters for indigenously designed Mars Transfer Vehicles (solar electric, nuclear thermal, and chemical propulsion types) and Earth-to-Orbit launch vehicles (current, future, and indigenous) to provide a cost-conscious dual-phase launch manifest to meet such future demand. A simulator named M-SAT (Mars Scenario Analysis Tool) is developed using this method. This simulation is used to examine three specific transportation scenarios to Mars: a limited "flaus and footprints" mission, a More ambitious scientific expedition similar to an expanded version of the Design Reference Mission from NASA, and a long-term colonization scenario. Initial results from the simulation indicate that chemical propulsion systems might be the architecture of choice for all three scenarios. With this mind, "what if' analyses were performed which indicated that if nuclear production costs were reduced by 30% for the colonization scenario, then the nuclear architecture would have a lower life cycle cost than the chemical. Results indicate that the most cost-effective solution to the Mars transportation problem is to plan for segmented development, this involves development of one vehicle at one opportunity and derivatives of that vehicle at subsequent opportunities.

  20. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 6. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. S Bharati M K Sinha ... Optical microscopic and SEM observations revealed the deposition of Ca–P layer on the titanium alloy by both the methods. Thickness of coating ...

  1. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  2. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  3. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment.

    Science.gov (United States)

    Rosalbino, F; Delsante, S; Borzone, G; Scavino, G

    2012-05-01

    Titanium alloys exhibit excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film, and some of these alloys (particularly Ti-6Al-7Nb) have been chosen for surgical and odontological implants for their resistance and biocompatibility. Treatment with fluorides (F(-)) is known to be the main method for preventing plaque formation and dental caries. Toothpastes, mouthwashes, and prophylactic gels can contain from 200 to 20,000 ppm F(-) and can affect the corrosion behaviour of titanium alloy devices present in the oral cavity. In this work, the electrochemical corrosion behaviour of Ti-1M alloys (M = Ag, Au, Pd, Pt) was assessed in artificial saliva of pH = 3.0 containing 910 ppm F(-) (0.05 M NaF) through open circuit potential, E(OC), and electrochemical impedance spectroscopy (EIS) measurements. The corrosion behaviour of the Ti-6Al-7Nb commercial alloy was also evaluated for comparison. E (OC) measurements show an active behaviour for all the titanium alloys in fluoridated acidified saliva due to the presence of significant concentrations of HF and HF(2) (-) species that dissolve the spontaneous air-formed oxide film giving rise to surface activation. However, an increase in stability of the passive oxide layer and consequently a decrease in surface activation is observed for the Ti-1M alloys. This behaviour is confirmed by EIS measurements. In fact, the Ti-6Al-7Nb alloy exhibits lower impedance values as compared with Ti-1M alloys, the highest values being measured for the Ti-1Au alloy. The experimental results show that the corrosion resistance of the studied Ti-1M alloys is similar to or better than that of Ti-6Al-7Nb alloy currently used as biomaterial, suggesting their potential for dental applications.

  4. ballistic performance of a quenched and tempered steel against

    African Journals Online (AJOL)

    eobe

    was investigated. Low alloy steel ... obliquity obliquity with a projectile velocity with a projectile velocity with a projectile .... quenching on low carbon and alloyed steel [5, 15]. Several studies .... Mars 190, Mars 240, Mars 270, Creusot-Loire,.

  5. Wind-Driven Montgolfiere Balloons for Mars

    Science.gov (United States)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  6. Development of Al-Mg-Li alloys for fusion reactor

    International Nuclear Information System (INIS)

    Shoji, Yoshifusa; Yoshida, Hideo; Uno, Teruo; Baba, Yoshio; Kamada, Koji.

    1985-01-01

    Aluminum-magnesium-lithium alloys featuring low residual induced radioactivity and high electrical resistivity have been developed for fusion reactor structural materials. The addition of lithium in aluminum and Al-Mg alloys markedly increases electrical resistivity and tensile strength of them. However the elongation of Al-Mg-Li alloys containing more than 2 mass% lithium are less than 10 %. The Al-4--5 mass%Mg-1 mass%Li alloys are optimum for fusion reactor materials, and exhibit high resistivity (86 nΩm: 20 %IACS), medium strength (300 MPa) and good formability (22 % elongation). The variation of electrical resistivity of Al-Li and Al-Mg-Li alloys in solid solution can be approximated by the Matthiessen's rule. (author)

