WorldWideScience

Sample records for alloy-fe31cr21co20ni20mo3w2

  1. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  2. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

    Directory of Open Access Journals (Sweden)

    Alvaro A. Rodriguez

    2018-01-01

    Full Text Available The corrosion behavior of high-entropy alloys (HEAs CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276 and stainless steel 316L (UNS 31600 to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.

  3. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  4. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  5. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  6. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  7. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  8. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  9. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Structure change in 25 Cr - 20 Ni steels as a function of their Cr, Ni, Si and W content

    International Nuclear Information System (INIS)

    Gribaudo, L.M.; Durand, F.; Durand-Charre, M.

    1983-01-01

    The influence of varying the Cr, Ni, Si and W concentrations on the type and composition of the carbides of solidification and on the phase shift temperature is studied with 18 alloys of composition close to stainless steel-25-20 (AISI 310) composition. Experimental techniques used are differential thermal analysis, microprobe and scanning electron microscope. Crystallization is interpreted with the equilibrium diagram Ni-Cr-C. The formation of the interdendritic σ phase for a chromium rich alloys is interpreted with the phase equilibrium diagram of Fe-Ni-Cr-C. Mechanical properties and corrosion resistance are dependent on the morphology of the carbides M 7 C 3 and M 23 C 6 [fr

  11. High temperature aging structures of Ni-20Cr-20W alloys

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    High temperature aging structures and age hardening of Ni-20Cr-20W alloys developed as the superalloys for the nuclear energy steelmaking, and effects of C and Zr additions to the alloys and the effect of preheat treatment on these properties were studied. M 6 C, α-W and two kinds of M 23 C 6 having different lattice parameters were found as precipitates in the alloys. M 23 C 6 whose lattice parameter was around 10.7A precipitated in the early stage of aging at 700 0 C-1,150 0 C, and the carbide changed to M 6 C at higher temperature than 1,000 0 C, but it remained as a stable carbide at lower temperature than 900 0 C. α-W precipitated at 800 0 C-1,100 0 C after precipitation of M 23 C 6 and it disappeared with increase of M 6 C. M 23 C 6 having the larger lattice parameter (10.9A) precipitated transitionally in aging stage of 26 x 10 3 in Larson Miller parameter at 900 0 C and 1,000 0 C. Age hardening corresponded to the precipitation of M 23 C 6 and it was reduced by the double pre-heat-treatment. Zr addition and amount of C influenced on the aging structure and age hardening. Zr seemed to be a favorable element to stabilize the carbide. (auth.)

  12. Study and characterization of FeNi and NiCr(80-20) % w alloys, during and after neutron irradiation, using the resistivity method

    International Nuclear Information System (INIS)

    Otero, Mauro Pereira

    1978-01-01

    We have used the resistivity method with and without neutron irradiation to study the parameters that appear in the Order-Disorder Transitions of Fe Ni(50-50)% at. and Ni Cr( 80 - 20) % w. alloys. The results obtained with Fe Ni are in agreement with those obtained by Marchand at the University of Grenoble. Several isothermal annealings were made in the range 400 - 302 deg C in which T c (Order-Disorder Transition Critical Temperature) was determined between 327 and 310 deg C. The activation energy obtained was E a = 0,49 eV and is in agreement with works of Marchand, Dienes and Damask. As for Ni Cr(80-20)% the following has been done: a) Electrical Properties characterizations, having in mind the technological applications; b) Linear and isothermal annealings were performed to determine the Order-Disorder Transition Critical Temperature (I ) supported by hypothesis made, taking into account the Yano's and Taylor's marks. The-result is T c = (536 +- 4) deg C; c) determination of activation energy E a = (1,36 +- 0.14) eV. The resistivity measurements mere performed by means of the classical 4-wire method. An anisotropy of electrical resistivity was found to exist depending on the sense of the applied electrical field. (author)

  13. Effects of air melting on Fe/0.3/3Cr/0.5Mo/2Mn and Fe/0.3C/3Cr/0.5Mo/2Ni structural alloy steels

    International Nuclear Information System (INIS)

    Steinberg, B.

    1979-06-01

    Changing production methods of a steel from vacuum melting to air melting can cause an increase in secondary particles, such as oxides and nitrides, which may have detrimental effects on the mechanical properties and microstructure of the alloy. In the present study a base alloy of Fe/0.3C/3Cr/0.5Mo with either 2Mn or 2Ni added was produced by air melting and its mechanical properties and microstructure were compared to an identical vacuum melted steel. Significant differences in mechanical behavior, morphology, and volume fraction of undissolved inclusions have been observed as a function of composition following air melting. For the alloy containing manganese, all properties remained very close to vacuum melted values but the 2Ni alloy displayed a marked loss in Charpy impact toughness and plane strain fracture toughness. This loss is attributed to an increase in volume fraction of secondary particles in the nickel alloy, as opposed to both the Mn alloy and vacuum melted alloys, as well as to substaintially increased incidence of linear coalescence of voids. Microstructural features are discussed

  14. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  15. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  16. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  17. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  18. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  19. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  20. Selected Properties And Tribological Wear Alloys Co-Cr-Mo And Co-Cr-Mo-W Used In Dental Prosthetics

    Directory of Open Access Journals (Sweden)

    Augustyn-Pieniążek J.

    2015-09-01

    Full Text Available The presented work provides the results of the abrasive wear resistance tests performed on Co-Cr-Mo and Co-Cr-Mo-W alloys with the use of the Miller’s apparatus. The analyzed alloys underwent microstructure observations as well as hardness measurements, and the abraded surfaces of the examined materials were observed by means of electron scanning microscopy. The performed examinations made it possible to state that the Co-Cr alloys characterized in a high hardness, whereas the changes in the mass decrement were minimal, which proved a high abrasive wear resistance.

  1. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  2. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  3. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  4. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  5. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  6. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  7. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-01-01

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co 55 Cr 40 Ni 5 and Co 60 Cr 30 Ni 10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  8. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  9. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  10. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

    International Nuclear Information System (INIS)

    Gao, Xuzhou; Lu, Yiping; Zhang, Bo; Liang, Ningning; Wu, Guanzhong; Sha, Gang; Liu, Jizi; Zhao, Yonghao

    2017-01-01

    Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi 2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1 2 )/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1 2 ) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1 2 ) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi 2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1 2 ) and brittle BCC(B2) phases.

  11. Moessbauer study of corrosion products formed on Fe80B20 and Fe40Ni40 (MoB)20 amorphous alloys in an SO2-polluted atmosphere

    International Nuclear Information System (INIS)

    Davalos, J.; Marco, J.F.; Gracia, M.; Gancedo, J.R.; Greneche, J.M.

    1990-01-01

    ICEMS, XPS, XRD, and AES have been used to study the corrosion layers formed on two metallic glasses, Fe 80 B 20 and Fe 40 Ni 40 (MoB) 20 (2605 and 2826 MB, Allied Company), exposed to an SO 2 -polluted humid atmosphere. The iron-containing corrosion products are the same found for pure iron in the same environment, but different relative concentrations were clearly evidenced by ICEMS results. Elemental sulphur, Ni(OH) 2 , and B(OH) 3 , the latter enriched at the surface, were found by XPS, XRD and AES. (orig.)

  12. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  13. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  14. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  15. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  16. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  17. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  18. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant

  19. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  20. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  1. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  2. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  3. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments

    International Nuclear Information System (INIS)

    Chou, Y.L.; Yeh, J.W.; Shih, H.C.

    2010-01-01

    The purpose of this study is to investigate the electrochemical properties of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x high-entropy alloys in three aqueous environments which simulate acidic, marine, and basic environments at ambient temperature (∼25 o C). The potentiodynamic polarisation curves of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x alloys, obtained in aqueous solutions of H 2 SO 4 and NaOH, clearly revealed that the corrosion resistance of the Mo-free alloy was superior to that of the Mo-containing alloys. On the other hand, the lack of hysteresis in cyclic polarisation tests and SEM micrographs confirmed that the Mo-containing alloys are not susceptible to pitting corrosion in NaCl solution.

  4. Low temperature physical properties of Co-35Ni-20Cr-10Mo alloy MP35N®

    Science.gov (United States)

    Lu, J.; Toplosky, V. J.; Goddard, R. E.; Han, K.

    2017-09-01

    Multiphase Co-35Ni-20Cr-10Mo alloy MP35N® is a high strength alloy with excellent corrosion resistance. Its applications span chemical, medical, and food processing industries. Thanks to its high modulus and high strength, it found applications in reinforcement of ultra-high field pulsed magnets. Recently, it has also been considered for reinforcement in superconducting wires used in ultra-high field superconducting magnets. For these applications, accurate measurement of its physical properties at cryogenic temperatures is very important. In this paper, physical properties including electrical resistivity, specific heat, thermal conductivity, and magnetization of as-received and aged samples are measured from 2 to 300 K. The electrical resistivity of the aged sample is slightly higher than the as-received sample, both showing a weak linear temperature dependence in the entire range of 2-300 K. The measured specific heat Cp of 430 J/kg-K at 295 K agrees with a theoretical prediction, but is significantly smaller than the values in the literature. The thermal conductivity between 2 and 300 K is in good agreement with the literature which is only available above 77 K. Magnetic property of MP35N® changes significantly with aging. The as-received sample exhibits Curie paramagnetism with a Curie constant C = 0.175 K. While the aged sample contains small amounts of a ferromagnetic phase even at room temperature. The measured MP35N® properties will be useful for the engineering design of pulsed magnets and superconducting magnets using MP35N® as reinforcement.

  5. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  6. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    Science.gov (United States)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; Zhang, Yanwen

    2018-01-01

    The role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably, the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding eg to t2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.

  7. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  8. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  9. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  10. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  11. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiawen [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin, E-mail: binliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Cao, Yuankui; Li, Tianchen; Zhou, Rui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-24

    Dynamic recrystallization (DRX) refine grains of high entropy alloys (HEAs) and significant improve the mechanical property of HEAs, but the effect of high melting point element molybdenum (Mo) on high temperature deformation behavior has not been fully understood. In the present study, flow behavior and microstructures of powder metallurgical CrFeCoNiMo{sub 0.2} HEA were investigated by hot compression tests performed at temperatures ranging from 700 to 1100 °C with strain rates from 10{sup −3} to 1 s{sup −1}. The Arrhenius constitutive equation with strain-dependent material constants was used for modeling and prediction of flow stress. It was found that at 700 °C, the dynamic recovery is the dominant softening mechanism, whilst with the increase in compression testing temperature, the DRX becomes the dominant mechanism of softening. In the present HEA, the addition of Mo results in the high activation energy (463 kJ mol{sup −1}) and the phase separation during hot deformation. The formation of Mo-rich σ phase particles pins grain boundary migration during DRX, and therefore refines the size of recrystallized grains.

  12. Experimental observations of transient phases during long-range ordering to Ni4Mo in a Ni-Mo-Fe-Cr alloy

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    1987-01-01

    Experimental observations are reported of transient phases which form during long-range ordering to Ni 4 Mo (f.c.c. → Dl/sub a/ superlattice) in the quaternary alloy Ni-19.2 at% Mo-1.2 at% Fe-1.06 at% Cr using electron diffraction. In the early stages of ordering during isothermal annealing, diffuse intensity maxima centered at the short-range order reflections (1 1/2 O)/sub f.c.c./ and along /sub f.c.c./ directions are observed. Subsequently, a DO 22 superlattice is generated from the short-range order state. The coexistence of the DO 22 , Pt 2 Mo-type, and Dl/sub a/ superlattices is observed in this alloy system which indicates that these three superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices disappear, indicating that they are transient phases. These results are not inconsistent with the theoretical treatments of ordered alloys which are based on an Ising model with pairwise atomic interactions. (author)

  13. Creep rupture properties of laves phase strengthened Fe--Ta--Cr--W and Fe--Ta--Cr--W--Mo alloys

    International Nuclear Information System (INIS)

    Singh, S.

    1975-12-01

    A small addition of tungsten (0.5 at. percent) was shown to have an effect similar to that of molybdenum on the phase transformation characteristics of alloy Ta7Cr (with a nominal composition of 1 at. percent Ta, 7 at. percent Cr, balance Fe). The existence of time-temperature dependent transformation behavior in alloy Ta7Cr0.5W was confirmed. The effect of spheroidization time and temperature on creep strength was determined. In addition, effect of mechanical processing prior to aging, on creep strength was also determined. It was also shown that by suitable modifications of composition, the grain boundary film can be broken during the aging treatment without the use of spheroidization treatment. Microhardness, tensile and creep properties have been determined. Optical metallography and scanning electron microscopy have been used to follow the microstructural changes and mode of fracture. The creep rupture strength of alloy Ta7CrW alloy was found to be superior to many of the best commercially available ferritic alloys at 1200 0 F. (21 fig., 8 tables)

  14. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  15. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  16. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  17. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  18. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  19. Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si(-Co) shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.

    1995-01-01

    It is well known that the Fe based alloys can exhibit shape memory effect due to the γ to ε martensitic transformation. The effect may not be as striking as observed in the NiTi alloy but it might become attractive from the practical point of view. In this work, two compositions of Fe-Cr-Ni-Mn-Si(-Co) stainless steel based shape memory alloy, prepared by the VIM technique, will be presented. The results are good with shape recovery of 95% for a pre-strain of 4% after some training cycles. In terms of workability the alloys produced are worse than the usual AISI304. However, adjusting the thermo-mechanical processing, it is perfectly possible to produce wire as thin as 1,20mm in dia. or down. (orig.)

  20. The use of nitrogen to improve the corrosion resistance of FeCrNiMo alloys for the chemical process industries

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R.; Deverell, H.E.

    1987-06-01

    The addition of 0.1 to 0.25 wt% nitrogen to austenitic alloys has been shown to enhance resistance to localized corrosion in oxidizing chloride and reducing acid solutions. Further tests of FeCrNiMo alloys assess the effects of nitrogen additions on: mechanical properties, chloride and caustic stress corrosion cracking resistance, passivation characteristics, and general corrosion rates in various acid, alkali, and salt solutions pertinent to the chemical process industries. The precipitation of chromium-rich secondary phases was retarded by solid solution additions of 0.1 to 0.25 wt% nitrogen. The corrosion resistance of FeCrNiMoN alloys in the welded condition was improved by using shield-gas mixtures of argon and 2.5 to 5.0 wt% nitrogen.

  1. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  2. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  3. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    Science.gov (United States)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  4. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  5. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  6. Phase stability, crystal structure and magnetism in (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6

    Science.gov (United States)

    Provino, Alessia; Bhattacharya, Amitava; Dhar, Sudesh K.; Pani, Marcella; Gatti, Flavio; Paudyal, Durga; Manfrinetti, Pietro

    Ternary phases with composition T2M21X6 and T3M20X6 (T = transition metal; M = 3 d metal; X = B, C, P) are reported to crystallize with the W2Cr21C6-type and Mg3Ni20B6-type, respectively (ternary ordered derivatives of the cubic Cr23C6-type, cF116). They attract interest due to their refractory, mechanical, and peculiar magnetic properties. Literature data on these compounds only concern apparently stoichiometric 2:21:6 and 3:20:6 phases. Often only nominal composition has been reported, with few structural refinements and no measurements of physical properties. Lack of detailed stoichiometry and crystallographic data does not allow sufficient understanding of the crystal chemistry and properties of these compounds. We studied stability, crystal structure and magnetism of (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6; stable phases are U2Ni21B6 and Nb3Ni20B6, as also confirmed by theoretical calculations. The two pristine compounds solubilize Nb and U, respectively, up to a given extent. The substitution of U by Nb leads to a structural change from the W2Cr21C6- to the Mg3Ni20B6-type. While U2Ni21B6 is a Pauli paramagnet (itinerant non-magnetic state of U-5 f electrons), in agreement with literature, magnetization data for (UyNb1-y)3 Ni20B6 show itinerant ferromagnetism with TC >300 K.

  7. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  8. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-01-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe 80−x Cr x Co 20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe 55 Cr 25 Co 20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe 65 Cr 15 Co 20 reached to 172 emu/g. • Fe 65 Cr 15 Co 20 alloy is the suitable composition fabricated by SPS.

  9. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  10. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  11. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  12. Ion backscattering, channeling and nuclear reaction analysis study of passive films formed on FeCrNi and FeCrNiMo (100) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C; Schmaus, D [Paris-7 Univ., 75 (France). Groupe de Physique des Solides de l' ENS; Elbiache, A; Marcus, P [Ecole Nationale Superieure de Chimie, 75 - Paris (France)

    1990-01-01

    The compositions of passive films formed on Fe-17Fr-13Ni (at. %) and Fe-18.5Cr-14Ni-1.5Mo (100) single crystals have been determined and the structure of the alloy under the film has been investigated. The alloys were passivated in 0.05M H{sub 2}SO{sub 4} at 250 mV/SHE for 30 min. The oxygen content was measured by nuclear microanalysis using the {sup 16}O(d,p) {sup 17}O* reaction. The oxygen content in the passive film is similar for the two alloys and equal to (12{plus minus}2) 10{sup 15} O/cm{sup 2}. The cationic compositions of the passive films have been determined by {sup 4}He channeling at two incident beam energies: 0.8 and 2.0 MeV. For the two alloys studied, a total cation content of (5{plus minus}2)10{sup 15} at/cm{sup 2} is found in the passive films. The corresponding thickness is about 12 A. There is an excess of oxygen, which can be attributed to the presence of hydroxyls and sulfate. A strong chromium enrichment is found in the passive film formed on both alloys: chromium represents about 50% of the cations. There is no evidence of molybdenum enrichment in the passive film formed on the Mo-alloyed stainless steel. The comparison of the results obtained at the two different incident beam energies (0.8MeV and 2MeV) reveals the existence of defects at the alloy/passive film interface. (author).

  13. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  14. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhi, E-mail: Zhi.Tang@alcoa.com [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Senkov, Oleg N. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States); Parish, Chad M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, Chuan; Zhang, Fan [CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 (United States); Santodonato, Louis J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Gongyao [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Zhao, Guangfeng; Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Liaw, Peter K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2015-10-28

    The microstructure and phase composition of an AlCoCrFeNi high-entropy alloy (HEA) were studied in as-cast (AlCoCrFeNi-AC, AC represents as-cast) and homogenized (AlCoCrFeNi-HP, HP signifies hot isostatic pressed and homogenized) conditions. The AlCoCrFeNi-AC ally has a dendritric structure in the consisting primarily of a nano-lamellar mixture of A2 (disordered body-centered-cubic (BCC)) and B2 (ordered BCC) phases, formed by an eutectic reaction. The homogenization heat treatment, consisting of hot isostatic pressed for 1 h at 1100 °C, 207 MPa and annealing at 1150 °C for 50 h, resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma (σ) phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. The ultimate tensile strength was virtually unaffected by heat treatment, and was 396±4 MPa at 700 °C. However, homogenization produced a noticeable increase in ductility. The AlCoCrFeNi-AC alloy showed a tensile elongation of only 1.0%, while after the heat-treatment, the elongation of AlCoCrFeNi-HP was 11.7%. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents in the AlCoCrFeNi-AC and AlCoCrFeNi-HP. The reasons for the improvement of ductility after the heat treatment and the crack initiation subjected to tensile loading were discussed.

  15. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy

    Science.gov (United States)

    Wu, Wenqian; Guo, Lin; Liu, Bin; Ni, Song; Liu, Yong; Song, Min

    2017-12-01

    The effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy have been investigated. The torsional deformation generates a gradient microstructure distribution due to the gradient torsional strain. Both dislocation activity and deformation twinning dominated the torsional deformation process. With increasing the torsional equivalent strain, the microstructural evolution can be described as follows: (1) formation of pile-up dislocations parallel to the trace of {1 1 1}-type slip planes; (2) formation of Taylor lattices; (3) formation of highly dense dislocation walls; (3) formation of microbands and deformation twins. The extremely high deformation strain (strained to fracture) results in the activation of wavy slip. The tensile strength is very sensitive to the torsional deformation, and increases significantly with increasing the torsional angle.

  16. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  17. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) compounds.

    Science.gov (United States)

    Bernardes, Carlos E S; Canongia Lopes, José N; Minas da Piedade, Manuel E

    2013-10-31

    A previously developed OPLS-based all-atom force field for organometallic compounds was extended to a series of first-, second-, and third-row transition metals based on the study of M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) complexes. For materials that are solid at ambient temperature and pressure (M = Cr, Mo, W) the validation of the force field was based on reported structural data and on the standard molar enthalpies of sublimation at 298.15 K, experimentally determined by Calvet-drop microcalorimetry using samples corresponding to a specific and well-characterized crystalline phase: Δ(sub)H(m)° = 72.6 ± 0.3 kJ·mol(–1) for Cr(CO)(6), 73.4 ± 0.3 kJ·mol(–1) for Mo(CO)(6), and 77.8 ± 0.3 kJ·mol(–1) for W(CO)(6). For liquids, where problems of polymorphism or phase mixtures are absent, critically analyzed literature data were used. The force field was able to reproduce the volumetric properties of the test set (density and unit cell volume) with an average deviations smaller than 2% and the experimentally determined enthalpies of sublimation and vaporization with an accuracy better than 2.3 kJ·mol(–1). The Lennard-Jones (12-6) potential function parameters used to calculate the repulsive and dispersion contributions of the metals within the framework of the force field were found to be transferable between chromium, iron, and nickel (first row) and between molybdenum and ruthenium (second row).

  18. Applicability of the θ projection method to creep curves of Ni-22Cr-18Fe-9Mo alloy

    International Nuclear Information System (INIS)

    Kurata, Yuji; Utsumi, Hirokazu

    1998-01-01

    Applicability of the θ projection method has been examined for constant-load creep test results at 800 and 1000degC on Ni-22Cr-18Fe-9Mo alloy in the solution-treated and aged conditions. The results obtained are as follows: (1) Normal type creep curves obtained at 1000degC for aged Ni-22Cr-18Fe-9Mo alloy are fitted using the θ projection method with four θ parameters. Stress dependence of θ parameters can be expressed in terms of simple equations. (2) The θ projection method with four θ parameters cannot be applied to the remaining creep curves where most of the life is occupied by a tertiary creep stage. Therefore, the θ projection method consisting of only the tertiary creep component with two θ parameters was applied. The creep curves can be fitted using this method. (3) If the θ projection method with four θ or two θ parameters is applied to creep curves in accordance with creep curve shapes, creep rupture time can be predicted in terms of formulation of stress and/or temperature dependence of θ parameters. (author)

  19. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Schneeweiss, Oldřich; Friák, Martin; Masaryk University, Brno; Dudová, Marie; Holec, David

    2017-01-01

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B ), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.

  20. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    International Nuclear Information System (INIS)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-01-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr_2O_3, CrO_2, WO_3, Cu_2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;

  1. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  2. Welding and corrosion resistance of the new nitrogen alloyed steel X2 CrNiMnMoN241764

    International Nuclear Information System (INIS)

    Arit, N.; Henser, H.; GroB, V.

    1994-01-01

    Remanit 4565 S is a new developed nitrogen alloyed austenitic stainless steel. Characteristic features are: improved strength and toughness, delayed precipitation of carbides and intermetallic phases, improved corrosion resistance. Welding fabrication is possible without the risk of pore formation. TIG-welded joints are as resistant as the base metal, using filler metal SG-NiCr 20 Mo 15 (Thermanit Nimo C) respectively SG-NiCr 28 Mo(Thermanit 30/40 E) according to the area of application. (Author) 8 refs

  3. Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

    OpenAIRE

    Jung-Ho Moon; Tae Kwon Ha

    2014-01-01

    High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreas...

  4. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy

    International Nuclear Information System (INIS)

    Zhang Tao; Yang Yange; Shao Yawei; Meng, Guozhe; Wang, Fuhui

    2009-01-01

    The effect of hydrostatic pressure on the pit corrosion behavior of Fe-20Cr alloy was investigated in 3.5% NaCl solution by means of potentiodynamic polarization and potentiostatic technology, and the experiment data was analyzed based on stochastic theory. With the increase of hydrostatic pressure, the pit corrosion resistance of Fe-20Cr alloy was deteriorated, which was distinguished by the decrease of critical pit potential (E cirt ) and the increase of passive current density. The results also demonstrated that there exist two effects of hydrostatic pressure on the corrosion behavior of Fe-20Cr alloy: (1) the pit generation rate was evidently increased compared to that under lower hydrostatic pressure, and the metastable pits become faster and larger. However, it seemed that pit generation mechanism shows no hydrostatic pressure dependence; (2) the probability of pit growth increased with the increase of hydrostatic pressure, which implied that the metastable pit on Fe-20Cr alloy exhibited higher probability to become larger pit cavity during shorter time interval than that under lower hydrostatic pressure.

  5. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  6. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  7. Effects of composition and heat treatments on the strength and ductility of Fe-Cr-Co alloys

    International Nuclear Information System (INIS)

    Kubarych, K.G.

    1980-06-01

    The relationship between the microstructure and mechanical properties of spinodally decomposed Fe-Cr-Co ductile permanent magnet alloys was investigated using transmission electron microscopy, electron diffraction, tensile testing, and Charpy impact testing. Isothermal aging and step aging of four alloys (Fe-28 wt % Cr-15 wt % Co, Fe-23 wt % Cr-15-wt % Co-5 wt % V, Fe-23 wt % Cr-15 wt % Co-3 wt % V-2 wt % Ti, and Fe-31 wt % Cr-23 % Co) resulted in decomposition into two phases, an Fe-Co rich (α 1 ) phase and a Cr rich (α 2 ) phase. The microstructural features of the decomposition products were consistent with those expected from a spinodal reaction and agree with the reported work on the Fe-Cr-Co system. An Fe-23 wt % Cr-15 wt % Co-5 wt % V alloy was found to have, among the four alloys, the best combinations of strength and ductility

  8. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  9. Development of Cr3C2-25(Ni20Cr) nanostructured coatings

    International Nuclear Information System (INIS)

    Cunha, Cecilio Alvares da

    2012-01-01

    This study is divided in two parts. The first part is about the preparation of nanostructured Cr 3 C 2 -25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr 3 C 2 -25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr 3 C 2 -25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain (ε = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr 3 C 2 -25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation (δH = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation (δC p = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr 3 C 2 -25(Ni20Cr) coatings prepared using the HVOF thermal spray process were determined

  10. Magnetic characterization of nanocrystalline Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) alloys during milling and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-15

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu

  11. Improvement of antiscuff properties and thermal stability of alloys of the Fe-Cr-Ni-Si system used for building-up of fittings

    International Nuclear Information System (INIS)

    Luzhanskij, I.B.; Runov, A.E.; Gel'man, A.S.; Stepin, V.S.

    1978-01-01

    Studied was the influence of the system and the degree of alloying of alloys of the Fe-Cr-Ni-Si system on their operational characteristics in the operation mode of the energy armature of superhigh parameters. The TsN18 alloy has been developed (containing 0.1 to 0.2% C; 3.5 to 6.0% Si; 0.5 to 3.0% Mn; 16 to 17% Cr; 10.5 to 12% Ni; 1.5 to 3% Mo; the balance being Fe), bombining a high resistance to scuffing with a fairly high heat resistance; the alloy lending itself to building up and to machining. The dependence of the wear resistance of the alloys of the Fe-Cr-Ni-Si system on two factors has been established; namely, - the antifriction characteristics of the film of secondary structures, and physico-mechanical properties of the alloy

  12. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys

    International Nuclear Information System (INIS)

    Chou, H.-P.; Chang, Y.-S.; Chen, S.-K.; Yeh, J.-W.

