WorldWideScience

Sample records for alloy-ma-754

  1. Microstructural evolution and mechanical properties of friction stir welded ODS alloy MA754

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiye; Yuan, Wei [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Mishra, Rajiv S., E-mail: Rajiv.Mishra@unt.edu [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2013-11-15

    Microstructural evolution and mechanical properties of MA754, an yttrium oxide dispersion-strengthened nickel-based superalloy, were investigated after friction stir welding (FSW). A tool rotation rate of 1000 revolution per minute and a traverse speed of 50.8 mm per minute were employed using a cermet (WC–Co) tool. After FSW, fine equiaxed grain structure with a high dislocation density and a random texture was achieved. Agglomeration of yttrium oxide dispersoids was observed in FSW MA754. Room-temperature tensile properties of FSW MA754 were compared to those of as-received MA754 alloy, and the results indicated that particle strengthening contribution decreased as a result of dispersoid agglomeration.

  2. Nickel-base alloys for severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.K.; Flower, H.L. [Inco Alloys International Inc., Huntington, WV (United States); Hack, G.A.J. [Inco Alloys Ltd., Hereford (United Kingdom); Isobe, S. [Daido Steel Co. Ltd., Nagoya (Japan)

    1996-03-01

    Inconel alloys MA754 and MA758 are nickel-base, oxide dispersion-strengthened superalloys made by mechanical alloying. The simple nickel-chromium matrix, when combined with the strengthening effect of the yttrium oxide dispersoid during mechanical alloys, provides excellent creep properties, resistance to thermal fatigue, and surface stability suitable for operation without protective coatings. Gas turbine engine components are primary applications for alloy MA754, but this aerospace alloy has been applied in many other products that operate in severe conditions, and alloy MA758 was developed specifically for aggressive, elevated temperature industrial environments. Billets for large bar and plate are typically consolidated by hot isostatic pressing (HIP), because this technology allows production of forms suitable for a variety of industrial components. Material consolidated by HIP and conventionally worked by extrusion and hot rolling generally exhibits properties that are more isotropic than those of material consolidated by extrusion. However, the degree of anisotropy depends strongly on the specific processing of the consolidated billet. This article describes production of new mill shapes from HIP billets, and reviews current and potential applications such as skid rails for high-temperature walking-beam furnaces, heat treating furnace parts, equipment for handling molten glass, and furnace tubes.

  3. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    Science.gov (United States)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.