  7. Cyclic voltammetry: a tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process.

    Science.gov (United States)

    Peres, António M; Freitas, Patrícia; Dias, Luís G; Sousa, Mara E B C; Castro, Luís M; Veloso, Ana C A

    2013-12-15

    Chloroanisoles, namely 2,4,6-trichloroanisole, are pointed out as the primary responsible of the development of musty off-flavours in bottled wine, due to their migration from cork stoppers, which results in huge economical losses for wine industry. A prevention step is the detection of these compounds in cork planks before stoppers are produced. Mass spectrometry gas chromatography is the reference method used although it is far beyond economical possibilities of the majority of cork stoppers producers. In this work, a portable cyclic voltammetry approach was used to detect 2,4,6-trichloroanisole extracted from natural cork planks to the aqueous phase during the cork boiling industrial treatment process. Analyses were carried out under ambient conditions, in less than 15 min with a low use of solvent and without any sample pre-treatment. The proposed technique had detection (0.31±0.01 ng/L) and quantification (0.95±0.05 ng/L) limits lower than the human threshold detection level. For blank solutions, without 2,4,6-trichloroanisole addition, a concentration in the order of the quantification limit was estimated (1.0±0.2 ng/L), which confirms the satisfactory performance of the proposed methodology. For aqueous samples from the industrial cork planks boiling procedure, intra-day repeatabilities were lower than 3%, respectively. Also, 2,4,6-trichloroanisole contents in the aqueous samples determined by this novel approach were in good agreement with those obtained by GC-MS (correlation coefficient equal to 0.98), confirming the satisfactory accuracy of the proposed methodology. So, since this novel approach is a fast, low-cost, portable and user-friendly method, it can be an alternative and helpful tool for in-situ industrial applications, allowing accurate detection of releasable 2,4,6-trichloroanisole in an earlier phase of cork stoppers production, which may allow implementing more effective cork treatments to reduce or avoid future 2,4,6-trichloroanisole

  8. Development and testing ov danadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  9. Upgrade Fe-50%Ni alloys for open-loop DC current sensor: Design and alloy-potential characteristics

    International Nuclear Information System (INIS)

    Waeckerle, Thierry; Fraisse, Herve; Furnemont, Quentin; Bloch, Frederic

    2006-01-01

    This paper deals with the DC current sensor with open loop and high accuracy, and describes the relationship between the latter and the core-material magnetic properties in the case of Fe-50%Ni alloys. It is pointed out that air-gap precision, nonlinearity B-H and hysteresis are the main sources of accuracy; the influences of mechanical stress and temperature on coercive field are quantified and have to be taken into account in the design of the sensor. It is shown by dedicated choice of grades and annealing that Fe-50%Ni alloys may vary their coercive field from 4-6 A/m down to 1.5-4 A/m depending on the final annealing treatment used

  10. Polygon on Mars

    Science.gov (United States)

    2008-01-01

    This image shows a small-scale polygonal pattern in the ground near NASA's Phoenix Mars Lander. This pattern is similar in appearance to polygonal structures in icy ground in the arctic regions of Earth. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired by the Surface Stereo Imager shortly after landing. On the Phoenix mission calendar, landing day is known as Sol 0, the first Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  12. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  13. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Hou, L.G., E-mail: lghou@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, Y.A. [State Key Laboratory of Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Zhang, J.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China)

    2016-07-15

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, and also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.

  14. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  15. Compatibility of heat resistant alloys with boron carbide, (4)

    International Nuclear Information System (INIS)