    2009-01-01

    Al x CoCrFeNi (0 ≤ x ≤2) alloys were prepared by an arc remelter and investigated. With increasing x, the Al x CoCrFeNi alloys change from single FCC phase to single BCC phase with a transition duplex FCC/BCC region. The weak X-ray diffraction intensities indicate severe X-ray scattering effect of lattice in these high-entropy alloys. Electrical conductivity and thermal conductivity much smaller than those of pure component metals is ascribed as due to this lattice effect. The behavior of electrical conductivity and thermal conductivity can be divided into three parts according to microstructure. Both values of electrical conductivity and thermal conductivity decrease with increasing x in single-phase regions. Values of electrical conductivity and thermal conductivity are even higher than those in the duplex phase region because of the additional scattering effect of FCC/BCC phase boundaries in the alloys. Relative contribution of electron and phonon to electrical resistivity and thermal conductivity is evaluated in this study. It is shown that both electron and phonon components are comparable in these high-entropy alloys, and their transport properties are similar to that of semi-metal.

  13. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  14. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    Science.gov (United States)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  15. KINETICS OF CATHODIC REDUCTION OF OXYGEN ON NI-CR-MO-W ALLOY

    International Nuclear Information System (INIS)

    NA

    2006-01-01

    Ni-Cr-Mo-W alloys (C-group alloys) are well known as materials with very high Corrosion resistance in very aggressive environments, an asset that has motivated the selection of Alloy 22 as a waste package material in the Yucca Mountain Project for the long-term geologic disposal of spent nuclear fuel and other high-level radioactive wastes. The aim of this project is to elucidate the corrosion performance of Alloy 22 under aggressive conditions and to provide a conceptual understanding and parameter data base that could act as a basis for modeling the corrosion performance of waste packages under Yucca Mountain conditions. A key issue in any corrosion process is whether or not the kinetics of the cathodic reactions involved can support a damaging rate of anodic metal (alloy) dissolution. Under Yucca Mountain conditions the primary oxidant available to drive corrosion (most likely in the form of crevice, or under-deposit, corrosion) will be oxygen. Here, we present results on the kinetics of oxygen reduction at the Alloy 22/solution interface

  16. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  17. Residual stress determination by neutron diffraction in a car gear-shaft made of 20NiCrMo2 alloyed case hardening steel

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mazzanti, M.; Mikula, Pavol; Vrána, Miroslav

    2012-01-01

    Roč. 50, č. 4 (2012), s. 213-220 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : 20NiCrMo2 steel * gear-shaft * caser hardening * residual stress * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2012

  18. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  19. Influence of cold-working and subsequent heat-treatment on young's modulus and strength of Co-Ni-Cr-Mo alloy

    International Nuclear Information System (INIS)

    Otomo, Takuma; Matsumoto, Hiroaki; Chiba, Akihiko; Nomura, Naoyuki

    2009-01-01

    Changes in Young's modulus of the Co-31 mass%Ni-19 mass%Cr-10 mass%Mo alloy (Co-Ni based alloy) with cold-swaging, combined with heat-treatment at temperatures from 673 to 1323 K, was investigated to enhance the Young's modulus of Co-Ni based alloy. After cold-swaging, the Co-Ni based alloy, forming fiber deformation texture, shows the Young's modulus of 220 GPa. Furthermore, after ageing the cold-swaged alloy at temperature from 673 to 1323 K, the Young's modulus increased to 230 GPa, accompanied by a decrease in the internal fiction and an increase in the tensile strength. This suggests that the increment in Young's modulus is caused by a moving of the vacancies to the dislocation cores and a continuous locking of the dislocations along their entire length with solute atoms (trough model). By annealing at 1323 K after cold swaging, Young's modulus slightly increased to 236 GPa. On the other hand, the tensile strength decreases to almost the same value as that before cold swaging due to recrystallization. These results suggest that the Young's modulus and the strength in the present alloy are simultaneously enhanced by the continuous dislocation locking during aging as well as the formation of fiber deformation texture. (author)

  20. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-06-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase ( f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  1. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-04-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase (f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  2. Development of Cr{sub 3}C{sub 2}-25(Ni20Cr) nanostructured coatings; Desenvolvimento de revestimentos nanostruturados de Cr{sub 3}C{sub 2}-25(Ni20Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Cecilio Alvares da

    2012-07-01

    This study is divided in two parts. The first part is about the preparation of nanostructured Cr{sub 3}C{sub 2}-25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr{sub 3}C{sub 2}-25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain ({epsilon} = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation ({delta}H = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation ({delta}C{sub p} = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr{sub 3}C{sub 2}-25(Ni20Cr) coatings

  3. Effect of Si and Mn additions on ferrite and austenite phase fractions in 25Cr-7Ni-1.5Mo-3W base super duplex stainless steels

    International Nuclear Information System (INIS)

    Jeong, S.W.; Lee, Z.-H.; Lee, H.M.

    2000-01-01

    The effect of heat treatment and Si and Mn additions on the ferrite and austenite phase fractions of the super duplex stainless steel (SDSS), Fe-25Cr-7Ni-1.5Mo-3W-Si-Mn-0.25N (numbers are all in wt.% unless specified otherwise), was investigated. The thermodynamic calculations of phase equilibria and phase fractions were performed using the Thermo-Calc program. Based on the calculated results, specific compositions of Si and Mn were selected and alloys with these compositions were analysed by Feritscope, X-ray diffractometry and scanning electron microscopy. The calculated phase fractions and experimentally analysed ones were compared and there was a good agreement between calculations and measurements. The optimum heat treatment condition for Fe-25Cr-7Ni-1.5Mo-3W-0.5Si-0.5Mn-0.25N is to hold at 1050 to 1100 C for 2 h in considering the ferrite to austenite ratio of 50:50 and to avoid second phase precipitation such as the σ phase. It was suggested that an excessive addition of more than 0.8Si and 1.0Mn may induce the σ phase precipitation. (orig.)

  4. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  5. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Nieh, T.G. [Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN 37996 (United States); Lu, Z.P., E-mail: luzhaoping@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-16

    In this work, we systematically investigated flow behavior of a high entropy alloy (HEA) strengthened by coherent γ′ precipitates in the temperature range of 1023–1173 K. In contrast to the single-phase FeCoNiCrMn HEA, this precipitate-hardened alloy, i.e., (FeCoNiCr){sub 94}Ti{sub 2}Al{sub 4}, exhibited large reduction of the steady-state strain rate (by ~2 orders of magnitude) or drastic enhancement in flow stress, indicating significant improvement in high-temperature properties. Our results showed that the deformation could be divided into two regimes. At temperatures below 1123 K, coherent γ′ precipitates effectively blocked the dislocation motion, thus resulted in a threshold stress effect. Above 1123 K, however, γ′ particles dissolved and the deformation was controlled by the ordinary dislocation climb mechanism. In addition, we conducted transmission electron microscopy to characterize dislocation-precipitate interaction to provide microstructural evidences to support our conclusion of the specific deformation mechanisms in the two temperature regimes.

  6. First principles study of structural stability and site preference in Co3 (W,X

    Directory of Open Access Journals (Sweden)

    Joshi Sri Raghunath

    2014-01-01

    Full Text Available Since the discovery [1] of γ′ precipitate (L12 – Co3(Al, W in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (γ + γ′ similar to Ni-based superalloys [2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the γ′ phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L12 structure. Compositions of type Co3(W,X, (where X/Y = Mn, Fe, Ni, Pt, Cr , Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L12 structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.

  7. The effect of small 4th element alloying additions on the calculated phase stability in the Fe-Cr-Ni system

    International Nuclear Information System (INIS)

    Watkin, J.S.

    1979-01-01

    Recent studies into the void swelling of Fe-Cr-Ni alloys have revealed that the magnitude of swelling depends upon alloy constitution and this together with the fact that minor element additions also play a major role in swelling necessitate a detailed knowledge of the influence of small 4th element additions on phase stability. In this paper the effects of additions of Nb, Ti, Al, Mo, Co and C to the Fe-Cr-Ni ternary are assessed by calculation. They confirm the ferritising tendencies of Nb, Ti and Al and the strong austenitising effect of C. Confirmation is also found for the scaling factors in the equivalent Ni and Cr equations in common usage and the paper presents Fe-Cr-Ni ternary sections at 400, 550 and 700 0 C modified for 1 at.% addition of each of the above elements. (orig.) [de

  8. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.-M. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany); Key Lab of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gebert, A. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)], E-mail: a.gebert@ifw-dresden.de; Roth, S.; Kuehn, U.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)

    2008-07-14

    This paper presents investigations on the effect of Si on the glass-forming ability, thermal stability and magnetic properties of the Fe-Co-Zr-Mo-W-B samples (group I: Fe{sub 60}Co{sub 8}Zr{sub 10}Mo{sub 5}W{sub 2}B{sub 15-x}Si{sub x}, 1 {<=} x {<=} 4; group II: Fe{sub 60}Co{sub 8}Zr{sub 10-x}Mo{sub 5}W{sub 2}B{sub 15}Si{sub x}, 0 {<=} x {<=} 4; group III: Fe{sub 60}Co{sub 8}Zr{sub 8}Mo{sub 5}W{sub 2}B{sub 17-x}Si{sub x}, 0 {<=} x {<=} 2) prepared by melt spinning, injection casting, and centrifugal casting methods. It is found that the glass-forming ability (GFA) of the alloys in group I is more deteriorated than that in group II, and that the alloys in group III can be cast into the rods of 1-3 mm diameter without crystalline reflections in their XRD patterns. For the amorphous ribbons and rods, a non-monotonic change of the nearest neighbour distance r{sub 1} with increasing Si content c{sub Si} was detected, which is parallel to that of the glass transition and crystallization temperatures T{sub g} and T{sub x}, but opposite to that of the magnetization at room temperature M{sub RT} and the Curie temperature T{sub c}. This correlation can be interpreted by a structure model presuming that iron atoms appear simultaneously in two types of local structures in the amorphous samples.

  9. The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions

    Directory of Open Access Journals (Sweden)

    Xinxin Dong

    2017-02-01

    Full Text Available Ni-M (M = Mo, Fe, Co, Mn or Cr bicomponent catalysts were prepared through the co-impregnation method for upgrading low H2/CO ratio biomass gas into urban gas through partial methanation coupling with water gas shift (WGS. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction (XRD, H2 temperature programmed reduction (H2-TPR, H2 temperature programmed desorption (H2-TPD, scanning electron microscopy (SEM and thermogravimetry (TG. The catalytic performances demonstrated that Mn and Cr were superior to the other three elements due to the increased fraction of reducible NiO particles, promoted dispersion of Ni nanoparticles and enhanced H2 chemisorption ability. The comparative study on Mn and Cr showed that Mn was more suitable due to its smaller carbon deposition rate and wider adaptability to various H2/CO and H2O/CO conditions, indicating its better synergy effect with Ni. A nearly 100 h, the lifetime test and start/stop cycle test further implied that 15Ni-3Mn was stable for industrial application.

  10. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  11. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  12. Alloying and heat treatment optimization of Fe/Cr/C steels for improved mechanical properties

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1979-06-01

    The effects of alloying elements and heat treatments on the microstructural changes and strength-toughness properties were investigated in optimization of vacuum melted Fe/Cr/C base steels. The structure of the steels in the as-quenched conditions consisted of highly dislocated autotempered lath martensite (strong phase) and thin continuous interlath films of retained austenite (tough phase). It has been emphasized again that the mechanical properties of the steels are sensitive to the amount and the stability of retained austenite. To increase the stability of retained austenite in the as-quenched condition 2 w/o Mn or 2 w/o Ni was added to the base steel, viz., Fe/3Cr/0.3C. Partial replacement of Cr by about 0.5 w/o Mo did not alter the beneficial microstructure

  13. Precipitation sequences in austenitic Fe-22Cr-21Ni-6Mo-(N) stainless steels

    International Nuclear Information System (INIS)

    Kim, S.-J.; Lee, T.-H.

    1999-01-01

    Precipitation sequence of nitrogen containing Fe-22Cr-21Ni-6Mo-N austenitic stainless steel has been investigated after aging at high temperatures, and compared with nitrogen free steel. The σ phases and M 23 C 6 carbides were observed along the grain boundaries as well as in the matrix in both of the solution treated specimens. The M 6 C carbides and chi phase appeared successively in between 3 hours and 24 hours depending on the nitrogen content. Main difference in aging behavior was the precipitation of fine nitrides. Aging for 24 hours and 168 hours of nitrogen containing steel resulted in the formation of fine Cr 2 N and faceted AlN nitrides. The crystallography, structure and morphology were analyzed with analytical electron microscopy. (orig.)

  14. Synthesis, crystallization behavior and surface modification of Ni-Cr-Si-Fe amorphous alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Akhter, J.I.; Rajput, M.U.; Mahmood, K.; Hussain, Z.; Hussain, S.; Rafiq, M.

    2011-01-01

    A quaternary Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ amorphous alloy was synthesized by melt spinning technique. Surface modification was done by electron beam melting (EBM), neutron irradiation and gamma-rays. Microstructure of as cast, annealed and modified samples was examined by scanning electron microscope. Crystallization behavior was studied by annealing the samples in vacuum at different temperatures in the range 773-1073 K. Techniques of X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for characterization. Differential scanning calorimetry (DSC) was conducted at various heating rates in the range 10-40 K/min. Thermal parameters like glass transition temperature T/sub g/, crystallization temperature T/sub x/, supercooled liquid region delta T/sub x/ and reduced glass transition temperature T/sub rg/ were measured. The Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ alloy exhibits wide supercooled liquid region of 60 K indicating good thermal stability. The activation energy was calculated to be 160 +- 4 kJ/mol using Kissinger and Ozawa equations respectively which indicates high resistance against crystallization. The XRD results of the samples annealed at 773 K, 923 K, 973 K and 1073 K/20 min show nucleation of Ni/sub 2/Cr/sub 3/ and NiCrFe crystalline phases. Vickers microhardness of the as cast ribbon was measured to be 680. About 30-50 % increase in hardness was achieved by applying EBM technique. (author)

  15. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    Science.gov (United States)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

  16. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  17. Preparation and properties of Ni80Fe20/Al2O3/Co magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chen Jing; Du Jun; Wu Xiaoshan; Pan Minghu; Long Jianguo; Zhang Wei; Lu Mu; Hu An; Zhai Hongru

    2000-01-01

    With plasma oxidisation to create an insulating layer of Al 2 O 3 , the authors have repeatedly fabricated Ni 80 Fe 20 /Al 2 O 3 /Co magnetic tunnel junctions which show obvious tunneling magnetoresistance (TMR) effect. At room temperature, the maximum TMR ratio reaches 6.0%. The switch field can be less than 800 A/m with a relative step width of about 2400 A/m. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms

  18. Binary and tertiary reaction cross-sections of V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1982-01-01

    Neutron induced binary and tertiary reaction cross-sections have been evaluated for V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes in the 'energy range 0.5 MeV to 20 MeV using the nuclear statistical empirical model. The reactions considered are (n,n'), (n,2n), (n,3n), (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,np), (n,nd), (n,nt), (n,n 3 He), (n,nα), (n,pn), (n,2p), (n,ν), (n,αp), (n,dn) and (n,pα). Most of the above mentioned elements are used as structural materials in nuclear reactors and the measured cross-section data for the above listed reactions are seldom available for the radiation damage and safety analysis. With a view to providing these data, this nuclear model based evaluation has been undertaken. The associated uncertainties in the cross-sections and their fission averages have also been evaluated. (author)

  19. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  20. Crystallography of sigma phase precipitation in superaustenitic Fe-22Cr-21Ni-6Mo-0.3N stainless steels

    International Nuclear Information System (INIS)

    Lee, Tae Ho; Jung, Yun Chul; Kim, Sung Joon

    1999-01-01

    The crystallographic features of sigma phase precipitation in super austenitic Fe-22Cr-21Ni-6Mo-(0.3N) stainless steels during isothermal aging were investigated utilizing transmission electron microscopy. The sigma phase precipitated along the austenite grain boundaries even after solution treatment due to higher Mo contents and remained stable throughout aging at 900 .deg. C up to 168 hours. The sigma phase observed in this study was found to be ternary Fe-Cr-Mo sigma phase and had tetragonal structure with lattice parameters of a=9.17A and c=4.74A. The orientation relationships between the sigma phase and austenite were determined from the analyses of selected area diffraction patterns taken by various zone axes and stereo graphic analyses. The orientation relationships between sigma and austenite phases obtained in this study were as follows; 1) (110) γ ll (110) σ , [111] γ ll [001] σ and (112) γ ll (110) σ , [111] γ ll [001] σ and 2) (110) γ ll (110) σ , [112] γ ll [113] σ and (111) γ ll (332) σ , [112] γ ll [113] σ . However, the former orientation relationship was predominant throughout aging and the latter orientation relationship was scarcely observed in very limited aging condition

  1. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  2. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  3. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Baxter, D.J. (Argonne National Lab., IL (USA) INCO Alloy Ltd., Hereford, England (UK))

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  4. The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys

    Science.gov (United States)

    Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.

    2018-06-01

    As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.

  5. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  6. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    Science.gov (United States)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  7. Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co-Cr-Mo alloys containing nitrogen.

    Science.gov (United States)

    Mori, Manami; Yamanaka, Kenta; Kuramoto, Koji; Ohmura, Kazuyo; Ashino, Tetsuya; Chiba, Akihiko

    2015-10-01

    This paper investigated the effect of carbon addition on the microstructure and tensile properties of Ni-free biomedical Co-29Cr-6Mo (mass%) alloys containing 0.2 mass% nitrogen. The release of metal ions by the alloys was preliminarily evaluated in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid, after which samples with different carbon contents were subjected to hot rolling. All specimens were found to primarily consist of a γ-phase matrix due to nitrogen doping, with only the volume fraction of M23C6 increasing with carbon concentration. Owing to the very fine size of these carbide particles (less than 1 μm), which results from fragmentation during hot rolling, the increased formation of M23C6 increased the 0.2% proof stress, but reduced the elongation-to-failure. Carbon addition also increased the amount of Co and Cr released during static immersion; Co and Cr concentrations at the surfaces, which increased with increasing the bulk carbon concentrations, possibly enhanced the metal ion release. However, only a very small change in the Mo concentration was noticed in the solution. Therefore, it is not necessarily considered a suitable means of improving the strength of biomedical Co-Cr-Mo alloys, even though it has only to date been used in this alloy system. The results of this study revealed the limitations of the carbon strengthening and can aid in the design of biomedical Co-Cr-Mo-based alloys that exhibit the high durability needed for their practical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Density of liquid NiCrAlMo quarternary alloys measured by a modified sessile drop method

    International Nuclear Information System (INIS)

    Fang, L.; Wang, Y.F.; Xiao, F.; Tao, Z.N.; MuKai, K.

    2006-01-01

    The densities of liquid NiCrAlMo quaternary alloys with a fixed molar ratio of Ni:Cr:Al (approximately as 73:14:13) and molybdenum concentration from 0 to 10 mass% were measured by a modified sessile drop method (MSDM). It was found that the density of the liquid NiCrAlMo quaternary alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration. The molar volume of liquid NiCrAlMo quaternary alloys increases with the increase of temperature and molybdenum concentration. The density of liquid NiCrAlMo quaternary alloys calculated from the partial molar volumes of nickel, chromium, aluminum and molybdenum in the corresponding Ni-based binary alloys are in good agreement with the experimental results, means, within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state

  9. Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Unfried-Silgado, Jimy [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Universidade Estadual de Campinas UNICAMP, Faculdade de Engenharia Mecanica FEM, Campinas (Brazil); Universidad Autonoma del Caribe, Grupo IMTEF, Ingenieria Mecanica, Barranquilla (Colombia); Wu, Leonardo [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Furlan Ferreira, Fabio [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas (CCNH), Sao Paulo (Brazil); Mario Garzon, Carlos [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Ramirez, Antonio J, E-mail: antonio.ramirez@lnnano.org.br [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil)

    2012-12-15

    The stacking fault energy (SFE) in a set of experimental Ni-Cr-Fe alloys was determined using line profile analysis on synchrotron X-ray diffraction measurements. The methodology used here is supported by the Warren-Averbach calculations and the relationships among the stacking fault probability ({alpha}) and the mean-square microstrain (<{epsilon}{sup 2}{sub L}>). These parameters were obtained experimentally from cold-worked and annealed specimens extracted from the set of studied Ni-alloys. The obtained results show that the SFE in these alloys is strongly influenced by the kind and quantity of addition elements. Different effects due to the action of carbide-forming elements and the solid solution hardening elements on the SFE are discussed here. The simultaneous addition of Nb, Hf, and, Mo, in the studied Ni-Cr-Fe alloys have generated the stronger decreasing of the SFE. The relationships between SFE and the contributions on electronic structure from each element of additions were established.

  10. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  11. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  12. Magnetic characterization of nanocrystalline Fe80−xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-01-01

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe 80−x Cr x Co 20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively.

  13. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  14. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying

    International Nuclear Information System (INIS)

    Mohanty, Sutanuka; Gurao, N.P.; Biswas, Krishanu

    2014-01-01

    The present investigation reports for the first time, the sinter ageing of equiatomic Al 20 Co 20 Cu 20 Ni 20 Zn 20 high entropy alloy (HEA), being synthesized by high energy ball milling of elemental powder blend under protective argon atmosphere, followed by consolidation of the milled powder by spark plasma sintering at different temperatures and applied pressure of 50 MPa. The detailed X-ray diffraction and transmission electron microscopy (TEM) studies indicate the presence of single phase, FCC β supersaturated solid solution in the ball milled powder. However, the sintering of the as-milled powder reveals the formation of α with ordered FCC (L1 2 ) structure within the grains of FCC γ. The microstructural analysis using TEM shows the precipitation of near cuboidal shaped α phase within the grains of γ. The size and shape of the precipitates depend on the sintering temperature. Hardness measurement of the sintered alloys suggests age hardening of the as-milled powder during sintering. The sinter age hardening of HEA is attributed to the fine scale precipitation of α phase. Detailed variation of the hardness and microstructural evolution are reported here to elucidate this novel finding

  15. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  16. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  17. Interdiffusion between Co3O4 coating and the oxide scale of Fe-22Cr alloy

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Friehling, Peter B.; Linderoth, Søren

    2002-01-01

    on Fe-Cr alloys. Coatings of Co3O4 were deposited on a Fe-22Cr alloy by plasma spraying and spray-painting. As-deposited samples were oxidised in air containing 1% H2O at 900C for various exposure time. During exposure the Fe-22Cr alloy forms an oxide scale, which reacts with the coating. The effects...

  18. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  19. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    Science.gov (United States)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  20. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  1. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  2. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  3. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys

    International Nuclear Information System (INIS)

    Amano, T.; Takezawa, Y.; Shiino, A.; Shishido, T.

    2008-01-01

    The high temperature oxidation behavior of Fe-20Cr-4Al, floating zone refined (FZ) Fe-20Cr-4Al, Fe-20Cr-4Al-0.5Pd, Fe-20Cr-4Al-0.5Pt and Fe-20Cr-4Al-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys was studied in oxygen for 0.6-18 ks at 1273-1673 K by mass gain measurements, X-ray diffraction and scanning electron microscopy. The mass gains of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys showed almost the same values. Those of FeCrAl-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys decreased with increasing yttrium of up to 0.1% followed by an increase with the yttrium content after oxidation for 18 ks at 1473 K. Needle-like oxide particles were partially observed on FeCrAl alloy after oxidation for 7.2 ks at 1273 K. These oxide particles decreased in size with increasing oxidation time of more than 7.2 ks at 1473 K, and then disappeared after oxidation for 7.2 ks at 1573 K. It is suggested that a new oxide develops at the oxygen/scale interface. The scale surface of FeCrAl alloy showed a wavy morphology after oxidation for 7.2 ks at 1273 K which then changed to planar morphology after an oxidation time of more than 7.2 ks at 1573 K. On the other hand, the scale surfaces of other alloys were planar after all oxidation conditions in this study. The scale surfaces of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys were rough, however, those of FeCrAl-(0.1, 0.2, 0.5)Y alloys were smooth. The oxide scales formed on FeCrAl-(0.1, 0.2, 0.5)Y alloys were found to be α-Al 2 O 3 with small amounts of Y 3 Al 5 O 12 , and those of the other alloys were only α-Al 2 O 3

  4. Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy

    Science.gov (United States)

    Lentzaris, K.; Poulia, A.; Georgatis, E.; Lekatou, A. G.; Karantzalis, A. E.

    2018-04-01

    Α Co1.5CrFeNi1.5Ti0.5 high-entropy alloy (HEA) of the well-known family of CoCrFeNiTi has been designed using empirical parameters. The aim of this design was the production of a HEA with fcc structure that gives ductile behavior and also high strength because of the solid solution effect. The VEC calculations (8.1) supported the fcc structure while the δ factor calculations (4.97) not being out of the limit values, advised a significant lattice distortion. From the other hand, the ΔΗ mix calculations (- 9.64 kJ/mol) gave strong indications that no intermetallic would be formed. In order to investigate its potential application, the Co1.5CrFeNi1.5Ti0.5 HEA was prepared by vacuum arc melting and a primary assessment of its surface degradation response was conducted by means of sliding wear testing using different counterbody systems for a total sliding distance of 1000 m. An effort to correlate the alloy's wear response with the microstructural characteristics was attempted. Finally, the wear behavior of the Co1.5CrFeNi1.5Ti0.5 HEA was compared with that of two commercially used wear-resistant alloys. The results obtained provided some first signs of the high-entropy alloys' better wear performance when tested under sliding conditions against a steel ball.

  5. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  6. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    International Nuclear Information System (INIS)

    Charlena; Sukaryo, S.G.; Fajar, M.

    2016-01-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO 3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed. (paper)

  7. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    Science.gov (United States)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  8. The effect of silicon content on high temperature oxidation of 80Ni-20Cr alloys

    International Nuclear Information System (INIS)

    Takei, Atsushi; Nii, Kazuyoshi

    1981-01-01

    The effect of Si content on the oxidation behavior of 80Ni-20Cr alloys has been studied in the cyclic oxidation in an air stream at 1373K. The addition of 1% and 5%Si to the alloy lowered the mass gain in oxidation, whereas the amount of spalling of oxide scale was increased with the addition of Si. The structure of oxide layers observed by microphotography, X-ray diffraction and electron probe microanalysis (EPMA) were different with the Si content of alloys. The oxide layer of the alloy with 1%Si consists of multi-layers, that is Ni oxide, Cr 2 O 3 and SiO 2 as the external oxide layer. The oxide layer remaining on the alloy with 5%Si, however, was made of a single oxide layer of Cr 2 O 3 containing small amounts of Si and Ni. In spite of the fact that the amount of Si in this alloy is larger than that of the alloy with 1%Si, the SiO 2 oxide layer was not observed at the oxide-alloy interface. It was found by EPMA that the concentration of Si in the oxidized 5%Si alloy substrate was increased in the vicinity of the surface, although Si in the 1%Si alloy was depleted. From the above results the internal oxidation of Si is assumed in the near-surface region of the 5%Si alloy. The internal oxidation of the 5%Si alloy was confirmed by an increase in hardness in the near-surface region. The difference in oxidation behavior between the 1%Si and 5%Si alloys can be understood under the assumption that the oxide layer formed of the 5%Si alloy contained much larger amounts of Ni and Si than that on the 1%Si alloy, and that this oxide layer tends to crack more easily, thus being less protective for the penetration of oxygen. (author)

  9. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  10. Molybdenum depletion around P-phases Ni-Cr-Mo-W weld metals

    International Nuclear Information System (INIS)

    Silva, Cleiton Carvalho; Miranda, Helio Cordeiro de; Farias, Jesualdo Pereira

    2010-01-01

    This work evaluated the local chemical composition in matrix/precipitate interface in a Ni-Cr-Mo-W alloy weld metals deposited on substrate of C-Mn steel. The microstructural characterization was carried out through optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results had shown that the presence of secondary phases precipitates in the interdendritic region. Through SEM analysis were observed indications of depletion of Mo around these phases. These precipitates were identified as P-phase by TEM analysis. The Mo depletion indications were confirmed through EDS. The Mo depletion was a result of a reheating due to several welding heat cycles deposited to promote the coating layer. (author)

  11. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  12. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  13. Phase transformation in a Ni-Mo-Cr alloy

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.

