WorldWideScience

Sample records for alloy-in-100

  1. Relationship between heat treatment, microstructure and creep rupture behavior of the nickel-base cast alloy IN 100

    International Nuclear Information System (INIS)

    The nickel-base cast alloy IN 100 is used for turbine blades for service in the temperature range above 800deg C. On account of the high proportion of the γ'-precipitation hardening phase of more than 50% IN 100 belongs the top group of high-temperature nickel-base superalloys. It is reported on investigations with IN 100 in order to better understand the casting-specific, large property variations and to define and to optimize the creep characteristics and the creep to rupture properties through variation of the γ'-precipitation hardening phase. It is explained how cast initial state, heat-treatment, microstructure, and the creep to rupture strength are linked with each other. (orig.)

  2. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    International Nuclear Information System (INIS)

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  3. Dislocation/precipitate interactions in IN100 at 650°C

    KAUST Repository

    Maciejewski, Kimberly

    2013-10-01

    The influence of γ\\' size on critical resolved shear stress in alloy IN100 at 650. °C has been examined by considering dislocation/precipitate interactions involving particle shearing and Orowan by-passing mechanisms. To achieve this, heat treatment procedures were carried out on smooth specimens to produce materials with variations in secondary and tertiary γ\\' size, while maintaining their respective volume fractions. These specimens were subjected to strain-controlled fully reversed cyclic loading at 650. °C. Thin foils extracted from these specimens, post-testing, were examined by transmission electron microscopy to identify the nature of the precipitate/dislocation interactions during plastic deformation. Results indicated the presence of shearing and Orowan by-passing mechanisms. These observations have been used as a basis to calculate the critical resolved shear stress as a sum of components contributed by solid solution and by γ\\' particles being sheared and looped. In this analysis, a critical particle size defining the shearing/looping transition has been determined and this has been used to calculate the relative volume fraction and size of particles contributing to the critical resolved shear stress. These analytical results have been compared with those experimentally obtained at 650. °C using smooth specimens with different precipitate sizes. © 2013 Elsevier B.V.

  4. Dislocation/precipitate interactions in IN100 at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Kimberly [Department of Mechanical Engineering, University of Rhode Island, Kingston, RI 02881 (United States); Jouiad, Mustapha [Division of Physical Science and Engineering, Mechanical Engineering Program, KAUST (Saudi Arabia); Ghonem, Hamouda, E-mail: ghonem@egr.uri.edu [Department of Mechanical Engineering, University of Rhode Island, Kingston, RI 02881 (United States)

    2013-10-10

    The influence of γ′ size on critical resolved shear stress in alloy IN100 at 650 °C has been examined by considering dislocation/precipitate interactions involving particle shearing and Orowan by-passing mechanisms. To achieve this, heat treatment procedures were carried out on smooth specimens to produce materials with variations in secondary and tertiary γ′ size, while maintaining their respective volume fractions. These specimens were subjected to strain-controlled fully reversed cyclic loading at 650 °C. Thin foils extracted from these specimens, post-testing, were examined by transmission electron microscopy to identify the nature of the precipitate/dislocation interactions during plastic deformation. Results indicated the presence of shearing and Orowan by-passing mechanisms. These observations have been used as a basis to calculate the critical resolved shear stress as a sum of components contributed by solid solution and by γ′ particles being sheared and looped. In this analysis, a critical particle size defining the shearing/looping transition has been determined and this has been used to calculate the relative volume fraction and size of particles contributing to the critical resolved shear stress. These analytical results have been compared with those experimentally obtained at 650 °C using smooth specimens with different precipitate sizes.

  5. Dislocation/precipitate interactions in IN100 at 650 °C

    International Nuclear Information System (INIS)

    The influence of γ′ size on critical resolved shear stress in alloy IN100 at 650 °C has been examined by considering dislocation/precipitate interactions involving particle shearing and Orowan by-passing mechanisms. To achieve this, heat treatment procedures were carried out on smooth specimens to produce materials with variations in secondary and tertiary γ′ size, while maintaining their respective volume fractions. These specimens were subjected to strain-controlled fully reversed cyclic loading at 650 °C. Thin foils extracted from these specimens, post-testing, were examined by transmission electron microscopy to identify the nature of the precipitate/dislocation interactions during plastic deformation. Results indicated the presence of shearing and Orowan by-passing mechanisms. These observations have been used as a basis to calculate the critical resolved shear stress as a sum of components contributed by solid solution and by γ′ particles being sheared and looped. In this analysis, a critical particle size defining the shearing/looping transition has been determined and this has been used to calculate the relative volume fraction and size of particles contributing to the critical resolved shear stress. These analytical results have been compared with those experimentally obtained at 650 °C using smooth specimens with different precipitate sizes

  6. Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing

    International Nuclear Information System (INIS)

    Highlights: • Micro-LAAM was proposed to deposit crack-sensitive Ni-base alloy IN100. • Crack-free deposition of IN100 was achieved using micro-LAAM. • Fine γ′ phase was formed with the γ′/γ approximately 60–40%. • Different types of carbides were observed at grain boundaries and in the grains. • Excellent tensile properties of the deposited IN100 were obtained. - Abstract: Layer by layer fabrication using micro-laser aided additive manufacturing (micro-LAAM) was successfully implemented on nickel-base superalloy IN100. It is known that IN100, a type of superalloy having high titanium and aluminum contents, has poor weldability due to weld liquation cracking in the heat-affected zone (HAZ) and strain age cracking. In this study, micro-LAAM process was optimized through a set of designed experiments to eliminate crack formation and reduce porosity. It was found that the crack-free deposition can be achieved owing to the fact that micro-LAAM process used in this study had very low heat input. Three distinct sizes of γ′ precipitates were observed on the post heat-treated samples. The volume fractions of γ to γ′ phases were found to be approximately 60–40%. Microstructure and chemical analysis results showed that γ′ phase was embedded within γ-Ni matrix while various carbides (MC, M23C6 and M6C) were observed as precipitates at grain boundaries or within grains. Electron backscatter diffraction (EBSD) was used to compare grain morphologies and size distribution of three distinctly different regions on each layer. The achieved ultimate tensile strength and yield strength are much better than the minimum requirements specified in aerospace material specification 5397 for cast IN100