    Baba, Sinichi; Saruta, Toru; Ooka, Kiichi; Tanaka, Isao; Aoyama, Isao

    1985-07-01

    This paper relates to the compatibility test of control rod sheath (Hastelloy XR alloy) and neutron absorber (boronated graphite) for the VHTR, which has been researched and developed by JAERI. The irradiation was conducted by using the OGL-1 irradiation facility in the JMTR in order to study reaction behaviour between Hastelloy XR alloy and boronated graphite as well as to determine a reaction barrier performance of refractory metal foils Nb, Mo, W and Re. Irradiation conditions were as follows. Neutron dose : 4.05 x 10 22 m -2 (E 18 m -2 (E > 0.16 pJ, 1 Mev). Helium coolant : Average temperature 855 0 C, Pressure 2.94 MPa, Total impurity concentration 400 kBq/m 3 . Irradiation time : 5.0 Ms (1390 hours). Post-irradiation examinations i.e. visual inspection, dimensional inspection, weight measurement, metallography, hardness test, morphological observations by SEM and analysis of element distributions by EPMA were carried out. In the result, reaction products of Hastelloy XR alloy were observed in the ellipsoidal form locally. These results were same as those of the out-of-pile tests. Obvious irradiation effects were not detectable but a little accelarated increase in reaction depth of Hastelloy XR alloy by heat effect of specimens was observed. The refractory metal foils had a good performance of reaction barrier between Hastelloy XR alloy and boronated graphite. Furthermore, movement of Ni, Fe and Cr in the reaction area of Hastelloy XR alloy, difference in the reaction depth of B and C, irradiation effects on diffusion coefficient, lithium production and heat effect are discussed. (author)

  16. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  17. Biological evaluation of 99m Tc-N-(3-bromo-trimethyl-acetanilide)-iminodiacetic acid (99mTc mebrofenin) as hepatobiliary radiopharmaceutical

    International Nuclear Information System (INIS)

    Hamada, E.S.

    1994-01-01

    Technetium-99 m-N-(3-bromo-2,4,6-trimethyl acetanilide) iminodiacetic acid ( 99m Tc-Mebrofenin) has been described as having optimal properties as hepatobiliary radiopharmaceutical. This paper describes the synthesis, radiopharmaceutical preparation and biological distribution of new labeled compound. The biodistribution study of 99m Tc-Mebrofenin- was carried out in normal mice. The specificity for hepatobiliary excretion blood clearance and cumulative biliary excretion were evaluated in normal and cirrhotic rats. (author). 5 refs, 3 figs, 3 tabs

  18. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 48 CFR 52.246-9 - Inspection of Research and Development (Short Form).

    Science.gov (United States)

    2010-10-01

    ... Clauses 52.246-9 Inspection of Research and Development (Short Form). As prescribed in 46.309, insert the following clause: Inspection of Research and Development (Short Form) (APR 1984) The Government has the... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Inspection of Research and...

  20. 48 CFR 52.246-7 - Inspection of Research and Development-Fixed-Price.

    Science.gov (United States)

    2010-10-01

    ... Clauses 52.246-7 Inspection of Research and Development—Fixed-Price. As prescribed in 46.307(a), insert the following clause: Inspection of Research and Development—Fixed-Price (AUG 1996) (a) The Contractor... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Inspection of Research and...

  1. Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys

    Science.gov (United States)

    1998-07-20

    was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director

  2. An insight into the passivation of cupronickel alloys in chloride ...

    Indian Academy of Sciences (India)

    Unknown

    surface of the alloy C was seen under scanning electron microscope at different magnifications. ... oxygen evolution for alloy C. The reverse scan revealed an inverted anodic peak at. 458 mV followed .... Scanning electron microscope picture.

  3. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  4. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  5. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  6. M Sujatha

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Sujatha. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 39-45 Metallic Materials. Role of diffusional coherency strain theory in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra M Sujatha B Chatterji.

  7. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  8. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  9. Laser polishing of additive manufactured Ti alloys

    Science.gov (United States)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  10. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  11. La Incidencia de las Normas de Protección Marítima en el Transporte Marítimo

    OpenAIRE

    Elizalde Monteagudo, Pedro Alfonso

    2012-01-01

    Actualmente, los participantes del transporte marítimo deben adoptar e implementar una serie de medidas de protección marítima para suprimir y combatir la piratería, el narcotráfico y el terrorismo marítimo. La presente investigación analiza los programas multilaterales y unilaterales de protección marítima, que deben cumplir los participantes del transporte marítimo internacional. El capítulo I menciona las diferencias entre la seguridad marítima y la protección marítima. Asimismo, este capí...

  12. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  13. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    Science.gov (United States)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  14. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    Science.gov (United States)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  15. Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.