    2001-01-01

    The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)

  14. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys; Influencia da composicao quimica na textura cristalografica de ligas Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Moura, L.B.; Guimaraes, R.F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Fortaleza, CE (Brazil). Dept. da Industria; Abreu, H.F.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2010-07-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  15. Hot corrosion behavior of Ni-Cr-W-C alloys in impure helium gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1976-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995% helium gas at 1000 0 C, comparing with that behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure helium gas usually causes selective oxidation of these elements and the growth of oxide whiskers on the surface of specimen at elevated temperature. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by addition of Mn and Si, providing tough spinel type oxide film on the surface and 'Keyes' on the oxide-matrix interface respectively. The amount and the morphology of the oxide whiskers depended on Si and Mn content. More than 0.29% of Si content without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changed the whiskers to thicker ones of spinel type oxide (MnCr 2 O 1 ) with rough surface. On the basis of these results, the optimum content of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack and the spalling of oxide film was discussed. (auth.)

  16. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  17. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  18. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  19. A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface

    International Nuclear Information System (INIS)

    Badwe, Sunil; Raja, K.S.; Misra, M.

    2006-01-01

    Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Most of the corrosion studies on Alloy 22 have been conducted using conventional chemical or electrochemical methods. In the present investigation, the specimen was directly heated instead of heating the electrolyte, thereby simulating the nuclear waste package container temperature profile. Corrosion behavior of Alloy 22 and evaporation conditions of water diffusing on the container were evaluated using the newly devised heated electrode corrosion test (HECT) method in simulated acidified water (SAW) and simulated concentrated water (SCW) environments. In this method, the concentration of the environment varied with test duration. The corrosion rate of Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HECT was the aging characteristics of the passive film of Alloy 22. The heated electrode corrosion test can be used for evaluating materials for construction of heat transfer equipments such as evaporators

  20. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  1. Ab initio and Atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    Science.gov (United States)

    Piochaud, J. B.; Becquart, C. S.; Domain, C.

    2014-06-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multiscale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe70Cr20Ni10). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT calculations. The point defect properties in the Fe70Cr20Ni10, and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed.

  2. Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature

    International Nuclear Information System (INIS)

    Lin, C.-M.; Tsai, H.-L.

    2010-01-01

    The phase transformations of FeCoNiCrCu 0.5 alloy with the as-cast structure and heat-treated structures were studied. The as-cast alloy specimens were first heated at 1050 o C with a holding time of 1 h. Serial heat-treatment processes at 350 o C, 500 o C, 650 o C, 800 o C, 950 o C, 1100 o C, 1250 o C and 1350 o C with a holding time of 24 h were then carried out to understand the phase evolution and the relationship between the microstructure and the hardness of the specimens. The microstructures were investigated and chemical analyses performed by optical microscopy (OM), scanning elector microscopy (SEM), X-ray diffractometer (XRD) and transmission elector microscopy (TEM). The results show that FCC peaks were observed from the X-ray diffraction of the as-cast specimens and a precipitate phase was present in the specimens that had been heated to 950 o C. The hardness of the FeCoNiCrCu 0.5 alloy remained unchanged in the specimens that underwent various heat treatments that were applied in this study.

  3. Secondary recrystallisation in 20 w/o Cr-25 w/o Ni-Nb stabilised stainless steel

    International Nuclear Information System (INIS)

    Healey, T.; Brown, A.F.; Speight, M.V.

    1976-11-01

    The fuel cladding material for the Commercial Advanced Gas Reactor is a fine grain 20 w/o Cr-25 w/o Ni niobium stabilised stainless steel. The grain structure stability of this alloy has been investigated as a function of carbon content over the temperature range 930 - 990 0 C. It is demonstrated that the primary grain structure is susceptible to abnormal growth due to secondary recrystallisation of the initial fine grain structure after a composition and temperature dependent incubation period. The magnitude of the incubation period is analysed on the basis that secondary recrystallisation commences when randomly dispersed niobium carbide particles have coarsened to a critical size. The validity of the analysis is tested by comparing the predictions with experimental observation. The model is subsequently used to evaluate the incubation period for conditions of temperature, composition and microstructure which differ from those defined in the experimental studies. (author)

  4. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  5. Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Barucca, G; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A

    2016-07-01

    Direct Metal Laser Sintering (DMLS) technology based on a layer by layer production process was used to produce a Co-Cr-Mo-W alloy specifically developed for biomedical applications. The alloy mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments. Roughness and hardness measurements, and tensile and flexural tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate the microstructure in different conditions. Results showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix responsible of the high UTS and hardness values in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  7. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  8. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  9. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  10. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  11. Influences of Mo and W on the precipitation of secondary phases and the associated localized corrosion and embrittlement in 29%Cr ferritic stainless steels

    International Nuclear Information System (INIS)

    Park, Chan Jin; Ahn, Myung Kyu; Kwon, Hyuk Sang

    2005-01-01

    Influences of molybdenum (Mo) substitution by tungsten (W) on the formation kinetics of secondary phases and the associated localized corrosion and embrittlement of Fe-29Cr-4Mo. Fe-29Cr-4W, and Fe-29Cr-8W ferritic stainless steels were investigated. Fine χ phase formed first in grain boundaries in an early stage of aging and it was gradually substituted by σ phase with further aging. The precipitation rate of σ phase appears to be determined by both the diffusion rates of W and Mo for the formation of the σ phase as well as by the affinity of χ phase, as a competitor, for the elements. Due to the high affinity of χ phase for W with a slow diffusion rate, the nucleation of σ phase was significantly delayed in Fe-29Cr-4W and Fe-29Cr-8W alloys compared with that in Fe-29Cr-4Mo alloy. In addition, the deterioration of ductility and localized corrosion resistance by the precipitation of secondary phases was significantly retarded in Fe-29Cr-4W alloy compared with that in Fe-29Cr-4Mo alloy, due to the delayed precipitation of secondary phases in Fe-29Cr-4W alloy. In particular, retardation of degradation in localized corrosion resistance by the formation of σ phase, which induced significant depletion of Cr and W (or Mo) around the phase, was prominent in the W-containing alloys. The W-containing alloys exhibited effective delay of σ phase formation

  12. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  13. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  14. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-25

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  15. Hot corrosion behavior of Ni-Cr-W-C alloys in impure He gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995%He gas at 1,000 0 C, in comparison with the behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure He gas usually causes selective oxidation of the elements described above and the growth of oxide whiskers on the surface of specimen at elevated temperatures. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by additions of Mn and Si, providing tough spinel type oxide film on the surface and 'keys' on the oxide-matrix interface respectively. The amount and morphology of the oxide whiskers depended on Si and Mn contents. Si of more than 0.29% without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changes the whiskers to thicker ones of spinel type oxide (MnCr 2 O 4 ) with rough surface. On the basis of these results, the optimum contents of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack, and the spalling of oxide film were discussed. (auth.)

  16. Corrosion study of the passive film of amorphous Fe-Cr-Ni-(Si, P, B alloys

    Directory of Open Access Journals (Sweden)

    López, M. F.

    1996-12-01

    Full Text Available Amorphous Fe62Cr10Ni8X20 (X = P, B, Si alloys in 0.01M HCl solution have been investigated by means of standard electrochemical measurements in order to evaluate their corrosion resistance. The study reveals that the best corrosion behaviour is given by the Si containing amorphous alloy. X-ray photoelectron spectroscopy (XPS and Auger electron spectroscopy (AJES have been employed to study the composition of the passive layers, formed on the surface of the different amorphous alloys. The results on Fe62Cr10Ni8X20 show that a protective passive film, mainly consisting of oxidized chromium, greatly enhances its corrosion resistance.

    La resistencia a la corrosión de las aleaciones amorfas Fe62Cr10Ni8X20 (X = P, B, Si inmersas en HCl 0,01M se evaluó usando técnicas electroquímicas. Las técnicas de espectroscopia de fotoemisión de rayos X y espectroscopia Auger se emplearon para estudiar la composición de las capas pasivas, formadas en aire sobre la superficie de las aleaciones amorfas. Del estudio realizado se concluye que el mejor comportamiento frente a la corrosión viene dado por la aleación amorfa que contiene como metaloide Si. Esto es debido a que la capa pasiva de dicha aleación está formada principalmente de óxido de cromo, lo cual confiere una alta resistencia a la corrosión.

  17. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  18. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  19. Connection between twinning and brittle fracture in Fe-Cr-Co-Mo crystals

    International Nuclear Information System (INIS)

    Kirillov, V.A.; Chumlyakov, Yu.I.; Korotaev, A.D.; Aparova, L.A.

    1989-01-01

    Plasticity dependence on crystal orientation, on deformation temperature and structure state of alloy is investigated in Fe-28 % Cr-10 % Co-2 % Mo (at. %) monocrystals. Isostructure decomposition results in increase of critical shearing stresses τ cr , in change of deformation mechanism from slipping into twinning and abrupt reduction of plasticity. Brittleness - ductility transition is detected in high-stable structure states τ cr >280 MPa. Explanation of plasticity abrupt reduction of high-stable crystals using estimation of change of deformation mechanism and of deforming stress high level is given

  20. ZZ FENDL-2, Evaluated Nuclear Data Library for Fusion Neutronics Applications

    International Nuclear Information System (INIS)

    2005-01-01

    Description: FENDL: Fusion Evaluated Nuclear Data Library. Materials/nuclides: H 1 , H 2 , H 3 , He 3 , He 4 , Li 6 , Li 7 , Be 9 , B 10 , B 11 , C 12 , N 14 , N 15 , O 16 , F 19 , Na 23 , Mg nat , Al 27 , Si 28 , Si 29 , Si 30 , P 31 , S nat , Cl 35 , Cl 37 , K nat , Ca nat , Ti 46 , Ti 47 , Ti 48 , Ti 49 , Ti 50 , V nat , Cr 50 , Cr 52 , Cr 53 , Cr 54 , Mn 55 , Fe 54 , Fe 56 , Fe 57 , Fe 58 , Co 59 , Ni 58 , Ni 60 , Ni 61 , Ni 62 , Ni 64 , Cu 63 , Cu 65 , Ga nat , Zr nat , Nb 93 , Mo 92 , Mo 94 , Mo 95 , Mo 96 , Mo 97 , Mo 98 , Mo 100 , Sn nat , Ta 181 , W 182 , W 183 , W 184 , W 186 , Au 197 , Pb 206 , Pb 207 , Pb 208 , Bi 209 . Photo-atomic data. IAEA1364/02: FENDL version 2.0 consists of the following sub-libraries: - ACTIVATION (FENDL/A-2.0)- neutron activation cross sections for 13006 reactions on 739 targets ranging from 1-H up to 248-Cm at incident energies up to 20 MeV. Pointwise and processed data in different formats are included. Plots are available. - DECAY (FENDL/D-2.0) - decay properties (decay type, decay energy, and half life) for 1867 nuclides and isomers. FENDL/D-2.0 sub-library is complementary to the activation sub-library. Pointwise and processed data are included. - DOSIMETRY (FENDL/DS-2.0) - neutron cross sections to be used for reactor neutron dosimetry by foil activation, radiation damage cross-sections, and benchmark neutron spectra. This sub-library is identical to the International Reactor Dosimetry File (IRDF-90). Pointwise and processed data are included. - FUSION (FENDL/C-2.0) - charged-particle cross sections for the following fusion reactions: 1-H 2 (d,n)2-He 3 , 1-H 2 (d,p)1-H 3 , 2-He 3 (d,p)2-He 4 , 1-H-3(t,2n)2-He 4 , and 1-H 3 (d,n)2-He 4 . Pointwise and processed data are included. - TRANSPORT - validated basic nuclear data (neutron-nucleus interaction including photon production, and photon-atom interaction cross sections) for 57 nuclides relevant for fusion. In addition to the pointwise data (FENDL/E-2.0), the sub

  1. Ab initio and atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    International Nuclear Information System (INIS)

    Piochaud, J.B.; Becquart, C.S.; Domain, C.

    2013-01-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multi-scale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe 70 Cr 20 Ni 10 ). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT (Density Functional Theory) calculations. The point defect properties in the Fe 70 Cr 20 Ni 10 , and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation (TNES) and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed. Preliminary results show that it is the solute- grain boundaries interactions which drive TNES

  2. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    Science.gov (United States)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  3. Study on Tribological Properties of CoCrMo Alloys against Metals and Ceramics as Bearing Materials for Artificial Cervical Disc

    Science.gov (United States)

    Xiang, Dingding; Song, Jian; Wang, Song; Liao, Zhenhua; Liu, Yuhong; Tyagi, Rajnesh; Liu, Weiqiang

    2018-02-01

    CoCrMo alloys are believed to be a kind of potential material for artificial cervical disc. However, the tribological properties of CoCrMo alloys against different metals and ceramics are not systematically studied. In this study, the tribological behaviors of CoCrMo alloys against metals (316L, Ti6Al4V) and ceramics (Si3N4, ZrO2) were focused under dry friction and 25 wt.% newborn calf serum (NCS)-lubricated conditions using a ball-on-disc apparatus under reciprocating motion. The microstructure, composition and hardness of CoCrMo alloys were characterized using x-ray diffraction, scanning electron microscopy (SEM) and hardness testers, respectively. The contact angles of the CoCrMo alloys with deionized water and 25 wt.% NCS were measured by the OCA contact angle measuring instrument. The maximum wear width, wear depth and wear volume were measured by three-dimensional white light interference. The morphology and the EDX analysis of the wear marks on CoCrMo alloys were examined by SEM to determine the basic mechanism of friction and wear. The dominant wear mechanism in dry friction for CoCrMo alloys against all pairings was severe abrasive wear, accompanied with a lot of material transfer. Under 25 wt.% NCS-lubricated condition, the wear mechanism for CoCrMo alloys against ceramics (Si3N4, ZrO2) was also mainly severe abrasive wear. However, severe abrasive wear and electrochemical corrosion occurred for the CoCrMo-316L pairing under lubrication. Severe abrasive wear, adhesive wear and electrochemical corrosion occurred for the CoCrMo-Ti6Al4V pairing under lubrication. According to the results, the tribological properties of CoCrMo alloys against ceramics were better than those against metals. The CoCrMo-ZrO2 pairing displayed the best tribological behaviors and could be taken as a potential candidate bearing material for artificial cervical disc.

  4. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  5. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  6. Abrasive wear of BA1055 bronze with additives of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B. P. Pisarek

    2008-10-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, aboutgood sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. The additions Mo and/or W were not applied so far. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the surface distribution of the concentration of elements in the microstructure of the studied bronze on X-ray microanalyzer were conducted. It results from conducted investigations, that in the aluminium bronze BA1055 after makes additions Si, Cr, Mo and/or W the phases of the type κFe, κNi crystallize, probably as complex silicides. Elements such as: Fe and Si dissolve first of all in phases κ, in smaller stage in the matrix of the bronze; Mn, Ni and W they dissolve in matrix and phases κ. It dissolves Cr and Mo in the larger stage in phases κ than in the matrix. The sizes of the abrasive wear were compared in the state cast multicomponentnew casting Cu-Al-Fe-Ni bronzes with the additives Cr, Mo or W with the wear of the bronze CuAl10Fe5Ni5Si. The investigations of thewear were conducted on the standard device. It results from conducted investigations, that make additions to bronze BA1055 of the additives of Si, Cr, Mo, and/or W it influences the rise of the hardness (HB of the bronze in the cast state, in the result of the enlarged quantity separates of hard phases κ, and in the consequence the decrease of the abrasive wear. The addition of molybdenum made possible obtainment of the microhardness of the phase α and γ 2 on the comparable level. From the microstructure of the bronze CuAl10Fe5Ni5MoSi is characterizes the smallest abrasive wear among

  7. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    Science.gov (United States)

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  8. Hyperfine interaction and some thermomagnetic properties of amorphous and partially crystallized Fe70−xMxMo5Cr4Nb6B15 (M = Co or Ni, x = 0 or 10 alloys

    Directory of Open Access Journals (Sweden)

    Rzącki Jakub

    2015-03-01

    Full Text Available As revealed by Mössbauer spectroscopy, replacement of 10 at.% of iron in the amorphous Fe70Mo5Cr4Nb6B15 alloy by cobalt or nickel has no effect on the magnetic structure in the vicinity of room temperature, although the Curie point moves from 190 K towards ambient one. In the early stages of crystallization, the paramagnetic crystalline Cr12Fe36Mo10 phase appears before α-Fe or α-FeCo are formed, as is confirmed by X-ray diffractometry and transmission electron microscopy. Creation of the crystalline Cr12Fe36Mo10 phase is accompanied by the amorphous ferromagnetic phase formation at the expense of amorphous paramagnetic one.

  9. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    Science.gov (United States)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-05-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  10. The Phase Evolution and Property of FeCoCrNiAlTix High-Entropy Alloying Coatings on Q253 via Laser Cladding

    Directory of Open Access Journals (Sweden)

    Bin He

    2017-09-01

    Full Text Available High-entropy alloys (HEAs are emerging as a hot research frontier in the metallic materials field. The study on the effect of alloying elements on the structure and properties of HEAs may contribute to the progress of the research and accelerate the application in actual production. FeCoCrNiAlTix (x = 0, 0.25, 0.5, 0.75, and 1 in at.%, respectively HEA coatings with different Ti concentrations were produced on Q235 steel via laser cladding. The constituent phases, microstructure, hardness, and wear resistance of the coatings were investigated by XRD, SEM, microhardness tester and friction-wear tester, respectively. The results show that the structure of the coating is a eutectic microstructure of FCC and BCC1 at x = 0. The structure of coatings consists of both proeutectic FCC phase and the eutectic structure of BCC1 and BCC2. With the continuous addition of Ti, the amount of eutectic structure decreases. The average hardness of the FeCoCrNiAlTix HEA coatings at x = 0, 0.25, 0.5, 0.75, and 1 are 432.73 HV, 548.81 HV, 651.03 HV, 769.20 HV, and 966.29 HV, respectively. The hardness of coatings increases with the addition of Ti, where the maximum hardness is achieved for the HEA at x = 1. The wear resistance of the HEA coatings is enhanced with the addition of Ti, and the main worn mechanism is abrasive wear.

  11. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  12. Development of improved HP/IP rotor material 2% CrMoNiWV (23 CrMoNiWV 88)

    International Nuclear Information System (INIS)

    Wiemann, W.

    1989-01-01

    The new 2% CrMoNiWV steel has a sufficient strength level, a very good creep (rupture) behaviour and an excellent toughness behaviour for a creep resistant steel. Even after long time high temperature exposure the toughness degradation is so small that it is still better than this of best 1% CrMo(Ni)V steels. The fatigue behaviour is well comparable to this of 1% CrMo(Ni)V. The 2% CrMoNiWV steel has the capability to substitute the traditional 1% CrMo(Ni)V. (orig.) With 26 annexes

  13. Glass forming ability and magnetic properties of Co(40.2−x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x=0–10) bulk metallic glasses produced by suction casting

    International Nuclear Information System (INIS)

    Sarlar, Kagan; Kucuk, Ilker

    2015-01-01

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) have a supercooled liquid region (∆T x ) of about 44 K. The saturation magnetizations (J s ) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J s 0.62−0.81 T with a low H c of 2−289 A/m of the alloys

  14. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, S.; Maity, T.N.; Mukhopadhyay, S. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sarkar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bhowmick, S. [Hysitron Inc., Eden Prairie, MN 55344 (United States); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-02

    Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray diffraction, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich L1{sub 2} phase, α′ and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of L1{sub 2} ordered α′ and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m{sup 1/2}, which is attributed to the presence of brittle nanosized σ phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with

  15. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  16. A systematic first principle method to study magnetic properties of FeMo, CoMo and NiMo

    International Nuclear Information System (INIS)

    Bhattacharjee, Ashis Kumar; Touheed, Md.; Ahmed, Mesbahuddin; Halder, A.; Mookerjee, A.

    2003-06-01

    We use the first principle TB-LMTO (Tight-Binding Linear Muffin Tin Orbital) method combined with the ASM (Augmented Space Method) to take care of disorder beyond the mean field (CPA - Cohetent Potential Approximation) approximation. We analyze binary alloys between magnetic transition metals Fe, Co, Ni and non-magnetic Mo to find out the effect of disorder on electronic structure and consequently magnetic properties of the alloys. (author)

  17. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Owen, L.R.; Pickering, E.J.; Playford, H.Y.; Stone, H.J.; Tucker, M.G.; Jones, N.G.

    2017-01-01

    The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.

  18. Thermal expansion of Cr2xFe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 solid solutions

    International Nuclear Information System (INIS)

    Ari, M.; Jardim, P.M.; Marinkovic, B.A.; Rizzo, F.; Ferreira, F.F.

    2008-01-01

    The transition temperature from monoclinic to orthorhombic and the thermal expansion of the orthorhombic phase were investigated for three systems of the family A 2 M 3 O 12 : Cr 2x Fe 2-2x Mo 3 O 12 , Al 2x Fe 2-2x Mo 3 O 12 and Al 2x Cr 2-2x Mo 3 O 12 . It was possible to obtain a single-phase solid solution in all studied samples (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1). A linear relationship between the transition temperature and the fraction of A 3+ cations (x) was observed for each system. In all orthorhombic solid solutions studied here the observed thermal expansion was anisotropic. These anisotropic thermal expansion properties of crystallographic axes a, b and c result in a low positive or near-zero overall linear coefficient of thermal expansion (α l =α V /3). The relationship between the size of A 3+ cations in A 2 M 3 O 12 and the coefficient of thermal expansion is discussed. Near-zero thermal expansion of Cr 2 Mo 3 O 12 is explained by the behavior of Cr-O and Mo-O bond distances, Cr-Mo non-bond distances and Cr-O-Mo bond angles with increasing temperature, estimated by Rietveld analysis of synchrotron X-ray powder diffraction data. - Graphical abstract: In this figure, all published overall linear coefficients of thermal expansion for orthorhombic A 2 M 3 O 12 family obtained through diffraction methods as a function of A 3+ cation radii size, together with dilatometric results, are plotted. Our results indicate that Cr 2 Mo 3 O 12 does not exactly follow the established relationship

  19. Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating

    Science.gov (United States)

    Tian, Li-Hui; Xiong, Wei; Liu, Chuan; Lu, Sheng; Fu, Ming

    2016-12-01

    Due to the advantages such as high strength, high hardness and good wear resistance, high-entropy alloys (HEAs) attracted more and more attentions in recent decades. However, most reports on HEAs were limited to bulk materials. Although a few of studies on atmospheric plasma-sprayed (APS) HEA coatings were carried out, the wear behavior, especially the high-temperature wear behavior of those coatings has not been investigated till now. Therefore, in this study, APS was employed to deposit AlCoCrFeNiTi high-entropy alloy coating using mechanically alloyed AlCoCrFeNiTi powder as the feedstock. The phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer. The surface morphology of the feedstock powder and the microstructure of the as-sprayed coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy. The bonding strength and the microhardness of the as-sprayed coating were tested. The wear behavior of the coating at 25, 500, 700 and 900 °C was investigated by analysis of the wear surface morphology and measurements of the volume wear rate and the coefficient of friction.

  20. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  2. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  3. Influence of the Cr and Ni concentration in CoCr and CoNi alloys on the structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, E. [Nipson Technology, 12 Avenue des Trois chênes, Techn’Hom 3, Belfort 90000 (France); Liu, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Billard, A. [IRTES-LERMPS EA 7274, UTBM, Site de Montbéliard, Belfort Cedex 90010 (France); Dekens, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Perry, F. [PVDco, 30 rue de Badménil, Baccarat 54120 (France); Mangin, S.; Hauet, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France)

    2017-01-15

    The crystalline and magnetic properties of micron thick magnetron sputtered Co{sub 1−x}Cr{sub x} and Co{sub 1−x}Ni{sub x} alloy films are analyzed in the view of their implementation as semi-hard magnets. All of the tested films crystallize in an hcp lattice, at least up to 35 at% of alloying elements (Cr or Ni). The structural study shows that the ratio of hcp phase with [0001] axis orientated perpendicular to the film as compared with in-plane orientation increases (resp. decreases), when Ni (resp. Cr) concentration increases independently of the post-annealing temperature. The orientation of the magnetization results from the competition between the demagnetization field which tends to align the magnetization in plane and the crystalline anisotropy which tends to maintain the magnetization along the [0001] axis. Interestingly, we find that, although Co and Ni are very similar atoms, Co{sub 1−x}Ni{sub x} alloys crystalline anisotropy can be strongly increased and reach up to twice the anisotropy of the best Co{sub 1−x}Cr{sub x} alloy, while maintaining a magnetization at saturation above 1200 kA/m. The thermal stability of the structural and magnetic properties of both alloys is demonstrated for an annealing temperature up to 300 °C. - Highlights: • Sputtered CoCr and CoNi films are analyzed for their semi-hard magnetic properties. • CoNi alloys exhibits higher saturation magnetization and crystalline anisotropy. • These evolutions can be directly correlated to the quality of hcp crystal orientation. • Thermal stability of structural and magnetic properties is demonstrated up to 300 °C.

  4. Density of Liquid Ni-Mo Alloys Measured by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Zushu LI; ZaiNan TAO; Feng XIAO

    2004-01-01

    The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) was measured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molar volume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. The partial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18 - 2.65 × 10-3T + (-47.94 + 3.10 × 10-2T) × 10-2XMo] × 10-6m3·mol-1. The molar volume of Ni-Mo alloy determined in the present work shows a negative deviation from the ideal linear mixing molar volume.