    Science.gov (United States)

    Pourzal, Robin; Hall, Deborah J; Ehrich, Jonas; McCarthy, Stephanie M; Mathew, Mathew T; Jacobs, Joshua J; Urban, Robert M

    2017-12-01

    Adverse local tissue reactions (ALTRs) triggered by corrosion products from modular taper junctions are a known cause of premature THA failure. CoCrMo devices are of particular concern because cobalt ions and chromium-orthophosphates were shown to be linked to ALTRs, even in metal-on-polyethylene THAs. The most common categories of CoCrMo alloy are cast and wrought alloy, which exhibit fundamental microstructural differences in terms of grain size and hard phases. The impact of implant alloy microstructure on the occurring modes of corrosion and subsequent metal ion release is not well understood. The purpose of this study was to determine whether (1) the microstructure of cast CoCrMo alloy varies broadly between manufacturers and can dictate specific corrosion modes; and whether (2) the microstructure of wrought CoCrMo alloy is more consistent between manufacturers and has low implications on the alloy's corrosion behavior. The alloy microstructure of four femoral-stem and three femoral-head designs from four manufacturers was metallographically and electrochemically characterized. Three stem designs were made from cast alloy; all three head designs and one stem design were made from wrought alloy. Alloy samples were sectioned from retrieved components and then polished and etched to visualize grain structure and hard phases such as carbides (eg, M 23 C 6 ) or intermetallic phases (eg, σ phase). Potentiodynamic polarization (PDP) tests were conducted to determine the corrosion potential (E corr ), corrosion current density (I corr ), and pitting potential (E pit ) for each alloy. Four devices were tested within each group, and each measurement was repeated three times to ensure repeatable results. Differences in PDP metrics between manufacturers and between alloys with different hard phase contents were compared using one-way analysis of variance and independent-sample t-tests. Microstructural features such as twin boundaries and slip bands as well as corrosion

  16. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    Energy Technology Data Exchange (ETDEWEB)

    MJ Lambert

    2005-11-18

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  17. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    International Nuclear Information System (INIS)

    MJ Lambert

    2005-01-01

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 (micro)m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  18. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  19. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  20. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    Science.gov (United States)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  1. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  2. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Solid-state structural properties of 2,4,6-trimethoxybenzene derivatives, determined directly from powder X-ray diffraction data in conjunction with other techniques

    International Nuclear Information System (INIS)

    Pan Zhigang; Xu Mingcan; Cheung, Eugene Y.; Platts, James A.; Harris, Kenneth D.M.; Constable, Edwin C.; Housecroft, Catherine E.

    2006-01-01

    Structural properties of 2,4,6-trimethoxybenzaldehyde, 2,4,6-trimethoxybenzyl alcohol and 2,4,6-trimethoxyacetophenone have been determined directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm (GA) technique for structure solution followed by Rietveld refinement. Structural similarities and contrasts within this family of materials are elucidated. The work illustrates the value of utilizing information from other sources, including spectroscopic data and computational techniques, as a means of augmenting the structural knowledge established from the powder X-ray diffraction data

  4. Accretion and primary differentiation of Mars

    International Nuclear Information System (INIS)

    Drake, M.J.

    1988-01-01

    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  5. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  6. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  7. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  8. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  9. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  10. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by

  11. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  12. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  13. An Alternative Humans to Mars Approach: Reducing Mission Mass with Multiple Mars Flyby Trajectories and Minimal Capability Investments

    Science.gov (United States)

    Whitley, Ryan J.; Jedrey, Richard; Landau, Damon; Ocampo, Cesar

    2015-01-01

    Mars flyby trajectories and Earth return trajectories have the potential to enable lower- cost and sustainable human exploration of Mars. Flyby and return trajectories are true minimum energy paths with low to zero post-Earth departure maneuvers. By emplacing the large crew vehicles required for human transit on these paths, the total fuel cost can be reduced. The traditional full-up repeating Earth-Mars-Earth cycler concept requires significant infrastructure, but a Mars only flyby approach minimizes mission mass and maximizes opportunities to build-up missions in a stepwise manner. In this paper multiple strategies for sending a crew of 4 to Mars orbit and back are examined. With pre-emplaced assets in Mars orbit, a transit habitat and a minimally functional Mars taxi, a complete Mars mission can be accomplished in 3 SLS launches and 2 Mars Flyby's, including Orion. While some years are better than others, ample opportunities exist within a given 15-year Earth-Mars alignment cycle. Building up a mission cadence over time, this approach can translate to Mars surface access. Risk reduction, which is always a concern for human missions, is mitigated by the use of flybys with Earth return (some of which are true free returns) capability.

  14. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  15. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  16. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    International Nuclear Information System (INIS)

    Gu, X N; Zhou, W R; Zheng, Y F; Li, X L; Cheng, Y

    2010-01-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s -1 , 30 m s -1 and 45 m s -1 ) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 μm) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr -1 for RS15, 0.94 mm yr -1 for RS30 and 0.36 mm yr -1 for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  17. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail: cmayer@encb.ipn.mx

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  18. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  19. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  20. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  1. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  2. Mars Express - ESA sets ambitious goals for the first European mission to Mars

    Science.gov (United States)

    2003-05-01

    Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. And still, it has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent - the Mariner series in 1960s - the public was expecting an Earth ‘twin’, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth’s opposite. Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past. “We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet - its history, its geology, how it has evolved. Real planetology!” Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved. The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been

  3. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  4. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques: an overview and a request for scientific inputs.

    Science.gov (United States)

    Muller, Jan-Peter; Gwinner, Klaus; van Gasselt, Stephan; Ivanov, Anton; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Yershov, Vladimir; Sidirpoulos, Panagiotis; Kim, Jungrack

    2014-05-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 7 years, especially in 3D imaging of surface shape (down to resolutions of 10cm) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement [Orloff et al., 2011] or the sublimation of sub-surface ice revealed by meteoritic impact [Byrne et al., 2009] as well as examine geophysical phenomena, such as surface roughness on different length scales. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004 the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25m nadir images) with 87% coverage with images ≤25m and more than 65% useful for stereo mapping (e.g. atmosphere sufficiently clear). It has been demonstrated [Gwinner et al., 2010] that HRSC has the highest possible planimetric accuracy of ≤25m and is well co-registered with MOLA, which represents the global 3D reference frame. HRSC 3D and terrain-corrected image products therefore represent the best available 3D reference data for Mars. NASA began imaging the surface of Mars, initially from flybys in the 1960s with the first orbiter with images ≤100m in the late 1970s from Viking Orbiter. The most recent orbiter to begin imaging in November 2006 is the NASA MRO which has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≡20cm) and ≡5% from CTX (≡6m) in stereo. Unfortunately, for most of these NASA images, especially MGS, MO, VO and HiRISE their accuracy of georeferencing is often worse than the quality of Mars reference data from HRSC. This reduces their value for analysing

  5. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys

    International Nuclear Information System (INIS)

    Liu Ming; Schmutz, Patrik; Uggowitzer, Peter J.; Song Guangling; Atrens, Andrej

    2010-01-01

    Research highlights: → The Y-intermetallic can accelerate corrosion and Y can increase the protectiveness of the surface layer. → In 0.1 M NaCl, the corrosion rate of Mg-Y alloys increased with increasing Y due to the Y intermetallic. → In 0.1 M NaCl, there was filiform corrosion. → In 0.1 M Na 2 SO 4 , the corrosion rate of Mg-Y alloys decreased with increasing Y in the range 3-7%Y. → Hydrogen evolution was observed from particular parts of the alloy surface. - Abstract: Corrosion of Mg-Y alloys was studied using electrochemical evaluations, immersion tests and direct observations. There were two important effects. In 0.1 M NaCl, the corrosion rate increased with increasing Y content due to increasing amounts of the Y-containing intermetallic. In 0.1 M Na 2 SO 4 , the corrosion rate decreased with increasing Y content above 3%, attributed to a more protective surface film, despite the intermetallic. The corrosion rate evaluated by electrochemical impedance spectroscopy was somewhat smaller than that evaluated from H evolution as expected from the Mg corrosion mechanism. A mechanism is proposed for filiform corrosion. Direct in situ corrosion observations revealed that a predominant feature was hydrogen evolution from particular parts of the alloy surface.

  6. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    elements in titanium to model the effect of alloying elements on the Ms temperature in titanium. Available atomic volume data and collaborative first principles quantum mechanical calculations are combined to model the composition dependence of the transformation molar volume change. Composition analysis of the beta phase from the LEAP and Bolling-Richman experimental measurement of the M ssigma temperature defining mechanical transformation stability of the beta phase in Ti5111 provided a calibration of transformation models. Using the near-alpha Ti5111 alloy as a reference alloy, the feasibility was assessed for application of transformation toughening to maintain the high toughness of Ti5111 at the higher 120ksi (827MPa) yield strength of Ti-6Al-4V. Combined with models of solution and grain refinement strengthening, a modification of the Ti5111 composition was designed meeting the transformation stability requirement while increasing the calculated transformation volume change by 10% for efficient toughening. A design prototype was created and mechanically tested resulting in a room temperature yield strength of >120ksi and M ssigma(ut) at room temperature confirming strength and transformation stability predictions.