  5. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    Science.gov (United States)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  6. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  7. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  8. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  9. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  10. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  11. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    Science.gov (United States)

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p alloy. This could affect health on long

  12. Characters of alloy Zr-0.4%Mo-0.5%Fe-0.5%Cr post heat treatment and cold rolling

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2014-01-01

    Research and development of Zr-Mo-Fe-Cr alloys aimed to obtain PWR fuel element structure material with high burn up. In this study of the Zr-0.4%Mo-0.5%Fe-0.5%Cr alloys was prepared from zirconium sponge, molybdenum, iron and chromium powder. The alloy were heat treated at varying temperatures of 650 and 750 °C and retention time of 1, 1.5 and 2 hours. The objectives of this research was to obtain effect of thickness reduction on the character of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy. The results of this experiment showed that the microstructures of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment and cold rolling exhibits that the higher of the thickness reduction has applied on the alloy caused the microstructure to evolve from deformed equiaxial grains into flat bar grains and then into deformed flat bar grains. However, the higher of the temperature and the retention time then the larger grain structures so that the cold rolling causes the shape of the grains structure into a flat bar with a relatively larger size which affects the lower hardness. The Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment (650-750°C; 1.5-2 hours) can undergo cold deformation without cracking at a thickness reduction between 5 to 15%. (author)

  13. Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Turk, C., E-mail: chris.turk@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Leitner, H.; Kellezi, G. [Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Clemens, H. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Gan, W.M.; Staron, P. [German Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht (Germany); Primig, S. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

    2016-04-26

    A Fe - 25 at% Co - 9 at% Mo alloy can be hardened by nm-sized (Fe, Co){sub 7}Mo{sub 6} µ-phase precipitates which is accomplished by solution annealing in the austenite region followed by rapid quenching to room temperature and subsequent aging below the austenite transition temperature. In overaged condition the Mo-content in the remaining matrix drops towards zero and, therefore, the matrix consist of 71 at% Fe and 29 at% Co. The binary Fe-Co system shows a disorder-order, A2↔B2 transition at a critical ordering temperature between 25 at% and 72 at% Co. It is expected that the remaining matrix of an overaged Fe - 25 at% Co - 9 at% Mo alloy also exhibits such an ordering reaction. It will be demonstrated that the formation of a B2 ordered FeCo phase can be delayed or completely prevented by rapid quenching from temperatures above the critical ordering temperature. This has a strong impact on the mechanical properties of this alloy which have been studied by means of tensile, impact toughness and hardness testing. The evidence for a disorder-order transition in this alloy has been given by neutron diffraction as well as high resolution transmission electron microscopy.

  14. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    Science.gov (United States)

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (pTIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  15. Microstructure Evolution and Chemical Analysis on Carbon Steels and Fe-Cr-Mo Alloys after FAC Simulation Tests

    International Nuclear Information System (INIS)

    Kim, Seunghyun; Kim, Taeho; Lee, Yun Ju; Kim, Ji Hyun

    2017-01-01

    Flow-accelerated corrosion (FAC) is an environment assisted degradation of structural materials, which usually occurs in pipelines of power plants. There have been many studies to investigate the fundamental mechanism and corresponding countermeasures against FAC, and recently the carbon steels have been replaced by ASTM A 335 P22, which contains approximately 2.2 wt.% of Cr and 1 wt.% of Mo. By enhancing passivity of P22 by Cr, it is reported that FAC rate has been greatly reduced. However, while corrosion behavior of Fe-based alloys is relatively well known, their behavior under high-temperature flowing water is not well investigated. In other words, effects of Cr and its corrosion and oxidation behavior is not clearly revealed. Furthermore, it is known that Mo enhances the pitting corrosion resistance of alloys however its mechanism is not clearly investigated. Recently, replacement of Mo in alloy contents has been widely studied because of the cost of Mo. Carbon steels undergo severe environmental-assisted degradation behavior so called FAC, and as its countermeasure the carbon steel has been replaced by P22 which contains Cr and Mo. It is generally known that Cr and Mo enhances passivity of Fe-based alloys however their corrosion and oxidation behavior has not been fully investigated especially in high-temperature flowing water environments. In this study, we employed HRTEM and synchrotron XAS techniques in order to investigate detailed microstructure evolution and chemical bonding of the commercialized carbon steel and the Fe-Cr-Mo alloys. From the analysis, it is found that while carbon steels exhibit porous oxide P22 exhibit oxide structures with thin Cr-rich oxide and spinel. Therefore, carbon steel undergoes severe FAC compared to P22 however effects of Cr and Mo and their behavior in high-temperature flowing water will be investigated.

  16. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties

    International Nuclear Information System (INIS)

    Li, Bingyun; Mukasyan, Alexander; Varma, Arvind

    2003-01-01

    Because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility, cobalt-based alloys are widely used in total hip and knee replacements, dental devices and support structures for heart valves. In this work, CoCrMo alloys were synthesized using a novel method based on combustion synthesis (CS), an advanced technique to produce a wide variety of materials including alloys and near-net shape articles. This method possesses several advantages over conventional processes, such as low energy requirements, short processing times and simple equipment. The evaluated material properties included density and yield measurements, composition and microstructure analysis, hardness, friction and tensile tests. It was shown that microstructure of CS-material is finer and more uniform as compared to the conventional standard. It was also found that among various additives, Cr 3 C 2 is the most effective one for increasing material hardness. In addition, synthesized CoCrMo alloys exhibited good friction and mechanical properties. (orig.)

  17. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  18. Ferromagnetic alloy material CoFeC with high thermal tolerance in MgO/CoFeC/Pt structure and comparable intrinsic damping factor with CoFeB

    Science.gov (United States)

    Chen, Shaohai; Zhou, Jing; Lin, Weinan; Yu, Jihang; Guo, Rui; Poh, Francis; Shum, Danny; Chen, Jingsheng

    2018-02-01

    The thermal tolerance and perpendicular magnetic anisotropy (PMA) of ferromagnetic alloy Co40Fe40C20 in the structure MgO/CoFeC/Pt (or Ta) were investigated and compared with the commonly used CoFeB alloy. It is found that the PMA of CoFeC with {{K}i,CoFeC}=2.21 erg c{{m}-2} , which is 59% higher than that of CoFeB, can be obtained after proper post-annealing treatment. Furthermore, CoFeC alloy provides better thermal tolerance to temperature of 400 °C than CoFeB. The studies on ferromagnetic resonance show that the intrinsic damping constant α in of Co40Fe40C20 alloy is 0.0047, which is similar to the reported value of 0.004 for Co40Fe40B20 alloy. The comprehensive comparisons indicate that CoFeC alloy is a promising candidate for the application of the integration of spin torque transfer magnetic random access memory with complementary metal-oxide semiconductor processes.

  19. Impact of saline aquifer water on surface and shallow pit corrosion of martensitic stainless steels during exposure to CO2 environment (CCS)

    Science.gov (United States)

    Pfennig, Anja; Kranzmann, Axel

    2018-05-01

    Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.

  20. PLASTIC DEFORMATION ON THE MACHINED SURFACE OF STEEL Cr20Ni10MoTi AT DRILLING

    Directory of Open Access Journals (Sweden)

    Jozef Jurko

    2009-07-01

    Full Text Available Information about material machinability is very important for the machining technology. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and this brings the verification of technological methods in practice. This article presents the conclusions of machinability tests on austenitic stainless steel according to EN-EU (ISO: steel Cr20Ni10MoTi. This article presents the conclusions of VEGA grant agency at the Ministry of Education SR for supporting research work and co-financing the projects: Grant work #01/3173/2006 with the title „Experimental investigation of cutting zones in drilled and milled stainless steels

  1. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  2. Reduction under hydrogen of ferrite MFe{sub 2}O{sub 4} (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe{sub 2}, Fe and Ni{sub 3}Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, N.; Schoenstein, F.; Mercone, S.; Chauveau, T.; Brinza, O. [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France); Jouini, N., E-mail: jouini@univ-paris13.fr [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Spinels nano-particles MFe{sub 2}O{sub 4} (M: Co, Fe or Ni) are obtained by hydrolysis in polyol medium. Black-Right-Pointing-Pointer Gentle reduction under hydrogen flow of spinel nano-particles yields metal and alloy nanoparticles. Black-Right-Pointing-Pointer TEM and X-ray analysis show that CoFe{sub 2}, Fe and Ni{sub 3}Fe nano-particles are monocrystalline particles with size less than 160 nm. Black-Right-Pointing-Pointer Iron with size of 150 nm presents ferromagnetic behavior. Black-Right-Pointing-Pointer CoFe{sub 2} alloy with size of 55 nm could be considered as a superparamagnetic material. - Abstract: A novel method to process metal and various alloy particles of nanometric size is described. The first step consists in the elaboration of MFe{sub 2}O{sub 4} (M: Fe, Ni or Co) spinel nanoparticles in polyol medium via hydrolysis and the second one in gently reducing these latter under hydrogen at 300 Degree-Sign C. X-ray diffraction analysis shows that pure Fe and CoFe{sub 2} alloy are well obtained by reducing Fe{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4}, respectively. This is not the case when we try to reduce NiFe{sub 2}O{sub 4}. A mixture of Fe and Ni{sub 3}Fe is observed. TEM analysis reveals that the size of metal particles stays within the range of a few tenths of nm up to 150 nm, while the precursors (MFe{sub 2}O{sub 4}) never exceed 5 nm. Our results show that the formation of metal particles occurs via two main steps: (i) reduction of the spinel oxide nanoparticles into metal ones and (ii) aggregation of the latter, leading to larger metal nanoparticles. Magnetic measurements indicate that the as-obtained metallic materials have good magnetic properties mainly affected by the sizes of the nanoparticles and the purity of the reduced phases.

  3. Fatigue resistance of Cr-Ni-Mo-V steel

    International Nuclear Information System (INIS)

    Naumchenkov, N.E.; Filimonova, O.V.; Borisov, I.A.

    1985-01-01

    A study was made on the effect of additional alloying (Ni, Ni+Co), stress concentration, surface plastic strain on fatigue resistance of rotor steel of Cr-Ni-Mo-V-composition. It is shown that the steel with decreased carbon content possesses high complex of mechanical properties. Fatigue characteristics are not inferior to similar characteristics of steels of 25KhN3MFA type. Additional alloying of the steel containing 0.11...0.17% C and 4.5...4.7% N:, with niobium separately or niobium and cobalt in combination enabled to improve fatigue resistance of samles up to 25%. Strengthening of stress concentration zones by surface plastic strain is recommended for improving rotor suppporting 'nower under cyclic loading

  4. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  5. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys

    International Nuclear Information System (INIS)

    Fatih Kilicaslan, M.; Yilmaz, Fikret; Hong, Soon-Jik; Uzun, Orhan

    2012-01-01

    The effects of cobalt addition on microstructure and mechanical properties of Al–20Si–5Fe–XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al–Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  6. Effect of Cr3C2 content on the microstructure and properties of Mo2NiB2-based cermets

    International Nuclear Information System (INIS)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yang, ChengMing; Yin, FuCheng; Xiangtan Univ., Hunan; Xiangtan Univ., Hunan; Xiao, YiFeng

    2015-01-01

    Four series of Mo 2 NiB 2 -based cermets with Cr 3 C 2 addition of between 0 and 7.5 wt.% in 2.5 wt.% increments were studied by means of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The transverse rupture strength and hardness were also measured. It was found that Cr 3 C 2 completely dissolved in Mo 2 NiB 2 -based cermets. Cr 3 C 2 addition improved the wettability of the Ni binder phase on the Mo 2 NiB 2 hard phase, which resulted in a decrease in the porosity and an increase in the phase uniformity. The cermets with 2.5 wt.% Cr 3 C 2 content showed relatively fine grains and almost full density. A high Cr 3 C 2 content resulted in the formation of M 6 C (M = Mo, Cr, Ni) phase. In addition, energy dispersive X-ray spectroscopy results showed that the content of Mo in the binder decreased with increasing Cr 3 C 2 content. The cermets with 2.5 wt.% Cr 3 C 2 addition exhibited the highest transverse rupture strength of 2210 MPa, whereas the cermets without Cr 3 C 2 addition exhibited the highest hardness.

  7. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  8. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    Science.gov (United States)

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy

    Science.gov (United States)

    Li, Ruidi; Yuan, Tiechui; Qiu, Zili

    2014-07-01

    A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.

  10. Electron microscopy and diffraction of ordering in Ni-W alloys

    International Nuclear Information System (INIS)

    Mishra, N.S.

    1995-01-01

    Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first 1,398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D 2h 25 -Ni 2 W and D0 22 -Ni 3 W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1,103 and 1,213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1,523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1,093 K. Distinct Ni 4 W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni 4 W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys

  11. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    International Nuclear Information System (INIS)

    Jin, Y.; O'Connell, A.; Kharel, P.; Lukashev, P.; Staten, B.; Tutic, I.; Valloppilly, S.; Herran, J.; Mitrakumar, M.; Bhusal, B.; Huh, Y.; Yang, K.; Skomski, R.; Sellmyer, D. J.

    2016-01-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L2 1 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (T C ) significantly above room temperature. The measured T C for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μ B /f.u. and 2.78 μ B /f.u., respectively, which are close to the theoretically predicted value of 3 μ B /f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  12. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  13. Forming a structure of the CoNiFe alloys by X-ray irradiation

    Science.gov (United States)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  14. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    Science.gov (United States)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  15. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  16. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  17. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Wu, J.K.

    2008-01-01

    After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix.......After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix....

  18. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  19. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  20. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    International Nuclear Information System (INIS)

    Zhang, T.F.; Liu, B.; Wu, B.J.; Liu, J.; Sun, H.; Leng, Y.X.; Huang, N.

    2014-01-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  1. Mesa NTMS 10 x 20 quadrangle area. Supplemental data report

    International Nuclear Information System (INIS)

    Koller, G.R.

    1980-01-01

    This data report presents supplemental analytical results for stream sediments and ground water. The samples were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Mesa 1 0 x 2 0 quadrnangle. Results are reported for 24 elements (Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, Th, W, Y, Zn, and extractable U) in sediments and 31 elements (Ag, Al, As, B, Ba, Be, Ca, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Sc, Se, Si, Sr, Th, Ti, V, Y, Zn, and Zr) as well as pH, alkalinity, and conductivity in ground water

  2. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  3. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  4. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  6. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  7. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFeCr

  8. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  9. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel

    International Nuclear Information System (INIS)

    Liu, P.; Stigenberg, A.H.; Nilsson, J.O.

    1995-01-01

    A thorough microstructural investigation has been performed on a high strength maraging steel of the type 12%Cr-9%Ni-4%Mo-2%Cu-1%Ti. The major precipitate formed during isothermal aging at 475 C is a quasicrystalline phase possessing icosahedral symmetry termed R'-phase with a typical chemical composition of 48%Mo-33%Fe-13%Cr-2%Ni-4%Si. At 550 C the major precipitate is trigonal R-phase with a typical composition of 45%Mo-31%Fe-18%Cr-4%Ni-2%Si. At 550 C also Laves phase with a composition of 48%Mo-35%Fe-13%Cr-2%Ni-2%Si could be observed. At both 475 and 550 C an ordered phase termed L-phase precipitated. This minority phase has an ordered face centered cubic (f.c.c.) structure of type L1 0 . Its composition is typically 9%Fe-4%Cr-52%Ni-15%Mo.-16%Ti-4%Al. R'-phase formed at 475 C transformed to R-phase and Laves phase during aging at 550 C. In an analogous manner, R-phase and Laves phase formed at 550 C transformed to R'-phase during subsequent aging at 475 C. This transformation was rationalized by a strong similarity in crystal structure between quasicrystalline R'-phase of icosahedral symmetry and Frank-Kasper phases such as R-phase and Laves phase

  10. Irradiation-induced precipitation and solute segregation in alloys. Fourth annual progress report, February 1, 1981-March 31, 1982

    International Nuclear Information System (INIS)

    Ardell, A.J.

    1982-04-01

    The studies of irradiation-induced solute segregation (IISS) and irradiation-induced precipitation (IIP) in Ni-Si and Pd-Fe alloys have been completed. Progress is reported for several other projects: irradiation damage in binary Pd-Cr, -Mn and -V alloys (15 at. %); IIP in Pd-Mo and Pd-W alloys; IIP in Pd-25 at. % Cr alloy; and irradiation damage effects in proton-bombarded metallic glasses (Ni-65 Zr, 40 Fe 40 Ni 14 P6B). 27 figures

  11. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  12. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  13. Microstructure and Corrosion Resistance Characteristics of Cr-Co-Mo Alloys Designed for Prosthetic Materials

    Directory of Open Access Journals (Sweden)

    Augustyn-Pieniążek J.

    2013-12-01

    Full Text Available W pracy przedstawiono wyniki badań mikroskopowych dwóch stopów: Co-Cr-Mo i Co-Cr-W-Mo wraz z ilościową ana- lizą punktową składu chemicznego przy wykorzystaniu mikroanalizatora rentgenowskiego EDS. W ramach pracy wykonano również badania odporności korozyjnej stopów w środowisku sztucznej śliny. Mikrostruktura badanych stopów miała budowę dendrytyczną. W przestrzeniach międzydendrytycznych występowała eutektyka składająca się z węglików stopowych i auste- nitu kobaltowego. Osnowę dendrytyczną stanowił roztwór stały chromu, molibdenu i węgla w kobalcie (yCo, zaś wydzielenia występujące w obszarach międzydendrytycznych były bogate w Cr i Mo - w przypadku stopu Co-Cr-Mo oraz W i Mo - w przypadku stopu Co-Cr-W-Mo. Analizowane materiały wykazywały zbliżone przebiegi krzywych polaryzacji. Z otrzymanych wartości potencjału bezprądowego oraz na podstawie szerokiego obszaru pasywacji tych stopów można wnioskować o ich wysokiej odporności korozyjnej w badanym środowisku.

  14. CoCr double-layered media with NiFe and CoZrNb soft-magnetic layers (invited)

    International Nuclear Information System (INIS)

    Bernards, J.P.C.; Schrauwen, C.P.G.; Zieren, V.; Luitjens, S.B.

    1988-01-01

    The magnetic, structural, and recording properties of CoCr double-layered media are investigated. The underlayer materials NiFe (crystalline) and CoZrNb (amorphous) were combined with two different kinds of intermediate layers: Ti (crystalline) and Ge (amorphous). Applying a bias voltage during sputtering of NiFe results in a low coercivity of the NiFe layer and in a high coercivity of the CoCr layer. The structure of the NiFe layer influences the structure of the CoCr layer. A Ti layer between the NiFe and CoCr layers decreases the in-plane remanence of the CoCr layer. The coercivity of all CoZrNb layers is low, independent of the application of a bias voltage. The orientation and structure of CoCr on CoZrNb can be improved by using a Ge intermediate layer, which results in a low coercivity of the CoCr. A Ti intermediate layer increases the coercivity. Ring heads show a dependence of spike noise on the underlayer coercivity and on the applied normal force. A probe-type head shows a dependence of its output on the CoCr coercivity, which may be understood in terms of demagnetization and writing depth

  15. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  16. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    Science.gov (United States)

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  17. Irradiation-induced softening of Ni3P and (Ni, Fe, Cr)3P alloys

    International Nuclear Information System (INIS)

    Schumacher, G.; Miekeley, W.; Wahi, R.P.

    1993-01-01

    Production of amorphous alloys by solid state reactions (SSR) has attracted much interest during the last few years. One of the methods to induce such a reaction is the irradiation of suitable crystalline alloys by fast particles. Examination of this kind of SSR in M 3 P type of brazing alloys (M: Metal) is attractive because of the following reason: In brazed joints of candidate structural materials like 316L stainless steel for applications in fusion reactors, crystalline intermetallic phases have been detected which are unstable relative to the amorphous state when irradiated at moderate temperatures with fast particles. It is expected that the transition to the amorphous state is accompanied by changes of the mechanical properties, which are of fundamental interest in this context. Until now, only a few studies on the evolution of mechanical properties during amorphization have been performed. Measurements of microhardness of the crystalline and the corresponding amorphous phase do not exist to the authors knowledge. In this communication, the authors present results on changes of microhardness, due to amorphization by fast ions. The measurements have been performed on a model alloy Ni 3 P and on the brazed joint of stainless steel 316L, containing M 3 P (M: Ni, Fe, Cr) as one of the phases. Though microhardness is not a fundamental property of materials, it is a manifestation of several related properties, such as yield stress, ductility, work-hardening, elastic modulus and residual stress states. It represents a resistance for indentation and is, therefore, appropriate for comparative purposes

  18. Creep behaviour of the alloys NiCr22Co12Mo and 10CrMo9 10 under static and cyclic load conditions

    International Nuclear Information System (INIS)

    Wolf, H.

    1990-01-01

    The creep behaviour of NiCr20Co12Mo is investigated under static strain and at 800deg C, with stresses applied ranging from 105 MPa to 370 MPa. The ferritic steel 10CrMo 9 10 is tested for its creep behaviour under static strain and at the temperatures of 600deg C and 550deg C, with stresses applied between 154 MPa and 326 MPa (at 600deg C), or between 250 MPa and 458 MPa (at 550deg C). The experiments are made to determine the effects of changes in strain on the materials' deformation behaviour, placing emphasis on transient creep and elastic or anelastic response. The mean internal stress is determined from changes in strain. Cyclic creep is analysed as a behaviour directly responding to the pattern of change in strain. Effects of certain strain changes not clarified so far are analysed. The cyclic strain experiments are analysed according to the velocity factor concept. The usual models of creep deformation (theta projection concept) are compared with the model of effective strain, which is based on the fundamental equation of plastic deformation by dislocation motion (Orowan equation). (MM) [de

  19. Si effects on radiation induced segregation in high purity Fe-18Cr-14Ni alloys irradiated by Ni ions

    International Nuclear Information System (INIS)

    Ohta, Joji; Kako, Kenji; Mayuzumi, Masami; Kusanagi, Hideo; Suzuki, Takayoshi

    1999-01-01

    To illustrate the effects of the element Si on radiation induced segregation, which causes irradiation assisted stress corrosion cracking (IASCC), we investigated grain boundary chemistry of high purity Fe-18Cr-14Ni-Si alloys irradiated by Ni ions using FE-TEM. The addition of Si up to 1% does not affect the Cr depletion at grain boundaries, while it slightly enhances the depletion of Fe and the segregation of Ni and Si. The addition of 2% Si causes the depletion of Cr and Fe and the segregation of Ni and Si at grain boundaries. Thus, the Si content should be as low as possible. In order to reduce the depletion of Cr at grain boundaries, which is one of the major causes of IASCC, Si content should be less than 1%. (author)

  20. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  1. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    Science.gov (United States)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  2. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  3. The effects of minor alloy modifications and heat treatment on the microstructure and creep rupture behavior of 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Todd, J.A.; Chung, D.W.; Parker, E.R.

    1983-01-01

    The effects of alloy additions on the microstructure of simulated cooled and tempered 2.25Cr-1Mo steels have been studied using transmission electron microscopy. Carbide precipitation sequences have been identified in the modification 3Cr-1Mo-1Mn-1Ni and compared to those in 2.25Cr-1Mo steels modified with Mn and Ni and also with Ti, V and B. The influence of minor compositional changes on the creep rupture behavior of 2.25Cr-1Mo steel has been studied at 500 C, 560 C, and 600 C. The most significant effect of alloy modifications on creep properties resulted from additions of Mn and Cr. Preliminary studies show that 1% Mn and 0.5Mn + 1Ni + 0.75Cr additions significantly reduce creep strength at all three temperatures for tests up to 2000 hours duration. The 3Cr-1Mo-1Mn-1Ni steel showed improvements in rupture ductility at all temperatures when compared with the base 2.25Cr-1Mo steel and the manganese-nickel modifications. Plots of the Larson-Miller parameter for both these modifications lay within the scatter band for commercial 2.25Cr-1Mo steels

  4. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  5. Corrosion Resistance of Co-Cr-Mo Alloy Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Łukaszczyk A.

    2015-04-01

    Full Text Available The presented paper studies the effect of the casting technology on the corrosion resistance of Co-Cr-Mo alloy. The investigations were conducted on a commercial alloy with the brand name ARGELOY N.P SPECIAL (Co-Cr-Mo produced by Argen as well as the same alloy melted and cast by the lost wax casting method performed by a dental technician. The corrosion behavior of the dental alloys in an artificial saliva was studied with the use of the following electrochemical techniques: open circuit potential and voltammetry. After the electrochemical tests, studies of the surface of the examined alloys were performed by means of a scanning electron microscope with an X-ray microanalyzer. The results of the electrochemical studies show that the dependence of the corrosion resistance on the microstructure associated with the recasting process is marginal. The results of the electrochemical studies of the considered alloy clearly point to their good corrosion resistance in the discussed environment.

  6. Secondary phases in Al_xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    International Nuclear Information System (INIS)

    Rao, J. C.

    2017-01-01

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al_xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al_0_._3 and Al_0_._5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinning formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.

  7. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    International Nuclear Information System (INIS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe_5_0Co_3_0Ni_2_0 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe_3O_4 crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe_5_0Co_3_0Ni_2_0 composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe_3O_4 as well as FeNi_3 and Co crystalline phases.

  8. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)], E-mail: cywang@gdut.edu.cn; Zhou, Y.M.; Zhang, F.L.; Xu, Z.C. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-05-12

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr{sub 7}C{sub 3} and Cr{sub 3}C{sub 2} formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  9. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  10. Glass forming ability and magnetic properties of Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses produced by suction casting

    Energy Technology Data Exchange (ETDEWEB)

    Sarlar, Kagan [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Physics Department, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University, YunusEmre Campus, 70100 Karaman (Turkey); Kucuk, Ilker, E-mail: ikucuk@uludag.edu.tr [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2015-01-15

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) have a supercooled liquid region (∆T{sub x}) of about 44 K. The saturation magnetizations (J{sub s}) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J{sub s} 0.62−0.81 T with a low H{sub c} of 2−289 A/m of the alloys.

  11. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  12. Permeability and giant magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X=Cr, Mn, Ni) amorphous ribbons

    International Nuclear Information System (INIS)

    Byon, Kwang Seok; Yu, Seong-Cho; Kim, Cheol Gi

    2001-01-01

    The magnetoimpedance (MI) has been measured in the amorphous ribbons of the soft ferromagnetic alloy Co 69 Fe 4.5 X 1.5 Si 10 B 15 (X=Cr, Mn, Ni) as functions of frequency (f). For all of the three samples, at low frequency, f≤5MHz, the MI ratio increases with increasing frequency, but the MI ratio decreases at high frequency, f≥5MHz. The MI profiles are not changed at low frequency regions of f≤1MHz in the amorphous ribbons. The MI ratio at high frequency of f=5MHz becomes 57% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 , but the MI ratio becomes 30% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 . The MI ratio at f=10MHz becomes 45% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 and the MI ratio becomes 23% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 , respectively. The maximum values of field sensitivity are 2.7(X=Cr), 2.5(X=Mn), 2.2(X=Ni)%/Oe for f=5MHz. [copyright] 2001 American Institute of Physics

  13. Changes of structure and properties of cast steels GX10NiCrNb32-20 and GX10NiCrNb3-25 after long-term tempering at 600-1000 C

    International Nuclear Information System (INIS)

    Gommans, R.; Schrijen, H.; Sundermann, J.; Steinkusch, W.; Hering, W.

    2001-01-01

    Low-alloy cast steels of type GX 10NiCrNb 32.20 are commonly used for the outlet section of reformer and cracker tubes for the temperature range of 600-1000 C. There was a lack of data on the ductility of the 25%Cr alloyed cast steel GX10NiCrNb 35.25 at room temperature after tempering, which was investigated in a joint project of Pose-Marre and DSM. Mechanical tests were carried out at room temperature and at elevated temperatures. Apart from light microscopy, also SEM/EDX, SAM and TEM analyses were carried out. The 25% alloy has lower ductility than the 20% alloy, owing primarily to the more pronounced development of M 6 C carbide from primary NbC carbide, which takes up Ni and Si during tempering. The microstructure and composition of the M 6 C carbide wre not fully clarified. Information is presented on the potential application of low-carbon materials of the type GX10NiCrNb35.25 [de

  14. Effect of hydridation on structure of amorphous and amorphous-crystalline Fe40Ni40B20 and Co70Fe5Si15B10 bands

    International Nuclear Information System (INIS)

    Il'inskij, A.G.; Brovko, A.P.; Zelinskaya, G.M.; Kosenko, N.S.; Khristenko, T.M.; Kobzenko, G.F.; Shkola, A.A.

    1988-01-01

    The structure of amorphous and amorphous-crystaliline Fe 40 Ni 40 B 20 and Co 70 Fe 5 Si-1 5 B 10 alloys, exposed to hydridation at different temperatures, is studied by X-ray diffraction technique. The presence of crystalline constituent in amorphous bands was determined on DRON-3 device and by method of small-angle scattering. The experimental data obtained verify, that hydridation does not only prevent the formation of crystalline phases at annealing, but leads, as well, to disappearance of band crystalline constituent in case of its presence

  15. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  16. The causes of relaxation- and hot cracking in the heat-affected zone of 22 NiMoCr 37 and 20 MnMoNi 55

    International Nuclear Information System (INIS)

    Schellhammer, W.

    1977-01-01

    Non-destructive and metallographic investigations with a view to relaxation cracking and hot cracking were carried out in 53 component-specific welds with wall thicknesses of 40 to 360 mm and 21 experimental welds with wall thicknesses of 140 to 275 mm of high-temperature, fine-grained structural steel 22 NiMoCr 37 as well as in 27 component-specific welds of high-strength, fine-grained structural steel 20 MnMoNi 55. Non-destructive tests and conventional metallographic analyses by means of transverse structure micrography were unable to give a sufficiently accurate picture of the two types of cracks in the micro- and millimeter range, a 'volumetric' method was employed (tangential structure micrography with stepwise abrasion) which permitted semi-automatic and fast evaluation. The experimental results showed the selective influence of several elements and led to the development of a method to evaluate the cumulative effect of the chemical elements on relaxation cracking and hot cracking by addition of the selective influence. The method gives quantitative data on material optimisation with regard to the reduction of brittle and crack-prone states and confirms the findings of welding simulation tests. (orig./IHOE) 891 IHOE/orig.- 892 HIS [de

  17. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  18. Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Duan Jingfang; Huang Peng; Zhang Hu; Long Yi; Wu Guangheng; Rongchang Ye; Chang Yongqin; Farong Wan

    2007-01-01

    The phase transition process and magnetic entropy change ΔS of Ni 54.5 FeMn 20 Ga 24.5 alloy were studied. Substitution of Fe for Ni increases the Curie temperature and decreases the temperature of martensitic phase transition. The transition from ferromagnetic martensitic to ferrormagnetic austenitic state leads to an abrupt increase of magnetization below 0.5T and an abrupt decrease of magnetization above 0.5T. The sign of ΔS changes from positive to negative with increasing the applied field from 0.5 to 2T. The maximal value of the positive magnetic entropy change ΔS is about 3.1J/kgK for the applied field from 0 to 0.5T. The increase of applied field from 1.5T results in a negative ΔS. The peak of negative ΔS is -2.1J/kgK for a field change of 2T

  19. X-ray fluorescence analysis of Fe - Ni - Mo systems

    International Nuclear Information System (INIS)

    Belyaev, E.E.; Ershov, A.V.; Mashin, A.I.; Mashin, N.I.; Rudnevskij, N.K.

    1998-01-01

    Procedures for the X-ray fluorescence determination of the composition and thickness of Fe - Ni - Mo thin films and the concentration of elements in thick films of the Fe - Ni - Mo alloy are developed [ru

  20. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  1. Moessbauer spectroscopy on amorphous Fe/sub x/Ni/sub 80-x/B20 after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Miglierini, M.

    1985-01-01

    Amorphous Fe/sub x/Ni/sub 80-x/B 20 glassy alloys (x = 40, 50, 60, and 70) irradiated with fast neutrons in a fluence range of 10 14 to 10 19 cm -2 were investigated by Moessbauer spectroscopy. There were some significant changes in the Moessbauer spectrum parameters of the 10 19 cm -2 irradiated samples except Fe 40 Ni 40 B 20 . This corresponds to a change in the direction of the easy axis of magnetization. The measurements show that the resistance of the Fe-Ni-B system against neutron irradiation improves with increasing Ni content up to a certain point

  2. Connection between kinetic phenomena and atomic ordering processes and electronic structure of Ni3(FeMe)-type alloys

    International Nuclear Information System (INIS)

    Vasil'eva, R.P.; Arkhipov, Yu.N.; Narkulov, N.; Fadin, V.P.

    1978-01-01

    The results are presented of the measurements of the Hall and the Nernst-Ettingshausen effect and of thermal emf, electric resistivity and magnetization measurements in alloys Ni 3 (FeMe), where Me is Mo, Cr, W. The concentration of additions is not higher than 12.5%. The relationship of the kinetic phenomena with peculiarities of the electron structure and ordering processes is investigated. The obtained data show that the Hall and Nernst-Ettingshausen electromotive forces in the investigated alloys have positive values. The effects of the concentration variations of the investigated phenomena manifest themselves stronger in ordered state, this testifyies to a considerable increase of the part, the hole sections of the Fermi surface play. The investigation enables some conclusions to be made on the energy characteristics of these alloys as a function of the variation of the concentration composition of the alloys and the ordering processes

  3. Influência do teor de Mo na microestrutura de ligas Fe-9Cr-xMo Effect of the content of molybdenum in the microstructure of Fe-9Cr-xMo alloy

    Directory of Open Access Journals (Sweden)

    Rodrigo Freitas Guimarães

    2010-12-01

    Full Text Available Aços Cr-Mo são usados na indústria do petróleo em aplicações com óleos crus ricos em compostos sulfurosos. Aços comerciais como 2.5Cr1Mo ou 9Cr1Mo têm se mostrado ineficientes em consequência de altos índices de corrosão naftênica. Uma estratégia para resolver este problema é o aumento do teor de molibdênio destes aços. Neste trabalho foi estudado o efeito do aumento do teor de molibdênio na microestrutura de ligas Fe-9Cr-xMo, solubilizadas e soldadas. Foram levantados os diagramas de fases com auxílio de um programa comercial para verificar as possíveis fases a serem formadas e identificar os problemas de soldagem. A microestrutura das ligas solubilizadas foi analisada por microscopia óptica e EBSD, além da medição da dureza. Foram realizadas soldagens autógenas para verificar o efeito do aporte térmico na microestrutura e na dureza das ligas. O aumento do teor de molibdênio resultou no aumento da dureza das ligas. A análise microestrutural das ligas soldadas apresentou uma particularidade para a liga com menor teor de molibdênio, a presença de martensita. Já as ligas com maior teor de molibdênio apresentaram uma microestrutura completamente ferrítica. A formação de martensita pode ser um problema na solda da liga com menor teor de molibdênio, uma vez que a mesma pode causar perdas nas propriedades mecânicas comprometendo sua aplicação.Cr-Mo steels are used in the petroleum industry in applications with crude oils rich in sulfur compounds. 2.5Cr1Mo or 9Cr1Mo do not resist to operating conditions when in contact with crude oils. The increasing of molybdenum content can improve the corrosion resistance of these alloys. This paper studied the effect of increased concentration of molybdenum in the microstructure of Fe-9Cr-xMo alloys, annealed and welded. Phase diagrams were built with the aid of commercial program to check the possible phases to be formed and to identify the problems of welding. Analyses were

  4. Al2O3 adherence on CoCrAl alloys

    International Nuclear Information System (INIS)

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al 2 O 3 as both the dispersion and protective oxide; and the production of an HfO 2 dispersion while simultaneously aluminizing the alloy. It was found that an Al 2 O 3 dispersion will act to promote the adherence of an external scale of Al 2 O 3 to a degree comparable to previously tested dispersions and an HfO 2 dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization

  5. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  6. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  7. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  8. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl

    Energy Technology Data Exchange (ETDEWEB)

    Welk, Brian A.; Williams, Robert E.A.; Viswanathan, Gopal B. [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212 (United States); Gibson, Mark A. [CSIRO, Private Bag 33, Clayton, Victoria 3169 (Australia); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, 414 Ferris Hall, 1508 Middle Drive, Knoxville, TN 37996 (United States); Fraser, Hamish L., E-mail: fraser.3@osu.edu [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212 (United States)

    2013-11-15

    The interfaces between the phase separated regions in the dendritic grains of laser-deposited samples of the high entropy alloy CoCrCuFeNiAl have been studied using aberration-corrected analytical (scanning) transmission electron microscopy ((S)TEM). The compositional variations have been determined using energy dispersive x-ray spectroscopy (EDS) in (S)TEM. It was found that between B2, consisting mainly of Al, Ni, Co, and Fe, and disordered bcc phase, consisting mainly of Cr and Fe, there is a transition region, approximately 1.5 nm in width, over which the chemical composition changes from the B2 to that of the bcc phase. The crystal structure of this interfacial region is also B2, but with very different sublattice occupancy than that of the adjacent B2 compound. The structural aspects of the interface between the ordered B2 phase and the disordered bcc phase have been characterized using high angle annular dark-field (HAADF) imaging in STEM. It has been determined that the interfaces are essentially coherent, with the lattice parameters of the two B2 regions and the disordered bcc phase being more or less the same, the uncertainty arising from possible relaxations from the proximity of the surfaces of the thin foils used in imaging of the microstructures. Direct observations show that there is a planar continuity between all three constituent phases. - Highlights: • In the dendritic grains, there are two dominant phases, one with the ordered B2 structure, and the other disordered bcc. • From the intensity ratios in HAADF, the B2 phase appears to have a stoichiometry of the form Al(Ni, Co, and Fe). • Energy dispersive x-ray spectroscopy reveals the presence of an ordered interface transition region between the two phases. • Nanodiffraction in the Titan shows that the interface region is also ordered with the B2 crystal structure based on C.

  9. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  10. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  11. Quaternary Pt{sub 2}Ru{sub 1}Fe{sub 1}M{sub 1}/C (M=Ni, Mo, or W) catalysts for methanol electro-oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Min Ku; Lee, Ki Rak; Kang, Kweon Ho; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Hyung Joon [Kyoto University, Kyoto (Japan); McGinn, Paul J. [University of Notre Dame, Indiana (United States)

    2015-02-15

    Quaternary Pt{sub 2}Ru{sub 1}Fe{sub 1}M{sub 1}/C (M=Ni, Mo, or W) catalysts were investigated for the methanol electro-oxidation reaction (MOR). Electrocatalytic activities of the quaternary catalysts for CO electro-oxidation were studied via CO stripping experiments, and the Pt{sub 2}Ru{sub 1}Fe{sub 1}Ni{sub 1}/C and Pt{sub 2}Ru{sub 1}Fe{sub 1}W{sub 1}/C catalysts exhibited lowered on-set potential compared to that of a commercial PtRu/C catalyst. MOR activities of the quaternary catalysts were determined by linear sweep voltammetry (LSV) experiments, and the Pt{sub 2}Ru{sub 1}Fe{sub 1}W{sub 1}/C catalyst outperformed the commercial PtRu/C catalyst by 170 and 150% for the mass and specific activities, respectively. X-ray photoelectron spectroscopy (XPS) was employed to analyze surface oxidation states of constituent atoms, and it was identified that the structure of the synthesized catalysts are close to a nano-composite of Pt and constituent metal hydroxides and oxides. In addition, the XPS results suggested that the bi-functional mechanism accounts for the improved performance of the Pt{sub 2}Ru{sub 1}Fe{sub 1}Ni{sub 1}/C and Pt{sub 2}Ru{sub 1} Fe{sub 1}W{sub 1}/C catalysts.

  12. Study of the mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (x = 0 or 3) bulk amorphous and crystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabialek, Marcin G. [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Szota, Michal [Institute of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Dospial, Marcin J.

    2010-05-15

    The microstructure, thermal stability, mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (where x = 0 or 3) bulk metallic glasses (BMG) and their crystalline equivalents were investigated. The crystalline materials were smelted on a copper mould using an electric arc; their amorphous equivalents were prepared using the induction suction casting method (ISC). All samples investigated were in the form of plates with dimensions of 10x10x0.5mm. From X-ray diffraction and Moessbauer spectroscopy, it was found that both investigated alloys prepared using this method have an amorphous structure. From magnetic measurements obtained by a vibrating sample magnetometer (VSM), it was shown that all measured samples displayed soft magnetic properties with relatively high saturation of the magnetization. The thermal stability and glass-forming ability (GFA) for investigated alloys were derived from differential scanning calorimetry (DSC) curves. The measurements of mechanical properties for amorphous alloys were found to be better than those for crystalline alloys with the same atomic composition. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  14. Nanocrystallization in amorphous Fe40Ni40(Si+B)19Mo1-2 ribbons

    International Nuclear Information System (INIS)

    Saiseng, S.; Winotai, P.; Nilpairuch, S.; Limsuwan, P.; Tang, I.M.

    2004-01-01

    Cut Fe 40 Ni 40 (Si+B) 19 Mo 1-2 ribbons were annealed for 2 h at various temperatures between 350 deg. C and 600 deg. C. XRD and Mossbauer effect spectroscopy (ME) measurements were then performed on all of the ribbons. The magnetic properties of several ribbons were measured using a vibrating sample magnetometer (VSM). A differential thermal analysis scan (over the range 20-800 deg. C) of the as-cast ribbon showed two phase transitions; the first at 454 deg. C and the second at 525 deg. C. Both the XRD and ME spectra of the as cast, the 350 deg. C and 400 deg. C annealed ribbons showed that they were amorphous. The ME spectra of the 450 deg. C, 475 deg. C and 500 deg. C annealed ribbons showed that these ribbons contained α-Fe, α-Fe(Si) and t-Fe 2 B nanocrystallites. For the ribbons annealed above 550 deg. C, crystallites of t-Fe 2 B, t-Fe 3 B, t-Fe 5 SiB 2 and FCC-FeNi appeared, with the α-Fe and α-Fe(Si) crystallites disappearing. The sextets of all of the Fe compounds appeared in the ME spectra of the 525 deg. C annealed ribbon. The VSM measurements supported the picture of a two-stage phase transitions; amorphous phase→a nanocrystalline phase (Fe-containing nanocrystallites in an amorphous matrix) at 454 deg. C and then a second transition, the nanocrystalline phase→a disordered alloy containing Fe-B and Fe-Ni crystallites at 525 deg. C

  15. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  16. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  17. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  18. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  19. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  20. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  1. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  2. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  3. Pressure-assisted reaction bonding between W and Si80Ge20 alloy with Ni as the interlayer

    International Nuclear Information System (INIS)

    Xu, Y.; Laabs, F.C.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1991-01-01

    The conditions and reaction mechanism of W/Ni/Si 80 Ge 20 hot-press bonding have been studied. It was found that a Ni/Si 80 Ge 20 bond can be formed using low pressure, 19.6 MPa, in the temperature range between 780 and 900 degree C in a short time. The kinetics follows a parabolic pattern, suggesting it is a diffusion-controlled process. The activation energy is 2.7 eV and the parabolic rate constant is given by K P = 4.0 x 10 14 exp(-3.2x10 4 /T) (μm 2 /min). The bonding interface has a multilayered structure. A phenomenological mechanism of the bonding formation has been proposed based on scanning electron microscopy observations and energy dispersive spectroscopy. The cracking problem due to thermal stress is discussed based on Oxx's equation. It was found that bonds free from cracks in the Si 80 Ge 20 alloy are formed when the Ni consumption (as measured by the thickness of the nickel layer) is sufficiently small ( 4 . As an interlayer, nickel can join the tungsten sheet and the Si 80 Ge 20 together. It has been also demonstrated that a thin nickel layer formed by vapor deposition on a tungsten sheet may be used as the interlayer in place of nickel sheet

  4. Análisis mecánico y tribológico de los recubrimientos fe-cr-ni-c y ni-al-mo

    Directory of Open Access Journals (Sweden)

    JORGE E. MUÑOZ

    2007-01-01

    Full Text Available En este trabajo de investigación se evaluaron dos recubrimientos aplicados por medio de la técnica de rociado térmico por combustión, la aleación: Ni=89%, Al = 5,5%, Mo=5,5% y la aleación Fe=81,8%, Cr=16%, Ni=2%, C=0,2. La preparación superficial de las probetas se realizó usando chorro de arena. Se realizaron pruebas de resistencia al cortante, adherencia, desgaste abrasivo, desgaste por deslizamiento y flexión en cuatro puntos. El recubrimiento Fe-Cr-Ni-C presentó menor pérdida de masa, tanto para desgaste abrasivo como para el desgaste por deslizamiento. La multicapa presentó una mayor porosidad en el recubrimiento Ni-Al- Mo usado como capa base y la capa exterior de Fe-Cr-Ni-C presentó mayor cantidad de partículas no fundidas y óxidos. La falla ocurrida en el ensayo de adherencia para las probetas con recubrimiento multicapa fue de característica adhesiva y cohesiva. El esfuerzo en el que se presenta la fisura por flexión en el recubrimiento multicapa disminuyó con el aumento del espesor

  5. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  6. High-resolution electron microscopy study of Ni81Fe19 film with Co33Cr67 buffer layer

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Z.M.; Shen, F.; Du, Y.W.; Zhang, Z.

    2003-01-01

    The anisotropic magnetoresistance (AMR) in permalloy Ni 81 Fe 19 film deposited on a 1.2 nm Co 33 Cr 67 buffer layer was significantly enhanced. The high-resolution electron microscopy was used to study the microstructure of Ni 81 Fe 19 film with and without Co 33 Cr 67 buffer layer. It was found that Co 33 Cr 67 buffer layer can induce good (1 1 1) texture, while without Co 33 Cr 67 buffer layer, Ni 81 Fe 19 film show randomly oriented grain structure. The Δρ/ρ enhancement is attributed to the decrease in the resistivity ρ of the Ni 81 Fe 19 film due to the formation of the large (1 1 1) textured grains in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer. However, the surface roughness of substrate may limit the (1 1 1) textured grain size and induce additional grain boundaries in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer, limit the enhancement of the AMR effect

  7. Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization

    Directory of Open Access Journals (Sweden)

    Jinxiong Hou

    2017-03-01

    Full Text Available Cold rolling with subsequent annealing can be used to produce the recrystallized structure in high entropy alloys (HEAs. The Al0.25CoCrFeNi HEAs rolled to different final thickness (230, 400, 540, 800, 1000, 1500 μm are prepared to investigate their microstructure evolutions and mechanical behaviors after annealing. Only the single face-centered cubic phase was obtained after cold rolling and recrystallization annealing at 1100 °C for 10 h. The average recrystallized grain size in this alloy after annealing ranges from 92 μm to 136 μm. The annealed thin sheets show obviously size effects on the flow stress and formability. The yield strength and tensile strength decrease as t/d (thickness/average grain diameter ratio decreases until the t/d approaches 2.23. In addition, the stretchability (formability decreases with the decrease of the t/d ratio especially when the t/d ratio is lower than about 6. According to the present results, yield strength can be expressed as a function of the t/d ratio.

  8. The influence of temperature on σ-phase formation and the resulting hardening of Fe-Cr-Mo-alloys

    International Nuclear Information System (INIS)

    Waanders, F.B.; Vorster, S.W.; Pollak, H.

    1999-01-01

    Hardening in Fe-Cr-Mo-alloys due to the formation of σ-phase, has been the subject of theoretical and experimental interest. In the present investigation Fe-Cr-alloys containing 0, 2, 4 and 6% Mo were prepared and were fully transformed to the σ-phase by isothermally annealing the samples for various periods at temperatures of 600-800 deg. C. After each annealing cycle room temperature CEMS-spectra were recorded and micro-hardness tests were performed. The micro-hardness increases with annealing time and temperature, in accordance with the fraction of σ-phase present, and ranged from about 140 HV to 200 HV. From the measurements, activation energies were also deduced

  9. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  10. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  11. Effect of composition and heat treatment on carbide phases in Ni-Mo alloys

    International Nuclear Information System (INIS)

    Svistunova, T.V.; Tsvigunov, A.N.; Stegnukhina, L.V.; Sakuta, N.D.

    1984-01-01

    The investigation results of vanadium, iron, carbon and silicon effect and heat treatment regime on the type and composition of carbides in Ni-(26...31)%Mo alloys are presented. It is shown that type, composition and quantity of carbide phases forming in alloys are determined not only by molybdenum and carbon content, but presence of other elements (V, Fe), admixtures (C, Si) and reducers as well as by regime of thermal treatment. In the alloy, containing 26...31% Mo, 0.01...0.03% C ( 12 C type with a=1.083...1.089 nm lattice parameter, in which V and Ti, Fe and Si are presented besides Mo and Ni. In the temperature range of 600-800 deg C high dispersed carbides segregate on grain boundaries. Silicon initiates segregation of the carbide phases among them by grain boundaries at the temperatures of 800 deg C as well as regulates carbide of M 12 C type with a=1.094...1.098 nm lattice parameter

  12. Certain structural properties of the phase-binder of the alloys in W-Ni-Fe system

    International Nuclear Information System (INIS)

    Minakova, R.V.; Storchak, N.A.; Verkhovodov, P.A.; Bazhenova, L.G.; Poltoratskaya, V.L.

    1980-01-01

    The paper is concerned with effect of cooling conditions and subsequent heat treatment on grain size, lattice parameter and distribution of composing elements in the phase-binder of the W-Ni-Fe-alloy. The X-ray diffraction analysis was used to determine that the phase-binder structure depends on the heat treatment after liquid-phase sintering and consists of coarse grains with a diameter 3-8 mm for the annealed W-Ni-Fe-alloy decreasing to 40-100 μm at slow cooling. The determined change in solubility and of grain interface enrichment with tungsten in the phase-binder

  13. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  14. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  15. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal)

    International Nuclear Information System (INIS)

    Uziel, A.; Bram, A.I.; Venkert, A.; Kiv, A.E.; Fuks, D.; Meshi, L.

    2015-01-01

    Th-T-Al system, where T-3d transition metals, was studied at ThT 2 Al 20 stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT 2 Al 20 phase adopts CeCr 2 Al 20 structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT 2 Al 20 alloys. • It was found that cubic ThT 2 Al 20 phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT 2 Al 10 are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results

  16. Linear thermal expansion coefficient of cast Fe-Ni invar and Fe-Ni-Co superinvar alloys

    International Nuclear Information System (INIS)

    Ogorodnikova, O.M.; Chermenskaya, E.V.; Rabinovich, S.V.; Grachev, S.V.

    1999-01-01

    Cast invar alloys Fe-Ni (28-35 wt. % Ni) are investigated using metallography, dilatometry and X-ray methods as soon as the crystallization is completed and again after low-temperature treatment resulting in martensitic transformation in low nickel alloys. Nickel distribution in a cast superinvar Fe-32% Ni-4% Co is studied by means of X-ray spectrum microanalysis. The results obtained permit the correction of model concepts about cast invars and the estimate of a coefficient of linear expansion depending on phase composition and nickel microsegregation [ru

  17. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting.

    Science.gov (United States)

    Lu, Yanjin; Ren, Ling; Xu, Xiongcheng; Yang, Yang; Wu, Songquan; Luo, Jiasi; Yang, Mingyu; Liu, Lingling; Zhuang, Danhong; Yang, Ke; Lin, Jinxin

    2018-05-01

    In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Pulse electrodeposition of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2000-01-01

    Pulse Electroplating is a relativity new technique in electrodeposition of pure metals and alloys which has resulted in a number of improvement over the traditional direct current method. Among these are a better composition control, lower porosity, reduction of internal stresses and hydrogen content as well as other impurities. In this work Pulse plating of Fe-Ni-Cr alloys has been investigated by using a series of planned experiments. A domain of Pulse parameters, such a pulse frequency, pulse duration, current density and batch condition such as Ph, temperature and has been defined where the coating quality is optimal. The result obtained were Compared with those of D C electroplating and finally a number of recommendations are made for future works towards a semi-industrial process

  19. Tuning Fermi level of Cr{sub 2}CoZ (Z=Al and Si) inverse Heusler alloys via Fe-doping for maximum spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2014-12-15

    We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.

  20. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  1. Effect of Mo concentration and aging time on the magnetic and mechanical hardness of Fe-xMo-5Ni-0.05C alloys (x = 5, 8, 11 and 15 wt. (%

    Directory of Open Access Journals (Sweden)

    Mauro Carlos Lopes Souza

    2009-01-01

    Full Text Available Changes to the microestructure during thermal aging treatment at 610 ºC in Fe-xMo-5Ni-0.05C alloys were studied for different aging times with different Mo concentrations. The heat treatment at 610 ºC induces carbide precipitation into the metallic matrix near Fe2Mo phase. The X-ray diffraction studies revealed a more intense precipitation of α-FeMo, Fe3Mo, R(Fe63Mo37 phases and MoC, Fe2MoC carbides for the alloys containing 15 and 11% Mo, respectively. This work shows that hardness and coercive force changes are function of the molybdenum content and aging time variation. Vickers hardness and coercive force both increase with the increase of molybdenum content and reach maximum values at 4 and 1h of aging, respectively.

  2. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    Science.gov (United States)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  3. Moessbauer spectra studied of spin-wave excitation for amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhigao

    1992-01-01

    The average hyperfine fields of amorphous Fe 70 Co 20 Zr 10 , Fe 80 Co 10 Zr 10 and Fe 86 Co 4 -Zr 10 alloys at different temperature were measured by the Moessbauer technique. According to Bloch's T 3/2 relation, spin-wave excitations of above amorphous alloys were studied and their B 3/2 values were found to be 0.40 +- 0.02, 0.45 +- 0.02 and 0.88 +- 0.04, respectively. Comparing the B 3/2 values of crystals, a-Fe-(Co, Ni)-ME, a-Fe-(Cr, Mn, W)-ME and a-Fe-B or TM-Zr invar alloys, the obvious difference among them was observed. Above results can be explained well by the exchange coupling fluctuation and the disorder of spatial arrangement. In this work, the difference between the stiffness coefficients obtained from the inelastic neutron scattering and the magnetization measurements for amorphous Invar alloys was also explained

  4. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  5. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  6. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 ...

    Indian Academy of Sciences (India)

    The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation ...

  7. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  8. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  9. In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-11-01

    We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.

  10. Low temperature thermal conductivity of amorphous (Fe, Ni, Co) (P, B, Si) alloys and their change by heat treatment

    International Nuclear Information System (INIS)

    Pompe, G.; Gaafar, M.; Buettner, P.; Francke, T.

    1983-01-01

    The thermal conductivity of amorphous metallic alloys (Fe, Ni, Co)/sub 1-x/ (B, P, Si)/sub x/ is measured in the temperature range 2 to 100 K in the as-produced and heat-treated states. By taking into account the results of Matey and Anderson the influence of the nature of the metalloid and the number of metallic components can be discussed. The change of the thermal conductivity due to a structural relaxation caused by a heat treatment is very different. In the whole range of temperature a rise of the phonon thermal conductivity of the Fe-Co-B alloy is obtained, whereas no change is observed for the Fe-B alloy. At low temperature ( 80 B 20 is investigated. (author)

  11. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    Science.gov (United States)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  12. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  13. Microstructure and damage behavior of W-Cr alloy under He irradiation

    Science.gov (United States)

    Huang, Ke; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Liu, Dong-Guang; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-04-01

    In this study, a large-power inductively coupled plasma source was designed to perform the continuous helium ion irradiations of W-Cr binary alloy (W-20 wt%Cr) under relevant conditions of the International Thermonuclear Experimental Reactor. Surface damages and microstructures of irradiated W-20Cr were observed by using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The addition of Cr dramatically enhanced the micro-hardness of the obtained bulk materials, and the interface between the W matrix and the second phase Cr-O is a semi-coherent interface. After irradiation, the doping of Cr element effectively reduces the damage of the W matrix during the irradiation process. The semi-coherent interface between the second phase and the W matrix improves the anti-irradiation performance of the W-20Cr alloy.

  14. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  15. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  16. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  17. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    Directory of Open Access Journals (Sweden)

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  18. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in WNiCo matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of WNiCo alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with WNiCo alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  19. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys

    International Nuclear Information System (INIS)

    Geribola, Gulherme Altomari

    2014-01-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H 2 /2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  20. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  1. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Long, Shao-lei [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yi-long, E-mail: liangyilong@126.com [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Jiang, Yun [Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yu; Yang, Ming; Yi, Yan-liang [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China)

    2016-10-31

    The martensite multi-level microstructures of 20CrNi2Mo steel, which were quenched at the different temperatures of 900–1200 °C and tempered at 200 °C, were investigated by optical microscope (OM), scanning electron microscopy (SEM), electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM), and the relationship between the microstructures and properties of strength and toughness was discussed by the classic formula of Hall–Petch. The results show that the size of prior austenite grain (d{sub r}), martensite packet (d{sub p}) and block (d{sub b}) increase with increasing of the quenching temperature, while the martensite lath (d{sub l}) size is opposite. On another hand, the confusion degree of the martensite packets changes from disorder to order. The boundaries of prior austenite grain, packet, block and the martensite lath are high angle boundaries (HBs) and low angle boundaries (LBs), respectively, and the ratio of the low angle boundaries increase with the quenching temperature by calculating to the multi-level microstructure size with the mathematical model established by myself. In addition, the relationship between the packet/block and strength follows the classical formula of Hall–Petch, and the size of d{sub b} is far lower than the size of d{sub p}, d{sub b} is the effective control unit of the strength. Meanwhile, d{sub l} is the effective control unit of toughness because it strongly impacts the crack initiation and propagation and follows also the Hall-Petch with toughness in 20CrNi2Mo steel.

  2. Effect of Ni and Cr on IGSCC growth rate of Ni-Cr-Fe alloys in PWR primary water

    International Nuclear Information System (INIS)

    Arioka, K.; Yamada, T.; Aoki, M.; Miyamoto, T.

    2015-01-01

    The purpose of this research is to examine the dependence of SCC (Stress Corrosion Crack) growth on nickel and chromium in PWR primary water; the objective is to obtain the basic knowledge to understand SCC behavior of steam generator tubing materials. The second objective is to understand whether accelerated testing at higher temperatures is appropriate for predicting SCC initiation and growth at lower temperatures. For these objectives, SCC growth was measured in PWR primary water at 290, 320, 330, 340, and 360 C. degrees under static load conditions. Tests were performed using 0.5 T compact tension type specimen using 20%CW X%Ni-16%Cr-Fe alloys in the range of nickel concentration between 16 to 60% and laboratory melted nuclear grade 20% cold worked Alloy 800 (USN N08800, CW800NG). Four important patterns were observed. First, significant effect of nickel on IGSCC resistance was observed at 340 and 360 C. degrees. The rate of IGSCC growth decreases with increasing nickel concentration in the range of nickel concentration between 10% to 25% nickel; and then, the rate of IGSCC increases with increasing nickel concentration in the range of Ni content between 50% and 76%. This trend is quite similar to the results reported by Coriou and Staehle tested in deaerated pure water at 350 C. degrees. However, no significant dependence of Ni content on IGSCC in PWR water at 320 and 290 C. degrees was observed. The change in SCC growth dependence on nickel concentration suggested that the main rate limiting processes on IGSCC growth seems to change between 320 and 340 C. degrees. Secondly, significant beneficial effects of chromium in alloys were observed at 320 C. degrees. However, no beneficial effect of chromium addition in alloys was observed at 360 C. degrees. Thirdly, peak temperatures in growth rate of IGSCC were observed in almost all test materials except for 20%CW Alloy 600. Finally, intergranular attack was observed in some alloys at lower temperature, and the

  3. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  4. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    Science.gov (United States)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  5. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  6. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  7. Structure and magnetic properties of Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in [Department of Materials Science & Metallurgical Engineering, Ceramic & Powder Metallurgy Laboratory, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Vajpai, Sanjay Kumar, E-mail: vajpaisk@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India)

    2017-07-01

    Highlights: • A series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy by powder metallurgy. • Effect of substitution of Fe for Cr on the microstructure and magnetic properties. • Increasing amounts of B2 type disordered structure with increasing Fe content. • Enhanced Ms, Mr, Hc, and Tc with increasing Fe content. • Relative magnetic anisotropy decreased with increasing Fe content. - Abstract: In the present study, a series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co{sub 2}CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the

  8. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Wade, Noboru; Hosoi, Yuzo

    1989-01-01

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  9. Comparative study of creep behaviour in three Cr Ni 15/15 steel stabilized with Ti and with different contents in W, Mn, Mo and Bor

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1975-01-01

    The main difference between the three steels which are tested at temperature range from 650 0 C to 750 0 C is due to the hardening elements pf the matrix and the Boron content: 1. 12R72HV (X10NiCrMoTiB 1515) 2% Mn 1,5% Mo 80 ppmB 2. Vaccutherm (X12CrNiWTi 1613) 3% W 2,5 ppmB 3. RGT 21 (X12CrNiWTi 1613) 3% W 50 ppm B. The investigations of all casts are carried out in two different heat treatments which are suitable for the conditions required for the operation of the reactor. Cond. I: 1150 0 C 30 min, water quenced; 800 0 32 hour, air; 10% cold work. Cond. II: 1150 0 C 30 min, water quenched; 10% cold work. In connection with creep test the condition I irrespective of 3 steels show no remarkable difference. The observation at 750 0 C test temperature and also at condition II above 650 0 C on Boron-free Vaccutherm cast shows an unfavourable behaviour. There is no significant difference in the stress dependence of secondary creep rate and also absolute creep rate. A definite superiority is to be found for 12R72HV when considering the values for time-yield-limit-ratio and ductility compared to the W-steels. The test results shows different fracture behaviour. Transcrystalline fracture is found on cast 12R72HV, whereas RGT 21 and Vaccutherm show transition from transcrystalline to intercrystalline fracture, depending on the rupture time and test temperature. The long term rupture specimens show intercrystalline fracture. (author)

  10. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  11. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys

    International Nuclear Information System (INIS)

    Castro, V. de; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R.; Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L.

    2009-01-01

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y 2 O 3 and the other Y 2 O 3 -free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes 3 C and M 23 C 6 carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M 23 C 6 carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  12. Moessbauer spectroscopy on amorphous Fe/sub x/Ni/sub 80-x/B/sub 20/ after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J.; Miglierini, M. (Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia))

    1985-05-16

    Amorphous Fe/sub x/Ni/sub 80-x/B/sub 20/ glassy alloys (x = 40, 50, 60, and 70) irradiated with fast neutrons in a fluence range of 10/sup 14/ to 10/sup 19/ cm/sup -2/ were investigated by Moessbauer spectroscopy. There were some significant changes in the Moessbauer spectrum parameters of the 10/sup 19/ cm/sup -2/ irradiated samples except Fe/sub 40/Ni/sub 40/B/sub 20/. This corresponds to a change in the direction of the easy axis of magnetization. The measurements show that the resistance of the Fe-Ni-B system against neutron irradiation improves with increasing Ni content up to a certain point.

  13. Microstructural response of an Al-modified Ni-Cr-Fe ternary alloy during thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Akinlade, D.A. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)], E-mail: dotun172@yahoo.co.uk; Caley, W.F. [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS (Canada); Richards, N.L.; Chaturvedi, M.C. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada)

    2008-07-15

    A thermodynamic package was used to predict the phase transformations that occurred during thermal processing of a superalloy based on the composition of a ternary Ni-Cr-Fe alloy. The effect of the addition of 6 w/o Al on phase transformation in the material sintered were estimated and compared with results obtained experimentally by X-ray diffraction and metallography, while the transformation temperature of the modified alloy was corroborated by differential scanning calorimetry (DSC). Mechanical property of the alloy was estimated in terms of Vickers hardness. These results suggest that despite potential problems encountered in high-temperature powder processing of superalloys that often tend to influence the feasibility of using thermodynamic predictions to model such alloy systems, the software and predictions used in this study offer a way to simulate both design and characterisation of the experimental alloy.

  14. Creep rupture properties of oxidised 20%Cr austenitic stainless steels

    International Nuclear Information System (INIS)

    Lobb, R.C.; Ecob, R.C.

    1989-02-01

    Sheet specimens of stabilised 20%Cr/25%Ni/Nb and nitrided 20%Cr/25%Ni/Ti stainless steels, both used as fuel cladding materials in CAGRs, have been oxidised in simulated reactor gas (Co 2 /1-2%CO) for up to l.9kh at 850 0 C, including intermediate thermal cycles to room temperature. The oxidised specimens have been creep tested subsequently at 750 0 C, under conditions of constant stress. The creep rupture properties are affected differently for the two materials. For 20%Cr/25%Ni/Nb stainless steel, there was no effect of oxidation on the intrinsic microstructure, when compared with thermally aged, non-oxidised material. Any differences in creep ductility were ascribed to geometric effects in specimens of this alloy. Lower ductilities were associated with an increased incidence of pitting attack (higher oxide spallation) and it was concluded that the extent of local, rather than general, loss of section controlled the ductility. For nitrided 20%Cr/25%Ni/Ti stainless steel, the intrinsic microstructure was affected by oxidation, such that increased grain boundary precipitation of M 23 C 6 occurred. The resultant effect was for a greater tendency for intergranular failure at lower ductility than for the thermally aged material. The magnitude of this reduction could not be quantified because the specimen geometry was also changed by oxidation. In this instance, the oxidation mode that produced the most severe loss of section was grain boundary, rather than pitting, attack. This mode of attack was not linked directly to oxide fracture/spallation, but to the period of oxidation. (author)

  15. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  16. Capture cross sections for Cr, Fe and Ni

    International Nuclear Information System (INIS)

    Corvi, F.

    1990-01-01

    Since stainless steel represents about 25% of the volume of a fast power reactor, its constituent elements strongly influence its two main neutronic parameters: critical enrichment and breeding gain. Also, capture in the narrow p and d-wave resonances of Cr, Fe and Ni contributes as much as 10 to 15% of the Doppler coefficient of reactivity. Following sensitivity calculations, typical accuracy requirements in the energy range 0.1-100 keV are 5-10% for capture in Fe and 10-20% for capture in Ni and Cr. 11 refs, 2 tabs

  17. Chemical diffusion of Cr, Ni and Si in welded joints. II

    International Nuclear Information System (INIS)

    Kucera, J.; Ciha, K.

    1987-01-01

    The results are given of a study in chemical diffusion in welded joints P2/A and P3/A. P2 stands for the steel (Fe-17.48 Cr-8.15 Ni-0.14 Si), P3 for (Fe-18.52 Cr-8.20 Ni-1.78 Si) and A for the Fe-Arema. Triadic sandwiche-like samples were diffusion heated at temperatures from 920 to 1170 degC. The concentration distributions N(x,t) of the given elements were measured with microprobe JXA-3A. The evaluation of the experimental data was carried out either by Grube's method, or in some cases by the spline-polynomial method. The evaluated diffusivities D-bar satisfy the Arrhenius relation and yield the standard diffusion characteristics D 0 and H. The diffusivities D-bar of Cr, Ni and Si in P1/A, in P2/A and P3/A welded joints vary with Si content in P1, P2 and P3 alloys, similar to the Cr-51 and Ni-63 self-diffusivities in Fe-18 Cr-12 Ni-X Si steels, and tend to increase with increasing Si content. The values D-bar measured in the vicinity of grain boundaries are higher than the bulk diffusion coefficients. The most rapid diffusant is Si and the slowest one Ni. Thus, the relations D-bar Si :D-bar Cr :D-bar Ni ≅ 6:3:1 (P3/A) and D-bar Si :D-bar Cr :D-bar Ni ≅ 1.7:1.4:1 (P3/A) are valid at 1050 degC. Comparing the results with those published if can be noted that the Cr-51 and Ni-63 self-diffusion in Fe-18 Cr-12 Ni-X Si steels is faster than chemical diffusion of these elements in the said steel welded joints P2/A and P3/A; X varies from 0.14 to 1.98. (author). 7 tabs., 7 figs., 20 refs

  18. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  19. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Eskandari, Hossein [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Mohammad-Hosseini, Vahid [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2016-01-15

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe{sub 50}Co{sub 30}Ni{sub 20} composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe{sub 3}O{sub 4} crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe{sub 50}Co{sub 30}Ni{sub 20} composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe{sub 3}O{sub 4} as well as FeNi{sub 3} and Co crystalline phases.

  20. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc–dc power conversion

    International Nuclear Information System (INIS)

    Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G

    2015-01-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)

  1. Verschleissfeste, anlassbestaendige und warmfeste Legierung

    OpenAIRE

    Li, F.

    1996-01-01

    Novel wear- and temper-resistant, high hot strength alloy has the compsn. (by wt.) 10-35% Mo and/or 20-50% W; 0.6-6% C; 5-25% V, Ti, Zr, Nb and/or Ta; 0-20% Cr; 0-12% Co; 0-8% Ni; 0-5% Si; 0-5% Al; 0-5% Mn; 0-5% Cu; 0-2% B; 0-0.5% N; balance at least 30% Fe and impurities, with the provisos that (a) the total Mo+W concn. has a minimum value increasing linearly from 10% to 20% with increasing W content and a max. value increasing linearly from 35% to 50% with increasing W content; (b) the rati...

  2. Synthesis and characterization of the Fe-18%Ni-12%Co-4,9%Mo-1,5%Ti alloy

    International Nuclear Information System (INIS)

    Nunes, G.C.S.; Biondo, V.; Nunes, M.V.S.; Paesano Junior, A.; Sarvezuk, P.W.C.; Blanco, M.C.

    2014-01-01

    The Fe-18%Ni-12%Co-4,9%Mo-1,5%Ti was made by arc-melting and submitted to different heat treatments, for solubilization in the γ - phase (austenite), followed by cooling to the room temperature, and also for further aging. The prepared alloys were characterized by X-ray diffraction (Rietveld method) and Mössbauer spectroscopy. The results showed that the cooling induced the system to a martensitic transformation, crystallizing it into a cubic structure (martensite). The crystallographic parameters and the hyperfine parameters obtained by Mössbauer Spectroscopy are consistent with those found in literature for Maraging-350 steels. The aging treatments generates the formation of reversed austenite in relative amounts that vary with the temperature and time of treatment. (author)

  3. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  4. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    International Nuclear Information System (INIS)

    Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P.

    2009-01-01

    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 x 10 5 K/s and 5 x 10 7 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 deg. C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al-20Si-5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (∼ 1 μm), eutectic Al-Si phase with eutectic spacing of ∼ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5-7 at.% silicon and nanometric Si precipitates (20-40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al-20Si-5Fe alloy was noticed, particularly in the Ni-containing alloy.

  5. The influence of wall thickness on the microstructure of bronze BA1055 with the additions of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B.P. Pisarek

    2008-12-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, about good sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. Additions Mo and/or W were not applied so far in the larger concentration, these elements were introduced to the melts of the copper as the components of modifiers. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the influence of the wall thickness of the cast on size of crystallites were conducted: the primary phase β and intermetallic phase κ and the width separates of the secondary phase α precipitate at phase boundary. It results from conducted investigations, that in the aluminium bronze BA1055 after simultaneous makes additions Si, Cr, Mo and in the primary phase β it undergoes considerable reducing size. The addition W reduce size of the grain phase β in the thin walls of the cast 3-6 mm, and addition Cr in the range of the thickness of the wall of the cast 3-6 mm it favors to reducing size the phase β, in walls 12-25 mm the growth causes it. The addition Mo does not influence the change of the size of the grain of the β phase significantly. The make addition singly or simultaneously of the Cr, Mo and W to the bronze CuAl10Fe5Ni5Si it influences the decrease of the quantity separates of the phase α on the interface boundary and of width it separates independently from the thickness of the wall of the cast. The simultaneous make addition of the Si, Cr, Mo and W it enlarges the surface of the phase κFe, κMo. The make addition to the bronze CuAl10Fe5Ni5Si of the Cr, Mo or W the quantity of crystallizing hard phase κ enlarges and the

  6. Shape of growing crystals of primary phases in autectic alloys of Fe - Fe2B and Ni - Ni3B systems

    International Nuclear Information System (INIS)

    Tavadze, F.N.; Garibashvili, V.I.; Nakaidze, Sh.G.

    1983-01-01

    Shapes of Fe 2 B and Ni 3 B crystal growth in eutectic Fe-B and Ni-B system alloys are considered. Iron hemiboride primary crystals take the form of a plane-face phase boundary and inherit a tetragonal prismatic lattice. After the crystal attains the critical size the dendritic branching occurs resulting in formation of a typical sceleton dendrite. Comparison of data obtained with entropy of melting for Fe 2 B and Ni 3 B borides shows that FeB crystals during the growth should take the spherical form. It is stated that the shape of growing crystals in Fe-Fe 2 B and Ni-Ni 2 B eutectic colonies is determined by the shape of borides

  7. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  8. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  9. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  10. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  11. Modeling of chromium precipitation in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wallenius, J.; Olsson, P.; Lagerstedt, C.; Sandberg, N.; Chakarova, R.; Pontikis, V.

    2004-01-01

    We have implemented a set of Embedded Atom Method (EAM) potentials for simulation of Fe-Cr alloys. The functions for the pure elements were fitted to the respective elastic constants, vacancy formation energy, and thermal expansion coefficients. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure and hence applicability of the EAM. By relaxing the requirement of reproducing the pressure-volume relation at short interaction distances, stability of the self-interstitial could be obtained. Our Fe-potential gives E lang110rang f -E lang111rang f =-0.23 eV. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr, which is negative for Cr concentrations below 6%. Simulation of thermal aging in Fe-Cr alloys using a potential fitted to the mixing enthalpy of Fe-20Cr exhibited pronounced Cr-precipitation for temperatures below 900 K, in agreement with the phase diagram. No such ordering was observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr. Applied to recoil cascade simulations the new potentials predict a smaller number of surviving defects than potentials found in the literature. We obtain a cascade efficiency of 0.135 NRT for damage energies in between 10 and 20 keV. An enhanced probability for Cr atoms to end up in defect structures is observed

  12. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  13. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  14. Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys

    Science.gov (United States)

    2011-04-01

    strain amplitude on a wrought Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of composition Fe-12Cr-1.25Ni-0.2V-1.8W...the martensite and loss of strength was used to explain the lower cyclic life of the stainless steel at elevated temperatures. Within the Fe-Mn-Al-C...through F in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 atm flowing oxygen at 700°C (a) and 500°C (b).56

  15. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: VCrCr, Fe, Co and Cu can improve the ductility of YAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  16. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  17. Effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and wear resistance of laser cladding Ni-based alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lin; Hu, Shengsun; Shen, Junqi [Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin (China); Quan, Xiumin [Lu' an Vocation Technology College, School of Automobile and Mechanical and Electrical Engineering, Lu' an (China)

    2016-04-15

    Three kinds of coatings were successfully prepared on Q235 steel by laser cladding technique through adulterating with Mo and nano-Nd{sub 2}O{sub 3} into Ni-based alloys. The effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and properties of Ni-based coatings was investigated systematically by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and microhardness testing and wear testing. The results indicated a certain amount of fine grains and polygonal equiaxed grains synthesized after adding Mo and nano-Nd{sub 2}O{sub 3}. Both the microhardness and wear resistance of Ni-based coatings improved greatly with a moderate additional amount of Mo and nano-Nd{sub 2}O{sub 3}. The largest improvement in microhardness was 31.9 and 14.7 %, and the largest reduction in loss was 45.0 and 30.7 %, respectively, for 5.0 wt% Mo powders and 1.0 wt% nano-Nd{sub 2}O{sub 3}. The effect of Mo on microhardness and wear resistance of laser cladding Ni-based alloy coatings is greater than the effect of nano-Nd{sub 2}O{sub 3}. (orig.)

  18. Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys

    International Nuclear Information System (INIS)

    Ng, Chun; Guo, Sheng; Luan, Junhua; Wang, Qing; Lu, Jian; Shi, Sanqiang; Liu, C.T.

    2014-01-01

    Highlights: • The solid solution phase in the high-entropy alloy was confirmed to be metastable. • The alloy exhibited microstructural and mechanical stability against annealing. • Only as-cast alloys showed sufficient tensile plasticity. • A large variability of the measured tensile properties was recorded. • The alloys showing slip banding behavior did not necessarily have tensile ductility. -- Abstract: High-entropy alloys (HEAs) are becoming new research frontiers in the metallic materials field. The phase stability of HEAs is of critical significance, but a convincing understanding on it has been somewhat held back by the slow diffusion kinetics, which prevents the completion of diffusion assisted phase transformations toward the equilibrium state. Here a unique methodology, combining both the thermomechanical treatments and thermodynamic calculations, was employed to reveal the phase stability of HEAs, exemplified using the newly developed Al 0.5 CrCuFeNi 2 alloy. The metastable nature of the solid solution phases in this high-entropy alloy was uncovered through thermomechanical treatments induced phase transformations, and supported by the thermodynamic calculations. Meanwhile, the tensile properties for both the as-cast and thermomechanically treated alloys were measured, and correlated to their indentation behavior

  19. Structural transformations in the Co53Mo35Cr12 alloy at different temperatures

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.

    2014-01-01

    Highlights: • Phase separation microstructures are formed in the alloy studied below solidus line. • Co 3 Mo chemical compound precipitates in the liquidus–solidus temperature interval. • Ordering-phase separation transition takes place in Co/Mo diffusional couple only. - Abstract: Structural transformations of the Co 53 Mo 35 Cr 12 alloy were studied at temperatures of 1250, 1000 and 700 °C, when in all the three diffusion couples of the alloy there takes place a tendency to phase separation and at a temperature above the solidus, when in the Co/Mo diffusion couple there appears a tendency to ordering and the So 3 Mo phase is formed. It has been shown that at a temperature of 1250 °C, this phase is completely dissolved, and in the process of such dissolution, a Co-enriched fcc solid solution with a large number of stacking faults is formed. Simultaneously, there occurs precipitation of particles of Sr atoms, the sizes of which grow with lowering the temperature of heat treatment. The stacking faults, formed at 1250 °C, turn out to be the place, where laths enriched in Mo atoms, begin to form. After a heat treatment at 700 °C, the whole structure of the alloy consists of light-color and dark laths, arranged along the elastically- soft directions of the matrix. Each of these laths is enriched in atoms of either cobalt (fcc lattice) or molybdenum (bcc lattice)

  20. Fatigue damage evolution of cold-worked austenitic nickel-free high-nitrogen steel X13CrMnMoN18-14-3 (1.4452)

    Energy Technology Data Exchange (ETDEWEB)

    Tikhovskiy, I.; Weiss, S.; Fischer, A. [Univ. of Duisburg-Essen, Materials Science and Engineering II, Duisburg (Germany)

    2004-07-01

    Due to the fact that the risk of Ni-allergies becomes more and more important for modern therapies, the necessity of Ni-free implant materials becomes increasingly important. Beside Co- and Ti-base alloys Ni-free high-nitrogen steels may offer an attractive alternative. The present work presents the austenitic high-nitrogen and nickel-free steel X13CrMnMoN18-14-3, (Material No.: 1.4452) after 20% cold-working. In addition this material was deformed under axial cyclic total strain controlled fatigue tests at room temperature. The development of dislocation structure due to different loading amplitudes was compared to none cyclically deformed material. The good mechanical und fatigue properties of these austenitic high-nitrogen steels as well as the better tribological, chemical and biological properties compared to CrNiMo-steels qualify these steels as a promising alternative in medical applications. (orig.)

  1. Magnetic properties of metals and alloys

    International Nuclear Information System (INIS)

    Lyuborskij, F.E.; Livingston, D.D.; Chin, Zh.I.

    1987-01-01

    The nature of magnetic properties of materials and their dependence on the composition and the material structure are described. Properties and application of such materials as the alloys of the Fe-Ni-Co, Fe-Cr-Co, Co-rare earth, Fe-Si, Ni-Se system are considered. Application outlook for amorphous alloys of the (Fe, Ni, Co) 80 (metalloid) 20 type is shown. Methods for magnetic property measurement are pointed out

  2. Magnetic and structural characterization of Mo-Hitperm alloys with different Fe/Co ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conde, C.F., E-mail: conde@us.es [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Borrego, J.M.; Blazquez, J.S.; Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Svec, P.; Janickovic, D. [Department of Metal Physics, Institute of Physics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava (Slovakia)

    2011-02-03

    Research highlights: > Nanocrystallization kinetics results based on isothermal (TMG) and non-isothermal (DSC) experiments agree describing a strongly inhibited grain growth process. > The crystalline volume fraction at the end of the nanocrystallization process is practically not affected with the increase of Co in the alloy, although it is lower than in the corresponding Co free alloy. The lattice parameter and the crystal size of the {alpha}-FeCo(Mo) phase nanocrystals decreases as the Co content in the alloy increases. > Moessbauer spectra were analyzed in the frame of three different contributions: pure crystalline, interface and amorphous contribution. Comparison between TEM, XRD and Moessbauer data indicates that some Mo could be present inside the nanocrystals. > Changing the Fe/Co ratio allows to increase the Curie temperature of the amorphous alloys for these compositions between room temperature and {approx}800 K, and therefore, allows tuning the temperature at which the maximum magnetocaloric effect takes place opening a possibility for these alloys as potential low cost magnetic refrigerants. - Abstract: The influence of the Co content on the microstructure and magnetic behaviour of a series of amorphous and nanocrystalline (FeCo){sub 79}Mo{sub 8}Cu{sub 1}B{sub 12} alloys is reported. Changes in the magnetic properties provoked by the microstructural evolution upon different thermal treatments of as-cast samples are analyzed as well. Kinetics of nanocrystallization process can be described by an isokinetic approach. As the Co content in the alloy increases, the Curie temperature of the amorphous as-cast samples increases while the crystallization onset temperature decreases. The crystalline volume fraction as well as the mean grain size of the nanocrystals at the end of the nanocrystallization process are slightly higher for the lowest Co content alloy but smaller than in similar Hitperm Mo-free alloys. The average magnetic field and the average isomer

  3. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2012-01-01

    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from

  4. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  5. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  6. Fabrication of Co{sub 0.5}Ni{sub 0.5}Cr{sub x}Fe{sub 2-x}O{sub 4} materials via sol-gel method and their characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, R.H.; Birajdar, A.P. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413613, Maharashtra (India); Alone, Suresh T. [Department of Physics, RS Art' s, Science and Commerce College, Pathri, Aurangabad, Maharashtra (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2013-02-15

    Co{sub 0.5}Ni{sub 0.5}Cr{sub x}Fe{sub 2-x}O{sub 4} nanoparticles have been designed by the sol-gel auto combustion method, using nitrates of the respective metal ions, and citric acid as the starting materials. The process takes only a few minutes to obtain as-received Cr-substituted Co-Ni ferrite powders. X-ray diffraction (XRD), vibrational sample magnetometer (VSM), transmission electron microscopy (TEM) are utilized in order to study the effect of variation in the Cr{sup 3+} substitution and its impact on particle size, lattice constant, specific surface area, cation distribution and magnetic properties. Lattice parameter, particle size found to decrease with increasing Cr{sup 3+} content, whereas specific surface area showed increasing trend with the Cr{sup 3+} substitution. Cation distribution indicates that the Cr, Co and Ni ions show preference toward octahedral [B] site, whereas Fe occupies both tetrahedral (A) and octahedral [B] sites. Saturation magnetization (M{sub S}) decreased from 65.1 to 40.6 emu/g with the increase in Cr{sup 3+} substitution. However, Coercivity increased from 198 to 365 Oe with the Cr{sup 3+} substitution. - Highlights: Black-Right-Pointing-Pointer Cr{sup 3+} substituted Co--Ni ferrite. Black-Right-Pointing-Pointer Site occupancy of Co--Ni--Cr--Fe ions. Black-Right-Pointing-Pointer Magnetization and coercivity shows inverse trend to each other.

  7. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  8. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  9. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  10. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  11. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  12. Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10} exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Oksuezoglu, Ramis Mustafa, E-mail: rmoksuzoglu@anadolu.edu.t [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Yildirim, Mustafa; Cinar, Hakan [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Hildebrandt, Erwin; Alff, Lambert [Department of Materials Sciences, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2011-07-15

    A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni{sub 81}Fe{sub 19}/Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10}/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of <1 1 1> texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses. - Research highlights: We discussed the influence of Ta/NiFe thicknesses on structure and grain size in AF layer and texture. A direct correlation between the <1 1 1> texture and exchange coupling was found. A direct relation between average grain size and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} was formed by deposition at room temperature for Ta (5-6 nm)/NiFe (6-8 nm). We conclude that the coercivity is influenced by order/disorder at NiFe/IrMn/CoFe interfaces.

  13. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    International Nuclear Information System (INIS)

    Souidi, A.; Hou, M.; Becquart, C.S.; Domain, C.; De Backer, A.

    2015-01-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe 70 Cr 20 Ni 10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy–interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10–100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas–Fermi potential and the so-called “Universal” potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10 −7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe 70 Cr 20 Ni 10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent

  14. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  15. Study on the Ni Mo alloy nano crystals

    International Nuclear Information System (INIS)

    Goncalves, Lidice A. Pereira; Pontes, Luiz Renato de Araujo

    1996-01-01

    Materials with nanocrystalline microstructures are solids that contain such a high density of defects, with the spacings between neighboring defects approaching interatomic distances. As result, nanocrystalline solids exhibit physical and chemical properties different from those usually found in normal crystalline s or amorphous materials with the same chemical composition. In this work, the nanocrystalline Ni Mo alloy was prepared by melt-spinning method. The novelly synthesized nanocrystalline Ni Mo alloy was characterized by X-ray diffraction (XRD), differential scanning calorimetry (D S C) and microscopy. The estimated average crystalline size by the Debye-Scherrer formulas was 20 nm. (author)

  16. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  17. Mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    1986-01-01

    Five simple alloys were ion irradiated at 948 0 K in an experiment designed to investigate the mechanism of swelling suppression associated with phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2 P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments

  18. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, H. Ben [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar); Essehli, R., E-mail: ressehli@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar); Avdeev, M. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights NSW 2234 (Australia); Park, J-B.; Sun, Y-K. [Department of Energy Engineering Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Al-Maadeed, M.A. [Center for Advanced Materials (CAM), Qatar University, 2713 Doha (Qatar); Belharouak, I., E-mail: ibelharouak@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar)

    2016-06-15

    The new compounds NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} crystallize with a stuffed α-CrPO{sub 4}-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} a statistical disorder Ni{sup 2+}/Cr{sup 3+} was observed on both the 8g and 4a atomic positions, whereas in NaCoCr{sub 2}(PO{sub 4}){sub 3} the statistical disorder Co{sup 2+}/Cr{sup 3+} was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} delivered specific capacities of 352, 385, and 368 mA h g{sup −1}, respectively, which attests to the electrochemical activity of sodium in these compounds. - Highlights: • NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method. • The crystal structures were determined by using neutron powder diffraction data. • The three compounds crystallize with a stuffed α-CrPO{sub 4}-type structure. • The three compounds were tested as anodes in sodium-ion batteries. • Relatively high specific capacities were obtained for these compounds.

  19. Difference between Cr and Ni K-edge XANES spectra of rust layers formed on Fe-based binary alloys exposed to Cl-rich environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    The rust layer formed on weathering steel possesses a strong protective ability against corrosives in an atmospheres. This ability is related to the structure of the rust layer. The difference in the protective ability of a rust layer. The difference in the protective ability of a rust layer in a Cl-rich environment between conventional weathering steel containing Cr and advanced weathering steel containing Ni is believed to be caused by the differences in local structural and chemical properties between alloying elements. Cr and Ni, in the rust layer. In order to examine the effect of these alloying elements on the structure of the rust layer formed on steel in a Cl-rich environment, we have performed Cr and Ni K-edge X-ray absorption near-edge structure (XANES) measurements for the rust layer of Fe-Cr and Fe-Ni binary alloys exposed to a Cl-rich atmosphere using synchrotron radiation. The results of the Cr K-edge XANES measurements for the rust layer of Fe-Cr binary alloys show that the atomic geometry around Cr depends on the concentration of Cr. Therefore, it is expected that the local structure around Cr in the rust layer is unstable. On the other hand, from the results of the Ni K-edge XANES measurements for the rust layer of Fe-Ni binary alloys. Ni is considered to be positioned at a specific site in the crystal structure of a constituent of the rust layer, such as akaganeite or magnetite. As a consequence, Ni negligibly interacts with Cl - ions in the rust layer. (author)

  20. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  1. Molecular dynamics study on threshold displacement energies in Fe-Cr alloys

    Science.gov (United States)

    Fu, Jiawei; Ding, Wenyi; Zheng, Mingjie; Mao, Xiaodong

    2018-03-01

    The threshold displacement energies (Ed) of Fe and Cr atoms in Fe-Cr alloys with Cr contents ranging from 0% to 21% have been obtained with molecular dynamics (MD) method. The values of Ed have been calculated along the three high-symmetry crystallographic directions [0 0 1], [0 1 1] and [1 1 1], a slightly 2° tilt from these directions, and a high-index crystallographic directions [1 3 5]. The results showed that [0 1 1] crystallographic direction had the highest Ed among the three high-symmetry directions in each Cr content alloy. Fe-9Cr had higher weighted average Ed than the other Cr content alloys for both Fe and Cr PKA due to its statistically high Ed along the [0 1 1] crystallographic direction up to 44.3 eV. And the statistical analysis on the primary damage configuration demonstrated that 〈1 1 0〉Fe-Fe dumbbells were the dominant defect structures after relaxation. These data can enrich the database of Ed in Fe-Cr alloys and have potential applications in guiding the optimization design of radiation-resistant RAFM steels.

  2. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xu, Qian [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Wang, Chuanqi; Zhang, Xiaowei [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-02-05

    Highlights: • Ni60CuMoW coatings were fabricated by mechanical vibration assisted laser cladding hybrid process. • The maximum micro-hardness of the coating with mechanical vibration increases by 16%. • The mass loss and friction coefficient of the coating decreases by 17% and 16%, respectively. • The E{sub corr} positive shifts 1134.9 mV and i{sub corr} decreases by nearly one order of magnitude. • The ideal vibration parameters is vibration frequency 200 Hz and vibration amplitude 140 μm. - Abstract: Ni60CuMoW composite coatings were fabricated on 45 medium carbon steel using mechanical vibration assisted laser cladding surface modification processing. The microstructure, element distribution, phase composition, microhardness, wear and corrosion resistance of cladding coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), hardness tester, friction and wear apparatus and electrochemical workstation. The results indicate that the microstructure of M{sub 23}C{sub 6} (Cr{sub 23}C{sub 6} or (Fe, Ni){sub 23}C{sub 6}) carbide dispersion strengthening phase is uniformly distributed in eutectic (Ni, Fe) phase. The in-situ BCr and MoC compounds distribute in lamellar structure Fe{sub 3}B and dendrite Fe{sub 3}Ni{sub 3}Si, and some new W{sub 2}C phases also generated in Ni60CuMoW coating. In addition, the coarse dendrite has been replaced by some fine grain structure at the bonding interface. The fine grain hard phase makes the average microhardness of cladding coating increase from 720 to 835 HV{sub 0.5}. Under the condition of 200 Hz mechanical vibration frequency, the wear mass loss and friction coefficient of Ni60CuMoW coating are 7.6 mg and 0.068, 17% and 16% lower than the coating without mechanical vibration, respectively. The corrosion potential of cladding coating with mechanical vibration increases by 1134.9 mV and the corrosion current density decreases by nearly one order of

  3. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  4. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  5. Evaluation of ferritic alloy Fe-2 1/4Cr-1Mo after neutron irradiation: Microstructural development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-10-01

    As part of a program to provide a data base on the bainitic alloy Fe-2-1/4-1Mo for fusion energy applications, microstructural examinations are reported for nine specimen conditions for 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Void swelling is found following irradiation at 400 0 C to 480 0 C. Concurrently dislocation structure and precipitation developed. Peak void swelling, void density, dislocation density and precipitate number density formed at the lowest temperature, approximately 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  6. Effect of aqueous solution and load on the formation of DLC transfer layer against Co-Cr-Mo for joint prosthesis.

    Science.gov (United States)

    Guo, Feifei; Zhou, Zhifeng; Hua, Meng; Dong, Guangneng

    2015-09-01

    Diamond-like carbon (DLC) coating exhibits excellent mechanical properties such as high hardness, low friction and wear, which offer a promising solution for the metal-on-metal hip joint implants. In the study, the hydrogen-free DLC coating with the element Cr as the interlay addition was deposited on the surface of the Co-Cr-Mo alloy by a unbalanced magnetron sputtering method. The coating thickness was controlled as 2 µm. Nano-indentation test indicated the hardness was about 13 GPa. DLC coated Co-Cr-Mo alloy disc against un-coated Co-Cr-Mo alloy pin (spherical end SR9.5) comprised the friction pairs in the pin-on-disc tribotest under bovine serum albumin solution (BSA) and physiological saline(PS).The tribological behavior under different BSA concetrations(2-20 mg/ml), and applied load (2-15N) was investigated.DLC transfer layer did not form under BSA solution, even though different BSA concetration and applied load changed. The coefficient of friction(COF) under 6 mg/ml BSA at 10 N was the lowest as 0.10. A higher COF of 0.13 was obtained under 20 mg/ml BSA. The boundary absorption layer of protein is the main factor for the counterparts. However, the continous DLC transfer layer was observed under PS solution, which make a lower COF of 0.08. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  8. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  9. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Zhang, Z.; Venkatasurya, P.K.C. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Madison Hall Room 217, P.O. Box 44130, Lafayette, LA 70504-1430 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, Oulu 90014 (Finland)

    2010-11-15

    Research highlights: {yields} Development of a novel process involving phase-reversion annealing process. {yields} Austensite stability strongly influences development of nanograined structure. {yields} Interstitial elements influence microstructural evolution during annealing. - Abstract: We describe here an electron microscopy study of microstructural evolution associated with martensitic shear phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure in an experimental Fe-16Cr-10Ni alloy with very low interstitial content. The primary objective is to understand and obtain fundamental insights on the influence of degree of austenite stability (Fe-16Cr-10Ni, 301LN, and 301 have different austenite stability index) and interstitial elements (carbon and nitrogen) in terms of phase reversion process, microstructural evolution during reversion annealing, and temperature-time annealing sequence. A relative comparison of Fe-16Cr-10Ni alloy with 301LN and 301 austenitic stainless steels indicated that phase reversion in Fe-16Cr-10Ni occurred by shear mechanism, which is similar to that observed for 301, but is different from the diffusional mechanism in 301LN steel. While the phase reversion in the experimental Fe-16Cr-10Ni alloy and 301 austenitic stainless steel occurred by shear mechanism, there were fundamental differences between these two alloys. The reversed strain-free austenite grains in Fe-16Cr-10Ni alloy were characterized by nearly same crystallographic orientation, where as in 301 steel there was evidence of break-up of martensite laths during reversion annealing resulting in several regions of misoriented austenite grains in 301 steel. Furthermore, a higher phase reversion annealing temperature range (800-900 deg. C) was required to obtain a fully NG/UFG structure of grain size 200-600 nm. The difference in the phase reversion and the temperature-time sequence in the three stages is explained in terms of Gibbs free energy change that

  10. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  11. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  12. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy.

    Science.gov (United States)

    Puskar, Tatjana; Jevremovic, Danimir; Williams, Robert J; Eggbeer, Dominic; Vukelic, Djordje; Budak, Igor

    2014-09-11

    Dental alloys for direct metal laser sintering (DMLS) are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM) samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS). The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  13. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy

    Directory of Open Access Journals (Sweden)

    Tatjana Puskar

    2014-09-01

    Full Text Available Dental alloys for direct metal laser sintering (DMLS are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS. The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  14. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  15. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    Science.gov (United States)

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  16. Mesa NTMS 10 x 20 quadrangle area. Supplemental data report

    International Nuclear Information System (INIS)

    Koller, G.R.

    1980-01-01

    This data report presents supplemental analytical results for stream sediments and ground water. The samples were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Mesa 1 0 x 2 0 quadrangle. Results are reported for 24 elements (Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, Th, W, Y, Zn, and extractable U) in sediments and 31 elements (Ag, Al, As, B, Ba, Be, Ca, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Sc, Se, Si, Sr, Th, Ti, V, Y, Zn, and Zr) as well as pH, alkalinity, and conductivity in ground water. Field data and NAA data will be open-filed when they are available. Microfiche cards have been placed in a pocket on the last page of this report. These cards contain the following information: Cards marked Pg. 1, Pg. 2, and Pg. 3 contain histograms, cumulative frequency plots, and areal distribution plots for sediment samples. The card marked Plate 1 is a site-code map for sediment samples

  17. Inhibited Aluminization of an ODS FeCr Alloy

    International Nuclear Information System (INIS)

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A.

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small (∼ 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  18. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...... at about 350K and at about 650K for the FeCr powder. Electron microscopy shows sintering of the Ni particles above 450K, and the present results show that defects develop in the growing particles....

  19. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  20. Study of behaviour during a quench treatment of ferrite delta of binary and pseudo-binary alloys

    International Nuclear Information System (INIS)

    Champin, B.

    1970-01-01

    Focusing of Fe-Cr and Fe-Mo alloys (and extending results to different binary alloys like Fe-W, Fe-Al and Fe-Si, and even to some ternary systems such as Fe-Cr-Ni and Fe-Mo-Ni), and after having recalled some previous results and presented experimental materials and processes, this research thesis describes the behaviour of the considered alloys, reports a detailed study of Fe-Mo alloys (influence of carbon content), a bibliographical study of the gamma-to-delta transformation, the study of hybrid alloys (behaviour, partial transformations, diffusion), the study of other types of alloys (hyper-quench of delta ferrite of Fe-Mo alloys, adsorption and diffusion). It discusses the case of two-phase structures, and the mechanism and kinetics of the delta-to-gamma transformation

  1. Mechanical properties and microstructure changes of low-activation 3Cr-2W-V-Ti ferritic steels developed for nuclear applications

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Kohyama, Akira; Yamada, Takemi.

    1990-01-01

    The effects of alloying elements such as Cr, W, V and Mn on tensile strength at elevated temperatures, creep-rupture properties and toughness of low activation (2.25-3)Cr-(2-2.5)W-V-Ti steels were investigated together with their microstructure change during high temperature exposure. These steels were normalized to produce bainitic structures in the same manner as that for a conventional 2.25Cr-1Mo steel. They presented superior tensile strength at elevated temperatures and creep-rupture strength in comparison with a conventional 2.25Cr-1Mo steel. The creep-rupture strength of the steels at 500degC for 100 000 h demonstrated about twice that of the conventional 2.25Cr-1Mo steel. The 3Cr-2.5W-0.2V-0.01Ti steel is recommended as a potential low activation ferritic steel for nuclear applications with well optimized mechanical properties, such as tensile strength at elevated temperatures, creep-rupture strength and toughness. The effects of alloying elements were discussed with correlating microstructural and mechanical aspects. (author)

  2. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  3. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  4. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys; Influencia de um revestimento de niobio sobre a resistencia a sulfetacao das ligas FeCr e FeCrY

    Energy Technology Data Exchange (ETDEWEB)

    Geribola, Gulherme Altomari

    2014-07-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H{sub 2}/2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  5. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  6. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu for Nickel Metal Hydride Battery Applications

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-07-01

    Full Text Available Structural, gaseous phase hydrogen storage, and electrochemical properties of a series of the Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu metal hydride alloys were studied. X-ray diffraction (XRD and scanning electron microscopy (SEM revealed the multi-phase nature of all alloys, which were composed of a stoichiometric TiNi matrix, a hyperstoichiometric TiNi minor phase, and a Ti2Ni secondary phase. Improvement in synergetic effects between the main TiNi and secondary Ti2Ni phases, determined by the amount of distorted lattice region in TiNi near Ti2Ni, was accomplished by the substitution of an element with a higher work function, which consequently causes a dramatic increase in gaseous phase hydrogen storage capacity compared to the Ti50Zr1Ni49 base alloy. Capacity performance is further enhanced in the electrochemical environment, especially in the cases of the Ti50Zr1Ni49 base alloy and Ti50Zr1Ni44Co5 alloy. Although the TiNi-based alloys in the current study show poorer high-rate performances compared to the commonly used AB5, AB2, and A2B7 alloys, they have adequate capacity performances and also excel in terms of cost and cycle stability. Among the alloys investigated, the Ti50Zr1Ni44Fe5 alloy demonstrated the best balance among capacity (394 mAh·g−1, high-rate performance, activation, and cycle stability and is recommended for follow-up full-cell testing and as the base composition for future formula optimization. A review of previous research works regarding the TiNi metal hydride alloys is also included.

  7. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  8. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr-Mo

  9. Characterization of crystallization kinetics of a Ni- (Cr, Fe, Si, B, C, P) based amorphous brazing alloy by non-isothermal differential scanning calorimetry

    International Nuclear Information System (INIS)

    Raju, S.; Kumar, N.S. Arun; Jeyaganesh, B.; Mohandas, E.; Mudali, U. Kamachi

    2007-01-01

    The thermal stability and crystallization kinetics of a Ni- (Cr, Si, Fe, B, C, P) based amorphous brazing foil have been investigated by non-isothermal differential scanning calorimetry. The glass transition temperature T g , is found to be 720 ± 2 K. The amorphous alloy showed three distinct, yet considerably overlapping crystallization transformations with peak crystallization temperatures centered around 739, 778 and 853 ± 2 K, respectively. The solidus and liquidus temperatures are estimated to be 1250 and 1300 ± 2 K, respectively. The apparent activation energies for the three crystallization reactions have been determined using model free isoconversional methods. The typical values for the three crystallization reactions are: 334, 433 and 468 kJ mol -1 , respectively. The X-ray diffraction of the crystallized foil revealed the presence of following compounds Ni 3 B (Ni 4 B 3 ), CrB, B 2 Fe 15 Si 3 , CrSi 2 , and Ni 4.5 Si 2 B

  10. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    Science.gov (United States)

    Seteni, Bonani; Rapulenyane, Nomasonto; Ngila, Jane Catherine; Mpelane, Siyasanga; Luo, Hongze

    2017-06-01

    Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 and Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The scanning electron microscopy shows the agglomeration of the materials and their nanoparticle size ∼100 nm. The transmission electron microscopy confirms that LiFePO4 forms a rough mat-like surface and Al2O3 remain as islandic particles on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 material. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with LiFePO4 and Li1.2Mn0.54Ni0.13Co0.13O2 coated with Al2O3 exhibits improved electrochemical performance. The initial discharge capacity is enhanced to 267 mAhg-1 after the LiFePO4 coating and 285 mAhg-1 after the Al2O3 coating compared to the as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 material that has an initial discharge capacity of 243 mAhg-1. Galvanostatic charge-discharge tests at C/10 display longer activation of Li2MnO3 phase and higher capacity retention of 88% after 20 cycles for Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3 of 80% after 20 cycles and LMNC of 80% after 20 cycles. Meanwhile Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 also shows higher rate capability compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3.

  11. Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion

    International Nuclear Information System (INIS)

    Yan, Jincan; Zeng, Xiangqiong; Ren, Tianhui; Heide, Emile van der

    2014-01-01

    Highlights: • The boundary lubrication behaviour of three O/W emulsions was investigated. • The interactions between O/W emulsions and CoCrMo surfaces were studied. • Three different additives containing P and B were added in the emulsions. • The tribologcial performance of oil lubricant and emulsion was compared. • The friction profile of emulsion shows three stages due to spreading and plate-out. - Abstract: Emulsion lubrication is widely used in metal forming operations and has potential applications in the biomedical field, yet the emulsion lubrication mechanism is not well understood. This work explores the possibilities of three different oil-in-water (O/W) emulsions containing dibutyl octadecylphosphoramidate (DBOP), 6-octadecyl-1,3,6,2-dioxazaborocan-2-ol calcium salt (ODOC) and 2-(4-dodecylphenoxy)-6-octadecyl-1,3,6,2-dioxazaborocane (DOB) to generate boundary films on stainless steel AISI 316 and CoCrMo alloy surfaces. Experimental results show lower friction values for the emulsions in combination with CoCrMo compared to AISI 316. The different performance of the additives is related to the composition of the adsorption and reaction film on the interacting surfaces, which was shown to be dependent on the active elements and molecular structure of the additives. The friction profile of the emulsions indicates that the emulsion appears to be broken during the rubbing process, then the additives adsorb onto the metal surface to form protecting boundary layers. The XPS analysis shows that for boundary lubrication conditions, the additive molecules in the emulsion first adsorb on the metal surface after the droplet is broken, and then decompose and react with the metal surface during the rubbing process to form stable lubricating films on the rubbed surfaces

  12. Boundary lubrication of stainless steel and CoCrMo alloy based on phosphorous and boron compounds in oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jincan [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Zeng, Xiangqiong, E-mail: X.Zeng@utwente.nl [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Ren, Tianhui [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication, Shanghai Jiao Tong University (China); Heide, Emile van der [Laboratory for Surface Technology and Tribology, University of Twente (Netherlands); TNO (Netherlands)

    2014-10-01

    Highlights: • The boundary lubrication behaviour of three O/W emulsions was investigated. • The interactions between O/W emulsions and CoCrMo surfaces were studied. • Three different additives containing P and B were added in the emulsions. • The tribologcial performance of oil lubricant and emulsion was compared. • The friction profile of emulsion shows three stages due to spreading and plate-out. - Abstract: Emulsion lubrication is widely used in metal forming operations and has potential applications in the biomedical field, yet the emulsion lubrication mechanism is not well understood. This work explores the possibilities of three different oil-in-water (O/W) emulsions containing dibutyl octadecylphosphoramidate (DBOP), 6-octadecyl-1,3,6,2-dioxazaborocan-2-ol calcium salt (ODOC) and 2-(4-dodecylphenoxy)-6-octadecyl-1,3,6,2-dioxazaborocane (DOB) to generate boundary films on stainless steel AISI 316 and CoCrMo alloy surfaces. Experimental results show lower friction values for the emulsions in combination with CoCrMo compared to AISI 316. The different performance of the additives is related to the composition of the adsorption and reaction film on the interacting surfaces, which was shown to be dependent on the active elements and molecular structure of the additives. The friction profile of the emulsions indicates that the emulsion appears to be broken during the rubbing process, then the additives adsorb onto the metal surface to form protecting boundary layers. The XPS analysis shows that for boundary lubrication conditions, the additive molecules in the emulsion first adsorb on the metal surface after the droplet is broken, and then decompose and react with the metal surface during the rubbing process to form stable lubricating films on the rubbed surfaces.

  13. The fluctuation field and anomalous magnetic viscosity in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Collocott, S.J. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)], E-mail: stephen.collocott@csiro.au; Dunlop, J.B. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)

    2008-08-15

    The fluctuation field, H{sub f}, is a useful parameter for characterising any ferromagnetic material that displays hysteresis, as it is a measure of the thermally activated rate processes that govern magnetisation reversals. Anomalous magnetic viscosity, i.e. nonmonotonic behaviour of the time dependent magnetisation, where the magnetisation is seen to increase, reach a peak, and then decrease, has been observed on both the upper and lower branches of minor loops or recoil curves in some ferromagnetic materials. Parameters relevant to the Preisach model are discussed as to their usefulness in predicting anomalous magnetic viscosity in ferromagnetic materials. This is done with reference to measurements of H{sub f} and the time dependent magnetisation in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}.

  14. The influence of nickel content on microstructures of Fe-Cr-Ni austenitic alloys irradiated with nickel ions

    International Nuclear Information System (INIS)

    Muroga, T.; Yoshida, N.; Garner, F.A.

    1990-11-01

    The objectives of this effort is to identify the mechanisms involved in the radiation-induced evolution of microstructure in materials intended for fusion applications. The results of this study are useful in interpreting the results of several other ongoing experiments involving either spectral or isotopic tailoring to study the effects of helium on microstructure evolution. Ion-irradiated Fe-15Cr-XNi (X = 20, 35, 45, 60, 75) ternary alloys and a 15Cr-85Ni binary alloy were examined after bombardment at 675 degree C and compared to earlier observations made on these same alloys after irradiation in EBR-II at 510 or 538 degree C. The response of the ion-irradiated microstructures to nickel content appears to be very consistent with that of neutron irradiation even though there are four orders of magnitude difference in displacement rate and over 200 degree C difference in temperature. It appears that the transition to higher rates of swelling during both types of irradiation is related to the operation of some mechanisms that is not directly associated with void nucleation. 6 refs., 8 figs

  15. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  16. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4-2.59 T) by reverse pulse electrodeposition

    Science.gov (United States)

    Tabakovic, Ibro; Venkatasamy, Venkatram

    2018-04-01

    The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.

  17. LiVO/sub 3/-Li/sub 2/Mo(W)O/sub 4/ and NaVO/sub 3/-Na/sub 2/Cr(Mo)O/sub 4/ systems

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, I N; Lupeiko, T G; Vyalikova, V I [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1975-09-01

    The systems LiVO/sub 3/-Li/sub 2/MoO/sub 4/, LiVO/sub 3/-Li/sub 2/WO/sub 4/, NaNO/sub 3/-Na/sub 2/CrO/sub 4/, NaNO/sub 3/-Na/sub 2/MoO/sub 4/ were studied with thermographic and partially visual polythermal methods of physical and chemical analyses. Except NaVO/sub 3/-Na/sub 2/MoO/sub 4/ all investigated systems are eutectic ones with limited solid solutions on the basis of some component; the eutectics melt at 542, 544, 550/sup 0/C and contain 25, 20 and 26% of Li/sub 2/MoO/sub 4/, Li/sub 2/WO/sub 4/ and Na/sub 2/CrO/sub 4/ respectively. The system NaNO/sub 3/-Na/sub 2/MoO/sub 4/ contains compound 18 NaVO/sub 3/.11Na/sub 2/MoO/sub 4/ congruently melting at 570/sup 0/C. Two eutectics of the system have melting points at 542 and 548/sup 0/C and contain 47 and 67% of Na/sub 2/MoO/sub 4/.

  18. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  19. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  20. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  1. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

    Science.gov (United States)

    Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao

    2018-04-01

    A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

  2. Probing exotic magnetic phases and electrical transport in Cr-rich γ-NiFeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pampa [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Majumdar, A.K., E-mail: akm@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2015-05-01

    We have identified ferromagnetic, antiferromagnetic, and re-entrant spin-glass-like phases in Cr-rich γ-NiFeCr alloys and studied their critical magnetic behavior. Their electrical resistivity exhibits distinct minima between 10 and 24 K with ρ∞−√T due to electron–electron interaction effects. Electron–phonon and electron–magnon contributions to ρ are isolated. The magnetoresistance shows hysteresis effects, a signature of spin-glass-like phases and a sign reversal with change of magnetic states. We have also observed that the nature of magnetic states strongly depends on the concentration of Fe and Cr. In this system, even a small amount of Fe enhances ferromagnetism a lot while addition of a little bit of Cr suppresses ferromagnetism and takes the system to the antiferromagnetic regime. The correlation between the magnetic and the electrical properties are more meaningful here since both studies were done on the same set of samples which have rather high melting points. - Highlights: • Identified ferro, antiferro, and re-entrant spin-glass phases in Ni–Fe–Cr alloys. • Resistivity ρ~−√T shows minima from 10–24 K due to electron–electron interaction. • Electron–phonon and electron–magnon contributions to ρ are isolated. • Magneto-transport measurements strengthened the magnetic phases identified. • Correlation in magnetic/electrical properties more meaningful if same samples used.

  3. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  4. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  5. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  6. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer

    International Nuclear Information System (INIS)

    Ma, S.G.; Liaw, P.K.; Gao, M.C.; Qiao, J.W.; Wang, Z.H.; Zhang, Y.

    2014-01-01

    Highlights: • The Al content is related with structural relaxation and damping capability. • Dynamic modulus is insensitive to the frequency especially for storage modulus. • Several internal-friction peaks are observed in the Al-free or Al-lean alloys. • The damping behavior is proposed to be strongly relied on the level of ordering. - Abstract: For the first time, the damping behavior of high-entropy alloys was studied using the dynamic-mechanical analyzer, over a continuous heating temperature from room temperature to 773 K, at a given frequency range from 1 to 16 Hz in model alloys Al x CoCrFeNi (x = 0, 0.25, 0.5, 0.75, and 1). The experimental results reveal that the Al-rich alloys have a much smaller elastic storage-modulus amplitude over the temperature and thus a larger resistance to structural relaxation, while the Al-free and Al-lean alloys exhibit a much higher loss tangent and thus a much higher damping capability. Overall the elastic storage modulus decreases while the loss tangent increases with increasing the temperature, but little dependence was observed for the frequency. Several visible internal-friction peaks were presented in the face-centered cubic alloys, whose positions and heights are independent of the frequency. The damping capability of these alloys can be comparable to or even overwhelm the conventional Fe–Al alloys. The damping behavior above was proposed to be agreeable with the level of ordering (η) of alloys characterized by two proposed parameters (the relative-entropy effect, Ω, and the atomic-size difference, δ)

  7. Dimensional stability of some Fe-Ni-Cr alloys used in nuclear power generation

    International Nuclear Information System (INIS)

    Marucco, A.; Nath, B.

    1983-01-01

    The dimensional stability of four materials used in the nuclear power industry, viz Nimonic PE16, 20Cr-25Ni steel, Alloy 600 and Inconel 690, have been studied using X-ray diffractometry, electrical resistivity and thin foil microscopic techniques. Appreciable reductions in lattice parameters of these alloys occur on exposure to temperatures of 823 deg K and below. An order-disorder transformation has been found to be responsible for the observed behaviour. The transformation kinetics, associated microstructural changes and the implications for the usage of these materials are discussed. (author)

  8. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain); Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Zambrano, J.C. [Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Afonso, C.R.M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (UFSCar), São Carlos, SP (Brazil); Amigó, V. [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain)

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  9. Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys

    International Nuclear Information System (INIS)

    Vida, Adam; Varga, Lajos K.; Chinh, Nguyen Quang; Molnar, David; Huang, Shuo; Vitos, Levente

    2016-01-01

    The effects of the sp (Al, Ga, Ge, Sn) element additions on the microstructure and mechanical properties of equimolar NiCoFeCr High Entropy Alloys (HEAs) are investigated. The results of X-ray diffraction measurements combined with scanning electron microscopy SEM investigations, as well as the results of nanoindentation test revealed that while the structure of the basic alloy is full FCC, the addition of sp elements has changed it to a multiphase containing both FCC and BCC components, but in different scales. Accordingly, the addition of sp elements strongly increases the strength of the basic state, especially in the case of alloys where the BCC phase is dominant in the microstructure. The physical properties as the Young’s- and shear moduli of the investigated HEAs were also determined using ultrasound methods. The correlation between these two moduli suggests a general relationship for metallic alloys.

  10. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  11. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  12. The effects of adding molybdenum and niobium on the creep strength of 18Cr-10Ni-20Co austenitic steel

    International Nuclear Information System (INIS)

    Tomono, Yutaka

    1987-01-01

    The decrease in the creep strength of structural materials during service at elevated temperatures is a very important problem that affects the security of plants and machinery. The improvement in the creep strength of 18Cr-10Ni-20Co austenitic steel achieved through the addition of molybdenum and niobium was studied in tests carried out at 973K and 1,073K. The creep strengthening mechanism was examined using transmission electron micrographs, X-ray diffraction, etc. The results obtained are summarized as follows: (1) The creep strength of low C-18Cr-10Ni-20Co austenitic steel with molybdenum was greatly improved by the addition of niobium up to 1% by weight. In the case of long-term creep, no trend toward decreasing creep strength was observed. (2) The creep strength of austenitic steel possessing a matrix strengthened with molybdenum can be improved through the addition of niobium combined with precipitation hardening with fine carbides precipitated in the grains. (author)

  13. Análisis del comportamiento mecánico de una aleación Ni-Cr-Mo para pilares dentales/Analysis of Mechanical Behavior of Ni-Cr-Mo alloy for Dental Abutments

    Directory of Open Access Journals (Sweden)

    Luis Alberto Laguado Villamizar

    2012-12-01

    Full Text Available El presente estudio caracteriza una aleación aplicable al diseño de pilares para implantes dentales. Se propone un material biocompatible y de alta resistencia mecánica como alternativa a las aleaciones de Titanio, disminuyendo los costos de materia prima y procesamiento. Se realizan pruebas mecánicas de tracción y de compresión a la aleación de Ni-Cr-Mo, posteriormente se realiza modelado 3D y simulación de sus propiedades mecánicas por medio de análisis de elementos finitos. Como resultado se obtiene que el material disminuye su resistencia mecánica después del proceso de fundición empleado. El modelo de simulación es válido para análisis de resistencia en pilares dentales.This study presents the characterization of a dental implant alloy for abutments. It proposes a biocompatible material and high mechanical resistance as an alternative to Titanium alloys, lowering costs of raw materials and processing. Mechanical testing of the Ni-Cr-Mo alloy and subsequently perform simulations of its mechanical properties by means of finite element analysis. As a result is obtained that the material reduces its mechanical strength after the casting for electric induction molding process. The simulation model is valid to make analysis of resistance to this type of dental devices.

  14. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    Science.gov (United States)

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  15. The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

    Directory of Open Access Journals (Sweden)

    Zhanling Lu

    2010-01-01

    Full Text Available The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD. The source gas was a mixture of H2 and CH4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM, and transparent electron microscopy (TEM. The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/m. The current density of 2.1 mA/cm2 at electric field of 2.4 V/m was obtained.

  16. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  17. Transient oxidation of Al-deposited Fe-Cr-Al alloy foil

    International Nuclear Information System (INIS)

    Andoh, A.

    1997-01-01

    The oxide phases formed on an Al-deposited Fe-Cr-Al alloy foil and an Fe-Cr-Al alloy foil of the same levels of Al and (La+Ce) contents, and their oxidation kinetics have been studied in air at 1173 and 1373 K using TGA, XRD and SEM. Al deposition promotes the growth of metastable aluminas (θ-Al 2 O 3 , γ-Al 2 O 3 ). Scales consisting of θ-Al 2 O 3 and a small amount of α-Al 2 O 3 develop on the Al-deposited foil at 1173 K and exhibit the whisker-type morphology. In the early stage of oxidation at 1373 K, thick scales consisting of θ-Al 2 O 3 and α-Al 2 O 3 grow rapidly on the Al-deposited foil. The transformation from θ-Al 2 O 3 to α-Al 2 O 3 is very fast, and the scales result in only α-Al 2 O 3 . In contrast, α-Al 2 O 3 scales containing a minor amount of FeAl 2 O 4 develop on the alloy foil. The growth rate of α-Al 2 O 3 scales on the Al-deposited foil is smaller than that on the alloy foil and very close to that on NiAl at 1373 K. (orig.)

  18. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  19. Microstructural characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)], E-mail: vanessa.decastro@materials.ox.ac.uk; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2009-04-30

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3}-free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes <10 nm were also observed. Both alloys also contained M{sub 3}C and M{sub 23}C{sub 6} carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M{sub 23}C{sub 6} carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  20. Martensite. gamma. -->. cap alpha. transformations in various purity Fe-Ni-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, I.I.; Rozhkova, A.S. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-06-01

    Kinetics of isothermal and athermal ..gamma.. ..-->.. ..cap alpha.. martensitic transitions in the Fe-25.5% Ni-4.5% Mo alloys with different degree of purity is studied. The determinant role of dislocation blocking by interstitials in stabilization of isothermal martensitic transformation is displayed. Presented are the data permitting to consider that the character of martensitic transition kinetics is determined by the ratio of the process moving force and resistance to microplastic deformation.

  1. A Preliminary Study to Enhance the Tribological Performance of CoCrMo Alloy by Fibre Laser Remelting for Articular Joint Implant Applications

    Directory of Open Access Journals (Sweden)

    Chi-Wai Chan

    2018-03-01

    Full Text Available CoCrMo alloy has long been used as a pairing femoral head material for articular joint implant applications because of its biocompatibility and reliable tribological performance. However, friction and wear issues are still present for CoCrMo (metal/CoCrMo (metal or CoCrMo (metal/ultrahigh molecular weight polyethylene (UHMWPE (plastic pairs in clinical observations. The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose a severe threat to human tissues, eventually resulting in the failure of implants and the need for revision surgeries. As a result, a further improvement in tribological properties of this alloy is still needed, and it is of great interest to both the implant manufacturers and clinical surgeons. In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air condition (i.e., no gas chamber required. The CoCrMo surfaces before and after laser remelting were analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and Vickers micro-hardness test and microstructural analysis (i.e., XRD phase detection. The tribological properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS. Our results indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs (i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE and enhanced wear resistance for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages of being a clean, non-contact, fast, highly accurate and automated process compared to other surface coating methods. The promising results of this study point to the possibility that laser remelting can be a practical and effective surface modification technique to further improve the tribological performance of CoCr

  2. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  3. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  4. Hyperfine Interactions and Some Magnetic Properties of Nanocrystalline Co40Fe50Ni10 and Co50Fe45Ni5 Alloys Prepared by Mechanical Synthesis and Subsequently Heat Treated

    International Nuclear Information System (INIS)

    Pikula, T.; Oleszak, D.; Pekala, M.

    2011-01-01

    Co 40 Fe 50 Ni 10 and Co 50 Fe 45 Ni 5 ternary alloys were prepared by mechanical alloying method. To check the stability of their structure thermal treatment was applied subsequently. As X-ray diffraction studies proved the final products of milling were the solid solutions with bcc lattice and the average grain sizes ranged of tens of nanometers. After heating of the Co 50 Fe 45 Ni 5 alloy up to 993 K the mixture of two solid solutions with bcc and fcc lattices was formed. In other cases thermal treatment did not change the type of the crystalline lattice. Moessbauer spectroscopy revealed hyperfine magnetic field distributions which reflected the different possible atomic surroundings of 57 Fe isotopes. Results of the macroscopic magnetic measurements proved that both investigated alloys had relatively good soft magnetic properties. (authors)

  5. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    Science.gov (United States)

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  6. Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2

    Directory of Open Access Journals (Sweden)

    Daichun Tang

    2014-08-01

    Full Text Available The lithium-rich layered oxides are one of the most attractive cathode materials for lithium-ion batteries. Here, two types of Li1.20Ni0.32Co0.004Mn0.476O2 were synthesized using Li2CO3 and LiOH as lithium sources. An electrochemical activation process occurs in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from Li2CO3 (LLO-1, while no obvious activation in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from LiOH (LLO-2 is observed. Via advanced scanning transmission electron microscopy (STEM, we found that Li2MnO3-like structure is rich in the surface region of LLO-2. The study provides a direct explanation for the electrochemical activation of lithium-rich materials. The sample with more LiMO2-like phase at the surface region shows a better cycling performance. It is likely that more LiMO2-like phase at the surface region could stabilize the interface and improve the cycling performance of the Li-rich cathode materials.

  7. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  8. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    International Nuclear Information System (INIS)

    Auger, M.A.; Leguey, T.; Munoz, A.; Monge, M.A.; Castro, V. de; Fernandez, P.; Garces, G.; Pareja, R.

    2011-01-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y 2 O 3 alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y 2 O 3 developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y 2 O 3 free alloy. Strengthening induced by the Y 2 O 3 dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  9. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  10. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...... and mainly consists of inert Pd5P2, NI3P, Ni2Pd2P and noble Pd phases. These inert and noble properties result in a higher corrosion resistance in crystalline Pd40Ni40P20....

  11. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    Science.gov (United States)

    Shi, Shi; He, Mo-Rigen; Jin, Ke; Bei, Hongbin; Robertson, Ian M.

    2018-04-01

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size and fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. These dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.

  12. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  13. Successes and failures of Ni-Cr-Mo family alloys in FGD systems of coal-fired power plants

    International Nuclear Information System (INIS)

    Agarwal, D.C.

    1986-01-01

    At first glance, operation of a typical limestone FGD system seems deceptively simple. However, the first generation scrubbers of the early to mid 70's proved to be a financial and operational disaster due to metals corroding in a rather short time period and non-metallic linings failing by blistering, debonding, cracking, flaking and peeling. Extensive research programs at various institutions and utilities to find better construction materials led to higher alloys up the ladder of the Ni-Cr-Mo family, other materials and new non-metallic coatings. This paper describes case histories showing both success and failures of the various alloys in the Ni-Cr-Mo family. This information will not only be useful to the various scrubber system suppliers and A/E's, but should be of value to utility corrosion/scrubber engineers and maintenance personnel who, on a day-to-day basis, are involved in keeping their systems functional in a cost-effective manner

  14. The behavior of ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings deposited on aluminum alloys at high temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Pintilei, G.L., E-mail: laura_rares082008@yahoo.com [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Crismaru, V.I. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Abrudeanu, M. [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Munteanu, C. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Baciu, E.R. [University of Medicine and Pharmacy “Gr.T.Popa”, Department Implantology, Removable Restorations, Technology, Str. Universitatii nr. 16, 700115 Iasi (Romania); Istrate, B.; Basescu, N. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania)

    2015-10-15

    Highlights: • In both the ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO{sub 2}/20%Y{sub 2}O{sub 3} suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al{sub 2}O{sub 3} coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  15. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. I. Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation

  16. Posterior magnetic effect on the pure and doped Fe-Ni alloy under neutron irradiation

    International Nuclear Information System (INIS)

    Ferreira, Iris

    1974-01-01

    Polycrystalline specimens of unirradiated and neutron irradiated Fe-Ni alloys have been studied in the temperature range RT - 500 deg C. The study was carried out in pure (50-50) as well as in Si, A1, Cr and Mo doped samples. Initial magnetic permeability was measured in unirradiated (virgin)and in neutron irradiated samples, during isochronal and linear thermal treatments. The main results are: a magnetic After Effect (MAE) is detected in the temperature range 370 deg C - Tc, where Tc is the Curie Temperature. In this range an activation energy of 3.2 ± 0.2 eV was determined for the Cr doped Fe-Ni alloy (impurity content: 0.1%); measurements made in the irradiated samples, during a linear temperature treatment, show the existence of several MAE zones in the temperature range RT - Tc. The isochronal annealing experiments show that these MAE zones are accompanied by a decrease in the room temperature value of the magnetic permeability, for zones between RT and a certain temperature T 1 . Above this range there is a steep increase in the room temperature permeability. Activation energies were determined for pure and Mo-doped (0.1%) samples for the first MAE zone (50 deg C - 120 deg C). The values obtained 1.25 - 0.08 eV and 1.42 ± 0.09 eV, respectively; the impurity - doped samples show a different behaviour relative to the pure ones: samples with low impurity content (0.1% and 0.5% of Si, Al or Mo) present an enhancement in the amplitude and also an overlapping of the diffusion stages. On the other hand, samples with higher impurity content (2 and 4% of Mo) show a decrease in these amplitudes. (author)

  17. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  18. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, Edgard C.; Rodríguez, Martin A.

    2011-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (E CO ) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. E CO showed a linear decrease with temperature. There is a temperature above which E CO does not decrease anymore, reaching a minimum value. This E CO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author) [es

  19. Double differential cross sections for (p,n) reactions of 18 and 25 MeV protons with isotopes of Cr, Fe, Co, Ni, Cu, Y, Zr, Mo, Pd and Tb

    International Nuclear Information System (INIS)

    Scobel, W.; Blann, M.; Komoto, T.; Trabandt, M.; Grimes, S.M.; Hansen, L.F.; Pohl, B.A.; Wong, C.

    1984-06-01

    Cross sections for the inclusive production of neutrons from reactions of 25 MeV protons with 50 52 53 Cr, 54 56 58 Fe, 59 Co, 60 Ni, 63 Cu, 89 Y, 90 91 92 94 Zr, 92 94 95 96 97 98 100 Mo, 110 Pd and 159 Tb and of 18 MeV protons with 90 91 92 94 Zr have been measured with time-of-flight techniques for 16 angles between 3.5 0 less than or equal to theta/sub lab/ less than or equal to 159.0 0 . After a short presentation of the motivations for these measurements, the experimental set up is discussed with emphasis on the systematic and statistical error sources pertinent to this work, in particular the question of background correction in the continuous parts of the spectra. The main purpose of this report is to make the experimental results of this work (angle integrated spectra, angular distributions) available for distribution, reducing thereby the data required in publication of the results of these experiments. 20 references

  20. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Science.gov (United States)

    Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek

    2018-05-01

    DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  1. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: mauger@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Munoz, A., E-mail: amunoz@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain); Castro, V. de, E-mail: vanessa.decastro@materials.ox.ac.uk [Department of Materials, University of Oxford, OX1 3PH (United Kingdom); Fernandez, P., E-mail: pilar.fernandez@ciemat.es [National Fusion Laboratory-CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garces, G., E-mail: ggarces@cenim.csic.es [Departamento de Metalurgia Fisica, CENIM (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pareja, R., E-mail: rpp@fis.uc3m.es [Departamento de Fisica-IAAB, Universidad Carlos III de Madrid, 28911-Leganes (Spain)

    2011-10-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y{sub 2}O{sub 3} alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y{sub 2}O{sub 3} developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y{sub 2}O{sub 3} free alloy. Strengthening induced by the Y{sub 2}O{sub 3} dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  2. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  3. Effects of Fe and Cr on corrosion behavior of ZrFeCr alloys in 500 oC steam

    International Nuclear Information System (INIS)

    Wang Jun; Fan Hongyuan; Xiong Ji; Liu Hong; Miao Zhi; Ying Shihao; Yang Gang

    2011-01-01

    Research highlights: Amount and size of SPP will effect the corrosion resistance of Zr alloy at 500 o C/10.3 MPa. - Abstract: A study of the corrosion behaviors of ZrFeCr alloy and the influence of microstructure on corrosion resistance are described by X-ray diffraction and scanning electron microscope in this paper. The results show that several ZrFeCr alloys exhibit protective behavior throughout the test and oxide growth is stable and protective. The best alloy has the composition Zr1.0Fe0.6Cr. Fitting of the weight gain curves for the protective oxide alloys in the region of protective behavior, it showed nearly cubic behavior for the most protective alloys. The Zr1.0Fe0.6Cr has the more laves Zr(Fe,Cr) 2 precipitate in matrix and it has the better corrosion resistance. The Zr0.2Fe0.1Cr has little precipitate, the biggest hydrogen absorption and the worst corrosion resistance. The number of precipitates and the amount of hydrogen absorption in Zr alloy plays an important role on corrosion resistance behaviors in 500 o C/10.3 MPa steam.

  4. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng

    2018-03-18

    The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro study, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    Science.gov (United States)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  6. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    Science.gov (United States)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  7. Structure and physical properties of RT{sub 2}Cd{sub 20} (R=rare earth, T=Ni, Pd) compounds with the CeCr{sub 2}Al{sub 20}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, V.W.; Yazici, D.; White, B.D. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Dilley, N.R. [Quantum Design, 6325 Lusk Boulevard, San Diego, CA 92121 (United States); Friedman, A.J.; Brandom, B. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Maple, M.B., E-mail: mbmaple@physics.ucsd.edu [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Eleven new compounds, R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) and R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm), were grown as single crystals in high temperature cadmium-rich solutions. They crystallize in the cubic CeCr{sub 2}Al{sub 20}-type structure (Fd3{sup ¯}m, Z=8) as characterized by measurements of powder X-ray diffraction. Electrical resistivity, magnetization, and specific heat measurements were performed on R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals. Whereas YNi{sub 2}Cd{sub 20} and LaNi{sub 2}Cd{sub 20} exhibit unremarkable metallic behavior, when magnetic moments from localized 4f electron states (Gd{sup 3+}–Tb{sup 3+}) are embedded into this host, they exhibit ferromagnetic order with values of the Curie temperature T{sub C} for R Ni{sub 2}Cd{sub 20} (R=Gd, and Tb) which scale with the de Gennes factor. - Graphical abstract: Specific heat divided by temperature C/T vs. T for single crystals of R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Gd, and Tb). Left inset: Low temperature C/T vs. T{sup 2} for LaNi{sub 2}Cd{sub 20}. The solid line represents a linear fit of the data. Right inset: Low-temperature C/T data vs. T for R=Ce–Nd, Gd, and Tb; magnetic ordering temperatures are indicated by arrows. - Highlights: • R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals synthesized for the first time. • R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm) single crystals synthesized for the first time. • Single crystals are of good metallurgical quality (large RRR values). • NdNi{sub 2}Cd{sub 20} orders antiferromagnetically at T{sub N}=1.5 K. • R Ni{sub 2}Cd{sub 20} (R=Sm, Gd, Tb) order ferromagnetically.

  8. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y2O3

    International Nuclear Information System (INIS)

    Eiselt, Ch.Ch.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Odette, G.R.; Yamamoto, T.; Gragg, D.

    2011-01-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2 O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 2 0 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  9. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  10. Ab initio studies on electronic and magnetic properties of X2PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    International Nuclear Information System (INIS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-01-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X 2 PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn 2 PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr 2 PtGa and Mn 2 PtGa possess ferrimagnetic configuration whereas Fe 2 PtGa and Co 2 PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X 2 PtGa (X=Cr, Mn, Fe, Co). • Co 2 PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co 2 PtGa.

  11. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  12. Study of the irradiation damages on the magnetic properties of FeNi alloys

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.

    1979-01-01

    Linear and isothermal annealing were made, before, during and after neutron irradiation in the IEAR-1 reactor, between 400 and 500 0 C in argon atmosphere, for the following samples: 1) FeNi (50-50% at.); 2) FeNiMo (50-50% at + 50 ppm); 3) FeNiCr (49,95-49,95-0,1% at.); 4) FeNiCr (49,75-49,75-0,5% at.). The initial permeability occurred together with the Later Magnetic Effect (LME) which allows the determination of time constants, activation energies and Curie temperatures. The vacancies supersaturation was quantitatively evaluated showing that the LME can be used as an effective method of selecting materials. Some comments are made about sample n 0 4 which showed pronounced anomalies in the initial permeability. (Author) [pt

  13. The impedance properties of the oxide film on the Ni-Cr-Mo Alloy-22 in neutral concentrated sodium chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Jakupi, P.; Zagidulin, D.; Noel, J.J. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A-3K7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, London, Ontario, N6A-3K7 (Canada)

    2011-07-01

    The oxide film properties on Alloy-22 in the applied potential (E) range -600 mV to 600 mV (vs. saturated KCl, Ag/AgCl reference electrode) were characterized by Electrochemical Impedance Spectroscopy (EIS) in near neutral pH, 5 M NaCl solutions, at 30 deg. C. The impedance properties of the film were compared to the chromium content of the film determined by X-ray photoelectron spectroscopy (XPS). The oxide film properties on Alloy-22 may be divided into three applied potential (E) ranges: -600 mV {<=} E < -300 mV, -300 mV {<=} E {<=} 300 mV, and E > 300 mV. For the range -600 mV {<=} E < -300 mV the film resistance (R{sub film}) increases with potential accompanied by an increase in Cr{sub 2}O{sub 3} content; in the range -300 mV {<=} E {<=} 300 mV, R{sub film} values and the Cr{sub 2}O{sub 3} content of the oxide film achieve their maximum values; for E > 300 mV, a decrease in both R{sub film} and Cr{sub 2}O{sub 3} is observed accompanied by a significant increase in Cr(OH){sub 3}. Comparison of the impedance properties for Alloy-22 to those of Ni-Cr alloys indicate that the barrier layer oxide on Alloy-22 contains a lower number of less mobile defects, most likely Cr interstitials. Destruction of the barrier layer for E > 300 mV leads to the formation of a thicker, less protective bilayer, which is high in Mo content.

  14. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  15. Magnetoresistances in Ni80Fe20-ITO granular film

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Yang Yanxia; Xiong Yuanqiang; Chen Peng

    2012-01-01

    Highlights: ► Magnetoresistance (MR) in Ni 80 Fe 20 -ITO granular film are investigated. ► MR is positive at high temperature, and is negative at low temperature. ► MR results from the competition among three mechanisms. - Abstract: The magnetic properties, electrical properties and magnetoresistance are investigated in Ni 80 Fe 20 -ITO granular film with various volume fractions V NF of Ni 80 Fe 20 . The room temperature magnetization hysteresis of sample with V NF = 25% shows superparamagnetic behavior. Current-voltage curve of sample with V NF = 25% at 175 K shows typical tunneling-type behavior. The magnetoresistances of samples with low V NF are positive at high temperature, and are negative at low temperature. The temperature-dependent magnetoresistances result from the competition among ordinary magnetoresistances, the granular-typed tunneling magnetoresistance and the spin-mixing induced magnetoresistances.

  16. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, following Extended Aging at 300-600C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wood, Elizabeth Sooby [Univ. of Texas, San Antonio, TX (United States)

    2017-09-19

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21wt.%Cr-5wt.%Al-3wt.%Mo (Kanthal APMT). Aging treatments were performed for 100-1000 hours in stagnant air at 300, 400, 500, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  17. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    International Nuclear Information System (INIS)

    Lin, Hsi-Chen; Wu, Shih-Ching; Ho, Wen-Fu; Huang, Ling-Hsiu; Hsu, Hsueh-Chuan

    2010-01-01

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  18. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  19. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Directory of Open Access Journals (Sweden)

    Mariusz Hasiak

    2018-05-01

    Full Text Available DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  20. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    Science.gov (United States)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.