  7. Metallic and Ceramic Materials Research. Task Order 0005: Metallic, Materials, Methods, Characterization and Testing Research

    Science.gov (United States)

    2015-10-01

    articles and papers, and is referenced in the text. 15. SUBJECT TERMS high entropy alloys, titanium, inertia welding 16. SECURITY...properties, and fracture behavior of the inertia friction weld (IFW) joints of dissimilar superalloys, cast Mar-M247 and wrought low solvus high refractory...of Advanced Aerospace Alloys Micro-Scale Deformation in Polycrystalline Ti-6242 Fatigue crack initiation is a local phenomenon, which can result from

  8. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  9. LCF- and LCF/HCF-behaviour of the superalloy MAR-M247LC

    Energy Technology Data Exchange (ETDEWEB)

    Gelmedin, Domnin; Lang, Karl-Heinz [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Werkstoffkunde I

    2010-07-01

    The fatigue behaviour of the Nickel-base superalloy Mar-M247LC was investigated at 650 C in air environment under total strain control. Pure low cycle fatigue (LCF) loading, pure high cycle fatigue (HCF) loading and superimposed LCF/HCF loading were realised. In LCF tests with a strain ratio of zero and a hold time of 60 seconds the cyclic deformation and the lifetime behaviour was investigated. The dependence of the fatigue limit on the mean strain was estimated in HCF tests at a frequency of 60 Hz using an ultimate number of cycles of ten million. Finally the influence of superimposed HCF and LCF loadings was examined. At high total strain ranges of the HCF loading the lifetime of the superalloy as reduced about more than one magnitude compared to the lifetime under pure LCF loading. With decreasing HCF loadings the reduction of the lifetime decreases. This life time reduction can be explained by the interaction of the LCF and the superimposed HCF loading. Crack initiation and first crack propagation is predominantly induced by the LCF loading. After reaching an adequate long fatigue crack length the superimposed HCF loading contributes considerably to the crack growth. This contribution can be determined evaluating the distance between the LCF marking lines which form on the fracture surface. The higher the superimposed HCF loading was the longer the distance between the LCF marking lines and the lower the crack length were when first LCF marking lines could be recognized. On the basis of this cognition the life time under superimposed LCF/HCF loading was modelled using a model basing on fracture mechanics. (orig.)

  10. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  11. Technology needs for manned Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Bartine, D.

    1991-01-01

    As members of the Stafford Synthesis Group, we performed an investigation as to the most expeditious manner to explore Mars. To do this, rationale, objectives, requirements and systems definitions were developed. The objectives include the development of the necessary infrastructure and resources for Mars exploration and performing initial successful exploration of Mars. This will include a transportation system between Mars and Earth, habitats for living on Mars, utilization of Martian resources, and the ability to perform exploration over the entire Martian surface. Using the developed architecture, key technologies were identified. 6 figs., 1 tab

  12. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  13. Continued monitoring of aeolian activity within Herschel Crater, Mars

    Science.gov (United States)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  14. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ebert, Chris H.; Witte, Travis M.; Houk, R.S.

    2012-01-01

    The abundances of metal-argon polyatomic ions (MAr + ) are determined in inductively coupled plasma-mass spectrometry (ICP-MS). The ratios of MAr + abundance to that for M + ions are measured experimentally. These ratios are compared to expected values, calculated for typical plasma conditions using spectroscopic data. For all metals studied (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), the measured ratios are significantly lower than the calculated ratios. Increasing the plasma potential (and thereby increasing the ion kinetic energy) by means of a homemade guard electrode with a wide gap further reduces the MAr + /M + ratio. Implementing a skimmer cone designed for high transmission of light ions increases the MAr + abundance. Considering this evidence, the scarcity of MAr + ions is attributed to collision induced dissociation (CID), likely due to a shock wave at the tip of or in the throat of the skimmer cone. - Highlights: ► MAr + ions are less abundant in the mass spectrum than expected from the ICP. ► Increasing the plasma potential reduces their abundance further. ► The extraction lens voltage does not greatly affect the MAr + abundances. ► The weakly-bound MAr + ions are probably dissociated by collisions during extraction.

  15. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  16. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  17. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons.

    Science.gov (United States)

    Fukuhara, Mikio; Sugawara, Kazuyuki

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.

  18. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  19. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  20. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter

    International Nuclear Information System (INIS)

    Luning Prak, Dianne J.; Breuer, James E.T.; Rios, Evelyn A.; Jedlicka, Erin E.; O'Sullivan, Daniel W.

    2017-01-01

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS +® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32 °C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5 mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. - Highlights: • 2,4,6-trinitrotoluene (TNT) was photolyzed in marine, estuary, & laboratory waters. • TNT photolysis rates increased with increasing salinity & dissolved organic matter. • Temperature and pH had minimal impact on TNT photolysis in marine waters. • In seawater, TNT photolysis produced 1,3,5-trinitrobenzene & trinitrobenzaldehyde. • Polar products were 2,4,6-trinobenzoic acid & 2-amino-4,6-dinitrobenzoic acid.

  1. Environment of Mars, 1988

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    1988-10-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design

  2. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  3. Mars Analog Rio Tinto Experiment (MARTE): An Experimental Demonstration of Key Technologies for Searching for Life on Mars

    Science.gov (United States)

    Stoker, Carol

    2004-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.

  4. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Chen, Song-Ling

    2014-01-01

    Highlights: • WC–Ni–Fe alloy sintered at 1400 °C had the highest hardness (HRA 85.3 ± 0.5). • The optimal WC–Ni–Fe sintered alloy possessed the highest TRS value (2524.5 ± 1.0 MPa). • The fracture toughness of the sintered WC–Ni–Fe alloys is mainly provided by the Ni–Fe binders. • WC–Ni–Fe sintered alloy possessed the highest fracture toughness of K IC (15.1 MPa m 1/2 ). • The WC–Ni–Fe sintered alloy had the much better corrosion resistance in 0.15 M HCl solution. -- Abstract: The aim of this study is to explore two different tungsten carbide binders (Co and Ni–Fe) and then impose various sintering temperature treatments. Experimental results show that the optimal sintering temperatures for WC–Co and WC–Ni–Fe hard metal alloys are 1350 °C and 1400 °C for 1 h, respectively. Meanwhile, the WC–Co and WC–Ni–Fe alloys undergo a well liquid-phase sintering and, thus, exhibit excellent mechanical properties. In addition, the sintered WC–Co and WC–Ni–Fe alloys show that when the relative density reached 99.76% and 99.68%, the hardness was enhanced to HRA 84.4 ± 0.5 and 85.3 ± 0.5, and the TRS increased to 2471.2 ± 1.0 and 2524.5 ± 1.0 MPa, respectively. Moreover, the corrosion test results show that the WC–Ni–Fe alloy sintered at 1400 °C had the lowest corrosion current (I corr ) of 1.11 × 10 −5 A cm −2 and the highest polarization resistance (R p ) of 2464.61 Ω cm 2 in 0.15 M HCl solution. Simultaneously, the fracture toughness of K IC increased to 15.1 MPa m 1/2 . Compared with sintered WC–Co alloys, the sintered WC–Ni–Fe hard metal alloys possessed much better corrosion resistance and mechanical properties

  5. 40 CFR 721.5356 - Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl]-omega...

    Science.gov (United States)

    2010-07-01

    ...-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate. 721...]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate. (a) Chemical substance and significant new uses... alpha-[2,4,6-tris(1-phenylethyl)phenyl]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate (PMN P-98-185...

  6. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl

    International Nuclear Information System (INIS)

    Vieira, A.C.; Pinto, A.M.; Rocha, L.A.; Mischler, S.

    2011-01-01

    Research highlights: → Influence of the size distribution of Al-Cu phases on the electrochemical behaviour of well defined alloys under controlled mass transport conditions (RDE). → Oxygen reduction occurs only the Al 2 Cu phases. → Thinner Al-Cu grains the oxygen reduction current deviates at high rotation rates from the Levich behaviour. - Abstract: The electrochemical behaviour of age-hardened Al-Si-Cu-Mg alloys was investigated in a 0.05 M NaCl solution under controlled mass transport conditions using a rotating disk electrode. This work aimed at getting better understanding of the effect of the alloy microstructure, in particular the size distribution of Al 2 Cu phase, on the corrosion behaviour of the alloy. Three different size distributions of the Al 2 Cu phase were obtained through appropriate heat treatments. The cathodic reduction of oxygen was found to occur mainly on the Al 2 Cu phases acting as preferential cathodes. Small sized Al 2 Cu phases were found to promote at high rotation rates a transition from a 4 electron to a 2 electron dominated oxygen reduction mechanisms.

  7. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiros