WorldWideScience

Sample records for alloy-d-9

  1. In-reactor creep rupture behavior of the D9 alloys

    International Nuclear Information System (INIS)

    Puigh, R.J.; Hamilton, M.L.

    1986-06-01

    The uncertainties in the in-reactor stress rupture data have been significantly reduced with the acquisition of the Materials Open Test Assembly (MOTA) for testing of materials in the Fast Flux Test Facility (FFTF). The temperature uncertainty associated with irradiation in this vehicle is +- 5 0 C. Moreover, through the use of tag gases and an on-line cover gas monitoring system, on-line detection of specimen ruptures is possible during irradiation, thereby significantly reducing the uncertainty associated with the rupture times. Titanium additions, increases in nickel content and decreases in chromium content, which were made to improve the swelling response of 316 SS, resulted in an alloy class referred to as ''D9''. In-reactor stress rupture data from the MOTA experiment have been reported on two conditions of the D9-type alloys for exposure times corresponding to 2,400 hours at irradiation temperatures of 575, 605, 670, and 750 0 C. For these conditions the in-reactor rupture times were similar to those observed in thermal control tests. This report will describe both the in-reactor stress rupture behavior and the thermal control data for 20% cold work (CW) 316 SS and for 10 and 20% CW D9-type alloy over a similar temperature range for in-reactor exposure times corresponding to 13170 hr. and peak fast fluences corresponding to 17 x 10 22 n/cm 2 (E > 0.1 MeV)

  2. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  3. Thermal diffusivity of fuel clad materials: study on D9 alloy

    International Nuclear Information System (INIS)

    Seenivasan, G.; Balasubramanian, R.; Krishnaiah, M.V.

    2003-01-01

    Thermal diffusivity of D9 alloy has been measured using a laser flash method in the temperature range of 673 to 1273 K. The samples were taken in the form of 2 mm thick polished discs and some of the discs were annealed at 1073 K in high vacuum. A Nd-YAG laser of pulse width 1 msec and energy 20 J was used for heating. Lead sulphide (PbS) was used as detector. The result indicates that the thermal diffusivity increases with increasing temperature. It has been observed that the thermal diffusivity of 503 and 505 alloys are very similar and their values are very close to that of SS-304. (author)

  4. Ion irradiation studies on the void swelling behavior of a titanium modified D9 alloy

    Science.gov (United States)

    Balaji, S.; Mohan, Sruthi; Amirthapandian, S.; Chinnathambi, S.; David, C.; Panigrahi, B. K.

    2015-12-01

    The sensitivity of Positron Annihilation Spectroscopy (PAS) for probing vacancy defects and their environment is well known. Its applicability in determination of swelling and the peak swelling temperature was put to test in our earlier work on ion irradiated D9 alloys [1]. Upon comparison with the peak swelling temperature determined by conventional step height measurements it was found that the peak swelling temperature determined using PAS was 50 K higher. It was conjectured that the positrons trapping in the irradiation induced TiC precipitation could have caused the shift. In the present work, D9 alloys have been implanted with 100 appm helium ions and subsequently implanted with 2.5 MeV Ni ions up to peak damage of 100 dpa. The nickel implantations have been carried out through a range of temperatures between 450 °C and 650 °C. The evolution of cavities and TiC precipitates at various temperatures has been followed by TEM and this report provides an experimental verification of the conjecture.

  5. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  6. The effect of tungsten on mechanical properties of the Ti-9% Al-3% Zr alloy

    International Nuclear Information System (INIS)

    Nartova, T.T.; Grigor'ev, I.P.; Stepanov, Yu.N.; Tarasova, O.B.

    1979-01-01

    The effect of tungsten (from 0 to 10 %) on mechanical properties of the ternary Ti-9 %, Al-3 % Zr alloy, has been studied. The microstructure, tensile properties at 20 and 600 deg C and Vickers hardness in as-forged and as-annealed states have been studied. The experiments have shown that the ultimate strength increases with tungsten content. Titanium alloys with 9 % Al and 3 % Zr in the case of varying tungsten content at 20 deg C fracture by brittle mechanism. The dUctility of the annealed alloy does not rise at 20 deg C, but at the test temperature of 600 deg C the alloy becomes ductile

  7. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  8. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  9. Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

    Science.gov (United States)

    Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.

    2007-12-01

    An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.

  10. Microstructural control during D9 cladding fabrication

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Roche, T.K.

    1981-01-01

    The distribution of Ti and principal carbide phase is critical in the swelling and creep resistance of D9 alloys. It is shown that nonhomogeneous structures, produced during hot working stages, persist through subsequent cold drawing and annealing cycles. This banded structure can be eliminated permanently only by 24-h homogenization at 1200 0 C. 8 figures

  11. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  12. Defects spectroscopy by means of the simple trapping model of the Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F.

    2007-01-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe 78 Si 9 B 13 alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C d ) and the electronic density associated to the defect (n d ); both first parameters, (K, C d ) its increase and n d diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  13. Thermal conductivity and thermal expansion of stainless steels D9 and HT9

    International Nuclear Information System (INIS)

    Leibowitz, L.; Blomquist, R.A.

    1988-01-01

    Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9

  14. Elemental volatility of HT-9 fusion reactor alloy

    International Nuclear Information System (INIS)

    Henslee, S.P.; Neilson, R.M. Jr.

    1985-01-01

    The volatility of elemental constituents from HT-9, a ferritic steel, proposed for fusion reactor structures, was investigated. Tests were conducted in flowing air at temperatures from 800 to 1200 0 C for durations of 1 to 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy; molybdenum, manganese, and nickel were the primary constituents volatilized. Comparisons with elemental volatilities observed for another candidate fusion reactor materials. Primary Candidate Alloy (PCA), an austenitic stainless steel, indicate significant differences between the volatilities of these steels that may impact fusion reactor safety analysis and alloy selection. Scanning electron microscopy and energy dispersive spectrometry were used to investigate the oxide layers formed on HT-9 and to measure elemental contents within these layers

  15. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  16. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  17. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  18. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  19. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  20. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    Science.gov (United States)

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  2. Thermal stability and thermal property characterisation of Fe–14.4Cr–15.4Ni–2.4Mo–2.36Mn–0.25Ti–1.02Si–0.042C–0.04P–0.005B (mass%) austenitic stainless steel (Alloy D9I)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Haraprasanna [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raju, S., E-mail: sraju@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rai, Arun Kumar [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Panneerselvam, G. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-02-15

    Highlights: ► High temperature enthalpy, specific heat, lattice thermal expansion of Alloy D9I determined. ► Melting and solidification studied by thermal analysis. ► Integrated modelling by Debye–Grüneisen quasiharmonic formalism. ► Comprehensive thermal property assessment for austenitic stainless steel. -- Abstract: High temperature measurements of enthalpy increment (ΔH{sub T}°) and lattice parameter have been carried out on Alloy D9I by means of drop calorimetry and high temperature X-ray diffraction techniques, respectively. In addition, the thermal stability during heating and cooling from the melting range has been investigated by differential scanning calorimetry. It is found that under near equilibrium cooling conditions (3 K min{sup −1}), Alloy D9I exhibits L → γ austenite → L + γ + δ ferrite → γ + δ → γ solidification mode. However, the phase fraction of δ ferrite and the temperature region of γ + δ two phase domain are found to be small. The on-cooling liquidus and solidus temperatures are found to be 1684 and 1631 ± 5 K, respectively. The latent heat of solidification is found to be in the range, 190–220 J g{sup −1}. The thermal analysis study has revealed that solution treated Alloy D9I exhibits an endothermic dissolution of Ti(C,N) particles at about 1323 ± 2 K, with an associated heat effect of 16–20 J g{sup −1}. The specific heat C{sub p} and coefficient of linear thermal expansion α{sub l} at 298.15 K are estimated to be 486 J kg{sup −1} K{sup −1} and 1.15 × 10{sup −5} K{sup −1}, respectively. The measured temperature dependencies of C{sub p} and α{sub l} for Alloy D9I are in good agreement with the general trend exhibited by many austenitic steels. Further, an empirical linear correlation has been found between the measured temperature dependent molar volume and molar enthalpy values. The measured thermal property data have been modelled through Debye–Grüneisen formalism to obtain an

  3. Microstructure and Aging Behavior of Nonflammable AZ91D Mg Alloy

    OpenAIRE

    Seok Hong Min; Tae Kwon Ha

    2014-01-01

    Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment could be performed at temperatures from 400 to 450oC. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y; howeve...

  4. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  5. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  6. Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe–9Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Iwakir, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [Faculty and Graduate School of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tani, Munechika [Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan); Watanabe, Yoshiyuki [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Yoshida, Naoaki [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-01-15

    Thermal desorption of deuterium (D{sub 2}) from deuterium-ion (D{sub 2}{sup +})-irradiated Fe–9Cr was correlated with the microstructural evolution of the alloy during irradiation with 8-keV D{sub 2}{sup +} ions following annealing to determine the retention and desorption behavior of the implanted deuterium and to identify effective traps for them, particularly at high temperature. After irradiation at 573 K, a new desorption stage formed between 650 and 1100 K at higher fluences, and cavities were observed using transmission electron microscopy. The total amount of trapped deuterium following irradiation with a fluence of 3.0 × 10{sup 22} ions/m{sup 2} was 6.8 × 10{sup 17} D{sub 2}/m{sup 2}, or approximately 0.007%. These results indicate that the deuterium atoms recombined to form D{sub 2} molecules at the surfaces of the cavities.

  7. About some corrosion mechanisms of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Ballerini, Gaia; Bardi, Ugo; Bignucolo, Roberto; Ceraolo, Giuseppe

    2005-01-01

    The present work is dedicated to a study of the corrosion resistance of AZ91D (91% Mg) alloy in wet environments. Three industrial alloys obtained by die-casting or sand casting were subjected to salt spray corrosion tests (ASTM-B117 standard) and immersion tests. Weight loss kinetic curves were measured. Surface analysis was performed by X-ray photoelectron diffraction (XPS). After corrosion the sand cast alloy presents a surface mainly enriched in hydroxides and carbonates while the die-cast alloy presents a surface enriched also in mixed Mg-Al oxides. The quantitative analysis of the rate Mg/Al shows an enrichment in aluminium for the die-cast alloys in comparison to the sand cast alloy

  8. Vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys provide an attractive solution for fusion power plants as they exhibit a potential for low environmental impact due to low level of activation from neutron fluence and a relatively short half-life. They also have attractive material properties for use in a reactor. General Atomics along with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan to utilize vanadium alloys as part of the Radiative Divertor Project (RDP) modification for the DIII-D tokamak. The goal for using vanadium alloys is to provide a meaningful step towards developing advanced materials for fusion power applications by demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak in conjunction with developing essential fabrication technology for the manufacture of full-scale vanadium alloy components. A phased approach towards utilizing vanadium in DIII-D is being used starting with small coupons and samples, advancing to a small component, and finally a portion of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. A major portion of the program is research and development to support fabrication and resolve key issues related to environmental effects

  9. Fatigue characteristics of sand-cast AZ91D magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zhenming Li

    2017-03-01

    Full Text Available The fatigue characteristics of the AZ91D-T6 alloy samples taken from engine blocks have been investigated at 20 °C and elevated temperature (150 °C. The fatigue strength and cyclic stress amplitude of the alloy significantly decrease with the increase of the test temperature, although cyclic hardening occurs continuously until failure for both temperatures. With the increase of the temperature, the decreased fatigue life of the alloy tested at the same stress amplitude is mainly attributed to the decreased matrix strength and the increased hysteresis energies. Fatigue failure of the engine blocks made of AZ91D-T6 alloy is mainly controlled by casting defects. For the defect-free specimens, the crack initiation behavior is determined by the single-slip (20 °C and by environment-assisted cyclic slip (150 °C during fatigue, respectively. The low-cycle fatigue lives of the alloy can be predicted using the Coffin-Manson relation and Basquin laws, the three-parameter equation and the energy-based concepts, while the high-cycle fatigue lives of the alloy fitted well with the developed long crack life model and MSF life models.

  10. Near-liquidus forging, partial remelting and thixoforging of an AZ91D + Y magnesium alloy

    International Nuclear Information System (INIS)

    Zhao Zude; Chen Qiang; Hu Chuankai; Huang Shuhai; Wang Yuanqing

    2009-01-01

    A new route, near-liquidus forging plus partial remelting, has been developed for obtaining globular microstructures. Firstly, a material is formed by near-liquidus forging for obtaining a fine dendritic microstructure. Globular microstructure can be produced by reheating the material into the semi-solid temperature range for a period of time. In this paper, an AZ91D alloy with the addition of yttrium was prepared by near-liquidus forging. Microstructure evolution during partial remelting was studied at temperatures and for times. Tensile mechanical properties of thixoforged components were also determined. It is shown that the fine dendritic structure firstly evolves into a blocky structure during partial remelting. With prolonged holding time, the blocky structure disintegrates into polygonal solid particles. Prolonging time and increasing temperature promote a faster spheroidization. Good mechanical properties are obtained for the thixoforged AZ91D alloy with the addition of yttrium prepared by near-liquidus forging, with a yield strength of 160.9 MPa and a ultimate tensile strength of 301.7 MPa and a elongation to fracture of 9.734%.

  11. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  12. Tensile Strength of the Al-9%Si Alloy Modified with Na, F and Cl Compounds

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2010-01-01

    Full Text Available The modification of the Al-9%Si alloy with the use of a complex modifier containing Na, F and Cl was investigated in the study. The modifier was composed of NaCl, Na3AlF6 and NaF compounds. The modifier and the liquid Al-Si alloy were kept in the crucible for 15 minutes. The modifier's effect relative to the weight of the processed alloy on its tensile strength was presented in graphic form. The results of the study indicate that the complex modifier altered the investigated properties of the eutectic Al-9%Si alloy.

  13. Utilization of vanadium alloys in the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics (GA), in conjunction with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan for the utilization of vanadium alloys as part of the Radiative Divertor (RD) upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy (DOE). This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components, and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming Radiative Divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development (R and D) efforts to support fabrication development and to resolve key issues related to environmental effects

  14. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

    Science.gov (United States)

    Zhao, Yipeng; Zhang, Zhe; Ouyang, Gang

    2018-04-01

    Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

  15. Synthesis and hydrogen storage of La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloys

    Directory of Open Access Journals (Sweden)

    Priyanka Meena

    2018-04-01

    Full Text Available The present work investigates structural and hydrogen storage properties of first time synthesized La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy by arc melting process and ball milled to get it in nano structure form. XRD analysis of as-prepared alloy showed single phased hexagonal LaNi5-type structure with 52 nm average particle size, which reduces to about 31 nm after hydrogenations. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructured alloy. EDX analysis confirmed elemental composition of the as-prepared alloy. Activation energy for hydrogen desorption was studied using TGA analysis and found to be −76.86 kJ/mol. Hydrogenation/dehydrogenation reactions and absorption kinetics were measured at temperature 100 °C. The equilibrium plateau pressure was determined to be 2 bar at 100 °C giving hydrogen storage capacity of about 2.1 wt%. Keywords: Hydrogen storage, La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy, SEM, EDS, TGA, Hydrogenation/dehydrogenation

  16. Study of transformation behavior in a Ti-4.4 Ta-1.9 Nb alloy

    International Nuclear Information System (INIS)

    Mythili, R.; Paul, V. Thomas; Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    2005-01-01

    An alloy of composition Ti-4.4 wt.% Ta-1.9 wt.% Nb is being developed as a structural material for corrosion applications, as titanium and its alloys possess excellent corrosion resistance in many oxidizing media. The primary physical metallurgy database for the Ti-4.4 wt.% Ta-1.9 wt.% Nb alloy is being presented for the first time. Determination of the β transus, M s temperature and classification of the alloy have been carried out, employing a variety of microscopy techniques, X-ray diffraction (XRD), micro-hardness and differential scanning calorimetry (DSC). The β transition temperature or β transus determined using different experimental techniques was found to agree very well with evaluations based on empirical calculations. Based on chemistry and observed room temperature microstructure, the alloy has been classified as an α + β titanium alloy. The high temperature β transforms to either α' or α + β by a martensitic or Widmanstatten transformation. The mechanisms of transformation of β under different conditions and characteristics of different types of α have been studied and discussed in this paper

  17. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  18. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  19. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  20. Electronic structure and properties of disordered alloys of d-elements

    International Nuclear Information System (INIS)

    Demidenko, V.S.; Kal'yanov, A.P.

    1983-01-01

    On the basis of coherent potential approximation the fundamental characteristics in which transition element alloys differ have been established. Connection of the characteristics with position of the elements alloyed in the Mendeleev table is considered. It is confirmed by calculations that electronic structure and, consequently, physical properties of the alloys of a certain value potential disturbing matrix, change qualitatively. Results of the calculation of electron energy state density, diagrams of partial and average magnetic momenta in binary and ternary alloys of the first transition period, are presented. Besides, calculation results of bond energy in d-metals and energy of segregation formation in their alloys are also given. Comparison with experiment confirms the efficiency of concepts given in the paper

  1. Fabrication development and usage of vanadium alloys in DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Reis, E.E.

    1996-10-01

    GA is procuring material, designing components, and developing fabrication techniques for use of V alloy into the DIII-D divertor as elements of the Radiative Divertor Project modification. This program was developed to assist in the development of low activation alloys for fusion use by demonstrating the fabrication and installation of V alloy components in an operating tokamak. Along with fabrication development, the program includes multiple steps starting with small coupons installed in DIII-D to measure the environmental effects on V. This is being done in collaboration with DOE Fusion Materials Program (particularly at ANL and ORNL). Procurement of the material has been completed; the world's largest heat of V alloy (1200 kg V-4Cr-4Ti) was produced and converted into various products. Manufacturing process is described and chemistry results presented. Research into potential fabrication methods is being performed. Joining of V alloys was identified as the most critical fabrication issue for its use in the Radiative Divertor program. Successful welding trials were done using resistance, friction, and electron beam methods; metallography and mechanical tests were done to evaluate the welds

  2. Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang; Zhang, Fei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Sun, Baohui [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2016-12-15

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensitic transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.

  3. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  4. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  5. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  6. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    International Nuclear Information System (INIS)

    Bansil, A.; Prasad, R.; Smedskjaer, L.C.; Benedek, R.; Mijnarends, P.E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T/sub c/ ceramic superconductors, Heusler alloys, and transition-metal aluminides. 58 refs., 116 figs

  7. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  8. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy

  9. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  10. Defects spectroscopy by means of the simple trapping model of the Fe{sub 78}Si{sub 9}B{sub 13} alloy; Espectroscopia de defectos mediante el modelo de atrapamiento simple de la aleacion Fe{sub 78}Si{sub 9}B{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Cabral P, A.; Garcia S, S.F. [Laboratorio de Fisica Avanzada, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. El Cerillo Piedras Blancas, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this work it is analyzed quantitatively the results of the positron annihilation in the Fe{sub 78}Si{sub 9}B{sub 13} alloy by means of the simple trapping model. From this analysis its are derived: a reason of positron trapping in the defects (K), the defects concentration (C{sub d}) and the electronic density associated to the defect (n{sub d}); both first parameters, (K, C{sub d}) its increase and n{sub d} diminishes when increasing the alloy temperature. From this analysis it is also inferred that the defect consists of a multi vacancy of between 15 and 20 mono vacancies. (Author)

  11. Utilization of vanadium alloys in the DIII-D radiative divertor program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1996-01-01

    Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics in conjunction with Argonne National Laboratory and Oak Ridge National Laboratory has developed a plan for the utilization of vanadium alloys as part of the radiative divertor upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy. This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming radiative divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development efforts to support fabrication development and to resolve key issues related to environmental effects. (orig.)

  12. Microstructure and mechanical properties of AC AlSi9CuX alloys

    OpenAIRE

    L.A. Dobrzański; R. Maniara; M. Krupiński; J.H. Sokołowski

    2007-01-01

    Purpose: In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure and mechanical properties. In this research, the effect of Cu content on the microstructure and mechanical properties of AC AlSi9CuX series alloys has been investigated.Design/methodology/approach: The experimental alloy ...

  13. Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, Jason C1 [Los Alamos National Laboratory; Heffner, Robert H [Los Alamos National Laboratory; Llobet, A [Los Alamos National Laboratory; Darling, T W [U OF NEVADA; Jeong, I K [PUSAN NATL UNIV

    2008-01-01

    Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].

  14. First-principles study of electronic properties of Si doped FeSe{sub 0.9} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-05-23

    We have performed first-principles study of electronic and superconducting properties of FeSe{sub 0.9-x}Si{sub x} (x = 0.0, 0.05) alloys using Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). In our calculations, we used the local density approximation (LDA) for the exchange correlation potential. Our calculations show that these alloys are nonmagnetic in nature. We found that the substitution of Si at Se site into FeSe{sub 0.9} made subtle affects in the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe{sub 0.9} and FeSe{sub 0.85}Si{sub 0.05} alloys.

  15. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  16. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiangyu [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.c [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Xuhui; Tang Yuming; Feng Xingguo [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Research highlights: {yields} A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. {yields} The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. {yields} EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R{sub ct} at the magnesium particle/coating interface decreased and the double-layer capacitance Q{sub dl} increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH){sub 2} in the coating also provided some degree of barrier protection.

  17. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Lu Xiangyu; Zuo Yu; Zhao Xuhui; Tang Yuming; Feng Xingguo

    2011-01-01

    Research highlights: → A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. → The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. → EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R ct at the magnesium particle/coating interface decreased and the double-layer capacitance Q dl increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH) 2 in the coating also provided some degree of barrier protection.

  18. Mechanical Alloying Synthesis of Co9S8 Particles as Materials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Li

    2016-06-01

    Full Text Available Cobalt sulfide (Co9S8 particles are compounded as the electrode materials of supercapacitors by a mechanical alloying method. They show excellent properties including good cycling stability and high specific capacitance. A supercapacitor is assembled using Co9S8 as the anode and activated carbon (AC as the cathode. It gains a maximum specific capacitance of 55 F·g−1 at a current density of 0.5 A·g−1, and also an energy density of 15 Wh·kg−1. Those results show that the novel and facile synthetic route may be able to offer a new way to synthesize alloy compounds with excellent supercapacitive properties.

  19. Temperature dependence of the magnetostriction in polycrystalline PrFe1.9 and TbFe2 alloys: Experiment and theory

    International Nuclear Information System (INIS)

    Tang, Y. M.; Chen, L. Y.; Huang, H. F.; Xia, W. B.; Zhang, S. Y.; Wei, J.; Tang, S. L.; Du, Y. W.; Zhang, L.

    2014-01-01

    A remarkable magnetostriction λ 111 as large as 6700 ppm was found at 70 K in PrFe 1.9 alloy. This value is even larger than the theoretical maximum of 5600 ppm estimated by the Steven's equivalent operator method. The temperature dependence of λ 111 for PrFe 1.9 and TbFe 2 alloys follows well with the single-ion theory rule, which yields giant estimated λ 111 values of about 8000 and 4200 ppm for PrFe 1.9 and TbFe 2 alloys, respectively, at 0 K. The easy magnetization direction of PrFe 1.9 changes from [111] to [100] as temperature decreases, which leads to the abnormal decrease of the magnetostriction λ. The rare earth sublattice moment increases sharply in PrFe 1.9 alloy with decreasing temperature, resulting in the remarkably largest estimated value of λ 111 at 0 K according to the single-ion theory

  20. Microstructural evolution and tensile mechanical properties of thixoformed AZ91D magnesium alloy with the addition of yttrium

    International Nuclear Information System (INIS)

    Zhao Zude; Chen Qiang; Kang Feng; Shu Dayu

    2009-01-01

    The microstructure evolution of AZ91D magnesium alloy in the semi-solid state has been proposed or reported in previous literature. However, no detailed investigation has been conducted regarding the relationship between the microstructure and tensile mechanical properties of the thixoformed AZ91D magnesium alloy. In this paper, the microstructure of AZ91D alloy with the addition of yttrium was produced by the semi-solid thermal transformation (SSTT) route and the strain-induced melt activation (SIMA) route, respectively. Isothermal holding experiments investigated grain coarsening and the degree of spheroidization as a function of holding time in the semi-solid state. The SSTT route and the SIMA route were used to obtain the semi-solid feedstock for thixoforming. The results show that solid particles of the SSTT alloy are spheroidized to some extent but the previous irregular shape is still obvious in some of them. While the SIMA alloy exhibits ideal, fine microstructure, in which completely spheroidized solid particles contain little entrapped liquid. The microstructure of the SSTT alloy is less spheroidized compared with the SIMA alloy under the similar isothermal holding condition. As the holding time increases, the mean solid particle size of the SSTT alloy decreases initially, then increases, while the mean solid particle size of the SIMA alloy increases monotonously at 560 deg. C. Compared with the SSTT alloy, the SIMA alloy obtains finer grains under the similar isothermal holding condition. The mechanical properties of the thixoformed AZ91D alloy with the addition of yttrium produced by the SIMA route are better than those of the thixoformed alloy produced by the SSTT route. The ultimate tensile strength, yield strength and elongation for the thixoformed alloy produced by the SIMA route are 303.1 MPa, 147.6 MPa and 13.27%, respectively. The tensile properties for the AZ91D alloy with the addition of yttrium thixoformed from starting material produced by

  1. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  2. Effect of alternating voltage treatment on corrosion resistance of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); Zhang, T.; Shao, Y.; Meng, G.; Wang, F. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2012-06-15

    AZ91D magnesium alloy was treated by the alternating voltage (AV) treatment technique. The optimal AV-treatment parameters of the alloy were determined by orthogonal experiments. Polarization curve, electrochemical impedance spectroscopy (EIS), and scanning electrochemical microscopy (SECM) were used to understand the effect of AV-treatment on the corrosion resistance of the alloy. AFM, contact angle, and XPS were employed to investigate further the influence of AV-treatment on the properties of the surface film formed on the alloy after AV-treatment. The results showed that a uniform and stable film was formed and the corrosion resistance of AZ91D magnesium alloy was significantly improved after AV-treatment. This was caused by the noticeable change of the chemical structure and semi-conducting properties of the surface film after AV-treatment. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

    Science.gov (United States)

    Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.

    2018-03-01

    Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

  4. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  5. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  6. 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation

    International Nuclear Information System (INIS)

    Singh, Sudhanshu S.; Schwartzstein, Cary; Williams, Jason J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2014-01-01

    Highlights: • Combined 3D microstructural characterization and mechanical properties of inclusions in Al 7075 alloys. • 3D microstructural characterization of inclusions was obtained by X-ray synchrotron tomography. • Mechanical properties of inclusions was obtained by CSM technique in nanoindentation. • Quantitative characterization of volume fraction, size, and morphology of inclusions and porosity. - Abstract: Inclusions (constituent particles) in Al 7075 alloys can be classified as Fe-bearing and Si-bearing inclusions. They play important roles in the deformation behavior, particular under fatigue loading. Thus, in order to understand the deformation behavior under fatigue loading of Al 7075 alloys, it is important to investigate the size and distribution of these inclusions and porosity in the material, along with their mechanical properties. X-ray synchrotron tomography was used to obtain the 3D microstructure of these microconstituents in Al 7075 alloy. Quantitative analysis in terms of volume, size, and morphology of inclusions and porosity was performed. The mechanical properties of these constituent particles along with the matrix were obtained using nanoindentation. Scanning electron microscopy (SEM) and EDS was used to analyze the indentations after testing. The Young’s modulus and hardness of all inclusions were higher than the matrix. The Young’s modulus values of Al 7 Cu 2 Fe, Al 23 Fe 4 Cu, and Mg 2 Si were measured to be 160.2 ± 10.9, 139.5 ± 3.7, and 94.8 ± 7.5 GPa respectively. Values of hardness of Al 7 Cu 2 Fe, Al 23 Fe 4 Cu, and Mg 2 Si were 8.8 ± 0.9, 7.5 ± 0.8, and 5.2 ± 0.5 GPa respectively. Comparison of these values with nanoindentation data in the literature was also conducted

  7. 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Schwartzstein, Cary; Williams, Jason J. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Xiao, Xianghui; De Carlo, Francesco [Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Chawla, Nikhilesh, E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)

    2014-07-25

    Highlights: • Combined 3D microstructural characterization and mechanical properties of inclusions in Al 7075 alloys. • 3D microstructural characterization of inclusions was obtained by X-ray synchrotron tomography. • Mechanical properties of inclusions was obtained by CSM technique in nanoindentation. • Quantitative characterization of volume fraction, size, and morphology of inclusions and porosity. - Abstract: Inclusions (constituent particles) in Al 7075 alloys can be classified as Fe-bearing and Si-bearing inclusions. They play important roles in the deformation behavior, particular under fatigue loading. Thus, in order to understand the deformation behavior under fatigue loading of Al 7075 alloys, it is important to investigate the size and distribution of these inclusions and porosity in the material, along with their mechanical properties. X-ray synchrotron tomography was used to obtain the 3D microstructure of these microconstituents in Al 7075 alloy. Quantitative analysis in terms of volume, size, and morphology of inclusions and porosity was performed. The mechanical properties of these constituent particles along with the matrix were obtained using nanoindentation. Scanning electron microscopy (SEM) and EDS was used to analyze the indentations after testing. The Young’s modulus and hardness of all inclusions were higher than the matrix. The Young’s modulus values of Al{sub 7}Cu{sub 2}Fe, Al{sub 23}Fe{sub 4}Cu, and Mg{sub 2}Si were measured to be 160.2 ± 10.9, 139.5 ± 3.7, and 94.8 ± 7.5 GPa respectively. Values of hardness of Al{sub 7}Cu{sub 2}Fe, Al{sub 23}Fe{sub 4}Cu, and Mg{sub 2}Si were 8.8 ± 0.9, 7.5 ± 0.8, and 5.2 ± 0.5 GPa respectively. Comparison of these values with nanoindentation data in the literature was also conducted.

  8. Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor

    International Nuclear Information System (INIS)

    Abe, F.; Noda, T.; Okada, M.

    1992-01-01

    In order to obtain potential reduced-activation ferritic steels suitable for fusion reactor structures, the effect of alloying elements W and V on the microstructural evolution, toughness, high-temperature creep and irradiation hardening behavior was investigated for simple 9Cr-W and 9Cr-V steels. The creep strength of the 9Cr-W steels increased but their toughness decreased with increasing W concentration. The 9Cr-V steels exhibited poor creep rupture strength, far below that of a conventional 9Cr-1MoVNb steel and poor toughness after aging at 873 K. It was also found that the Δ-ferrite should be avoided, because it degraded both the roughness and high-temperature creep strength. Based on the results on the simple steels, optimized martensitic 9Cr steels were alloy-designed from a standpoint of enough thoughness and high-temperature creep strength. Two kinds of optimized 9Cr steels with low and high levels of W were obtained; 9Cr-1WVTa and 9Cr-3WVTa. These steels indeed exhibited excellent toughness and creep strength, respectively. The 9Cr-1WVTa steel exhibiting an excellent roughness was shown to be the most promising for relatively low-temperature application below 500deg C, where irradiation embrittlement is significant. The 9Cr-3WVTa steel was the most promising for high temperature application above 500deg C from the standpoint of enough high-temperature strength. (orig.)

  9. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  10. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  11. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  12. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    International Nuclear Information System (INIS)

    Rojas Jara, David

    2011-01-01

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M 23 C 6 carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M 23 C 6 precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure evolution and creep

  13. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  14. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  15. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  16. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer

    International Nuclear Information System (INIS)

    Huo Hongwei; Li Ying; Wang Fuhui

    2004-01-01

    A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO 3 · H 2 O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution

  17. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging

  18. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  19. Development of process route for the production of Fe-0.12C-9CR-2W-0.35Y2O3 ODS alloy tubing for Indian FBR application

    International Nuclear Information System (INIS)

    Lakshminarayana, B.; Tonpe, S.; Jha, S.K.; Kapoor, Komal; Dubey, A.K.; Gurunadh, J.; Surender, A.; Deshpande, K.V.K.; Maity, P.K.

    2011-01-01

    In the wake of Nuclear Renaissance, India is playing key role in generation of clean and green Nuclear Energy. It has entered into its second stage Nuclear Power Program on commercial scale with the commencement of construction of 500 MWe Prototype Fast Breeder Reactor (PFBR) at Kalpakkam. Nuclear Fuel Complex (NFC), Hyderabad is playing a crucial role in the manufacture of all the critical sub-assemblies in SS (D9) grade materials for this reactor. The SS(D9) material with controlled cold work is having very good void swelling resistance and high temperature properties, which can sustain fluence of 100 dpa. The paper covers the manufacturing process and characterization of the ODS tubes for fuel clad application. Manufacturing of 9 Cr 2W Y 2 O 3 - ODS martensitic steel fuel cladding tube has been taken up in Nuclear Fuel Complex, Hyderabad with mechanical alloying followed by MS canning of mechanically alloyed powder, upsetting and hot extrusion and subsequently thermo mechanical process. Manufacturing technology of ODS steel tube is critical with respect its chemical composition, dimensional tolerances, Y 2 O 3 particle size and its distribution and achievement of mechanical properties with proper combination of cold working and heat treatment. The paper covers the manufacturing process and characterization of the ODS tubes for fuel clad application. Manufacturing process for the production of ODS alloy (9 Cr 2W Y 2 O 3 - ODS) has been optimized for mass scale production at NFC

  20. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  1. The effect of carbon distribution on deformation and cracking of Ni-16Cr-9Fe-C alloys

    International Nuclear Information System (INIS)

    Hertzberg, J.L.; Was, G.S.

    1995-01-01

    Constant extension rate tensile (CERT) tests and constant load tensile (CLT) tests were conducted on controlled purity Ni-16Cr-9Fe-C alloys. The amount and form of carbon were varied in order to investigate the roles of carbon in solution and as intergranular (IG) carbides in the deformation and IG cracking behavior in 360 C argon and primary water environments. Results show that the strength, ductility and creep resistance of these alloys are increased with carbon present in solid solution, while IG cracking on the fracture surface is suppressed. Alloys containing carbon in the form of IG carbides, however, exhibit reduced strength and ductility relative to carbon in solution, while maintaining high IG cracking resistance with respect to carbon-free alloys. CERT results of commercial alloy 600 and controlled purity, carbon containing alloys yield comparable failure strains and IG cracking amounts. CLT comparisons with creep tests of alloy 600 suggest that alloys containing IG carbides are more susceptible to creep than those containing all carbon in solid solution

  2. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    International Nuclear Information System (INIS)

    Bichler, L.; Ravindran, C.

    2010-01-01

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the α-Mg phase resulted in segregation of Al 2 RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  3. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  4. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  5. Post irradiation fracture properties of precipitation-strengthened alloy D21

    International Nuclear Information System (INIS)

    Huang, F.H.

    1986-03-01

    The precipitation strengthened alloys have the potential for use in fuel cladding and duct applications for liquid metal reactors due to their high strength and low swelling rate. Unfortunately, these high strength alloys tend to exhibit poor fracture toughness, and the effects of neutron irradiation on the fracture properties of the material are of concern. Compact tension specimens of alloy D21 were irradiated in the Experimental Breeder Reactor II to a fluence of 2.7 x 10 22 n/cm 2 (E > 0.1 MeV) at 425, 500, 550 and 600 0 C. Fracture toughness tests on these specimens wre performed using electric potential techniques at temperatures ranging from 205 to 425 C. The material exhibited low postirradiation fracture toughness which increased with either increasing test or irradiation temperature. The tearing modulus, however, increased with increasing irradiation temperature but decreased with increasing test temperature. Results wre analyzed using the J-integral approach. The fracture toughness of irradiated D21 was evaluated essentially following the procedure recommended in ASTM Test Method E813. It was found that the data elimination limits illustrated in E813 were too large for the specimens tested, although the thickness criterion was satisfied. The precautions needed to determine J/sub 1c/ based on a reduced data qualification range were disussed

  6. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  7. Microstructural study on gamma phase stability in U-9 wt% Mo alloy system

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Hussain, M.M.; Singh, R.P.; Neogy, S.; Srivastava, D.; Dey, G.K.

    2009-01-01

    Uranium exists in three polymorphic forms viz., orthorhombic α phase - stable up to 667 deg C, tetragonal β phase - stable between 667 deg C and 771 deg C and bcc γ phase - stable above 771 deg C. When alloying of uranium is done, the alloying additions alter the temperature ranges over which the α, β and γ phases are stable. In addition, they frequently retard the rates at which phase transformations occur. As a result, a number of metastable phases can be obtained in uranium alloys. It has been well known among reactor designers that a pure uranium metal is not suitable for power reactor fuel mainly because of (i) phase changes occurring at lower temperatures and (ii) poor irradiation behavior of α phase. γ phase uranium alloys containing small amount of another metal to stabilize the γ-U solid solution provides good prospects in this respect. U-Mo alloy is one of the prospective materials for low enrichment uranium fuel with high U loading because a solid solution of Mo in the γ-U phase possesses acceptable irradiation and mechanical properties and is formed over a wide range of Mo concentration. In the present work vacuum induction melted and cast U-9 wt% Mo alloy was subjected to different thermo mechanical processing to investigate the stability of the γ phase. The as cast alloy was rolled at 550 deg C and then homogenized at 1000 deg C in the γ phase field for 24 hours followed by (i) water quenching and (ii) furnace cooling to generate two different starting conditions. Two of the water-quenched samples were aged at 500 deg C for 5 days and 14 days and one as-rolled sample was aged at 500 deg C for 5 days. The as-cast, as-rolled, homogenized and aged samples were subjected to optical microscopy and X-ray Diffraction (XRD) investigations. All the samples were also subjected to microhardness measurements. The as cast sample contained predominantly the gamma phase along with inclusions. After homogenizing the alloy at 1000 deg C and quenching in

  8. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  9. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  10. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R., E-mail: raularrabal@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Matykina, E.; Pardo, A.; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Paucar, K. [Gabinete de Corrosion, Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Cod. Postal 25, Lima (Peru); Mohedano, M.; Casajus, P. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Mg alloys with additions of Nd and Gd were exposed to high humidity atmosphere. Black-Right-Pointing-Pointer The increase of Nd or Gd diminished the effect of micro-galvanic couples. Black-Right-Pointing-Pointer Corrosion resistance of the AM50 alloy improved with the addition of Nd or Gd by 43%. Black-Right-Pointing-Pointer Nd and Gd had no significant effect on the corrosion resistance of the AZ91D alloy. - Abstract: AM50 and AZ91D alloys modified with rare earths (RE) were evaluated under atmospheric conditions. Nd and Gd additions resulted in formation of Al{sub 2}RE and Al-Mn-RE compounds and reduction of the fraction of {beta}-phase. According to surface potential maps, RE-containing intermetallics were more noble than the {beta}-phase, but less than Al-Mn inclusions. As a result, the action of micro-galvanic couples depended on the added amount of RE and the initial alloy microstructure. Nd or Gd additions improved the corrosion resistance of the AM50 alloy by up to 43%, but had no significant effect on the corrosion resistance of the AZ91D alloy.

  11. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Pardo, A.; Merino, M.C.; Paucar, K.; Mohedano, M.; Casajús, P.

    2012-01-01

    Highlights: ► Mg alloys with additions of Nd and Gd were exposed to high humidity atmosphere. ► The increase of Nd or Gd diminished the effect of micro-galvanic couples. ► Corrosion resistance of the AM50 alloy improved with the addition of Nd or Gd by 43%. ► Nd and Gd had no significant effect on the corrosion resistance of the AZ91D alloy. - Abstract: AM50 and AZ91D alloys modified with rare earths (RE) were evaluated under atmospheric conditions. Nd and Gd additions resulted in formation of Al 2 RE and Al–Mn–RE compounds and reduction of the fraction of β-phase. According to surface potential maps, RE-containing intermetallics were more noble than the β-phase, but less than Al–Mn inclusions. As a result, the action of micro-galvanic couples depended on the added amount of RE and the initial alloy microstructure. Nd or Gd additions improved the corrosion resistance of the AM50 alloy by up to 43%, but had no significant effect on the corrosion resistance of the AZ91D alloy.

  12. Influence of milling time on microstructure and magnetic properties of Fe{sub 80}P{sub 11}C{sub 9} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, A.H. [Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Ghajari, F., E-mail: fati.ghajari@gmail.com [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Markó, D. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Prashanth, K.G. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Additive manufacturing Center, Sandvik AB, 81181 Sandviken (Sweden)

    2015-12-01

    Fe{sub 80}P{sub 11}C{sub 9} alloy with amorphous/nanocrytalline microstructure has been synthesized by mechanical alloying of the elemental powders. The microstructure, thermal behavior and morphology of the produced powders have been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The crystallite size, lattice strain and fraction of the amorphous phase have been calculated by Rietveld refinement method. The results indicate that the powders microstructure consists of α-Fe(P,C) nanocrystals with an average diameter of 9 nm±1 nm dispersed in the amorphous matrix after 90 h of milling. Moreover, the fraction of amorphous phase initially increases up to 90 h of milling and then decreases after 120 h of milling, as a result of mechanical crystallization and formation of Fe{sub 2}P phase. The magnetic measurements show that while the saturation magnetization decreases continuously with the milling time, the coercivity exhibits a complicated trend. The correlation between microstructural changes and magnetic properties has been discussed in detail. - Highlights: • Glass formation was investigated in Fe{sub 80}P{sub 11}C{sub 9} by mechanical alloying. • Structural parameters were calculated by Rietveld refinement method. • Milling first increased and then decreased the fraction of amorphous phase. • Magnetic properties were significantly changed upon milling.

  13. Behavior of alloying elements during anodizing of Mg-Cu and Mg-W alloys in a fluoride/glycerol electrolyte

    Czech Academy of Sciences Publication Activity Database

    Palagonia, M. S.; Němcová, A.; Kuběna, Ivo; Šmíd, Miroslav; Gao, S.; Liu, H.; Zhong, X. L.; Haigh, S. J.; Santamaria, M.; Di Quarto, F.; Habazaki, H.; Skeldon, P.; Thomson, G.

    2015-01-01

    Roč. 162, č. 9 (2015), C487-C494 ISSN 0013-4651 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : alloying element * anodizing * ion beam analysis * magnesium * TEM Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 3.014, year: 2015 http://jes.ecsdl.org/content/162/9/C487.full

  14. Effect of CaO on Hot Workability and Microstructure of Mg-9.5Zn-2Y Alloy

    Science.gov (United States)

    Kwak, Tae-yang; Kim, Daeguen; Yang, Jaehack; Yoon, Young-ok; Kim, Shae K.; Lim, Hyunkyu; Kim, Woo Jin

    Mg-Zn-Y system alloys have been a great interest because Mg-Zn-Y alloys with I-phase exhibited high ductility at room and elevated temperatures. According to our preliminary experiments, the addition of CaO improved strength, but the process window became narrow. Therefore, the aim of current work was to find optimum extrusion conditions for CaO added Mg-Zn-Y alloys by processing maps. The 0.3 wt.% of CaO added Mg-9.5Zn-2Y (Mg95.6Zn3.8Y0.6) alloy was prepared by casting into steel mold and homogenizing. Hot compression test were performed in the Gleeble machine at temperature range of 250-400 °C with various strain rates. The alloys were extruded with a reduction ratio of 20:1. To analyze the microstructure and texture, optical micrograph, scanning electron microscope and electron backscattered diffraction were used. Moreover, we investigated the effects of metallic Ca addition in this alloy to compare with the addition of CaO.

  15. Hydrogen diffusion in La1.5Nd0.5MgNi9 alloy electrodes of the Ni/MH battery

    International Nuclear Information System (INIS)

    Volodin, A.A.; Denys, R.V.; Tsirlina, G.A.; Tarasov, B.P.; Fichtner, M.; Yartys, V.A.

    2015-01-01

    Highlights: • Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D H demonstrates a maximum (2 × 10 −11 cm 2 /s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D H changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10 −11 cm 2 /s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH x

  16. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  17. Oxidation in air of two refractory alloys (Nicral D and Hastelloy X) at 900 and 1100 deg. C

    International Nuclear Information System (INIS)

    Sannier, J.; Dominget, R.; Darras, R.

    1960-01-01

    The oxidation in air of two refractory alloys (Nicral D and Hastelloy X) has been studied at 900 and 1100 deg. C, by means of recording thermo-balances and microscopic cross section examination. At 900 deg. C, the surface oxidation rates of the two alloys are quite similar, but at 1100 deg. C the alloy Nicral D oxidizes faster than the alloy Hastelloy X. On the other hand, after heating at 1100 deg. C for 150 hours, Nicral D shows both intergranular oxidation and a small amount of internal oxidation, whereas Hastelloy X is especially subject to internal oxidation. In addition, two descaling methods were compared: an electrolytic method, in a sodium hydroxide-sodium carbonate bath, and a chemical method using a sodium nitrate-sodium peroxide bath; the latter appears suitable only for Hastelloy X. Reprint of a paper published in Journal of nuclear materials, 3, p. 213-225, 1959 [fr

  18. Microstructure and Hardness of Mg - 9Li - 6Al Alloy After Different Variants of Solid Solution Treatment

    Science.gov (United States)

    Zheng, Haipeng; Fei, Pengfei; Wu, Ruizhi; Hou, Legan; Zhang, Milin

    2018-03-01

    The microstructure and the hardness of cast magnesium alloy Mg - 9% Li - 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 - 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

  19. Spectrographic analysis of uranium-based alloys; Analyse spectrographique d'alliages a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G.; Blum, P.

    1959-07-01

    The authors describe a spectrographic method for dosing cobalt in cobalt-uranium alloys with cobalt content from 0.05 to 10 per cent. They describe sample preparation, alloy solution, spectrographic conditions, and photometry operations. In a second part, they address the dosing of boron in uranium borides. They implement the so-called 'porous cup' method. Boride is dissolved by fusion with Co{sub 3}-NaK [French] Uranium-Cobalt: il est decrit une methode spectrographique de dosage de cobalt dans des alliages cobalt-uranium pour des teneurs de 0,05 pour cent a 10 pour cent de Co. On opere sur solution avec le fer comme standard interne. Borure d'Uranium: ici encore on opere par la methode dite 'porous cup', le fer etant conserve comme standard interne. Le borure est mis en solution par fusion avec Co{sub 3}NaK. (auteurs)

  20. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  1. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy.

    Science.gov (United States)

    Banerjee, P Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R K Singh

    2014-08-22

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  2. Role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by Al4C3

    International Nuclear Information System (INIS)

    Liu Shengfa; Zhang Yuan; Han Hui

    2010-01-01

    A novel Mg-50% Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in situ synthesis process, the role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by this master alloy has been investigated. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After addition of 0.6% Al 4 C 3 or combined addition of 0.6% Al 4 C 3 and 0.27% Mn, the average grain size of AZ91D decreased dramatically from 360 μm to 210 μm, and from 360 μm to130 μm, respectively. However, no further refinement of grain size was achieved with additional amount of Mn exceeding 0.27% for AZ91D alloy refined by 0.6% Al 4 C 3 in the present investigation. Al-C-O-Mn-Fe-rich intermetallic particles with an Al-C-O-rich coating film, often observed in the central region of magnesium grains of the AZ91D alloy treated by the combination of Al 4 C 3 and Mn, are proposed to be the potent nucleating substrates for primary α-Mg.

  3. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water

    Science.gov (United States)

    Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu

    2018-05-01

    The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.

  4. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  5. The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    Directory of Open Access Journals (Sweden)

    Pakieła W.

    2016-09-01

    Full Text Available In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m.

  6. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Feliu, S.; Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2 . A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  7. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications

    International Nuclear Information System (INIS)

    Guo, Shibo; Chu, Aimin; Wu, Haijiang; Cai, Chunbo; Qu, Xuanhui

    2014-01-01

    Highlights: • Ti–24Nb–4Zr–7.9Sn alloy is prepared by powder metallurgy method. • The alloy prepared at 1250 °C for 2 h has more β-matrix and tiny α-precipitation. • The alloy prepared at 1250 °C for 2 h possesses good mechanical properties. • The alloy prepared at 1250 °C for 2 h exhibits better corrosion resistance. - Abstract: Ti–24Nb–4Zr–7.9Sn alloy was prepared by Powder Metallurgy (PM) method using titanium hydride powder, niobium powder, zirconium powder, and tin powder as raw materials. The effect of sintering processing on microstructure, mechanical properties, and corrosion resistance was investigated in details. The alloy possessed dominant β-matrix and a little α-precipitation. The mechanical properties of the alloy sintered at 1250 °C for 2 h were better than those of the alloys with other sintering processing, which would avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, the electrochemical behaviors in a simulated body fluid (Hank’s solution and simulated saliva solution) were also evaluated. Potentiodynamic polarization curves exhibited that the sample sintered at 1250 °C for 2 h had better corrosion properties than those of other sintering processing. The good corrosion resistance combined with better mechanical biocompatibility made the Ti–24Nb–4Zr–7.9Sn alloy suitable for use as orthopedic implants

  8. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  9. Abridgment of nano and micro length scale mechanical properties of novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys using object oriented finite element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankur [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826 (United States); Kumar, Vinod [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Nair, Jitin [Department of Materials and Metallurgical Engineering, National Institute of Foundry and Forge Technology, Ranchi 834003 (India); Bansal, Ankit [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Tata Steel Ltd., Jamshedpur, Jharkhand 831001 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2015-06-15

    Highlights: • Dual phase (α + β) Mg–9Li–7Al–1Sn (LAT971) and Mg–9Li–5Al–3Sn–1Zn (LATZ9531) alloys. • Effective elastic modulus estimated from finite element method (FEM). • Correlation of nanoscale mechanical data with microstress distribution. • Precipitates of Mg–Al–Li act as stress relaxer and Mg–Li–Sn as stress concentrator. • Higher local heterogeneous stress distribution (∼0.6–5.7 GPa) in LATZ9531 alloys. - Abstract: In the recent years, magnesium–lithium (Mg–Li) alloys have attracted considerable attention/interest due to their high strength-to-density ratio and damping characteristic; and have found potential use in structural and biomedical applications. Here the mechanical behavior of novel Mg–9 wt.% Li–7 wt.% Al–1 wt.% Sn (LAT971) and Mg–9 wt.% Li–5 wt.% Al–3 wt.% Sn–1 wt.% Zn (LATZ9531) alloys is reported. Both, as cast and thermomechanically processed alloys have been studied which possess dual phase microstructure. Nanoindentation data have been utilized to envisage the elastic modulus of alloy via various micromechanics models (such as rule of mixtures, Voigt–Reuss, Cox model, Halpin–Tsai and Guth model) in order to estimate the elastic modulus. Object oriented finite element modeling (FEM) has been performed to predict stress distribution under tensile and compressive strain state. Close match between Halpin–Tsai model and FEM results show the abridgment of nano length scale property to evolution of microscopic stress distribution in novel LAT971 and LATZ9531 Mg–Li–Al based alloys.

  10. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe diecasting alloy

    Directory of Open Access Journals (Sweden)

    Vončina M.

    2017-01-01

    Full Text Available The microstructure features and hardness of AlSi9Cu3(Fe die casting alloy was investigated in the presence of Zr addition. The cast alloys were undergone the solutionizing treatment 2 h at 500°C followed by artificial aging at 180°C for 5 h. Optical microscopy and electron micro-analyzer were used to study the formation of different intermetallic phases. The hardness was tested for all samples at 25°C. The results revealed that the intermetallic phase, based on (Al,Si(Zr,Ti, forms when Zr is added in the investigated alloy, while the T6 heat treatment does not influence on the formation of Zr-bearing phase. Results also indicate that the hardness slightly increases in the AlSi9Cu3 alloy in as-cast state when Zr is added, while after T6 heat treatment increases by 50% in the alloy without Zr and by 61% in the alloy with Zr addition.

  11. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  12. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    P. Chakraborty Banerjee

    2014-08-01

    Full Text Available The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS in 0.1 M sodium chloride solution (NaCl. Electrical equivalent circuit (EEC was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  13. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  14. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  15. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y.; Lee, E.S.

    2014-01-01

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis

  16. TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2018-04-01

    The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.

  17. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  18. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  19. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  20. X-ray topography of uranium alloys; Topographie aux rayons X d'alliages d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A description of the structure of uranium alloys has been made using the data obtained by X-ray diffraction techniques derived from the Berg-Barrette method. In the first.stage the use of a monochromatic beam of X-rays having a very low divergence makes it possible to obtain very reproducible and exact numerical data concerning the grain and sub-grain sizes, and also the distribution of the sizes. It is thereby possible to detect any disorientation greater than 30 seconds of arc.The results obtained have been completed using a variable incidence device which- gives simultaneously an overall picture of a grain and an idea of the importance of internal disorientations; a more rigorous measurement of this latter parameter is then deduced from the Debye-Scherrer diagrams obtained using a fine-focus equipment. Observations are carried out on various one-phase or two phase uranium alloys which are compared successively to technical and to high-purity uranium. It is shown that the use of X-ray topographies, although limited in certain respects, allows a quantitative characterization of the structure. (author) [French] Une description des structures d'alliages d'uranium a ete faite a partir des donnees fournies par des techniques de diffraction de rayons X derivees de la methode de BERG--BARRETT. Dans une premiere etape, l'utilisation d'un faisceau de rayons X monochromatique et de tres faible divergence permet d'obtenir des donnees numeriques precises et tres reproductibles, relatives aux dimensions des grains, des sous-grains et a la distribution de ces grandeurs. Toute desorientation superieure a 30 secondes d'arc peut ainsi etre decelee. Les resultats obtenus ont ete completes en utilisant un montage a incidence variable, qui fournit simultanement l'image globale d'un grain et l'ordre de grandeur des desorientations internes; une mesure plus rigoureuse de ce dernier parametre se deduit ensuite de diagrammes DEBYE SHERRER realises avec un montage a foyer fin. Des

  1. Prognostic Health Management of DoD Assets

    Science.gov (United States)

    2015-06-01

    2011;528(22):6708-14. [9] Andreykiv O, Skalsky V, Serhiyenko O, Rudavskyy D. Acoustic emission estimation of crack formation in aluminium alloys ...Measurement and interpretation of fatigue crack growth in 7075 aluminum alloy using acoustic emission monitoring. Journal of testing and evaluation...Gokhale A. Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique. Materials Science and Engineering: A

  2. Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9

    DEFF Research Database (Denmark)

    Holgate, Tim; Han, Li; Wu, NingYu

    2014-01-01

    A customized Fe–Cr alloy that has been optimized for high temperature applications in oxidizing atmospheres has been interfaced via spark plasma sintering (SPS) with a p-type thermoelectric oxide material: calcium cobaltate (Ca3Co4O9). The properties of the alloy have been analyzed for its...... calcium and chromium in the interface that is highly resistive at room temperature, but conducting at the intended thermoelectric device hot-side operating temperature of 800 °C. As the alloy is well matched in terms of its thermal expansion and highly conducting compared to the Ca3Co4O9, it may...... be further considered as an interconnect material candidate at least with application on the hot-side of an oxide thermoelectric power generation module....

  3. 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory

    International Nuclear Information System (INIS)

    Mehrabi, R; Kadkhodaei, M

    2013-01-01

    This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)

  4. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry ...

  5. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    International Nuclear Information System (INIS)

    Li, Weiping; Li, Wen; Zhu, Liqun; Liu, Huicong; Wang, Xiaofang

    2013-01-01

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg 2 SiO 4 with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na 2 SiO 3 ·9H 2 O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg 2 SiO 4 with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction

  6. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  7. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    Science.gov (United States)

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  8. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    Science.gov (United States)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  9. Preparation and characterization of inorganic and organic coatings on AZ91D magnesium alloy with electroless plating pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.; Li, Q.; Zhang, H.X.; Wang, S.Y.; Liu, F. [School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715 (China); Yang, X.K. [School of Materials Science and Engineering, Southwest University Chongqing, 400715 (China)

    2011-09-15

    In this paper, a protective coating scheme was applied for the corrosion protection of AZ91D magnesium alloy. Electroless Ni coating (EN coating) as bottom layer, electrodeposited Ni coating (ENN coating), and silane-based coating (ENS coating) as top layer, respectively, were successfully prepared on AZ91D magnesium alloy by combination techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in neutral 3.5 wt% NaCl solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The corrosion testing showed that the three kinds of coatings all could provide corrosion protection for AZ91D magnesium alloy to a certain extent, and the corrosion resistance of ENN and ENS was superior to EN. In order to further study the corrosion protection properties of ENN and ENS, a comparative investigation on the evolution of EIS of ENN and ENS was carried out by dint of immersion test in neutral 3.5 wt% NaCl solution. The results indicated that, compared with ENN, the ENS could provide longer corrosion protection for AZ91D magnesium alloy. It is significant to determine the barrier effect of each coating, which could provide reference for industry applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection

    Science.gov (United States)

    Maurya, Rita; Siddiqui, Abdul Rahim; Balani, Kantesh

    2018-06-01

    An environment-friendly phosphate chemical conversion (PCC) coating has been deposited on novel LAT971 (Mg-9 wt%Li-7 wt%Al-1 wt%Sn) and LATZ9531 (Mg-9 wt%Li-5 wt%Al-3 wt%Sn-1 wt%Zn) alloys for improving their corrosion resistance. A dense and homogeneous flower like morphology (∼30 μm thick) was observed on the PCC coated Mg-Li based alloys. The presence of calcium hydrogen phosphate hydrate, tricalcium phosphate and trimagnesium phosphate were confirmed from the X-ray diffraction and X-ray photoelectron spectroscopy analysis. A lower corrosion current density of 6.74 × 10-7 mA/cm2 and 5.39 × 10-7 mA/cm2 was obtained for PCC coated alloys in 3.5% NaCl aqueous solution than that of uncoated LAT971 (0.82 mA/cm2) and LATZ9531 (0.34 mA/cm2) alloys, respectively, which offers corrosion protection efficiency of >99%. Electrochemical impedance spectroscopy (EIS) has revealed that the inner PCC coating (at coating/substrate interface) delay the direct contact between electrolyte and substrate, which offered higher charge transfer resistance (>4 orders of magnitude) than that of uncoated alloys. Thus, the PCC coating provides an effective corrosion protection to the ultra-lightweight LAT971 and LATZ9531 alloys surface and may be helpful in proving good anchoring with the top organic coatings or paints.

  11. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  12. Geometric Effects of La1+xMg2-xNi9 (x=0.0~1.0) Ternary Alloys on Their Hydrogen Storage Capacities

    Institute of Scientific and Technical Information of China (English)

    Zhiqing YUAN; Guanglie LU; Bin LIAO; Yongquan LEI

    2005-01-01

    Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9(x=0.0~1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.

  13. Influence of high-energy ion implantation on the microstructure of Sn - 9,8 wt. % Zn alloy

    International Nuclear Information System (INIS)

    Gusakova, O.V.

    2016-01-01

    The results of investigation of influence of Xe ion implantation on the microstructure of Sn - 9,8 wt. % Zn alloy are represented/ Analysis of the experimental results shows that the high-energy ion implantation of Xe causes a change in the particle size of zinc. (authors)

  14. Electronic Structure of Fe-Pd Alloys Studied by Using Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nahm, T-U. [Hanyang University, Seoul (Korea, Republic of)

    2017-07-15

    We investigated the electronic structure of Fe{sub x}Pd{sub 1−x} (x = 0.25, 0.5, and 0.75) alloys by measuring valence-band and core-level photoelectron spectra. The Fe 3d and Pd 4d partial spectral weights were determined by using the Cooper minimum phenomenon of the Pd 4d photoionization cross section. We found that the experimentally determined Fe partial spectral weight of Fe{sub 50}Pd{sub 50} alloy differ much from the band calculation results, and we could not observe a spectral structure due to the Pd 4d states mixed with the Fe 3d majority states at the binding energy of 0.9 eV. We suggest that a plausible explanation for these discrepancies should be the spin-dependent lifetime of the Fe 3d states.

  15. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Barchiche, C.-E.; Rocca, E.; Juers, C.; Hazan, J.; Steinmetz, J.

    2007-01-01

    Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na 3 PO 4 .12 H 2 O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau

  16. Thermal treatment of the Fe78 Si9 B13 alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation

    International Nuclear Information System (INIS)

    Lopez M, A.

    2005-01-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe 78 Si 9 B 13 like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe 78 Si 9 B 13 in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  17. Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures

    Directory of Open Access Journals (Sweden)

    Xuezhi Lin

    2018-01-01

    Full Text Available Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM but the biocompatibility of these three-dimensional printing (3D-printed plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.

  18. Study of the effects of austenitizing and tempering heat treatments on the alloy HT-9

    International Nuclear Information System (INIS)

    Redmon, J.W.

    1982-01-01

    This paper investigates the potential use of the ferritic alloy Sandvik HT-9 (12 Cr - 1 Mo) as an alternative to stainless steels used in high-neutron-fluence environments. The neutron radiation influences embrittlement where the impact-energy versus test-temperature curve is seen displaced to the right. As a result, commercially effective solutioning and tempering processes are needed to suppress this effect in the pre-irradiated condition. The effects of austenitizing treatments on the impact energy of HT-9 were identified. 18 figures, 6 tables

  19. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    3Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, ... To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of ... process that lead to inflammatory cascades which reduce bio- ... tions regarding their application as protective films on load- ... Experimental.

  20. Numerical analysis of twin thickening process in magnesium alloys

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Stratil, Luděk; Čížek, J.; Ghaderi, A.; Barnett, M.

    2017-01-01

    Roč. 124, FEB (2017), s. 9-16 ISSN 1359-6454 R&D Projects: GA ČR GJ15-21292Y Institutional support: RVO:68081723 Keywords : Magnesium alloy * Twinning * Crystal plastic ity * FEM Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 5.301, year: 2016

  1. Microstructural characterization of Cu82.3Al8.3Mn9.4 shape memory alloy after rolling

    Directory of Open Access Journals (Sweden)

    Mirko Gojić

    2017-09-01

    Full Text Available In this paper, the microstructure of Cu82.3Al8.3Mn9.4 (in wt. % shape memory alloy after hot and cold rolling was investigated. The Cu82.3Al8.3Mn9.4 alloy was produced by a vertical continuous casting method in the form a cylinder rod of 8 mm in diameter. After the casting, hot and cold rolling was performed. By hot rolling a strip with a thickness of 1.75 mm was obtained, while by cold rolling a strip with a thickness of 1.02 mm was produced. After the rolling process, heat treatment was performed. Heat treatment was carried out by solution annealing at 900 °C held for 30 minutes and water quenched immediately after heating. The microstructure characterization of the investigated alloy was carried out by optical microscopy (OM, scanning electron microscopy (SEM equipped with a device for energy dispersive spectroscopy (EDS. Phase transformation temperatures and fusion enthalpies were determined by differential scanning calorimetry (DSC method. The homogenous martensite microstructure was confirmed by OM and SEM micrographs after casting. During rolling the two-phase microstructure occurred. Results of DSC analysis showed martensite start (Ms, martensite finish (Mf, austenite start (As and austenite finish (Af temperatures.

  2. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  3. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Chang, Shiuan-Ho; Niu, Liyuan; Su, Yichang; Wang, Wenquan; Tong, Xian; Li, Guangyu

    2016-01-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  4. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shiuan-Ho, E-mail: 1802186169@qq.com [College of Electronic Information and Mechatronic Engineering, Zhaoqing University, Zhaoqing Road, Duanzhou District, Zhaoqing, Guangdong, 526061 (China); Niu, Liyuan [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Su, Yichang [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Wang, Wenquan [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Tong, Xian [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China)

    2016-03-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  5. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiping, E-mail: liweiping@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Wen [AVIC Beijing Aeronautical Manufacturing Technology Research Institue, Beijing 100024 (China); Zhu, Liqun; Liu, Huicong; Wang, Xiaofang [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-04-20

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg{sub 2}SiO{sub 4} with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na{sub 2}SiO{sub 3}·9H{sub 2}O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg{sub 2}SiO{sub 4} with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction.

  6. Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology

    Science.gov (United States)

    Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.

    2018-07-01

    Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet  =  702 µm  ±  1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet  =  176 µm  ±  7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.

  7. First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenguan, E-mail: liuwenguan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Qian, Yuan; Zhang, Dongxun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Wei, E-mail: liuwei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni–TM–H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni–H bonds which are the source of the attraction to H in the Ni–TM–H system. The obviously covalent-like Cr–H and Co–H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni–Zn–H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.

  8. Structural and electrochemical behavior of sol-gel ZrO2 ceramic film on chemically pre-treated AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Li Qing; Chen Bo; Xu Shuqiang; Gao Hui; Zhang Liang; Liu Chao

    2009-01-01

    In the present investigation sol-gel-based ZrO 2 ceramic film was obtained using zirconium acetate as the precursor material. The film was deposited on AZ91D magnesium alloy by a dip-coating technique. An uniform stannate conversion coating as chemical pretreatment was employed as an intermediate layer prior to deposition of the ZrO 2 film in order to provide advantage for the formation of sol-gel-based ZrO 2 layer. The corrosion properties, structure, composition and morphology of these coatings on AZ91D magnesium alloy were studied by potentiodynamic polarization tests, EIS, XRD, SEM, respectively. According to the electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environment-friendly surface treatment.

  9. A 3D printed superconducting aluminium microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Creedon, Daniel L. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Sercombe, Timothy B. [School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley 6009 (Australia)

    2016-07-18

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  10. A 3D printed superconducting aluminium microwave cavity

    International Nuclear Information System (INIS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E.; Sercombe, Timothy B.

    2016-01-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  11. A 3D printed superconducting aluminium microwave cavity

    Science.gov (United States)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  12. Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions

    International Nuclear Information System (INIS)

    Yan Na; Dai Fu-Ping; Wang Wei-Li; Wei Bing-Bo

    2011-01-01

    The nonequilibrium solidification of liquid Al 72.9 Ge 27.1 hypoeutectic alloy is accomplished by using single-axis acoustic levitation. A maximum undercooling of 112K (0.16T L ) is obtained for the alloy melt at a cooling rate of 50 K/s. The primary (Al) phase displays a morphological transition from coarse dendrite under a normal conditions to equiaxed grain under acoustic levitation. In the (Al)+(Ge) eutectic, the (Ge) phase exhibits a conspicuous branched growth morphology. Both the primary (Al) dendrites and (Al)+(Ge) eutectics are well refined and the solute content of the primary (Al) phase is extended under acoustic levitation. The calculated and experimental results indicate that the solute trapping effect becomes more intensive with the enhancement of bulk undercooling. (cross-disciplinary physics and related areas of science and technology)

  13. Hydrogen diffusion in La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrodes of the Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, A.A. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Denys, R.V. [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway); Tsirlina, G.A. [Department of Electrochemistry, Moscow State University, Moscow (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Fichtner, M. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway)

    2015-10-05

    Highlights: • Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D{sub H} demonstrates a maximum (2 × 10{sup −11} cm{sup 2}/s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D{sub H} changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10{sup −11} cm{sup 2}/s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH{sub x}.

  14. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R., E-mail: raularrabal@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Paucar, K. [Gabinete de Corrosion, Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Cod. Postal 25, Lima (Peru); Garces, G. [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Nd addition modified the microstructure of AM50 and AZ91D magnesium alloys. Black-Right-Pointing-Pointer Volume of {beta}-Mg{sub 17}Al{sub 12} phase was reduced and Al{sub 2}Nd/Al-Mn-Nd particles were formed. Black-Right-Pointing-Pointer Nd-containing intermetallics revealed lower potential than Al-Mn inclusions. Black-Right-Pointing-Pointer 0.7-0.8 wt.% Nd reduced the corrosion rate of AM50 and AZ91D alloys by 90%. - Abstract: The corrosion performance of AM50 and AZ91D alloys containing up to 1.5 wt.% Nd was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl at 22 Degree-Sign C. The alloys were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and surface potential maps. In Nd-containing alloys, formation of Al{sub 2}Nd and Al-Mn-Nd intermetallic compounds reduced the volume fraction and modified the morphology of the {beta}-Mg{sub 17}Al{sub 12} phase. The addition of Nd improved the corrosion resistance of the alloys due to increased passivity of the surface film and suppression of micro-galvanic couples.

  15. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  16. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide ∼800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding

  17. Obtaining of U-2.5Zr7.5Nb and U-3Zr-9Nb alloys by sintering process

    International Nuclear Information System (INIS)

    Mazzeu, Thiago de Oliveira; Paula, Joao Bosco de; Ferraz, Wilmar Barbosa; Santos, Ana Maria Matildes dos; Brina, Jose Giovanni Mascarenhas

    2011-01-01

    The development of metallic fuels with low enrichment to be used in research and test reactors, as well in the future pressurized water reactors, focuses on the search for uranium alloys of high density. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte is developing the U-2.5Zr-7.5Nb and U- 3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed at 400MPa and then sintered under a vacuum of about 5 x 10-6 Torr at temperatures ranging from 1050 deg to 1300 deg C. The densities of the alloys were measured geometrically and by hydrostatic method using water. The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the elements of alloying were identified by energy dispersive X-ray spectroscopy (SEM/EDS) analysis. The obtained results showed a small increasing density with rising sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was also qualitatively observed that the superficial oxidation of the pellets increased with increasing sintering temperature thus avoiding the fusion of the alloys at higher temperatures. (author)

  18. Self-assembled nano-patterns in strained 2D metalic alloys: stripes vs. islands

    Czech Academy of Sciences Publication Activity Database

    Kotrla, Miroslav; Weber, S.; Much, F.; Biehl, M.; Kinzel, W.

    2007-01-01

    Roč. 13, - (2007), s. 70-75 ISSN 1335-1532 EU Projects: European Commission(XE) 16447 - MAGDOT Grant - others:NSF DMR Award(DE) 0502737 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanoscale pattern formation * selfassembly * coarsening of 2D islands * metalic alloys * misfit-induced strain * computer modeling and simulation. Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Hydrogen sorption and corrosion properties of La{sub 2}Ni{sub 9}CoSn{sub 0.2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna; Adamczyk, Lidia [Czestochowa Univ. of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk; Hackemer, Alicja [Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2018-02-15

    The hydrogenation and corrosion behaviour of La{sub 2}Ni{sub 9} . CoSn{sub 0.2} alloy was analysed in respect of its use in Ni-MH batteries. It has been proved that the presence of tin in the alloy causes a decrease in hydrogen equilibrium pressure. In the electrochemical studies several techniques, such as chronopotentiometry, multi-potential steps, linear sweep voltammetry and the potentiokinetic polarization were applied to characterize the electrochemical properties of a La{sub 2}Ni{sub 9}CoSn{sub 0.2} powder composite electrode. During long cycling, powder particles undergo micro-cracking or other forms of surface development causing a progressive increase in the exchange current density of the H{sub 2}O/H{sub 2} system, but, on the other hand, this increase favours corrosion processes such as the electrode material's oxidation. This is also reflected in the capacity loss values.

  20. Crystallization of an amorphous Fe72Ni9Si8B11 alloy upon laser heating and isothermal annealing

    International Nuclear Information System (INIS)

    Girzhon, V.V.; Smolyakov, A.V.; Yastrebova, T.S.

    2003-01-01

    With the use of methods of x-ray diffraction, resistometric and metallographic analyses specific features of crystallization and phase formation in amorphous alloy Fe 72 Ni 9 Si 8 B 11 are studied under various heating conditions. It is shown that laser heating results in alloy crystallization by an explosive mechanism when attaining a certain density of irradiation power. It is stated that ribbon surface laser heating with simultaneous water cooling of an opposite surface allows manufacturing two-layer amorphous-crystalline structures of the amorphous matrix + α-(Fe, Si) - amorphous matrix type [ru

  1. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  2. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  3. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  4. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  5. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  6. Grain refinement of AZ91D alloy by intensive melt shearing and its persistence after remelting and isothermal holding

    Directory of Open Access Journals (Sweden)

    Zuo Yubo

    2013-01-01

    Full Text Available Intensive melt shearing has a significant grain refining effect on some light alloys. However, the persistence of the grain refining effect during isothermal holding and remelting is still unclear, although it is very important for the practical application. In this study, intensive melt shearing was achieved in a twin-screw mechanism to investigate its grain refining effect on AZ91D magnesium alloy. The refinement mechanism was discussed and the persistence of grain refinement after remelting and isothermal holding was also studied. A Zeiss imaging system with polarized light was used for quantitative measurement of grain size. The results show that the intensive melt shearing has a significant grain refining effect on AZ91D magnesium alloy. With the application of intensive melt shearing, the grain size of AZ91D magnesium alloy can be reduced from 530 μm (for a typical as-cast microstructure to 170 μm, which is about 70% size reduction. The grain refinement achieved by the intensive melt shearing can be partially kept after isothermal holding and remelting. It is believed that the refinement effect was mainly due to the finer and well dispersed oxide particles formed by high intensive shearing. The smaller size of oxide particles and their slow motion velocity in the sheared melt could make important contributions to the remained grain refinement.

  7. The Influence of Home Scrap on Porosity of MgAl9Zn1 Alloy Pressure Castings

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2017-03-01

    Full Text Available The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs related to the production of pressure castings.

  8. Amorphous phase formation in the Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 ternary alloys studied by molecular dynamics

    International Nuclear Information System (INIS)

    Aliaga, L.C.R.; Schimidt, C.S.; Lima, L.V.; Domingues, G.M.B.; Bastos, I.N.

    2016-01-01

    Amorphous alloys presents better mechanical and physical properties than its crystalline counterparts. However, there is a scarce understanding on structure - properties relationship in this class of materials. This paper presents the results of the molecular dynamics application to obtain an atomistic description of melting, solidification and the glass forming ability in the ternary Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 alloys. In the study we used the EAM potential and different cooling rates, β = 0.1, 1 and 100 K/ps to form the amorphous phase in a system consisting of 32,000 atoms by using the free code LAMMPS. The solidus and liquidus temperatures, on a heating rate of the 5 K/ps, were obtained. Also, on the cooling down step, it was observed that the glass transition temperature (T_g) decreases as cooling rate increases. The structural evolution was analyzed through the radial distribution functions and Voronoi polyhedra. Furthermore, it was determined the evolution of viscosity upper T_g, as well as the fragility (m) parameter for each amorphous alloy. The thermal parameters of the simulation obtained are compared with those of the experiments. (author)

  9. Study of the reactions 9Be (d, a0) 7Li, 9Be (d, a1) 7Li*, 9Be (dt)8Be and 9Be (dp0) 10Be from 300 to 1000 keV

    International Nuclear Information System (INIS)

    Bertrand, F.; Grenier, G.; Pornet, J.

    1968-01-01

    We present the excitation curves, the angular distributions and the total cross-sections for the reactions: 9 Be (d α 0 ) 7 Li, 9 Be (d α 1 ) 7 Li, 9 Be (d, t) 8 Be, 9 Be (dp 0 ) 10 Be, in the energy range from 300 keV to 1 MeV. Our results are in good agreement with the few studies already carried out. In order that the results be presented in absolute values, we have normalized them with those of BIGGERSTAFF. (author) [fr

  10. High Temperature Silicides and Refractory Alloys Symposium Held in Boston, Massachusetts on November 29 -December 2, 1993. Volume 322

    Science.gov (United States)

    1993-12-02

    DENSIFICATION KINETICS DURING SINTERING OF OXIDE-DISPERSED TUNGSTEN ALLOYS .............. 483 Li-Chyong Chen and Bernard P. Bewlay *MICROSTRUCTURES AND...and Intermetallics, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. 0. Stiegler (TMS, Warrendale, PA, 19 9 0)p.111. 4. A. K. Vasudivan and J. J...Kaufman in High Temaerature Ordered Intermetallic Alloys IV, edited by L. Johnson, J. Stiegler and D. Pope (Mater. Res. Soc. Proc. M, Pittsburgh, PA, 1991

  11. Copper alloys disintegration using pulsating water jet

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klich, Jiří; Foldyna, Josef; Hloch, Sergej; Królczyk, J. B.; Cárach, J.; Krolczyk, G.

    2016-01-01

    Roč. 82, March 2016 (2016), s. 375-383 ISSN 0263-2241 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * generation of pulses * disintegration * surface morphology * copper alloys Subject RIV: JQ - Machines ; Tools Impact factor: 2.359, year: 2016 http://ac.els-cdn.com/S0263224116000154/1-s2.0-S0263224116000154-main.pdf?_tid=8f8d1de6-99e9-11e6-afbc-00000aacb362&acdnat=1477314089_59912e52847e91e2030d6a1afd09e7b2

  12. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    Science.gov (United States)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  13. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  14. Comparing the dynamic and thermodynamic behaviors of Al{sub 86}Ni{sub 9}-La{sub 5}/(La{sub 0.5}Ce{sub 0.5}){sub 5} amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.H. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Wang, W.M. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: weiminw@sdu.edu.cn; Bian, X.F.; Zhang, J.T.; Li, R.; Wang, L. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-06-10

    The dynamic viscosities and thermodynamic dilatometric behaviors of Al{sub 86}Ni{sub 9}La{sub 5} and Al{sub 86}Ni{sub 9}(La{sub 0.5}Ce{sub 0.5}){sub 5} amorphous alloys were investigated using viscometer, differential scanning calorimetry (DSC) and conventional dilatometer. Comparing with Al{sub 86}Ni{sub 9}La{sub 5} alloy, Al{sub 86}Ni{sub 9}(La{sub 0.5}Ce{sub 0.5}){sub 5} alloy exhibits a larger viscosity and a larger average thermal expansion coefficient in the linear expansion zone ({alpha}{sub exp}). The viscosity and thermal expansion data suggest that the partial substitution La by Ce decreases the quantity of free volume in Al-Ni-La system by improving the continuous degree of atomic size, which leads to the improvement of glass forming ability.

  15. Activation product transport in a FLiBe-vanadium alloy-HT9 system

    International Nuclear Information System (INIS)

    Klein, A.C.; Sze, D.K.

    1985-01-01

    An assessment is made of the gamma radiation hazards likely to be found around a fusion reactor heat transfer and tritium breeding loop which employs a vanadium alloy for the blanket and first wall structure and the ferritic-steel HT9 for the remainder of the loop. The coolant/tritium breeding fluid is the molten metallic salt FliBe. Since the radiation levels near the primary loop components are found to be less than 100 mR/hr 3-5 days after shutdown after three years of continuous full power operation, limited hands-on maintenance could be allowed. The very short half-lives of the predominant corrosion products make this result possible and make such a system very attractive

  16. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    Directory of Open Access Journals (Sweden)

    Mohamed Gobara

    2015-06-01

    Full Text Available A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particles improve the mechanical properties of Mg alloy. EIS and potentiodynamic polarization results indicated that the reinforcing particles significantly improve the corrosion resistance of the reinforced alloy in 3.5% NaCl solution.

  17. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-06-01

    Full Text Available The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg–1.5Zn–0.6Zr alloy than AZ91D.

  18. Influência do teor de Mo na microestrutura de ligas Fe-9Cr-xMo Effect of the content of molybdenum in the microstructure of Fe-9Cr-xMo alloy

    Directory of Open Access Journals (Sweden)

    Rodrigo Freitas Guimarães

    2010-12-01

    Full Text Available Aços Cr-Mo são usados na indústria do petróleo em aplicações com óleos crus ricos em compostos sulfurosos. Aços comerciais como 2.5Cr1Mo ou 9Cr1Mo têm se mostrado ineficientes em consequência de altos índices de corrosão naftênica. Uma estratégia para resolver este problema é o aumento do teor de molibdênio destes aços. Neste trabalho foi estudado o efeito do aumento do teor de molibdênio na microestrutura de ligas Fe-9Cr-xMo, solubilizadas e soldadas. Foram levantados os diagramas de fases com auxílio de um programa comercial para verificar as possíveis fases a serem formadas e identificar os problemas de soldagem. A microestrutura das ligas solubilizadas foi analisada por microscopia óptica e EBSD, além da medição da dureza. Foram realizadas soldagens autógenas para verificar o efeito do aporte térmico na microestrutura e na dureza das ligas. O aumento do teor de molibdênio resultou no aumento da dureza das ligas. A análise microestrutural das ligas soldadas apresentou uma particularidade para a liga com menor teor de molibdênio, a presença de martensita. Já as ligas com maior teor de molibdênio apresentaram uma microestrutura completamente ferrítica. A formação de martensita pode ser um problema na solda da liga com menor teor de molibdênio, uma vez que a mesma pode causar perdas nas propriedades mecânicas comprometendo sua aplicação.Cr-Mo steels are used in the petroleum industry in applications with crude oils rich in sulfur compounds. 2.5Cr1Mo or 9Cr1Mo do not resist to operating conditions when in contact with crude oils. The increasing of molybdenum content can improve the corrosion resistance of these alloys. This paper studied the effect of increased concentration of molybdenum in the microstructure of Fe-9Cr-xMo alloys, annealed and welded. Phase diagrams were built with the aid of commercial program to check the possible phases to be formed and to identify the problems of welding. Analyses were

  19. Analysis of the 4d9-(4d86p + 4p54d10) transitions of Sb VII and the strongest transitions of the 4d9-4d84f array of Sb VII and Te VIII

    International Nuclear Information System (INIS)

    Kildiyarova, R.R.; Churilov, S.S.; Joshi, Y.N.; Ryabtsev, A.N.

    1995-01-01

    The spectra of antimony and tellurium were photographed in the 100-200 A region on grazing incidence spectrographs at Moscow, Russia and NIST, U.S.A. laboratories. The 4d 9 -[4d 8 6p + 4p 5 4d 10 ] transition array of Sb VII was analyzed. 31 levels in Sb VII were established. 41 new lines in Sb VII belonging to the 4d 9 -(4p 5 4d 10 + 4d 8 6p) transition array have been classified. Seven lines each in Sb VII and Te VIII belonging to the 4d 9 -4d 8 4f transition array have been classified. Parametric least-squares-fitted calculations involving configuration interaction have been carried out to interpret the spectrum satisfactorily. (orig.)

  20. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1193-1196 ISSN 1862-5282 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : transition metal alloys * Ni-based * pair exchange interactions * Curie temperatures * renormalized RPA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  1. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  2. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  3. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali, E-mail: wangjialicsu@yahoo.cn [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Qin, Ling [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Wang, Kai [School of Humanities and Social Sciences, Hunan University of Chinese Medicine, Changsha 410208 (China); Wang, Jue; Yue, Ye [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Yangde [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China); Tang, Jian [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Weirong [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China)

    2013-10-01

    Magnesium alloys have been advocated as potential artificial bone materials due to their biocompatibility and biodegradability. The understanding of their corrosive mechanism in physiological environments is therefore essential for making application-orientated designs. Thus, this in vitro study was designed to assess the effects of CO{sub 2} on corrosive behavior of AZ31D to mimic in vivo special ingredient. Electrochemical technologies accompanied with Scanning electron microscope, Fourier transform infrared, X-ray diffraction, Energy dispersive spectroscopy and hydrogen evolution measurement were employed to analyze corrosive rates and mechanisms of AZ31D. Moreover, the biocompatibility of AZ31D was assessed with a direct cell attachment assay and an indirect cytotoxicity test in different diluted extracts. The ion concentrations in extracts were measured using inductively coupled plasma mass spectrometry to offer explanations on the differences of cell viability in the indirect test. The results of the direct cytotoxicity assay showed that the corrosive rate of AZ31D was too rapid to allow for cell adhesion. Extracts diluted less than 20 times would cause adverse effects on cell proliferation, likely due to excessive ions and gas release. Moreover, the presence of CO{sub 2} did not cause significant differences on corrosive behavior of AZ31D according to the results of electrochemical testing and hydrogen evolution measurement. This might be caused by the simultaneous process of precipitation and dissolution of MgCO{sub 3} due to the penetration role of CO{sub 2}. This analysis of corrosive atmospheres on the degradation behavior of magnesium alloys would contribute to the design of more scientific in vitro testing systems in the future. - Highlights: • We evaluate the effects of CO{sub 2} on corrosion behavior of magnesium alloys. • We assess the feasibility of commercial AZ31D alloy as potential implants. • CO{sub 2} is not the key factor to minimize

  4. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-02-15

    Graphical abstract: - Highlights: • A duplex coating was fabricated through combining MAO and baking layer. • A baking coating with a thickness of 92 μm was created on MAO-coated Mg alloy. • The duplex coating noticeably improved the corrosion resistance of Mg alloy. • The related corrosion and wear mechanisms were investigated. - Abstract: A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  5. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  6. Structural and thermal investigations of an amorphous GaSe9 alloy using EXAFS, cumulant expansion, and reverse Monte Carlo simulations

    International Nuclear Information System (INIS)

    Siqueira, M. C.; Maia, R. N. A.; Araujo, R. M. T.; Machado, K. D.; Stolf, S. F.

    2015-01-01

    In this article, we investigated structural and thermal properties of an amorphous alloy of the Ga–Se system. The amorphous GaSe 9 alloy was produced by mechanical alloying and it was studied using EXAFS spectroscopy and cumulant expansion method. We also made reverse Monte Carlo simulations using the total structure factor S(K) obtained from x-ray diffraction and the EXAFS χ(k) oscillations on Se and Ga K edges as input data. Several parameters, such as average coordination numbers and interatomic distances, structural and thermal disorders, asymmetry of the partial distribution functions g ij (r), and Einstein and Debye temperatures, were determined. The g ij E (r) functions were reconstructed from the cumulants C 1 , C 2 , and C 3 obtained from the Einstein model, and they were compared to the g ij RMC (r) functions obtained from the simulations. The simulations also furnished the partial bond angle distribution functions Θ ijℓ (cosθ), which describe the angular distribution of bonds between first neighbors, and give information about the kind of structural units present in the alloy

  7. Organic coatings silane-based for AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Junying; Li Qing; Zhong Xiankang; Li Longqin; Zhang Liang

    2010-01-01

    Organic coatings silane-based containing electron withdrawing group or electron donating group have been synthesized and evaluated as prospective surface treatments for AZ91D magnesium alloy by hydrolysis and condensation reaction of the different silanes. Electrochemical tests were employed to confirm the corrosion resistance ability of the two kinds of organic coatings. The results showed that the coating with electron donating group had better corrosion protection performance. On the basis of the spatial configuration and the density of charge of those silanes molecules which was obtained through Gaussian 03 procedure based on B3LYP and density functional theory, combining experiment results, the rational explanation was provided.

  8. Structure relaxation effect on superconductive properties of amorphous metallic ZrΛ9Λ0BΛ3SiΛ7 alloy

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Zheleznyj, V.S.; Rudyj, S.D.; Fedorov, V.M.

    1985-01-01

    The effect of structural relaxation on electronand phonon spectra and electron-phonon interaction of Zr 90 B 3 Si 7 amorphous alloy is investigated. The specific electric conductivity rho 293 , superconducting transition temperature Tsub(c), critical magnetic field Bsub(c) (near Tsub(c)) and the Young modulus E 293 were measured. The Debye temperature THETA sub(D), electron state density on the Fermi surface N(O electron-phonon interaction constant lambda) mean square of a matrix element and the Hopfeld parameter were calculated. Experimental data show that Tsub(c) decreases during the structural relaxation of amorphous alloy in spite of increasing THETA sub(D) and N(O). However, the calculations show that during the structural relaxation the matrix element of the electron-phonon inte raction decreases with a simultaneous lambda decrease and an insignificant change in the Hopfeld parameter

  9. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: a study using process map development

    Czech Academy of Sciences Publication Activity Database

    Ghasemi, E.; Zarei-Hanzaki, A.; Farabi, E.; Tesař, Karel; Jäger, Aleš; Rezaee, M.

    2017-01-01

    Roč. 695, Feb (2017), s. 1706-1718 ISSN 0925-8388 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : titanium alloys * hot compression * processing map * dynamic recrystallization * electron backscatter diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.133, year: 2016

  10. Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys

    International Nuclear Information System (INIS)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2014-01-01

    We determined the effects of carbon concentration on the microstructures and tensile properties of the Ni-free Co–29Cr–9W–1Si–C (mass%) cast alloys used in dental applications. Alloy specimens prepared with carbon concentrations in the range 0.01–0.27 mass% were conventionally cast. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) revealed that precipitates had formed in all the alloy specimens. The σ phase, a chromium-rich intermetallic compound, had formed in the region between the dendrite arms of the low-carbon-content (e.g., 0.01C) alloys. Adding carbon to the alloys increased the amount of interdendritic precipitates that formed and changed the precipitation behavior; the precipitated phase changed from the σ phase to the M 23 C 6 carbide with increasing carbon concentration. Adding a small amount of carbon (i.e., 0.04 mass%) to the alloys dramatically enhanced the 0.2% proof stress, which subsequently gradually increased with increasing content of carbon in the alloys. Elongation-to-failure, on the other hand, increased with increasing carbon content and showed a maximum at carbon concentrations of ∼ 0.1 mass%. The M 23 C 6 carbide formed at the interdendritic region may govern the tensile properties of the as-cast Co–Cr–W alloys similar to how it governed those of the hot-rolled alloys prepared in our previous study. - Highlights: • Microstructure and tensile properties of C-doped Co–Cr–W cast alloys was studied. • Adding carbon stabilized the γ matrix and changed the precipitation behavior. • Formation of carbide precipitates strengthened C-doped Co–Cr–Mo alloys. • A maximum tensile elongation was obtained at carbon concentrations of ∼0.1 mass%

  11. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  12. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Science.gov (United States)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  13. Microstructure and hardness of Mg–9Li–6Al–xLa (x=0, 2, 5) alloys during solid solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Pengfei [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Qu, Zhikun [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Harbin Normal University, Harbin 150025 (China); Wu, Ruizhi, E-mail: rzwu@hrbeu.edu.cn [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)

    2015-02-11

    The microstructure evolution of Mg–9Li–6Al–xLa (x=0, 2, 5) alloy under different solid solution parameters was investigated. The results show that, during solution treatment at 350 °C, the lamellar AlLi is precipitated from α-Mg in Mg–9Li–6Al, while the MgLi{sub 2}Al is dissolved into the matrix. However, during solution treatment at 450 °C, the AlLi phase is wholly dissolved into matrix, while the MgLi{sub 2}Al is precipitated from β-Li. The addition of La can reduce the size of α-Mg, restrain the formation of AlLi, and make the precipitated MgLi{sub 2}Al from β-Li at 450 °C be finer than that in Mg–9Li–6Al. With the addition of La, the decrease of the amount of AlLi and MgLi{sub 2}Al leads to a descent of hardness, while the refinement, Al–La phase precipitation, and the solution of Al atoms can improve the hardness of the alloys.

  14. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  15. Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca{sub 3}Co{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Holgate, Tim C., E-mail: timholgate@hotmail.com [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark); Han, Li; Wu, NingYu [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark); Bøjesen, Espen D.; Christensen, Mogens; Iversen, Bo B. [Centre for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, 8000 Aarhus C (Denmark); Nong, Ngo Van; Pryds, Nini [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark)

    2014-01-05

    Highlights: • The competitive thermoelectric oxide Ca{sub 3}Co{sub 4}O{sub 9} and a custom Fe–Cr alloy were interfaced using spark plasma sintering. • Compared to similarly contacted Ni/Ca{sub 3}Co{sub 4}O{sub 9} interfaces, the high-temperature stability and electrical contact resistance were improved. • The successes and issues associated with this interfacing technique and the materials involved are discussed. -- Abstract: A customized Fe–Cr alloy that has been optimized for high temperature applications in oxidizing atmospheres has been interfaced via spark plasma sintering (SPS) with a p-type thermoelectric oxide material: calcium cobaltate (Ca{sub 3}Co{sub 4}O{sub 9}). The properties of the alloy have been analyzed for its compatibility with the Ca{sub 3}Co{sub 4}O{sub 9} in terms of its thermal expansion and transport properties. The thermal and electrical contact resistances have been measured as a function of temperature, and the long term electronic integrity of the interface analyzed by measuring the resistance vs. time at an elevated temperature. The kinetics of the interface have been analyzed through imaging with scanning electron microscopy (SEM), elemental analysis using energy dispersive spectroscopy (EDS), and phase identification with X-ray diffraction (XRD). The results reveal the formation of an intermediate phase containing calcium and chromium in the interface that is highly resistive at room temperature, but conducting at the intended thermoelectric device hot-side operating temperature of 800 °C. As the alloy is well matched in terms of its thermal expansion and highly conducting compared to the Ca{sub 3}Co{sub 4}O{sub 9}, it may be further considered as an interconnect material candidate at least with application on the hot-side of an oxide thermoelectric power generation module.

  16. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Lukáč, František; Chráska, Tomáš

    2016-01-01

    Roč. 9, č. 12 (2016), č. článku 1004. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomized Al7075 alloy * spark plasma sintering * microstructure * microhardness * high temperature stability Subject RIV: JJ - Other Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/12/1004

  17. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H; Laniesse, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  18. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: Valloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  19. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  20. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  1. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    International Nuclear Information System (INIS)

    Wen Zhaohui; Wu Changjun; Dai Changsong; Yang Feixia

    2009-01-01

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D ct ) of the three magnesium alloys initially increased and then decreased while the R ct of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the β-Mg 12 Al 17 precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al 8 Mn 5 and a little β-Mg 12 Al 17 presented along the grain boundary heterogeneously and discontinuously. Al 8 Mn 5 was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the α-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase in Al content, the corrosion resistances of the samples were improved.

  3. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings.

    Science.gov (United States)

    Kim, Myung-Joo; Choi, Yun-Jung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young

    2017-01-23

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance), a Scheffe's test, and Pearson's correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps ( p marginal discrepancy and the internal gap variables ( r = 0.654), except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  4. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  5. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  6. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  7. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy.

    Science.gov (United States)

    Gupta, Sharad; Mehta, Aruna S

    2012-01-01

    Remelting previously cast base metal alloy can adversely affect the mechanical properties of the alloy and necessitates addition of new alloy. To study the effect of remelting different combinations of new and used cobalt-chromium (Co-Cr) alloy on its mechanical properties and microstructure. Using induction casting, 24 tensile test specimens were prepared for eight different combinations of new and used Co-Cr alloy. The test specimens were assessed for yield strength and percentage elongation. Microhardness was evaluated using Vickers's hardness tester. The tensile testing was carried out on a 50 kN servo-hydraulic universal testing machine. Microstructure analysis was done using an optical photomicroscope on the fractured samples after acid etching. The mean values (±standard deviation) and coefficient of variation were calculated. Student's 't' test was used for statistical analysis. Statistical significance was assumed at P=.05. The mean yield strength of eight different combination groups were as follows: group A: 849 MPa, group B ₁ : 834 MPa, group B ₂ : 915 MPa, group B ₃ : 897 MPa, group C ₁ : 874 MPa, group C ₂ : 859 MPa, group D ₁ : 845 MPa, and group D ₂ : 834 MPa. The mean percentage elongation for the different groups were as follows: group A: 7%, group B ₁ : 7%, group B ₂ : 8%, group B ₃ : 7%, group C ₁ : 8%, group C ₂ : 7%, group D ₁ : 7%, and group D 2 : 8%. The mean hardness values were as follows: group A: 373 VHN, group B ₁ : 373 VHN, group B ₂ : 346 VHN, group B ₃ : 346 VHN, group C ₁ : 364 VHN, group C ₂ : 343 VHN, group D ₁ : 376 VHN, and group D ₂ : 373 VHN. Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight) of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in

  8. Study of U - Pu - Fe alloys (Masurca critical experiment); Etudes d'alliages U-Pu-Fe (experience critique MASURCA)

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, P; Boucher, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    Three compositions have been studied: 73.5 U - 25 Pu - 1.5 Fe (weight %) 74 U - 25 Pu - 1 Fe 74.5 U - 25 Pu - 0.5 Fe Elaboration and Casting are easy. After two weeks in air 74.5 U - 25 Pu - 0.5 Fe alloys are reduced in powder. As-cast alloys containing 1 and 1,5% Fe are kept undamaged during several months. A rapid oxidisation of the alloys is however observed when the samples undergo the phase transformation (at 595 deg. C and 590 deg. C respectively). Ignition tests in the presence of air show that the oxidisation starts at about 250 deg. C and that the reaction does not spread. Ignition is not observed during heating from 20 to 660 deg. C. The transformation temperature, the melting temperature and the thermal expansion coefficients have been determined by dilatometry. Below the transformation temperature, the principal phases are U-Pu zeta and (U, Pu){sub 6}Fe. Thermal conductibility, Young modulus, density and heat of fusion have been measured. Compatibility tests show that between U-Pu-Fe and stainless steel a phase of (U, Pu){sub 6}Fe type is formed. The 74 U - 25 Pu - 1% Fe alloy seems to behave better than 73.5 U - 25 Pu - 1.5% Fe alloy because the (U, Pu){sub 6}Fe layer is two or three times smaller. Finally, the thermal stability has been studied with the 74 U - 25 Pu - 1% Fe alloy. A dilatometric anomaly (very weak expansion) occurs when the sample is heated above transformation temperature and cooled. But there is no anomaly by thermal cycling from 50 deg. C to 400 deg. C and there is no deterioration of alloys by heat treatments at 100 deg. C, 200 deg. C, 300 deg. C during 5 months under vacuum. (authors) [French] Trois compositions ont ete etudiees: 73,5 U - 25 Pu - 1,5 Fe (% ponderaux) 74 U - 25 Pu - 1 Fe 74,5 U - 25 Pu - 0,5 Fe Les elaborations et mises en forme sont-faciles. Les alliages a 0,5% de fer tombent en poudre apres 15 jours d'exposition a l'air. Les alliages a 1 et 1,5% de fer, bruts de coulee, se conservent plusieurs mois. Cependant

  9. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  10. Improved polycrystalline Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy by γ phase distributing along grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuiyuan; Zhang, Fan; Zhang, Kaixin; Huang, Yangyang; Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome

    2016-09-15

    In this study, the shape recovery and mechanical properties of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy are improved simultaneously. This results from the low, about 4.4%, volume fraction of γ phase being almost completely distributed along grain boundaries. The recovery strain gradually increases with the increase in residual strain with a shape recovery rate of above 68%, up to a maximum value of 5.3%. The compressive fracture strain of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} alloy is about 35%. The results further reveal that when applying a high compression deformation two types of cracks form and propagate either within martensite grains (type I) or along the boundaries between martensite phase and γ phase (type II) in the present two-phase alloy.

  11. Applicability of the θ projection method to creep curves of Ni-22Cr-18Fe-9Mo alloy

    International Nuclear Information System (INIS)

    Kurata, Yuji; Utsumi, Hirokazu

    1998-01-01

    Applicability of the θ projection method has been examined for constant-load creep test results at 800 and 1000degC on Ni-22Cr-18Fe-9Mo alloy in the solution-treated and aged conditions. The results obtained are as follows: (1) Normal type creep curves obtained at 1000degC for aged Ni-22Cr-18Fe-9Mo alloy are fitted using the θ projection method with four θ parameters. Stress dependence of θ parameters can be expressed in terms of simple equations. (2) The θ projection method with four θ parameters cannot be applied to the remaining creep curves where most of the life is occupied by a tertiary creep stage. Therefore, the θ projection method consisting of only the tertiary creep component with two θ parameters was applied. The creep curves can be fitted using this method. (3) If the θ projection method with four θ or two θ parameters is applied to creep curves in accordance with creep curve shapes, creep rupture time can be predicted in terms of formulation of stress and/or temperature dependence of θ parameters. (author)

  12. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy

    OpenAIRE

    Banerjee, P. Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R. K. Singh

    2014-01-01

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD...

  13. Examination of temperature-induced shape memory of uranium--5.3-to 6.9 weight percent niobium alloys

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-niobium alloy system was examined in the range of 5.3-to-6.9 weight percent niobium with respect to shape memory, mechanical properties, metallography, Coefficients of linear thermal expansion, and differential thermal analysis. Shape memory increased with increasing niobium levels in the study range. There were no useful correlations found between shape memory and the other tests. Coefficients of linear thermal expansion tests of as-quenched 5.8 and 6.2 weight percent niobium specimens, but not 5.3 and 6.9 weight percent niobium specimens, had a contraction component on heating, but the phenomenon was not a contributor to shape memory

  14. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  15. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9

    International Nuclear Information System (INIS)

    Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S.

    2007-01-01

    This paper focuses on the role of grain boundary engineering (GBE) in stress corrosion cracking (SCC) of ferritic-martensitic (F-M) alloy HT-9 in supercritical water (SCW) at 400 deg. C and 500 deg. C. Constant extension rate tensile (CERT) tests were conducted on HT-9 in as-received (AR) and coincident site lattice enhanced (CSLE) condition. Both unirradiated and irradiated specimens (irradiated with 2 MeV protons at 400 deg. C and 500 deg. C to a dose of 7 dpa) were tested. Ferritic-martensitic steel HT-9 exhibited intergranular stress corrosion cracking when subjected to CERT tests in an environment of supercritical water at 400 deg. C and 500 deg. C and also in an inert environment of argon at 500 deg. C. CSL-enhancement reduces grain boundary carbide coarsening and cracking susceptibility in both the unirradiated and irradiated condition. Irradiation enhanced coarsening of grain boundary carbides and cracking susceptibility of HT-9 for both the AR and CSLE conditions. Intergranular (IG) cracking of HT-9 results likely from fracture of IG carbides and seems consistent with the mechanism that coarser carbides worsen cracking susceptibility. Oxidation in combination with wedging stresses is the likely cause of the observed environmental enhancement of high temperature IG cracking in HT-9

  16. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H.; Laniesse, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  17. Environmental friendly anodizing of AZ91D magnesium alloy in alkaline borate-benzoate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Department of Chemistry, Tianshui Normal University, Tianshui 741000 (China); Wei Zhongling [Magnesium Technology Co., Ltd., Chinese Academy of Sciences, Jiaxing 314051 (China); Yang Fuwei [Department of Chemistry, Tianshui Normal University, Tianshui 741000 (China); Zhang Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Key Laboratory for Light Alloy Materials Technology, Jiaxing 314051 (China)

    2011-06-02

    Highlights: > Environmental friendly PEO technology for AZ91 magnesium alloy is developed. > NaBz is used as new additive and it is low-cost and environmental friendly. > The effect of NaBz additive on the properties of the anodized film was studied. > Anodized film with excellent corrosion resistance is obtained. > The forming mechanism of anodized film in the presence of NaBz is approached. - Abstract: A kind of environmental friendly anodizing routine for AZ91D magnesium alloy, based on an alkaline borate-sodium benzoate electrolyte (NaBz) was studied. The effect of NaBz on the properties of the anodized film was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results showed that the anodizing process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of NaBz. In the presence of adequate NaBz, a thick, compact and smoothing anodized film with excellent corrosion resistance was produced. Moreover, the forming mechanism of the anodized film in the presence of NaBz additive was also approached, which was a suppression of arc discharge process by the adsorption of Bz{sup -} on the surface of magnesium alloy substrate.

  18. Effect of nitrogen on the microstructure and mechanical properties of Co-33Cr-9W alloys prepared by dental casting.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Torita, Yasuhiro; Chiba, Akihiko

    2018-01-01

    The effect of nitrogen concentration on the mechanical properties of Co-33Cr-9W alloy dental castings fabricated using the "high-Cr and high-N" concept was investigated. Microstructural analysis was performed on the alloys, and findings were discussed in relation to the mechanical properties. Owing to their high nitrogen concentrations (0.25-0.35wt%), all alloys prepared exhibited face-centered cubic (fcc) γ-phase matrices with a-few-millimeter grains consisting of dendritic substructures. Strain-induced martensitic transformations to produce hexagonal close-packed (hcp) ε-phases were not identified under tensile deformation. The precipitation of the intermetallic σ-phase was identified at the interdendritic regions where solidification segregation of Cr and W occurred. The size and chemical composition of this σ-phase did not vary with the bulk nitrogen concentration. Adding nitrogen to the alloys did not alter their tensile yield stress or Vickers hardness values significantly, suggesting that the nitrogen strengthening effect is affected by the manufacturing route as well as local chemistry that is involved in the microstructural evolution during solidification. The tensile ductility, on the other hand, increased with an increase in nitrogen concentration; the alloy with 0.35wt% nitrogen exhibited 21% elongation with a high 0.2% proof stress (589MPa). This significant improvement in ductility was likely caused by the reduction in the amount of σ-phase precipitates at the interdendritic regions following the addition of nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  20. Hydrogen and deuterium permeation in copper alloys, copper--gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers

    International Nuclear Information System (INIS)

    Begeal, D.R.

    1978-01-01

    The deuterium permeation through several copper alloys has been measured over a temperature range of 550 to 830 K using the membrane technique. In some cases, the hydrogen permeability was also measured. The results were divided into three categories: common alloys, gold alloys, and stable oxide forming alloys. Common alloys which showed typical bulk metallic diffusion with litle change in the permeation activation energy as compared to copper (77 kJ/mol for D 2 ) were: (additions are in weight percent) 5% Sn, 2.3% U, 0.15% Zr, 4% Sn+4% Pb+4% Zn, 3% Si, and 7% Al+2% Fe. Compared to copper, the D 2 permeability at 573 K was reduced by factors of 2.0, 2.7, 4.5, 5.3, 5.9, and 7.0, respectively. A series of gold--copper alloys including pure gold, 80% Au, 50% Au, 49% Au, and 35% Au also showed typical bulk metallic diffusion with a trend of decreasing permeability (increasing activation energies for permeation) with increasing gold content. There were also pronounced inflections or shifts in the permeability at approx.370 0 C, or about the order--disorder transition for Cu 3 Au and CuAu, for the 80% and 50% alloys. Two alloys did not exhibit bulk metallic permeation behavior and the permeabiltiy was in fact controlled by surface oxide layers. It was found that a layer of beryllium oxide could be formed on Cu+2% Be and a layer of aluminum oxide could be formed on Cu+7% Al+2% Si. As compared to 0.25 mm-thick copper, the deuterium permeability at 500 0 C was reduced by a factor of approx.250 for Cu--Be and approx.1000 for Cu--Al--Si. The activation energies for deuterium permeation were 98 kJ/mol and 132 kJ/mol, respectively. The mechanism for the oxide growth is the high-temperature hydrogen reduction of nearby less stable oxides, simultaneous with oxidation of the active metal, Be or Al, by trace amounts of water in the hydrogen. Ion microprobe mass analysis identified the oxide layers as containing beryllium or aluminum but not containing copper

  1. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    Directory of Open Access Journals (Sweden)

    Myung-Joo Kim

    2017-01-01

    Full Text Available Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance, a Scheffe’s test, and Pearson’s correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps (p < 0.05. The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables (r = 0.654, except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  2. 3D reconstruction and characterization of carbides in Ni-based high carbon alloy in a FIB-SEM system

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Piotr [AGH Univ. of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow (Poland); AGH Univ. of Science and Technology, Academic Centre of Materials and Nanotechnology, Krakow (Poland); Tsyrulin, Katja; Jaksch, Heiner [Carl-Zeiss, Oberkochen (Germany); Stepien, Milena [AGH Univ. of Science and Technology, Academic Centre of Materials and Nanotechnology, Krakow (Poland)

    2015-07-15

    Dual beam focused ion beam scanning electron microscopes (FIB-SEMs) are well suited for characterizing micron and submicron size microstructural features in three dimensions throughout a serial-sectioning experiment. In this article, a FIB-SEM instrument was used to collect morphological, crystallographic, and chemical information for an Ni-Ta-Al-Cr alloy of high carbon content. The alloy has been designed to have excellent tribological properties at elevated temperatures. The morphology, spatial distribution, scale, and degree of interconnection of primary carbides in the Ni-Ta-Al-Cr-C alloy was assessed via serial sectioning in a casting cross-section. The 3D reconstructions showed that the primary carbides and dendrites were forming a dendrite surrounded by primary carbide network over the entire cross-section. Additionally, the morphology and spatial distribution of secondary carbides after heat treatment was determined.

  3. Effect of Ultrasonic Treatment in the Static and Dynamic Mechanical Behavior of AZ91D Mg Alloy

    Directory of Open Access Journals (Sweden)

    Helder Puga

    2015-11-01

    Full Text Available The present study evaluates the effect of high-intensity ultrasound (US in the static and dynamic mechanical behavior of AZ91D by microstructural modification. The characterization of samples revealed that US treatment promoted the refinement of dendrite cell size, reduced the thickness, and changed the β-Mg17Al12 intermetallic phase to a globular shape, promoted its uniform distribution along the grain boundaries and reduced the level of porosity. In addition to microstructure refinement, US treatment improved the alloy mechanical properties, namely the ultimate tensile strength (40.7% and extension (150% by comparison with values obtained for castings produced without US vibration. Moreover, it is suggested that the internal friction, enhanced by the reduction of grain size, is compensated by the homogenization of the secondary phase and reduction of porosity. It seems that by the use of US treatment, it is possible to enhance static mechanical properties without compromising the damping properties in AZ91D alloys.

  4. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    Science.gov (United States)

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  5. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  6. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhaohui [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Wu Changjun, E-mail: wucj163@126.co [Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai Changsong, E-mail: changsd@hit.edu.c [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang Feixia [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-20

    The corrosion behaviors of pure magnesium (Mg) and three Mg alloys with different Al contents were investigated in a modified simulated body fluid (m-SBF) through immersion tests, Tafel experiments, and electrochemical impedance spectroscopic (EIS) experiments. The immersion results show that the corrosion rates (CRs) of the four samples were in an order of AZ91D < AZ61 < AZ31 < pure Mg after immersion for 1 day. With an increase in immersion time, their corrosion rates decreased and then a stable stage was reached after 16 days. The order of CRs of the four samples changed to AZ91D < pure Mg < AZ61 < AZ31 after immersion for 24 days. The results of EIS experiments indicate that the charge transfer resistance (R{sub ct}) of the three magnesium alloys initially increased and then decreased while the R{sub ct} of pure Mg was kept lower within 24 h. The results of a scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that pure Mg and three alloys were heterogeneously corroded in the m-SBF. The corrosion of pure Mg, which showed a more uniform corrosion appearance, resulted from localized corrosion over the entire surface. Alloy AZ91D (of 8.5-9.5 wt.% Al) showed relatively uniform corrosion morphology and the {beta}-Mg{sub 12}Al{sub 17} precipitates in alloy AZ91D were more homogeneously and continuously distributed along the grain boundaries. Obvious corrosion pits were found on the surface of alloy AZ61 and AZ31. The corrosion pits of alloy AZ61 were shallower than those of alloy AZ31. Alloy AZ61 (of 5.8-7.2 wt.% Al) possessed more Al{sub 8}Mn{sub 5} and a little {beta}-Mg{sub 12}Al{sub 17} presented along the grain boundary heterogeneously and discontinuously. Al{sub 8}Mn{sub 5} was the main phase of the AZ31 alloy (of 2.5-3.5 wt.% Al) dispersed into the matrix. In conclusion, the microstructure and the Al content in the {alpha}-Mg (Al) matrix significantly affected the corrosion properties of the alloys in the m-SBF. With the increase

  7. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  8. Thermal treatment of the Fe78Si9B13 alloy in it amorphous phase studied by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cabral P, A.; Lopez, A.; Garcia S, F.

    2003-01-01

    The magnetic and microhardness changes, dependents of the temperature that occur in the Fe 78 Si 9 B 13 alloy in it amorphous state were studied by means of the Moessbauer spectroscopy and Vickers microhardness. According to the Moessbauer parameters and in particular that of the hyperfine magnetic field, this it changes according to the changes of the microhardness; i.e. if the microhardness increases, the hyperfine magnetic field increases. The registered increment of hardness in the amorphous state of this alloy should be considered as anomalous, according to the prediction of the Hall-Petch equation, the one that relates negative slopes with grain sizes every time but small. (Author)

  9. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    Science.gov (United States)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  10. Proteasome modulator 9 and macrovascular pathology of T2D

    Directory of Open Access Journals (Sweden)

    Gragnoli Claudia

    2011-04-01

    Full Text Available Abstract Aims Coronary artery disease (CAD and stroke share a major linkage at the chromosome 12q24 locus. The same chromosome region entails at least a major risk gene for type 2 diabetes (T2D within NIDDM2, the non-insulin-dependent-diabetes 2 locus. The gene of Proteasome Modulator 9 (PSMD9 lies in the NIDDM2 region and is implicated in diabetes in mice. PSMD9 mutations rarely cause T2D and common variants are linked to both late-onset T2D and maturity-onset-diabetes of the young (MODY3. In this study, we aimed at determining whether PSMD9 is linked to macrovascular pathology of T2D. Methods and Results In our 200 T2D families from Italy, we characterized the clinical phenotype of macrovascular pathology by defining the subjects for presence or absence of CAD, stroke and/or transitory ischemic attacks (TIA, plaques of the large arterial vessels (macro-vasculopathy and arterial angioplasty performance. We then screened 200 T2D siblings/families for PSMD9 +nt460A/G, +nt437C/T and exon E197G A/G single nucleotide polymorphisms (SNPs and performed a non-parametric linkage study to test for linkage for coronary artery disease, stroke/TIA, macro-vasculopathy and macrovascular pathology of T2D. We performed 1,000 replicates to test the power of our significant results. Our results show a consistent significant LOD score in linkage with all the above-mentioned phenotypes. Our 1000 simulation analyses, performed for each single test, confirm that the results are not due to random chance. Conclusions In summary, the PSMD9 IVS3+nt460A/G, +nt437C/T and exon E197G A/G SNPs are linked to CAD, stroke/TIA and macrovascular pathology of T2D in Italians.

  11. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  12. Influence of sulfate ion concentration and pH on the corrosion of Mg-Al-Zn-Mn (GA9 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Sudarshana Shetty

    2015-09-01

    Full Text Available The corrosion behavior of Mg-Al-Zn-Mn (GA9 alloy in sodium sulfate solutions was studied over a range of concentrations and solution temperatures at different pH conditions by electrochemical techniques like Tafel extrapolation and electrochemical impedance spectroscopy (EIS. The studies were carried out in solutions with sodium sulfate concentrations 0.1M, 0.5M, 1M, 1.5M and 2M; and at five different temperatures of 30, 35, 40, 45 and 50 °C in a pH range of 3–12. As per the experimental data, the corrosion rate of the alloy increased with the increase in temperature, and also with the increase in concentration of sodium sulfate in the medium. It was observed that the rate of corrosion decreased with the increase in pH. The activation parameters like activation energy, enthalpy of activation and entropy of activation for the corrosion process were calculated. The surface morphology of the alloy was examined before and after corrosion using scanning electron microscopy (SEM.

  13. In-situ study of surface relief due to cubic-tetragonal martensitic transformation in Mn_6_9_._4Fe_2_6_._0Cu_4_._6 antiferromagnetic shape memory alloy

    International Nuclear Information System (INIS)

    Liu, C.; Yuan, F.; Gen, Z.; Wang, L.; Cui, Y.G.; Wan, J.F.; Zhang, J.H.; Rong, Y.H.

    2016-01-01

    Temperature-dependence surface relief during cubic↔tetragonal martensitic transformation (MT) in Mn_6_9_._4Fe_2_6_._0Cu_4_._6 antiferromegnetic shape memory alloy was studied by means of in-situ atomic force microscopy. The surface morphology memory effect was found and the crystallography reversibility of the transformation and its shearing characters were directly verified. Twin shearing is suggested as the main mechanism of formation of tent-type surface relief. The surface relief angle (θ_α|θ_β)<0.5° was firstly measured and might be the smallest compared with that in other shape memory alloys. A Landau model was proposed to consider the shearing strain related with surface relief of MT varying with the coupling effect between second-order antiferromagnetic transition and first-order MT. According to this model, the Mn_6_9_._4Fe_2_6_._0Cu_4_._6 alloy belongs to the weak coupling system and this kind of weak coupling effect makes the main contribution to the small relief angle. - Highlights: • Temperature-dependence surface relief in Mn-Fe-Cu alloy was firstly studied. • The surface morphology memory effect in Mn-Fe-Cu alloy was found. • Smallest surface relief angle (θ_α|θ_β).

  14. New Light Alloys (Les Nouveaux Alliages Legers)

    Science.gov (United States)

    1990-09-01

    composites r~alis~s avec I’alliage 15-3-3-3 (15-3) de TIMET, alliage 8 m~tastable, facilement laminable et disponible sous forme de feuillards de...part au procMd6 de fabrication - les matdriaux devant tre disponibles soit sous forme de feuillards, soit sous forme de poudres pr~alli~es - , d’autre...a naturaI so an ariii~ aain a( TeSI 5 40 SIC 1 Fig. 9. Compressive and tensile yield stress 1.b In time (secnds in an 6-Al 0 reinforced Al-A ICu alloy

  15. Environmental friendly anodizing of AZ91D magnesium alloy in alkaline borate-benzoate electrolyte

    International Nuclear Information System (INIS)

    Liu Yan; Wei Zhongling; Yang Fuwei; Zhang Zhao

    2011-01-01

    Highlights: → Environmental friendly PEO technology for AZ91 magnesium alloy is developed. → NaBz is used as new additive and it is low-cost and environmental friendly. → The effect of NaBz additive on the properties of the anodized film was studied. → Anodized film with excellent corrosion resistance is obtained. → The forming mechanism of anodized film in the presence of NaBz is approached. - Abstract: A kind of environmental friendly anodizing routine for AZ91D magnesium alloy, based on an alkaline borate-sodium benzoate electrolyte (NaBz) was studied. The effect of NaBz on the properties of the anodized film was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results showed that the anodizing process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of NaBz. In the presence of adequate NaBz, a thick, compact and smoothing anodized film with excellent corrosion resistance was produced. Moreover, the forming mechanism of the anodized film in the presence of NaBz additive was also approached, which was a suppression of arc discharge process by the adsorption of Bz - on the surface of magnesium alloy substrate.

  16. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

    Science.gov (United States)

    Hong, Min-Ho; Son, Jun Sik; Kwon, Tae-Yub

    2018-03-01

    The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

  17. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  18. Tritium aging effect of LaNi4.9Al0.1Dx on de-deuterating kinetics

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Li Rong

    2002-01-01

    Kinetics parameters are measured at different aging times of LaNi 4.9 Al 0.1 alloy. The influence of tritium aging on kinetic feature of LaNi 4.9 Al 0.1 alloy is assessed. The results show that reaction rate decreases with aging time, but tritium aging does not change de-deuterating reaction order. De-deuterating reaction orders a (with respect to deuterium pressure) and b (with respect to deuterium content) are 0.5 and 1, respectively. Activation energy (E) increases with aging time. After 1120 d, the reaction rate constant is decreased by two orders of magnitude, activation energy is increased by a factor of 0.3

  19. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  20. Environmental fatigue in aluminum-lithium alloys

    Science.gov (United States)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  1. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions

    International Nuclear Information System (INIS)

    Jia, Ruiling; Zhang, Ming; Zhang, Lina; Zhang, Wei; Guo, Feng

    2015-01-01

    Highlights: • The effect of Y addition into the AZ91 Mg alloys was investigated. • Initial stage of corrosion was studied by in-situ 3D digital microscopy observation. • The potential difference was investigated by Kelvin probe force microscopy. • The effect of Y addition on the corrosion mechanisms of AZ91 alloy was studied. - Abstract: Microstructure characterization of the AZ91 magnesium alloys with or without rare earth element yttrium (Y) has been revealed by SEM, EDS and EPMA. Some Y-rich phases can be found in the magnesium alloys with Y additions. The fraction of β-Mg 17 Al 12 phase obvious decreases and turns into granular distribution with the increase of Y addition instead of original wet distribution along grain boundaries. The results of the potentiodynamic polarization tests show that the corrosion resistance of AZ91 alloy is improved with appropriate Y additions. But an in-situ observation of 3D digital microscopy for the initial stage of corrosion of the magnesium alloy with 0.9%Y addition shows that Y-rich phases act as cathodic effect and the α phases in the vicinity of them acting as anode are corroded. So the additions of Y have a beneficial effect that can depress the overall corrosion of AZ91 alloy, whereas its harmful effect is related to Y-rich phases because they present the highest Volta potential difference from the adjacent matrix and they can drive galvanic corrosion

  2. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Ruiling, E-mail: jrl014014@163.com [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China); Zhang, Ming; Zhang, Lina [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China); Zhang, Wei [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Guo, Feng [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China)

    2015-06-15

    Highlights: • The effect of Y addition into the AZ91 Mg alloys was investigated. • Initial stage of corrosion was studied by in-situ 3D digital microscopy observation. • The potential difference was investigated by Kelvin probe force microscopy. • The effect of Y addition on the corrosion mechanisms of AZ91 alloy was studied. - Abstract: Microstructure characterization of the AZ91 magnesium alloys with or without rare earth element yttrium (Y) has been revealed by SEM, EDS and EPMA. Some Y-rich phases can be found in the magnesium alloys with Y additions. The fraction of β-Mg{sub 17}Al{sub 12} phase obvious decreases and turns into granular distribution with the increase of Y addition instead of original wet distribution along grain boundaries. The results of the potentiodynamic polarization tests show that the corrosion resistance of AZ91 alloy is improved with appropriate Y additions. But an in-situ observation of 3D digital microscopy for the initial stage of corrosion of the magnesium alloy with 0.9%Y addition shows that Y-rich phases act as cathodic effect and the α phases in the vicinity of them acting as anode are corroded. So the additions of Y have a beneficial effect that can depress the overall corrosion of AZ91 alloy, whereas its harmful effect is related to Y-rich phases because they present the highest Volta potential difference from the adjacent matrix and they can drive galvanic corrosion.

  3. Tangential turning of Incoloy alloy 925 using abrasive water jet technology

    Czech Academy of Sciences Publication Activity Database

    Cárach, J.; Hloch, S.; Hlaváček, Petr; Ščučka, Jiří; Martinec, Petr; Petrů, J.; Zlámal, T.; Zeleňák, Michal; Monka, P.; Lehocká, D.; Krolczyk, J.

    2016-01-01

    Roč. 82, č. 9 (2016), s. 1747-1752 ISSN 0268-3768 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : incoloy alloy 925 * abrasive water jet turning * traverse speed Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007%2Fs00170-015-7489-0

  4. D Srivastava

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D Srivastava. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 619-633 Alloys and Steels. Microstructural characterization of the -TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique · D Srivastava.

  5. Corrosion Characteristics of Ti-xTa Alloys with Ta contents

    International Nuclear Information System (INIS)

    Kim, H. J.; Choe, H. C.

    2013-01-01

    The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at 1000 .deg. C and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at 36.5 ± 1 .deg. C. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy

  6. Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

    International Nuclear Information System (INIS)

    Lee, Jeong Ja; Na, Seung Chan; Yang, Won Seong; Hwang, WoonSuk; Jang, Si Sung; Yoo, Hwang Ryong

    2006-01-01

    Influence of microstructure on the corrosion property of Mg-Al-Zn Alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the mot common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between Mg 17 Al 12 and matrix was existed, but the propagation of galvanic corrosion was localized only near the Mg 17 Al 12 phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of Mg 17 Al 12 curing the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and macrostructure of surface protective layer would be varied by precipitation of Mg 17 Al 12 and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy

  7. Electronic structures of the L-cysteine film on dental alloys

    International Nuclear Information System (INIS)

    Ogawa, K.; Tsujibayashi, T.; Takahashi, K.; Azuma, J.; Kakimoto, K.; Kamada, M.

    2011-01-01

    Research highlights: → The electronic structures of dental alloys and L-cysteine film were studied by PES. → The density of states in the dental alloy originates from Au and Cu as constituents. → The Cu-3d states contribute dominantly to the occupied states near the Fermi level. → The electronic structure of L-cysteine thin film is different from the thick film. → The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  8. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  9. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    OpenAIRE

    Tao Li; Yong He; Hailong Zhang; Xitao Wang

    2014-01-01

    The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electroc...

  10. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy

    Czech Academy of Sciences Publication Activity Database

    Kunčická, L.; Kocich, R.; Hervoches, Charles; Macháčková, A.

    2017-01-01

    Roč. 705, č. 9 (2017), s. 25-31 ISSN 0921-5093 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Tungsten heavy alloy * residual stresses * neutron scattering * electron microscopy * work hardening Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.094, year: 2016

  11. Irradiation of copper alloys in FFTF

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.

    1984-01-01

    Nine copper-base alloys in thirteen material conditions have been inserted into the MOTA-18 experiment for irradiation in FFTF at approx.450 0 C. The alloy Ni-1.9Be is also included in this experiment, which includes both TEM disks and miniature tensile specimens

  12. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  13. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  14. Development of low activation aluminum alloys for reacting plasma experiment

    International Nuclear Information System (INIS)

    Matsumoto, K.; Kawai, H.; Saida, T.; Onozuka, M.

    1986-01-01

    In the advanced fusion devices aiming at D-T burning, structural components such as vacuum vessels, coil casings are exposed to high energy neutrons produced by D-T reaction. From a view point of maintenability of accessibility, low radioactive structural materials are strongly preferred. The authors have developed two types of improved alloys of reduced radioactivity based on 5083 aluminum alloy: Al-Mg-Bi . Cr and Al-Mg-Cu . Zr. Both of the alloys of 50mm thickness have been proved to have excellent material properties virtually equivalent to those of 5083 alloy

  15. Synthesis of 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA), a useful internal standard for DHN-MA urinalysis.

    Science.gov (United States)

    Chantegrel, B; Deshayes, C; Doutheau, A; Steghens, J P

    2002-10-01

    Racemic 1,4-dihydroxynonane mercapturic acid (DHN-MA) and 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA) are synthesized on a 400-mg scale (overall yield approximately 40%) by a two-step sequence involving Michael addition of N-acetyl-L-cysteine to methyl 4-hydroxynon-2(E)-enoate or methyl 9,9,9-trideutero-4-hydroxynon-2 (E)-enoate, followed by reduction of the intermediate adducts with lithium borohydride. The requisite starting methyl esters are obtained, respectively, from heptanal or 7,7,7-trideuteroheptanal and methyl 4-chlorophenylsulfinylacetate via a sulfoxide piperidine and carbonyl reaction described in the literature. The 7,7,7-trideuteroheptanal is easily prepared by classical methods in four steps from 6-bromo-1-hexanol. 13C NMR data indicate that DHN-MA as well as d3-DHN-MA are obtained as mixtures of four diastereomers. Preliminary results show that d3-DHN-MA could be used as an internal standard for mass spectrometric quantification of DHN-MA in human urine.

  16. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  17. The 3d8-(3d74p + 3p53d9) transitions in Br X: A striking case of configuration interaction

    International Nuclear Information System (INIS)

    Kleef, T.A.M. van; Uylings, P.H.M.; Ryabtsev, A.N.; Podobedova, L.I.; Joshi, Y.N.

    1988-01-01

    The spectrum of nine times ionized bromine (Br X) was photographed in the 90-120 A wavelength region on a variety of grazing incidence spectrographs using an open spark and a triggered spark as light sources. The analysis of the 3d 8 -(3d 7 4p + 3p 5 3d 9 ) transitions has resulted in establishing all 9 levels of the 3d 8 configuration, all 12 levels of the 3p 5 3d 9 configuration and 99 out of 110 levels of the 3d 7 4p configuration. The excitation probability of the 3p inner-shell electron increases with nuclear charge and in Br X is comparable with the excitation probability of the optical electrons resulting in a very strong configuration interaction between the 3p 5 3d 9 and 3d 7 4p configurations. Parametric calculations treating these configurations as one super configuration support the analysis. Two hundred and thirty two lines have been classified in this spectrum. (orig.)

  18. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  19. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  20. Corrosion evaluation of alloys for nuclear waste processing

    International Nuclear Information System (INIS)

    Corbett, R.A.; Bickford, D.F.; Morrison, W.S.

    1986-01-01

    Corrosion scouting tests were performed on stainless steel and nickel-based alloys in simulated process solutions to be used in a facility to immobilize high-level radioactive waste by incorporating it into borosilicate glass. Alloys with combined chromium plus molybdenum contents >30% and also >9% molybdenum, were the most resistant to general and local attack. Alloy C-276 was selected as the reference process equipment material, with Alloy 690 and ALLCORR selected for specific applications

  1. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT

    International Nuclear Information System (INIS)

    Zhou, Xin; Wang, Dianzheng; Liu, Xihe; Zhang, DanDan; Qu, Shilian; Ma, Jing; London, Gary; Shen, Zhijian; Liu, Wei

    2015-01-01

    Microstructure defects set the mechanical property limits for solid Co–Cr–Mo alloy prepared by selective laser melting (SLM). Previous studies were mainly based on 2D SEM images and thus not able to provide information of the 3D morphologies of the complex defects. In this paper, the remaining porosities in Co–Cr–Mo alloy parts prepared by selective laser melting were presented in relation to the laser processing parameters. In order to understand the defect forming mechanism, accurate 3D images of defects inside SLM fabricated Co–Cr–Mo samples were provided by synchrotron radiation micro-CT imaging of 300 μm thick slices cut from a 10 mm cube. With 3D reconstructed images distinctive morphologies of SLM defects spanning across the consolidated powder layers were generated. The faults can be classified as single layer or multi-layers defects. The accidental single layer defects form as gaps between adjacent laser melt tracks or melt track discontinuousness caused by inherent fluid instability under various disturbances. The first formed single layer defect generates often a multi-layer defect spanning for 2–3 subsequent powder layers. By stabilizing the melt pool flow and by reducing the surface roughness through adjusting processing parameters it appears possible to reduce the defect concentrations

  2. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  3. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    Science.gov (United States)

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  4. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  5. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  6. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  7. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  8. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  9. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  10. Evaluation of microstructural effects on the corrosion behaviour of AZ91D magnesium alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Aung, Naing Naing; Zhou, W.

    2000-01-01

    The effect of microconstituents on the corrosion and electrochemical behaviour of AZ91D alloy prepared by die-casting and ingot casting route has been investigated in 3.5% NaCl solution at pH 7.25. The experimental techniques used include constant immersion technique, in-situ corrosion monitoring....... The corrosion products for ingot consisted of Mg(OH)(2) with small amounts beta phase, magnesium-aluminum oxide and MgH2 while for die-cast, the product showed a highly amorphous structure. (C) 2000 Elsevier Science Ltd. All rights reserved....

  11. Corrosion behaviour of Mg/Al alloys in high humidity atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R.; Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Facultad de Quimicas, Departamento de Ciencia de Materiales, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain)

    2011-04-15

    The influence of relative humidity (80-90-98% RH) and temperature (25 and 50 C) on the corrosion behaviour of AZ31, AZ80 and AZ91D magnesium alloys was evaluated using gravimetric measurements. The results were compared with the data obtained for the same alloys immersed in Madrid tap water. The corrosion rates of AZ alloys increased with the RH and temperature and were influenced by the aluminium content and alloy microstructure for RH values above 90%. The initiation of corrosion was localised around the Al-Mn inclusions in the AZ31 alloy and at the centre of the {alpha}-Mg phase in the AZ80 and AZ91D alloys. The {beta}-Mg{sub 17}Al{sub 12} phase acted as a barrier against corrosion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  13. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  14. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  15. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ivana Škugor Rončević

    2016-12-01

    Full Text Available The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetallic compound. To improve the corrosion resistance, it is necessary to find an effective protection method for the alloy surface. Knowing and predicting electrochemical processes is an essential for the design and optimization of protective coatings on magnesium and its alloys. In this work, the formations of nickel protective coatings on the magnesium AZ91D alloy surface by electrodeposition and chemical deposition, are presented. For this purpose, environmentally friendly electrolytes were used. The corrosion resistance of the protected alloy was determined in chloride medium using appropriate electrochemical techniques. Characterization of the surface was performed with highly sophisticated surface-analytical methods.

  16. Development of high nickel austenitic steels for the application to fast reactor cores, (I). Alloy design with the aid of the d-electrons concept

    International Nuclear Information System (INIS)

    Murata, Yoshinori; Morinaga, Masahiko; Yukawa, Natsuo; Ukai, Shigeharu; Nomura, Shigeo; Okuda, Takanari; Harada, Makoto

    1999-01-01

    The design of high nickel austenitic steels for the core materials of the fast reactors was performed following the d-electrons concept devised on the basis of molecular orbital calculations of transition-metal based alloys. In this design two calculated parameters are mainly utilized. The one is the d-orbital energy level (Md) of alloying transition elements, and the other is the bond order (Bo) that is a measure of the covalent bond strength between atoms. Using the Md-bar - Bo-bar phase stability diagram accurate prediction become possible for the phase stability of the austenite phase and 5% swelling at 140 dpa for nickel ions. Here, Md-bar and Bo-bar are the compositional average of Md and Bo parameters, respectively. On the basis of the phase stability diagram and preliminary experiments, guidelines for the alloy design of carbo-nitrides precipitated high nickel austenitic steels were constructed. Following the guidelines several new austenitic steels were designed for the fast reactors core material. (author)

  17. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  18. Effect of Ag addition on phase transitions of the Cu–22.26 at.%Al–9.93 at.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Gama, S.; Paganotti, A. [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [DFQ, Instituto de Química – Unesp, Campus Araraquara, SP (Brazil)

    2013-02-20

    Highlights: ► A kinetic mechanism for the dissolution of DO{sub 3} phase is suggested. ► The intermediate phase interferes on the kinetics of the DO{sub 3} phase dissolution. ► The presence of Ag changes the stability of intermediate phase. - Abstract: The phase transitions that occur in the Cu–22.26 at.%Al–9.93 at.%Mn and Cu–22.49 at.%Al–10.01 at.%Mn–1.53 at.%Ag alloys after slow cooling were studied using differential scanning calorimetry at different heating rates, microhardness changes with temperature, magnetization changes with temperature, scanning electron microscopy and energy dispersion X-ray spectroscopy. The results indicated that the presence of Ag does not modify the transition sequence of Cu–Al–Mn alloy, introduces a new transition due to the (Ag-Cu)-rich precipitates dissolution at about 800 K, and changes the mechanism of DO{sub 3} phase dissolution. This mechanistic change was analyzed and a sequence of phase transitions was proposed for the reaction.

  19. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  20. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  1. Nanocrystal Growth in Thermally Treated Fe75Ni2Si8B13C2 Amorphous Alloy

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Blagojević, V.; Minić, Dušan M.; David, Bohumil; Pizúrová, Naděžda; Žák, Tomáš

    43A, č. 9 (2012), s. 3062-3069 ISSN 1073-5623 R&D Projects: GA MŠk 1M0512 Institutional support: RVO:68081723 Keywords : Nanocrystal growth * Fe75Ni2Si8B13C2 * Amorphous alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  2. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    Science.gov (United States)

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  3. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  4. New ternary ordered structures in CuMPt6 (M=3d elements) alloys

    International Nuclear Information System (INIS)

    Das, Ananda Kumar; Nakamura, Reo; Takahashi, Miwako; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    X-ray and electron diffraction measurements were performed to investigate the structure and ordering behaviour of the ternary alloys CuMPt 6 (M=Ti, V, Cr, Mn, Fe, Co, and Ni). X-ray polycrystalline diffraction patterns of all the speciments quenched from 1000degC have shown that a single phase is formed at this stoichiometric composition. The alloys with M=Cr, Mn, Co, and Ni have the face-centred cubic (fcc) structure, while in the alloys with M=Ti, V, and Fe ordering has occurred and the structure is of the Cu 3 Au type. On annealing at lower temperatures ordering has been induced in the alloys with M=Cr, Mn, and Co and the structure is of the Cu 3 Au type, though the ordering in the last alloy has remained incomplete. Detailed X-ray diffraction measurements on single crystals of the CuMnPt 6 alloy have revealed that further ordering takes place and structure changes from the Cu 3 Au type into the cubic ABC 6 type with the unit cell as large 2 x 2 x 2 as the fcc unit cell, a new observation of the double-step ordering in the ternary fcc alloy. The corresponding transition temperatures are T c =970(±5)degC and T cl =750(±5)degC. (author)

  5. Susceptibility of ternary aluminum alloys to cracking during solidification

    International Nuclear Information System (INIS)

    Liu, Jiangwei; Kou, Sindo

    2017-01-01

    The crack susceptibility map of a ternary Al alloy system provides useful information about which alloy compositions are most susceptible to cracking and thus should be avoided by using a filler metal with a significantly different composition. In the present study the crack susceptibility maps of ternary Al alloy systems were calculated based on the maximum |dT/d(f S ) 1/2 | as an index for the crack susceptibility, where T is temperature and f S fraction solid. Due to the complexity associated with ternary alloy solidification, commercial thermodynamic software Pandat and Al database PanAluminum, instead of analytical equations, were used to calculate f S as a function of T and hence the maximum |dT/d(f S ) 1/2 | for ternary Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si alloy systems. A crack susceptibility map covering 121 alloy compositions was constructed for each of the three ternary alloy systems at each of the following three levels of back diffusion: no back diffusion, back diffusion under a 100 °C/s cooling rate, and back diffusion under 20° C/s. The location of the region of high crack susceptibility, which is the most important part of the map, was shown in each of the nine calculated maps. These locations were compared with those observed in crack susceptibility tests by previous investigators. With back diffusion considered, either under 20 or 100 °C/s, the agreement between the calculated and observed maps was good especially for Al-Mg-Si and Al-Cu-Mg. Thus, the maximum |dT/d(f S ) 1/2 | can be used as a crack susceptibility index to construct crack susceptibility maps for ternary Al alloys and to evaluate the effect of back diffusion on their crack susceptibility. - Graphical abstract: The crack susceptibility map of a ternary alloy system indicates the composition range most susceptible to cracking, which should be avoided in welding or casting. The crack susceptibility maps of ternary Al alloy systems Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si were calculated based

  6. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  7. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  8. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp

    2017-05-17

    The advanced ultra-supercritical (A-USC) power generation system is expected to become the next-generation base-load power station in Japan. Dissimilar weld joints between high-Cr heat-resistant steels and nickel-based alloys with a nickel-based filler metal (Alloy 82) will need to be adopted for this purpose. However, interfacial failure between the steels and weld metal has been observed under high-temperature creep conditions. Fractography and microstructure observations showed the failure initiated in a brittle manner by an oxide notch at the bottom of the U-groove. The fracture then proceeded along the bond line in a ductile manner with shallow dimples, where micro-Vickers hardness tests showed remarkable softening in the steel next to the bond line. In addition, the steel showed a much larger total elongation and reduction of area than the weld metal at low stresses under long-term creep conditions, leading to mismatch deformation at the interface. According to the results, it can be concluded that the interfacial failure between the 9Cr steels and Alloy 82 weld metal is initiated by an oxide notch and promoted by softening and the difference in the plasticity of the steels and weld metal.

  9. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Roesler, J.; Strunz, Pavel; Gilles, R.; Schumacher, G.; Piegert, S.

    2011-01-01

    Roč. 102, č. 9 (2011), s. 1125-1132 ISSN 1862-5282 R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional research plan: CEZ:AV0Z10480505 Keywords : Co-base alloy * Rhenium * Electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2011

  10. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  11. Electric-field-adjustable time-dependent magnetoelectric response in martensitic FeRh alloy

    Czech Academy of Sciences Publication Activity Database

    Fina, I.; Quintana, A.; Padilla-Pantoja, J.; Martí, Xavier; Macià, F.; Sánchez, F.; Foerster, M.; Aballe, L.; Fontcuberta, J.; Sort, J.

    2017-01-01

    Roč. 9, č. 18 (2017), s. 15577-15582 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : magnetoelectric * martensitic alloy * multiferroic * piezoelectric * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  12. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  13. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala A.; Alshareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M.

    2014-01-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  14. Study of Bending Fatigue Properties of Al-Si Cast Alloy

    Directory of Open Access Journals (Sweden)

    Tillová E.

    2017-09-01

    Full Text Available Fatigue properties of casting Al-alloys are very sensitive to the microstructural features of the alloy (e.g. size and morphology of the eutectic Si, secondary dendrite arm spacing - SDAS, intermetallics, grain size and casting defects (porosity and oxides. Experimental study of bending fatigue properties of secondary cast alloys have shown that: fatigue tests up to 106-107cycles show mean fatigue limits of approx. 30-49 MPa (AlSi9Cu3 alloy - as cast state, approx. 65-76 MPa (AlSi9Cu3 alloy after solution treatment and 60-70 MPa (self-hardened AlZn10Si8Mg alloy in the tested casting condition; whenever large pore is present at or near the specimen’s surface, it will be the dominant cause of fatigue crack initiation; in the absence of large casting defects, the influence of microstructural features (Si morphology; Fe-rich phases on the fatigue performance becomes more pronounced.

  15. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  16. Evolution of microstructure of U-Mo alloys in as cast and sintered forms

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Kamath, H.S.; Dey, G.K.

    2009-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been successfully used as potential Low Enriched Uranium (LEU 235 ) base dispersion fuel in new research and test reactors and also for converting High Enriched Uranium (HEU > 85% U 235 ) cores to LEU in most of the existing research and test reactors. The maximum density achievable with U 3 Si 2 -AI dispersion fuel is around 4.8 g U cm -3 . To achieve a uranium density of 8.0 to 9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Metallic Fuels Division, R and D efforts are on to develop these high density uranium alloys. Molybdenum plays a crucial role in metastabilising the γ-phase of uranium at room temperature which is very much evident when we see the microstructures of different U-Mo alloys with varying molybdenum concentration as solute atom. The paper describes the role of molybdenum in imparting metastability in U-Mo alloys from their microstructures in as cast and sintered forms. The paper also covers the role of tailored microstructure in U-Mo alloy for the purpose of hydriding and dehydriding treatment to generate alloy powders. (author)

  17. Tracer diffusion of 60Co and 63Ni in amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of 60 Co and 63 Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641 0 K can be described by: D/sub Co/sup */ = 3.7 x 10 -7 exp[-(135 +- 14) kJ mole -1 /RT] m 2 /sec and D/sub Ni//sup */ = 1.7 x 10 -7 exp[-(140 +- 9) kJ mole -1 /RT] m 2 /sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs

  18. Preparation of rare earth-cobalt magnet alloy by reduction-diffusion process

    International Nuclear Information System (INIS)

    Krishnan, T.S.

    1980-01-01

    Preparation of rare earth-cobalt alloys by reduction-diffusion (R-D) process is described. The process essentially involves mixing of the rare earth oxide and cobalt/cobalt oxide powders in proper proportion and high temperature reduction of the charge in hydrogen atmosphere, followed by aqueous leaching of the reduced mass to yield the alloy powder. Comparison is made of the magnetic properties of the R-D powder with those of the powder prepared by the direct melting (DM) route and it is observed from the reported values for SmCo 5 that the energy product of the R-D powder (approximately 22 MGOe) is only marginally lower than that of the directly melted alloy (approximately 25 MGOe). The paper also includes the results of studies carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of misch metal-cobalt alloy by the R-D process. (auth.)

  19. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  20. Experimental study of the electric resistivity in Heusler alloys

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1980-01-01

    Electrical resistivity measurements have been performed in the Cu 2 Mn (A1sub(1-x) Snsub(x)) Heusler alloys, where x = 0, 0.05, 0.10 and 0.15, in the temperature range from 4.2 to 800 0 K. Measurements have also been made on the Ni 2 MnX Heusler asloys, with X = In, Sn or Sb, in the range from 4.2 to 300 0 K. The experimental curves clearly show the importance of the ferromagnetic character for the alloys resistivity. The results obtained for the copper alloys, as well as for the Ni 2 MnSn alloy, are in agreement with an interpretation in terms of Bloch-Gruneisen and spin-disorder models, and fail to provide evidences of s-d scattering for the conduction electrons. This is not the case for the Ni 2 MnIn and Ni 2 MnSb alloys, in which the presence of (s-d) interband electronic scattering process, via phonon, was detected. Specially for the two last alloys specific heat and electronic photo-emissivity experiments are suggested. (Author) [pt

  1. Improvement in the corrosion protection and bactericidal properties of AZ91D magnesium alloy coated with a microstructured polypyrrole film

    Directory of Open Access Journals (Sweden)

    A.D. Forero López

    2018-03-01

    Full Text Available In this work hollow rectangular microtubes of polypyrrole (PPy films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution. The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer. Finally the duplex film was modified by the incorporation of silver species. The obtained coatings were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS and the antimicrobial activity against the bacteria Escherichia coli was evaluated. The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential, polarization techniques and electrochemical spectroscopy (EIS. The duplex coating presents an improved anticorrosive performance with respect to the PPy film. The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating. Keywords: Polypyrrole, Duplex coating, AZ91D alloy, Corrosion resistance, Antibacterial properties

  2. ODS Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Jang, Jin Sung

    2006-01-01

    ODS (oxide dispersion strengthening) alloy is one of the potential candidate alloys for the cladding or in reactor components of Generation IV reactors and for the structural material even for fusion reactors. It is widely accepted as very resistant material to neutron irradiation as well as strong material at high temperature due to its finely distributed and stable oxide particles. Among Generation IV reactors SFR and SCWR are anticipated in general to run in the temperature range between 300 and 550 .deg. C, and the peak cladding temperature is supposed to reach at about 620 .deg. C during the normal operation. Therefore Zr.base alloys, which have been widely known and adopted for the cladding material due to their excellent neutron economics, are no more adequate at these operating conditions. Fe-base ODS alloys in general has a good high temperature strength at the above high temperature as well as the neutron resistance. In this study a range of commercial grade ODS alloys and their applications are reviewed, including an investigation of the stability of a commercial grade 20% Cr Fe-base ODS alloy(MA956). The alloy was evaluated in terms of the fracture toughness change along with the aging treatment. Also an attempt of the development of 9% Cr Fe-base ODS alloys is introduced

  3. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  4. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  5. Stability of phases at high temperatures in CoRe based alloys being developed for ultra-high temperature applications

    Czech Academy of Sciences Publication Activity Database

    Gilles, R.; Strunz, Pavel; Mukherji, D.; Hofmann, M.; Holzel, M.; Rösler, J.

    2012-01-01

    Roč. 340, 012052 (2012), s. 1-9 ISSN 1742-6588. [5th European Conference on Neutron Scattering. Praha, 17.07.2011-21.07.2011] R&D Projects: GA MPO FR-TI1/378 Institutional support: RVO:61389005 Keywords : neutron diffraction * Co-base alloy * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal)

    International Nuclear Information System (INIS)

    Uziel, A.; Bram, A.I.; Venkert, A.; Kiv, A.E.; Fuks, D.; Meshi, L.

    2015-01-01

    Th-T-Al system, where T-3d transition metals, was studied at ThT 2 Al 20 stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT 2 Al 20 phase adopts CeCr 2 Al 20 structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT 2 Al 20 alloys. • It was found that cubic ThT 2 Al 20 phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT 2 Al 10 are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results

  7. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies

    DEFF Research Database (Denmark)

    Damgaard Jensen, Emil; Ferreira, Raphael; Jakociunas, Tadas

    2017-01-01

    on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene...... transcription start site. In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101...... production and increases in TAG. Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also...

  8. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    Directory of Open Access Journals (Sweden)

    Hui-Ping Ren

    2011-01-01

    Full Text Available Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4 alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1 alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s to 30 m/s, the hydrogen absorption saturation ratio ( of the (x = 0.4 alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio ( from 54.5 to 70.2%, the hydrogen diffusion coefficient (D from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g.

  9. The experimental search for new predicted binary-alloy structures

    Science.gov (United States)

    Erb, K. C.; Richey, Lauren; Lang, Candace; Campbell, Branton; Hart, Gus

    2010-10-01

    Predicting new ordered phases in metallic alloys is a productive line of inquiry because configurational ordering in an alloy can dramatically alter their useful material properties. One is able to infer the existence of an ordered phase in an alloy using first-principles calculated formation enthalpies.ootnotetextG. L. W. Hart, ``Where are Nature's missing structures?,'' Nature Materials 6 941-945 2007 Using this approach, we have been able to identify stable (i.e. lowest energy) orderings in a variety of binary metallic alloys. Many of these phases have been observed experimentally in the past, though others have not. In pursuit of several of the missing structures, we have characterized potential orderings in PtCd, PtPd and PtMo alloys using synchrotron x-ray powder diffraction and symmetry-analysis tools.ootnotetextB. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, ``ISODISPLACE: a web-based tool for exploring structural distortions,'' J. Appl. Cryst. 39, 607-614 (2006)

  10. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    Science.gov (United States)

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  11. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    International Nuclear Information System (INIS)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei; Dong, Peng; Wang, Wen-xian; Ding, Min

    2016-01-01

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al 2 O 3 nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al 2 O 3 /Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al 2 O 3 nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al 2 O 3 nanoparticles increased with the increasing weight percentages of Al 2 O 3 nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al 2 O 3 nanoparticles.

  12. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Duan, Hongping; Yan, Chuanwei; Wang, Fuhui

    2007-01-01

    Various plasma electrolytic oxidation (PEO) films were prepared on magnesium alloy AZ91D in a silicate bath with different additives such as phosphate, fluoride and borate. Effects of the additives on chemical composition and corrosion resistance of the PEO films were examined by means of scanning electron microscopy (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that the PEO films obtained in solutions with both borate and fluoride had better corrosion resistance. In order to understand the corrosion mechanism of PEO films on magnesium alloy AZ91D, electronic property of the magnesium electrode with PEO films was studied by Mott-Schottky approach in a solution containing borate and chloride. The results indicated that magnesium electrodes with and without PEO films all exhibited n-type semiconducting property. However, in comparison with the magnesium electrode treated in solutions containing phosphate or borate, the electrode treated in solutions containing both borate and fluoride (M-film) had lower donor concentration and much negative flat band potential; therefore, the M-film had lower reactivity and higher corrosion resistance

  13. SHEARING STRENGTH TEST OF ORTOPEDIC TITANIUM ALLOY SCREW PRODUCED IN THE PROCESS OF 3D TECHNOLOGY PRINTING

    Directory of Open Access Journals (Sweden)

    Patrycja Ruszniak

    2016-03-01

    Full Text Available The aim of the present dissertation is the assessment of technical shear resistance (technological shear of orthopedic screw made of titanium alloy Ti6Al4V, produced using incremental technology in the process of 3D printing process. The first part of the work presents incremental techniques in production engineering. The second part of the present work contains specification of the 3D printing process of samples as well as the description of the used material. The fundamental part of the article is composed out of endurance tests for orthopaedic screws as well as the analysis of the obtained results and conclusions. The method of incremental production SLM using SLM 280HL metal printer was used during the technological process. The resistance tests were performed using ZWICK/ROELL Z150 machines. Identical endurance trials were performed for monolithic bars made of titanium alloys (of bar core size made on a wire electric discharge machine Sodick SL600Q for comparative purposes. The obtained test results enabled comparative assessment of the value of shear resistance Rt in the conditions of technological shear. According to the performed tests, the shear resistance Rt of orthopaedic screws is nearly 33% lower than of monolithic bars of the same core size.

  14. Nuclear Magnetic Resonance (NMR) study of the nanocrystalline alloy Fe73.5 Cu1 Nb3 Si13.5 B9

    International Nuclear Information System (INIS)

    Aliaga-Guerra, D.; Iannarella, L.; Fontes, M.B.; Guimaraes, A.P.; Skorvanek, I.

    1994-05-01

    Nanocrystalline Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloys were studied with spin echo NMR at 4.2 K, from 15 to 100 MHz. Several lines are observed, with signals from domains and domain walls. Signals at 50-90 MHz appear to arise from 93 Nb nuclei in the amorphous matrix and in the interface of the crystallites. (author). 5 refs, 3 figs

  15. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  16. Grain refinement of AZ91D magnesium alloy by a new Mg–50%Al4C3 master alloy

    International Nuclear Information System (INIS)

    Liu, Shengfa; Chen, Yang; Han, Hui

    2015-01-01

    A novel and simple method for preparing Mg–50%Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in-situ synthesis process under argon atmosphere. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After adding 1.8% Mg–50%Al 4 C 3 master alloy, the average grain size of α-Mg decreased from 360 μm to 154 μm. Based on the DTA test results and calculation of the planar disregistry between Al 4 C 3 and α-Mg, Al 4 C 3 particles located in the central regions of magnesium grains can act as the heterogeneous nucleus of primary α-Mg phase

  17. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  18. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  19. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  20. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  1. Process of film formation by anodizing AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qian Jiangang; Li Di; Zhang Feng [School of Materials Science and Engineering, Beijing Univ. of Aeronautics and Astronautics (China)

    2005-07-01

    The kinetics of film-forming process by anodizing AZ91D Mg alloy has been studied by ways of voltage-time and thickness-time curve, and the surface morphology, structure, composition and valence of element, phase constituent of anodic films have been analyzed by SEM, EDS, XPS and XRD respectively. The results show that the film-forming course can be divided into four stages. Formation of dense layer before sparking is the first stage. Formation of porous layer accompanied with a bit of small sparking is the second stage. Porous layer fast growth along with middle sparking is the third stage. Porous layer slowly-growth along with bigger sparking is the fourth stage. The anodic films contains approximately Mg,O,Si and B, which is composed mainly of MgO, MgSiO{sub 3} and Mg{sub 3}B{sub 2}O{sub 6}. (orig.)

  2. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies

  3. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  4. Vitamin D status in the first 9 months of life

    DEFF Research Database (Denmark)

    Thomsen, Súsanna við Streym

    2012-01-01

    D-vitamin mangel er udbredt også hos mødre og deres spædbørn. D-vitamin er vigtigt for udviklingen af skelettet, men kan også have betydning for andre organsystemer, såsom immunforsvaret og derved for forebyggelsen af infektioner og udvikling af autoimmune sygdomme, som multipel sklerose (MS), type...... 1 diabetes mellitus (T1DM), og i sidste ende kræft. For at uddybe disse forhold har jeg gennemført fire studier: 1) Maternal and infant vitamin D status during the first 9 months of infant life – a cohort study, 2) Peripheral Quantitative Computed Tomography (pQCT) of tibia in 9 month old infants......: Relations to gender and to maternal and infant plasma 25OHD and PTH levels, 3) The effect of season of birth on the later risk of infections and selected chronic diseases like MS, T1DM, cancer, schizophrenia, and acute myocardial infarct og 4) The stability of 25-hydroxyvitamin D in human blood during...

  5. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  6. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  7. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  8. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  9. Processing and production of molybdenum and tungsten alloys

    International Nuclear Information System (INIS)

    Hagel, W.C.; Shields, J.A. Jr.; Tuominen, S.M.

    1984-01-01

    The technological means to produce and process Mo and W alloys are summarized because for many Mo and W alloy systems the mechanical properties can be optimized only by thermomechanical processing requiring production and processing capabilities that are not widely available. First, the producers of commercial Mo and W alloys are presented along with currently available product forms. Second, currently disclosed standard capabilities of producers and processors in the United States are presented. 56 references, 13 figures, 9 tables

  10. Electrical resistivity of liquid Ag-Au alloy

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-01-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au binary alloy on composition are reported. The structure of the binary alloy is described as a hard-sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trend is observed. (author)

  11. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  12. 2D PdAg Alloy Nanodendrites for Enhanced Ethanol Electroxidation.

    Science.gov (United States)

    Huang, Wenjing; Kang, Xiaolin; Xu, Cheng; Zhou, Junhua; Deng, Jun; Li, Yanguang; Cheng, Si

    2018-03-01

    The development of highly active and stable electrocatalysts for ethanol electroxidation is of decisive importance to the successful commercialization of direct ethanol fuel cells. Despite great efforts invested over the past decade, their progress has been notably slower than expected. In this work, the facile solution synthesis of 2D PdAg alloy nanodendrites as a high-performance electrocatalyst is reported for ethanol electroxidation. The reaction is carried out via the coreduction of Pd and Ag precursors in aqueous solution with the presence of octadecyltrimethylammonium chloride as the structural directing agent. Final products feature small thickness (5-7 nm) and random in-plane branching with enlarged surface areas and abundant undercoordinated sites. They exhibit enhanced electrocatalytic activity (large specific current ≈2600 mA mgPd-1) and excellent operation stability (as revealed from both the cycling and chronoamperometric tests) for ethanol electroxidation. Control experiments show that the improvement comes from the combined electronic and structural effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Zhang Shiyan; Li Qing; Chen Bo; Yang Xiaokui

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO 2 thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO 2 sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO 2 . According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  14. Characteristic of DTA curves for cast ferrous alloys

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study presents DTA curves for selected grades of cast iron and cast steel. The thermal effects observed on derivative curves, caused by crystallisation of single phases and eutectic were discussed. The thermal effects having their origin in crystallisation of secondary carbides were determined. It has been indicated that the range of temperatures of their crystallisation can be determined from the cooling curve t = f(τ, from the solidification curve dt/dτ = f′(τ, and from the second derivative d2t/dτ2 = f″(τ. The crystallisation rate of single phases or of their mixture is indicated by the duration of thermal effect and by the slope angle of the curve responsible for a specific thermal effect before and after its maximum. A very high sensitivity of the derivative curve to temperature changes in liquid and solid alloy and to the phase (phases growth rate enables control of alloy before pouring of moulds. The control of alloy may consist in identification of phases the presence of which is indispensable in alloy microstructure and in determination of some important properties, e.g. Rp0,2, Rm, A5 and HB. In the latter case, the statistical relationships between the above mentioned characteristic parameters of DTA curves and the selected mechanical properties have been determined. The said relationships form a basis for construction of algorithms used in development of computer programs for control of individual alloys.

  15. Pressure dependence of resistivity and magnetic properties in a Mn1.9Cr0.1Sb alloy

    Directory of Open Access Journals (Sweden)

    D. V. Maheswar Repaka

    2017-12-01

    Full Text Available We report magnetic-field and hydrostatic pressure dependent electrical resistivity and magnetic properties of a Mn1.9Cr0.1Sb alloy. Upon cooling, the magnetization of Mn1.9Cr0.1Sb exhibits a first-order ferrimagnetic to antiferromagnetic transition at the exchange inversion temperature, TS = 261 K under a 0.1 T magnetic field. Our experimental results show that TS decreases with increasing magnetic field but increase with increasing hydrostatic pressure. The pressure induced transition is accompanied by a large positive baro-resistance of 30.5% for a hydrostatic pressure change of 0.69 GPa. These results show that the lattice parameters as well as the bond distance between Mn-Mn atoms play a crucial role in the magnetic and electronic transport properties of Mn1.9Cr0.1Sb. This sample also exhibits a large inverse magnetocaloric effect with a magnetic entropy change of ΔSm = +6.75 J/kg.K and negative magnetoresistance (44.5% for a field change of 5 T at TS in ambient pressure which may be useful for magnetic cooling and spintronics applications.

  16. The Study of Phase Transformations of AlSi9Cu3 Alloy by DSC Method

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available With the use of differential scanning calorimetry (DSC, the characteristic temperatures and enthalpy of phase transformations were defined for commercial AlSi9Cu3 cast alloy (EN AC-46000 that is being used for example for pressurized castings for automotive industry. During the heating with the speed of 10°C·min−1 two endothermic effects has been observed. The first appears at the temperature between 495 °C and 534 °C, and the other between 555 °C and 631 °C. With these reactions the phase transformation enthalpy comes up as +6 J g−1 and +327 J g−1. During the cooling with the same speed, three endothermic reactions were observed at the temperatures between 584 °C and 471 °C. The total enthalpy of the transitions is – 348 J g−1.

  17. Preparation and Properties of EPDM/Silicone Alloy Using Maleated EPDM-polydimethylsiloxane Compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doo Whan; Kim, Bum Jin [Hyperstructured Organic Materials Research Center, Department of Polymer Science and Engineering, Dankook University, Seoul (Korea); Shim, Dae Sup [Korea Electrotechnology Research Institute, Euiwang (Korea)

    2001-05-01

    EPDM used as an electrical insulating material was blended with silicone rubber and compatibilizer to improve weatherability, ozone resistance, and dielectric strength. The compatibilizer was prepared by imidizing maleated EPDM with {alpha},{omega}-aminopropyl polydimethylsiloxane. EPDM/ silicone alloy was prepared by blending EPDM and silicone rubber with weight ratio of 9/1, 7/3, 5/5, 3/7 and 1/9, maleated EPDM-polydimethylsiloxane copolymer, and dicumyl peroxide (DCP). The maximum tensile strength of 0.177 kgf/mm{sup 2}, elongation at break of 257%, and dielectric breakdown voltage 362.25 kV/cm were obtained from the alloy prepared with 9 to 1 weight ration of EPDM/silicone. The compatibility of the alloy was confirmed from the thermal characteristics measured using DMA and DSC. The morphology of the alloys was observed with SEM. 7 refs., 8 figs., 1 tab.

  18. Superconductivity and specific heat measurements in V--Nb--Ta ternary alloys

    International Nuclear Information System (INIS)

    Wang, R.Y.P.

    1977-01-01

    The correlation between the superconducting transition temperature T/sub c/ with electronic specific heat coefficient γ and Debye temperature theta/sub D/ in some isoelectronic ternary V--Nb--Ta alloys is investigated. It has been known that the variation of theta/sub D/ with concentration in both V--Nb and V--Ta systems is clearly of the same curvature as that of T/sub c/ and γ. In Ta--Nb alloys, however, over most of the concentration range theta/sub D/ seems to have a slight negative curvature while T/sub c/ and γ curve upwards. (But beyond approx. 80 at. % Nb theta/sub D/ rises rapidly to the pure Nb value.) By choosing alloys along a line connecting Ta and V 25 --Nb 75 which is close to the Nb--Ta side of the Gibb's triangle the extent to which the Nb--Ta type of behavior persists in this ternary system can be estimated. A model proposed by Miedema that takes into account the variation of properties caused by possible charge transfer among constituent atoms in an alloy has been found to apply almost quantitatively for nearly all binary alloy systems whose experimental data are available, including those for which Hopfield's method fails. A previous test of the extension of Miedema's empirical model into ternary alloys shows qualitatively correct behavior for intra-row Zr/sub x/Nb/sub 1-2x/Mo/sub x/ alloys. The good agreement between the predicted values of γ and T/sub c/ and the experimental values in the inter-row ternary V--Nb--Ta system studied here gives another and better test of the application of Miedema's model

  19. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    International Nuclear Information System (INIS)

    Schille, Ch.; Braun, M.; Wendel, H.P.; Scheideler, L.; Hort, N.; Reichel, H.-P.; Schweizer, E.; Geis-Gerstorfer, J.

    2011-01-01

    Highlights: ► Corrosion of eight Mg–based Biomaterials was tested in saline and human blood. ► Corrosion behaviour in physiological saline and in blood was entirely different. ► Al and Zn had the highest influence on corrosion behaviour in both electrolytes. ► MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. ► Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS minus (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS minus and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight loss was observed. When alloys are ranked according to corrosion susceptibility, the results differ also between the test systems. The

  20. A case of high-titer anti-D hemolytic disease of the newborn in which late onset and mild course is associated with the D variant, RHD-CE(9)-D.

    Science.gov (United States)

    Jakobsen, Marianne A; Nielsen, Christian; Sprogøe, Ulrik

    2014-10-01

    The RhD antigen is very immunogenic and is a significant cause of hemolytic disease of the newborn (HDN). The RHD-CE(8-9)-D hybrid allele is commonly associated with a D- phenotype. Here, we report a case of high-titer maternal anti-D and late onset of HDN in a newborn carrying a RHD-CE(9)-D variant supposedly encoding the same partial D antigen as the RHD-CE(8-9)-D allele, but with significant expression of D antigen. To elucidate the blood group antigen background of the case, we carried out serologic, flow cytometric, and genetics studies of the newborn and his father. Individuals carrying the RHD-CE(9)-D allele do express D antigen, but do so at significantly lower levels than those carrying the more common D+ phenotypes (e.g., DCe/dce). It may mitigate and delay otherwise severe HDN in pregnancies complicated by high-titer anti-D. © 2014 AABB.

  1. Development and Evaluation of Wide Clearance Braze Joints in Gamma Prime Alloys.

    Science.gov (United States)

    1982-03-01

    process , it also cleans crack surfaces, and this opens a way to repair the very costly parts. Since the alloys contain aluminum and titanium , post- weld ...assembly was comr Let ,d by weld tacking the ends of the T-bar with a TIG torch. Sufficient T-bars of each parent alloy were prepared so that each surface...fluorocarbon cleaning process (FCP). For the right filler metal combination (Ren6 80 with D 15 alloy ) joint tensile strengths rivalled the base metal

  2. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  3. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  4. Studies of plutonium-iron and uranium-plutonium-iron alloys; Etudes d'alliages plutonium-fer et d'alliages uranium-plutonium-fer

    Energy Technology Data Exchange (ETDEWEB)

    Avivi, Ehud [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-01-15

    We study the plutonium-iron system, by means of dilatometry, X rays and metallography, especially in the domain between PuFe{sub 2} and Fe. We determine the solubilities of Fe in PuFe{sub 2} and of Pu in Fe. We show the presence of an hexagonal PuFe{sub 2} phase and we propose a modification in the Pu-Fe phase diagram. Some low iron concentration U-Pu-Fe alloys have also been investigated. We characterise the different phases. We confirm that adding some iron lowers the quantity of the zeta U-Pu phase. We emphasize some characteristics of the alloys having the global concentration (U, Pu){sub 6} Fe. (authors) [French] On etudie par dilatometrie, rayons X et micrographie le systeme plutonium-fer, principalement dans la region comprise entre PuFe{sub 2} et Fe, On determine les solubilites du fer dans PuFe{sub 2}, et de Pu dans Fe. On met en evidence une phase PuFe{sub 2} hexagonale et on propose une modification du diagramme d'equilibre Pu-Fe. Certains alliages U-Pu-Fe a faibles concentrations en fer sont egalement etudies. On caracterise les phases en presence. On confirme que l'addition de fer diminue rapidement la quantite de phase U-Pu zeta. Enfin on revele certaines caracteristiques des alliages de composition globale (U, Pu){sub 6} Fe. (auteurs)

  5. Thermal treatment of the Fe{sub 78} Si{sub 9} B{sub 13} alloy and the analysis of it magnetic properties through Moessbauer spectroscopy and Positronium annihilation; Tratamiento termico de la aleacion Fe{sub 78} Si{sub 9} B{sub 13} y el analisis de sus propiedades magneticas mediante Espectroscopia de Moessbauer y Aniquilacion de positronio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A

    2005-07-01

    The present work is divided in five chapters. In the first one a general vision of the amorphous alloys is given from antecedents, structure, obtaining methods, properties and problems that at the moment, focusing us in a certain moment to the iron base alloys and the anomalous problem of hardness that it presents the alloy Fe{sub 78}Si{sub 9}B{sub 13} like previously mention us. The second chapter tries on the basic theory of the techniques of Moessbauer spectroscopy and Positron Annihilation spectroscopy, used for the characterization of our alloy as well as the complementary technique of X-ray diffraction (XRD) to observe that the amorphous phase was even studying. The third chapter describes the experimental conditions that were used to study the alloy Fe{sub 78}Si{sub 9}B{sub 13} in each one of their thermal treatments. In the fourth chapter the obtained results and their discussion are presented. In the fifth chapter the conclusions to which were arrived after analyzing the results are presented. (Author)

  6. First-principles investigations of iron-based alloys and their properties

    Science.gov (United States)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  7. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  8. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  9. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2017-03-14

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  10. Hydrophobic core substitutions in calbindin D9k

    DEFF Research Database (Denmark)

    Kragelund, B B; Jönsson, M; Bifulco, G

    1998-01-01

    Hydrophobic core residues have a marked influence on the Ca2+-binding properties of calbindin D9k, even though there are no direct contacts between these residues and the bound Ca2+ ions. Eleven different mutants with substitutions in the hydrophobic core were produced, and their equilibrium Ca2+...... that the hydrophobic core residues promote Ca2+ binding both by contributing to the preformation of the Ca2+ sites in the apo state and by preferentially stabilizing the Ca2+-bound state.......Hydrophobic core residues have a marked influence on the Ca2+-binding properties of calbindin D9k, even though there are no direct contacts between these residues and the bound Ca2+ ions. Eleven different mutants with substitutions in the hydrophobic core were produced, and their equilibrium Ca2...... that the mutation causes only very minimal perturbations in the immediate vicinity of residue 61. Substitutions of alanines or glycines for bulky residues in the center of the core were found to have significant effects on both Ca2+ affinity and dissociation rates. These substitutions caused a reduction in affinity...

  11. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Kosintsev, S.G.; Svystunov, Ye.O.; Garamus, V.M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-01-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T C =195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature Θ D =180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B eff =(0.7-0.9)B ext was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B ext . Nano length scale magnetic inhomogeneities nearby and far above T C were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: → Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. → Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. → Moessbauer data point to mixed interspin interaction and low the Dedye temperature. → The SANS experiments reveal nano length scale magnetic inhomogeneities ≤6 nm. → Anti-Invar behavior of Fe-Ni-C alloy explained by thermally varied magnetic order.

  12. Purification and Characterization of Exo-Inulinase from Paenibacillus sp. d9 Strain.

    Science.gov (United States)

    Jeza, S; Maseko, S B; Lin, J

    2018-02-01

    This study intended to purify and characterise exo-inulinase of diesel-degrading Paenibacillus sp. D9. The whole genome sequencing of Paenibacillus sp. D9 revealed to possess the sacC gene that is encoded as exo-inulinase/levanase. This isolate was capable of producing a maximum of 50.9 IU/mL of exo-inulinase activity within 3 days at 30 °C, 200 rpm and pH of 7.0 on minimal salt medium agar supplemented with 1% (w/v) inulin. An exo-inulinase of 58.5 kDa was purified using ammonium sulphate precipitation, HiTrap QFF column and MMC column chromatographies with a specific activity of 4333 IU/mg, 7.1% recovery and a 4.3-fold increase in purity. The purified D9 exo-inulinase had temperature and pH optimum at 40 °C and pH 4.0, respectively, with the Michaelis constant of 5.5 mM and a maximal velocity of 476.2 IU/mg, respectively. Catalytic constant, k cat was calculated to be 42.6 s -1 with a catalytic efficiency (k cat /K m ) of 7.6 s -1  mM -1 . The presence of Ca 2+ enhanced the activity of D9 exo-inulinase while Hg 2+ completely inhibited the activity, other compounds such as Fe 3+ and Cu 2+ had an inhibitory effect. The results of amino acid alignment and the complete degradation of inulin into fructose by the purified enzyme confirmed that inulinase from Paenibacillus sp. D9 is an exo-form. The phylogenetic tree based on the protein sequences indicates that bacterial exo-inulinases possess a common ancestry.

  13. Some observations on the physical metallurgy of nickel alloy weld metals

    International Nuclear Information System (INIS)

    Skillern, C.G.; Lingenfelter, A.C.

    1982-01-01

    Numerous nickel alloys play critical roles in various energy-related applications. Successful use of these alloys is almost always dependent on the availability of acceptable welding methods and welding products. An understanding of the physical metallurgy of these alloys and their weld metals and the interaction of weld metal and base metal is essential to take full advantage of the useful properties of the alloys. To illustrate this point, this paper presents data for two materials: INCONEL alloy 718 and INCONEL Welding Electrode 132. 8 figures, 9 tables

  14. Analysis of the 3d9ns (n = 5, 6), 3d95p, 3d94f and 3d84s4p configurations of five times ionized arsenic (As VI)

    International Nuclear Information System (INIS)

    Ryabtsev, A.N.; Gayasov, R.R.; Joshi, Y.N.; Van het Hof, G.J.

    1993-01-01

    The spectrum of arsenic was photographed in the 100-1250 A region on grazing and normal incidence spectrographs. The spectrum of As VI was extended. Seven out of eight levels of the 3d 9 5s and 6s configurations, 12 out of 12 levels of the 3d 9 5p configuration, 13 out of 20 levels of the 3d 9 4f configuration and 35 levels belonging to the 3d 9 4s4p configuration have been established. Least-Square-Fitted parametric calculations involving configuration interactions both in even and odd parity systems were carried out to adequately interpret the spectrum. One hundred and thirty-two additional lines were classified in the As VI spectrum. A new value of the ionization limit was obtained. Thus, the 3d 9 2 D 5/2 ground level in As VII lies 977500 cm -1 (121.17 eV) above the As VI ground state. (orig.)

  15. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  16. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    International Nuclear Information System (INIS)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2016-01-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg_1_0In_9_0, Hg_3_0In_7_0_,_. Hg_5_0In_5_0, Hg_7_0In_3_0, and Hg_9_0Pb_1_0) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  17. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  18. A case of high-titer anti-D hemolytic disease of the newborn in which late onset and mild course is associated with the D variant, RHD-CE(9)-D

    DEFF Research Database (Denmark)

    Jakobsen, Marianne A; Nielsen, Christian; Sprogøe, Ulrik

    2014-01-01

    BACKGROUND: The RhD antigen is very immunogenic and is a significant cause of hemolytic disease of the newborn (HDN). The RHD-CE(8-9)-D hybrid allele is commonly associated with a D- phenotype. Here, we report a case of high-titer maternal anti-D and late onset of HDN in a newborn carrying a RHD......-CE(9)-D variant supposedly encoding the same partial D antigen as the RHD-CE(8-9)-D allele, but with significant expression of D antigen. STUDY DESIGN AND METHODS: To elucidate the blood group antigen background of the case, we carried out serologic, flow cytometric, and genetics studies of the newborn...

  19. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys

    Science.gov (United States)

    Cipriano, Aaron F.; Sallee, Amy; Tayoba, Myla; Cortez Alcaraz, Mayra C.; Lin, Alan; Guan, Ren-Guo; Zhao, Zhan-Yong; Liu, Huinan

    2018-01-01

    Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate, for the first time, the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ~1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ~1. Additionally, the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24 h was not adversely affected by the degradation of the alloys. Importantly, neither culture media supplemented with up to 27.6 mM Mg2+ ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast, the significantly higher, yet non-cytotoxic, Zn2+ ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly, analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface, most likely caused by either a high local alkalinity, change in surface topography, and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro, in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. PMID:27746360

  20. FeSiBAlNiMo High Entropy Alloy Prepared by Mechanical Alloying

    Czech Academy of Sciences Publication Activity Database

    Bureš, R.; Hadraba, Hynek; Fáberová, M.; Kollár, P.; Füzer, J.; Roupcová, Pavla; Strečková, M.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 771-773 ISSN 0587-4246 R&D Projects: GA ČR(CZ) GA14-25246S Institutional support: RVO:68081723 Keywords : Entropy * Mechanical alloying * Nanocrystals * Sintering Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.469, year: 2016

  1. Revue d'Information Scientifique et Technique - Vol 9, No 1 (1999)

    African Journals Online (AJOL)

    Conception et réalisation d'un système d'aide à la décision pour la gestion des ressources naturelles · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. F Admane, A El Maouheb, F Benamara, FZ Djezzar, 11-23. http://dx.doi.org/10.4314/rist.v9i1.26717 ...

  2. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  3. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys

    International Nuclear Information System (INIS)

    Tiberto, P.; Basso, V.; Beatrice, C.; Bertotti, G.

    1996-01-01

    The dependence of magnetic properties on the thermal treatment used to induce the amorphous-to-nanocrystalline transformation in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy has been studied. Quasi-static hysteresis loops and initial permeability measurements were performed on nanocrystalline samples obtained by conventional annealing and Joule heating. A comparison between the magnetic properties of nanocrystalline samples obtained by the two heating procedures is presented. (orig.)

  4. METMET fuel with Zirconium matrix alloys

    International Nuclear Information System (INIS)

    Savchenko, A.; Konovalov, I.; Totev, T.

    2008-01-01

    The novel type of WWER-1000 fuel has been designed at A.A. Bochvar Institute. Instead of WWER-1000 UO 2 pelletized fuel rod we apply dispersion type fuel element with uniformly distributed high uranium content granules of U9Mo, U5Nb5Zr, U3Si alloys metallurgically bonded between themselves and to cladding by a specially developed Zr-base matrix alloy. The fuel meat retains a controllable porosity to accommodate fuel swelling. The optimal volume ratios between the components are: 64% fuel, 18% matrix, 18% pores. Properties of novel materials as well as fuel compositions on their base have been investigated. Method of fuel elements fabrication by capillary impregnation has been developed. The primary advantages of novel fuel are high uranium content (more than 15% in comparison with the standard UO 2 pelletized fuel rod), low temperature of fuel ( * d/tU) and serviceability under transient conditions. The use of the novel fuel might lead to natural uranium saving and reduced amounts of spent fuel as well as to optimization of Nuclear Plant operation conditions and improvements of their operation reliability and safety. As a result the economic efficiency shall increase and the cost of electric power shall decrease. (authors)

  5. Structural conditions of achieving maximum ductility of two-phase Ni-NiO alloys

    International Nuclear Information System (INIS)

    Grabin, V.V.; Dabizha, E.V.; Movchan, B.A.

    1984-01-01

    A study was made on possibility of increasing ductility of two-phase Ni-NiO alloys, proJuced by traditional technology: ingot smelting, rolling and corresponding annealing for production of grain with certain size. The correlation of mechanical properties of Ni-NiO alloys and pure nickel shows that completion of the structural conJition D--lambda (where D - the average grain diameter, lambda - the value of free path between particles) in two-phase alloys enables: to increase the ultimate strength 1.5 times and preserve the basic level of pure nickel plasticity - at 20 deg C; to increase plasticity 1.4-1.5 times with preserved basic level of pure nickel plasticity - at 800 deg C. The conclusions testify to possibility of controlling mechanical properties of two-phase alloys using structural D and lambda parameters It is proposed that creation of structures with more unifor m particle distribution with respect to sizes will the accompanied by further increase of plasticity under D=lambda condition

  6. Self-diffusion in Zr-Cr and Zr-Fe alloys

    International Nuclear Information System (INIS)

    Patil, R.V.; Tiwari, G.P.; Sharma, B.D.

    1981-01-01

    Self-diffusion studies in a series of zirconium-rich alloys containing 2.05, 3.49, 4.08 and 7.86 at %Cr and 0.98, 1.35, 1.64, 3.54 and 6.37 at.%Fe have been carried out in the temperature range 1173-1518 K, using standard serial-sectioning technique. The temperature dependence of self-diffusion coefficients in all these alloys could be described by Arrhenius expressions of the type D = D 0 exp (- Q/RT). The data have been analysed on the basis of current concepts of alloy diffusion. An analysis based on the vacancy mechanism leads to negative values of the correlation factors. The possibility of interstitial-vacancy pair and ω-phase embryos being rate-controlling mechanisms is also discussed. (author)

  7. Influence of structural relaxation and partial devitrification on the corrosion resistance of Fe78B13Si9 amorphous alloy

    International Nuclear Information System (INIS)

    Souza, C.A.C.; Politi, F.S.; Kiminami, C.S.

    1998-01-01

    Amorphous alloys obtained by rapid solidification from the melt exhibit a similar structure to those observed in the liquid state, i.e., without long range ordering, in such a way that the constituents of the alloy usually are randomly and homogeneously distributed. Amorphous alloys, depending on their composition, may exhibit interesting characteristics such as very soft magnetic properties and improved resistance to corrosion. The high corrosion resistance of these alloys is attributed mainly to a higher rate of dissolution of passivating elements in the amorphous state. In addition, amorphous alloys are chemically homogeneous and free of defects such as grain boundaries, precipitates and segregation, which are favorable sites for corrosion. The corrosion resistance of amorphous alloys also depends on their thermal history. Several authors have reported that structural changes, such as structural relaxation and devitrification caused by annealing, change significantly the corrosion properties of these alloys. The purpose of this paper is to study corrosion resistance of the amorphous FeBSi alloy and the effects of structural changes such as structural relaxation and partial crystallization caused by annealing

  8. XPS study on Mg0.9-xTi0.1PdxNi (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge-discharge cycles

    International Nuclear Information System (INIS)

    Tian Qifeng; Zhang Yao; Wu Yuanxin

    2009-01-01

    The passive film composition of Mg 0.9-x Ti 0.1 Pd x Ni (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage alloys after 40 charge-discharge cycles has been investigated by means of X-ray photoelectron spectroscopy (XPS) in combination with Ar + sputtering technology. With the XPSPEAK software, high resolution spectra of alloy elements and oxygen were deconvolved into individual peaks. Composites formed by metal elements and their relative contents were also deduced. It was found that the composites originated from Mg and Ni were mainly in the form of their oxides and hydroxides, which existed at the top surface of alloys. With the increase of sputtering depth, the hydroxides of Mg and Ni gradually disappeared while corresponding oxides dominated their passive products. According to the analysis results of oxygen spectra, the elemental segregation of Mg and Ni was influenced by the substitution of Pd because the addition of Pd slightly enhanced the surface energy of the alloys and suppressed the formation of Mg hydroxide and oxide. Ti and Pd presented multiple-oxides from the surface to the inner alloys and metallic Pd appeared in the sub-layers of the alloys' surface. The possible mechanisms of the formation of passive products were suggested on the basis of the discussion in the paper.

  9. Study of phase transformation of U-2,5Zr-7,5Nb e U-3Zr-9Nb alloys for application in advanced nuclear fuel

    International Nuclear Information System (INIS)

    Pais, Rafael Witter Dias

    2015-01-01

    Metal fuels are relevant in the nuclear area due to the versatility of its use in the nuclear fuel cycle. Among the alloys of uranium investigated with high potential for use in nuclear power reactors, U-Zr-Nb alloys appear as an important alternative because of their superior physico-chemical and metallurgical properties. These alloys have also potential for use in nuclear testing, research and production radioisotopes of high performance nuclear reactors. Therefore, the development of these alloys is strategic since they are planned to be used in national reactors as RMB (Brazilian Multipurpose Reactor) and LABGENE (Electrical Generation Core Laboratory), currently under development in Brazil. In this work it was realized a extensive study in the scope of the manufacturing, heat treatment and phase transformations of U-2,5Zr-7,5Nb (m/m%) and U-3ZR-9NB (m/m%) fuel alloys. Ingots of both alloys were produced employing a specific methodology developed in this study. This methodology comprised the melting process in a vacuum induction furnace at high temperatures (1500 °C) and thermal-mechanical processing to break the as-cast structure. Samples with typical dimensions (17 x 7 x 2.5 mm) free from macrostructural defects were homogenized at 1000 °C in vacuum of 10 -5 torr for 17.5 hours with a 10°C/min cooling rate until to 820 °C and, subsequently, quenched in water. The samples, randomly selected, were subjected to isothermal treatment tests under different conditions of time and temperature. Isothermal treatments for transformation and retention phases were carried out in a special assembly designed for this work. After the tests, the samples were characterized by the usual phase characterization techniques with particular emphasis for the X-ray diffraction technique. In this way, the Rietveld refinement method was applied. In the case of uranium based alloys it is quite challenging due to the lack of data in the literature. In this work a strategy for the

  10. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Schille, Ch., E-mail: Christine.Schille@med.uni-tuebingen.de [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Braun, M.; Wendel, H.P. [University Hospital Tuebingen, Div. Congenital and Paediatric Cardiac Surgery, University Children' s Hospital, Tuebingen, Germany, Calwerstr. 7/1, D-72076 Tuebingen (Germany); Scheideler, L. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Hort, N. [GKSS Research Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Reichel, H.-P. [Weissensee Company, Buergermeister-Ebert-Str. 30-32, D-36124 Eichenzell (Germany); Schweizer, E.; Geis-Gerstorfer, J. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of eight Mg-based Biomaterials was tested in saline and human blood. Black-Right-Pointing-Pointer Corrosion behaviour in physiological saline and in blood was entirely different. Black-Right-Pointing-Pointer Al and Zn had the highest influence on corrosion behaviour in both electrolytes. Black-Right-Pointing-Pointer MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. Black-Right-Pointing-Pointer Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS{sup minus} (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS{sup minus} and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight

  11. Effect of reduction ratio on annealing texture and r-value directionality for a cold-rolled Al-5% Mg alloy

    International Nuclear Information System (INIS)

    Choi, Shi-Hoon; Choi, Jae-Kwon; Kim, Hyoung-Wook; Kang, Seok-Bong

    2009-01-01

    The evolution of the macrotexture and r-value directionality of cold-rolled Al-5% Mg alloys during annealing at various temperatures was investigated to seek an optimum annealing condition to improve the formability of TRBs. The change of volume fractions for the typical texture components of Al-5% Mg alloys was calculated using a misorientation approach in 3-D Euler space. A visco-plastic self-consistent (VPSC) polycrystal model was used to predict r-value directionality of the cold-rolled and annealed Al-5% Mg alloys. The electron backscatter diffraction (EBSD) technique was used to investigate a rapid change of the initial deformation texture in the specimen deformed by a reduction of 9% during annealing. The results showed that an optimum annealing temperature for achieving the low planar anisotropy was strongly dependent on the rolling reduction ratio.

  12. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    Science.gov (United States)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.

  13. The corrosion behaviour of Zr3Al-based alloys

    International Nuclear Information System (INIS)

    Murphy, E.V.; Wieler, R.

    1977-07-01

    The corrosion resistance of several zirconium-aluminum alloys with aluminum contents ranging from 7.6 to 9.6 wt% was examined in 300 deg C and 325 deg C water, 350 deg C and 400 deg C steam and in air and wet CO 2 at 325 deg C and 400 deg C. In the transformed alloys there are three phases present, αZr, Zr 2 Al and Zr 3 Al of which the αZr phase is the least corrosion resistant. The most important factor controlling the corrosion behaviour of these alloys was found to be the size, distribution and amount of the αZr phase in the transformed alloys, which in turn was dependent upon the microstructural scale of the untransformed alloys

  14. Effects of alloying elements on the Snoek-type relaxation in Ti–Nb–X–O alloys (X = Al, Sn, Cr, and Mn)

    International Nuclear Information System (INIS)

    Lu, H.; Li, C.X.; Yin, F.X.; Fang, Q.F.; Umezawa, O.

    2012-01-01

    Highlights: ► The O Snoek-type relaxation in the Ti–Nb–X–O alloys was investigated. ► The dipole shape factor (δλ) and critical temperature T c were deduced from the peak. ► The δλ and T c were analyzed in terms of the d-orbital energy level (Md). ► With decreasing Md, the δλ increases and saturates at last while the T c decreases. ► The Md can be taken as a key parameter in designing high damping β-Ti alloys. - Abstract: The effect of alloying elements on the oxygen Snoek-type relaxation in the Ti–24Nb–X–1.7O alloys (X = 1Al, 2Al, 1Sn, 2Sn, 2Cr, 2Mn) was investigated in order to develop high damping materials based on point defect relaxation process. The relaxation strength of the Ti–Nb–Al–O and Ti–Nb–Sn–O alloys is the highest while that of the Ti–Nb–Mn–O and Ti–Nb–Cr–O alloys is the lowest. The dipole shape factor (δλ) and critical temperature T c , which are intrinsic to the Snoek-type relaxation, were figured out and analyzed in terms of the d-orbital energy level (Md) for each alloy based on the measured damping peak. With the decreasing Md, the δλ increases and saturates at last when the Md decreases to a certain value (about 2.435 eV), while the critical temperature T c decreases linearly. The parameter Md can be taken as a key parameter in designing high damping β-Ti alloys, that is, to design an intermediate value of Md at which the values of both δλ and T c are as high as possible.

  15. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  16. Cerium Titanate Nano dispersoids in Ni-base ODS Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young-Bum; Rhee, Chang-Kyu; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Hee-Suk [Korea Basic Science Institute, Jeonju (Korea, Republic of)

    2016-10-15

    Oxide-dispersion-strengthened (ODS) nickel-base alloys have potential for use in rather demanding elevated-temperature environments, such as aircraft turbine engines, heat exchanger of nuclear reactor. For improved high temperature performance, several ODS alloys were developed which possess good elevated temperature strength and over-temperature capacity plus excellent static oxidation resistance. The high temperature strength of ODS alloys is due to the presence of a uniform dispersion of fine, inert particles. Ceria mixed oxides have been studied because of their application potential in the formation of nanoclusters. By first principle study, it was estimated that the formation energy of the Ce-O dimer with voids in the nickel base alloy is lower than other candidates. The result suggests that the dispersion of the Ceria mixed oxides can suppress the voiding or swelling behavior of nickel base alloy during neutron irradiation. In this study, the evolution of cerium titanate nano particles was investigated using in-situ TEM. It was found that the Ce{sub 2}Ti{sub 3}O{sub 9} phase was easily formed rather than remain as CeO{sub 2} during annealing; Ti was effective to form the finer oxide particles. Ce{sub 2}Ti{sub 3}O{sub 9} is expected to do the great roll as dispersoids in Ni-base alloy, contribute to achieve the better high temperature property, high swelling resistance during neutron radiation.

  17. Synthesis and characterization of the Fe-18%Ni-12%Co-4,9%Mo-1,5%Ti alloy

    International Nuclear Information System (INIS)

    Nunes, G.C.S.; Biondo, V.; Nunes, M.V.S.; Paesano Junior, A.; Sarvezuk, P.W.C.; Blanco, M.C.

    2014-01-01

    The Fe-18%Ni-12%Co-4,9%Mo-1,5%Ti was made by arc-melting and submitted to different heat treatments, for solubilization in the γ - phase (austenite), followed by cooling to the room temperature, and also for further aging. The prepared alloys were characterized by X-ray diffraction (Rietveld method) and Mössbauer spectroscopy. The results showed that the cooling induced the system to a martensitic transformation, crystallizing it into a cubic structure (martensite). The crystallographic parameters and the hyperfine parameters obtained by Mössbauer Spectroscopy are consistent with those found in literature for Maraging-350 steels. The aging treatments generates the formation of reversed austenite in relative amounts that vary with the temperature and time of treatment. (author)

  18. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  19. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  20. File list: NoD.Emb.10.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.10.AllAg.Mitotic_cycle_7-9.bed ...

  1. File list: NoD.Emb.20.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.20.AllAg.Mitotic_cycle_7-9.bed ...

  2. File list: NoD.Emb.05.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.05.AllAg.Mitotic_cycle_7-9.bed ...

  3. File list: NoD.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  4. Microstructure and mechanical properties of Sn-9Zn-xAl{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Dong, Peng; Wang, Wen-xian [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Ding, Min, E-mail: dingmin@tyut.edu.cn [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-15

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al{sub 2}O{sub 3}/Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al{sub 2}O{sub 3} nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al{sub 2}O{sub 3} nanoparticles increased with the increasing weight percentages of Al{sub 2}O{sub 3} nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al{sub 2}O{sub 3} nanoparticles.

  5. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  6. Influence of Al addition on the thermal stability and mechanical properties of Fe76.5-xCu1Si13.5b9Alx amorphous alloys

    Directory of Open Access Journals (Sweden)

    Sun Y.Y.

    2012-01-01

    Full Text Available This paper fabricated Fe76.5-xCu1Si13.5B9Alx (x=0,1,2,3,5,7 at.% amorphous ribbons using singleroller melt-spinning method. The effect of Al content on the thermal stability and mechanical properties was investigated. The results indicated that Al addition have little effect on the amorphous formation ability of the alloys. On the other hand, increasing the Al content can substantially increase Tx2, which corresponds to the crystallization of Fe borides. Nanoindentation tests indicated that hardness of the alloys increase slightly with increasing the Al content, and Young’s modulus has a complicated relationship with the Al content.

  7. Electrical resistivity of liquid noble metal alloys

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-08-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au, Cu-Ag, Cu-Au binary alloys on composition are reported. The structure of the binary alloy is described as a hard sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trends is observed in cases where experimental information is available. (author)

  8. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy

    International Nuclear Information System (INIS)

    Sha, G.; Cerezo, A.

    2004-01-01

    Full text: For high strength 7xxx series Al alloys, Zr is an important trace alloy element which is often added to optimise properties, having effects such as refining grain size, inhibiting recrystallization, and improving stress corrosion cracking resistance and quench sensitivity. In addition, it has been reported recently that Zr addition also has a significant influence on early stage ageing behaviour of a 7xxx series Al alloy. Zr equilibrium solubility in solid Al is extremely low. After solution or ageing treatment, most Zr is present as small spherical Ai 3 Zr dispersoids approximately 20 nm in diameter, distributed at grain boundaries as well as within the Al matrix. The crystallographic nature of intermetallic phase Al 3 Zr has been well studied in the literatures. So far, no direct measurement of the chemistry of the Al 3 Zr particles in 7xxx series Al alloys has been published. It is unclear if there is significant Zn, Mg or Cu included in the particles. In this research, 3DAP has been employed for the first time to investigate ionisation behaviour of Al 3 Zr particles and determine the chemistry of the particles in 7050 Al alloy. Using field ion microscopy, the local evaporation radius of the Al 3 Zr particle has been measured to be equivalent to 36 nm for a 10 kV tip, less than the equivalent tip radius for the Al matrix of ∼68 nm. Using the matrix Al evaporation field (19 V/nm) as a reference, this allows the evaporation field of Al 3 Zr to be calculated as 35 V/nm, the same as the field calculated for evaporation of Al as Al 2+ (35 V/nm), and that of Zr as Zr 3+ (35 V/nm). This result is consistent with Al 2+ and Zr 3+ being the main species observed in the mass spectrum during analysis of Al 3 Zr particles. Using 3DAP, the chemical compositions of Al 3 Zr particles are determined to be 64.8∼67.7 at% Al, 23.6∼24.8 at% Zr, 6.99.1 at% Zn, 0.4∼0.7 at% Cu, 0.5∼1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Choice of specimen temperature of

  9. Precipitation behaviors of cubic and tetragonal Zr–rich phase in Al–(Si–)Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tong [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ceguerra, Anna; Breen, Andrew [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Liu, Xiangfa; Wu, Yuying [Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ringer, Simon, E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-07-25

    The precipitation behaviors of Zr–rich phase in binary Al–0.5Zr and ternary Al–3Si–0.5Zr alloys were investigated by high resolution transmission electron microscopy and atom probe. After the alloys were aged at 525 °C for 24 h, the precipitates in Al–0.5Zr alloy are identified as L1{sub 2}–ZrAl{sub 3}, performing a coherent relationship with the Al matrix. While in Al–3Si–0.5Zr alloy, the precipitates are Si–containing D0{sub 23}–Zr(Al,Si){sub 3}, which has an approximate 90° reversed cube–on–cube orientation relationship with Al. It is regarded that Si accelerates the precipitation of D0{sub 23}–Zr(Al,Si){sub 3}. - Highlights: • L1{sub 2}–ZrAl{sub 3} and D0{sub 23}–Zr(Al, Si){sub 3} particles precipitate in Al–Zr and Al–Si–Zr alloys. • D0{sub 23}–Zr(Al, Si){sub 3} performs an approximate 90° reversed cube–on–cube orientation relationship with Al. • Si accelerates the precipitation process of D0{sub 23}–Zr(Al,Si){sub 3}.

  10. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  11. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  12. Glass forming ability of Al–Ni–La alloys with Si addition

    International Nuclear Information System (INIS)

    Yi, J.J.; Xiong, X.Z.; Inoue, A.; Kong, L.T.; Li, J.F.

    2015-01-01

    (Al_8_5_._5Ni_9_._5La_5)_1_0_0_−_xSi_x, (Al_8_6Ni_9La_5)_1_0_0_−_xSi_x, (Al_8_6Ni_9_._5La_4_._5)_1_0_0_−_xSi_x, (Al_8_6Ni_1_0La_4)_1_0_0_−_xSi_x and (Al_8_6Ni_1_0_._5La_3_._5)_1_0_0_−_xSi_x alloys, where x = 0.0, 0.2, 0.5, 1.0, 1.5 and 2.0, were cast under the same suction casting conditions into a wedge-shaped copper mold for investigating the effect of Si addition on the glass-forming ability (GFA). The GFA of the Al–Ni–La base alloys, except for the optimal glass former (Al_8_5_._5Ni_9_._5La_5), is enhanced when a proper content of Si is added. The largest content of Si up to which GFA can be enhanced changes in the following order of the base alloys: Al_8_6Ni_9La_5, Al_8_6Ni_9_._5La_4_._5, Al_8_6Ni_1_0La_4 and Al_8_6Ni_1_0_._5La_3_._5. The enhancement of GFA due to Si addition becomes more significant as the La content decreases. This is presumably because more free Al atoms are present in the base alloy. - Highlights: • 0.2–2.0 at. % Si was added to each ternary base alloy. • Wedge-shaped samples were suction cast to obtain the glass-forming ability (GFA). • The GFA of the ternary non-optimal glass formers can be enhanced by Si addition. • The number of free-Al atoms dominates the best Si addition.

  13. Transient failure behavior of HT9

    International Nuclear Information System (INIS)

    Huang, F.H.

    1994-07-01

    Alloy HT9 has-been chosen as candidate materials for fast and fusion reactor applications because the.material exhibits excellent resistance to void swelling. However, ferritic alloys are known to undergo a ductile-brittle transition as the test temperature is decreased. This inherent problem has limited their applications to reactor component materials subjected to low neutron exposures. Despite the ductile-brittle transition problem, results show that the materials exhibit superior resistance to fracture under very high neutron fluences at irradiation temperatures above 380C. Results also show that the transient behavior for HT9 cladding specimens taken from the fuel column region and cladding taken from outside the fuel column or unirradiated cladding are the same. HT9 cladding maintained its transient strength with irradiation to a fluence of 9 x 10 22 n/cm 2 (E > 0.1 MeV)

  14. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    Science.gov (United States)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  15. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...

  16. Synthesis of Nb-18%Al alloy by mechanical alloying method

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Dollar, M.

    1999-01-01

    The main goal of this study was attempt to employ by mechanical alloying to produce Nb-Al alloy. The Nb-rich alloy composition was selected in order to receive the ductile niobium solid solution (Nb ss ) phase in the final, equilibrium state. This ductile phase was believed to prevent crack propagation in the consolidated alloy and thus to improve its ductility and toughness. Elemental powders of niobium (99.8% pure and -325 mesh) and aluminium (99.9% pure and -325 mesh) were used as starting materials. These powders were mixed to give the nominal compositions od 82% Nb and 18% Al (atomic percent). Mechanical alloying was carried out in a Szegvari laboratory attritor mill in an argon atmosphere with the controlled oxygen level reduced to less than 10 ppm. The total milling time was 86 hours. During the course of milling powder samples were taken out after 5, 10 and 20 hours, which allowed characterization of the powder morphology and progress of the mechanical alloying process. The changes in particle morphology during milling were examined using a scanning electron microscope and the phase analysis was performed in a X-ray diffractometer with CoK α radiation. Initially, particles' size increased and their appearance changed from the regular to one of the flaky shape. X-ray diffraction patterns of examined powders as a function of milling time are presented. Peaks from Al, through much weaker than in the starting material, were still present after 5 hours of milling but disappeared completely after 10 hours of milling. With increasing milling time, the peaks became broader and their intensities decreased. Formation of amorphous phase was observed after 86 hours of milling. This was deducted from a diffuse halo observed at the 2Θ angle of about 27 o . Intermetallic phases Nb 3 Al and Nb 2 Al were found in the consolidated material only. (author)

  17. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    International Nuclear Information System (INIS)

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300 0 C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr 9 Pt 11 + 9/2 N 2 . Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985 0 C/ = 2.4 x 10 -4 in Zr 9 Pt 11 ΔG/sub f 1985 0 C/ 0 Zr 9 Pt 11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  18. Ranking alloys for susceptibility to MIC

    International Nuclear Information System (INIS)

    Scott, P.J.B.; Davies, M.; Goldie, J.

    1991-01-01

    This paper reports that laboratory experiments demonstrate that alloys containing 6 to 9% Mo are susceptible to microbiologically influenced corrosion attack. They also demonstrate that corrosion behavior in batch cultures do not correlate well with standard ferric chloride and pitting potential tests of the same alloys. In recent years, there has been an increasing awareness of the incidence of plant equipment failures caused by microbiologically influenced corrosion (MIC). This has led to the search for suitable testing techniques to look for MIC, which, in turn, has expanded the list of known susceptible alloys. Faced with field failures, the normal response has been to upgrade the alloy of construction. There is, for example, a common belief that the addition of more molybdenum to austenitic stainless steels conveys immunity (or at least increased resistance) to MIC. The basis for this is an extrapolation of localized corrosion data. The supposed correlation between molybdenum content and resistance to MIC has not yet been supported by a comprehensive testing program

  19. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  20. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    OpenAIRE

    Gobara, Mohamed; Shamekh, Mohamed; Akid, Robert

    2015-01-01

    A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg) was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particle...

  1. Effect of the La/Mg ratio on the structure and electrochemical properties of La xMg 3- xNi 9 ( x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries

    Science.gov (United States)

    Liao, B.; Lei, Y. Q.; Chen, L. X.; Lu, G. L.; Pan, H. G.; Wang, Q. D.

    Effect of La/Mg ratio on the structure and electrochemical properties of La xMg 3- xNi 9 ( x=1.6-2.2) ternary alloys was investigated. All alloys are consisted of a main phase with hexagonal PuNi 3-type structure and a few impurity phases (mainly LaNi 5 and MgNi 2). The increase of La/Mg ratio in the alloys leads to an increase in both the cell volume and the hydride stability. The discharge capacity of the alloys at 100 mA/g increases with the increase of La/Mg ratio and passes though a maximum of 397.5 mAh/g at x=2.0. As the La/Mg ratio increases, the high-rate dischargeability of the alloy electrodes at 1200 mA/g HRD 1200 decreases from 66.7% ( x=1.6) to 26.5% ( x=2.2). The slower decrease of HRD 1200 (from 66.7 to 52.7%) of the alloys with x=1.6-2.0 is mainly attributed to the decrease of electrocatalytic activity of the alloys for charge-transfer reaction, the more rapid decrease of HRD 1200 of the alloys with x>2.0 is mainly attributed to the lowering of the hydrogen diffusion rate in the bulk of alloy. The cycling capacity degradation of the alloys is rather fast for practical application due to the corrosion of La and Mg and the large VH in the hydride phase.

  2. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2016-03-01

    Full Text Available A highly active and selective hydrogenation of biomass-derived furfural into furfuryl alcohol was achieved using supported single phase Ni3Sn2 alloy catalysts. Various supports such as active carbon (AC, g-Al2O3, Al(OH3, ZnO, TiO2, ZrO2, MgO, Li-TN, and SiO2 have been employed in order to understand the role of the support on the formation of Ni3Sn2 alloy phase and its catalytic performance. Supported Ni3Sn2 alloy catalysts were synthesised via a simple hydrothermal treatment of the mixture of aqueous solution of nickel chloride hexahydrate and ethanol solution of tin(II chloride dihydrate in presence of ethylene glycol at 423 K for 24 h followed by H2 treatment at 673 K for 1.5 h, then characterised by using ICP-AES, XRD, H2- and N2-adsorption. XRD profiles of samples showed that the Ni3Sn2 alloy phases are readily formed during hydrothermal processes and become clearly observed at 2θ = 43-44o after H2 treatment. The presence of Ni3Sn2 alloy species that dispersed on the supports is believed to play a key role in highly active and selective hydrogenation of biomass-derived furfural towards furfuryl alcohol. Ni3Sn2 on TiO2 and ZnO supports exhibited much lower reaction temperature to achieved >99% yield of furfuryl alcohol product compared with other supports. The effects of loading amount of Ni-Sn, reaction conditions (temperature and time profile on the activity and selectivity towards the desired product are systematically discussed. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 31st December 2015; Accepted: 5th January 2016 How to Cite: Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 1-9. (doi:10.9767/bcrec.11.1.393.1-9 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.393.1-9

  3. Effect of stress on the superconducting transition temperature in indium, indium-alloy, tin, and tin-alloy whisker samples

    International Nuclear Information System (INIS)

    Cook, J.W. Jr.; Davis, W.T.; Chandler, J.H.; Skove, M.J.

    1977-01-01

    The dependence of the superconducting transition temperature (T/sub c/) on stress (sigma) for pure In and Sn samples was found to be in qualitative agreement with earlier work. For convenience T/sub c/ is expressed as a function of the experimentally measured strain (epsilon), which is proportional to sigma. The effect of alloying on the initial dependence of the T/sub c/-vs-epsilon curves, (per. delta T/sub c//per. delta epsilon)/sub epsilon = 0/ = eta, was quite different for the In and Sn alloys. The In samples were alloyed with a maximum of 4.8 at.% Tl, 7.9 at.% Sn, and 6.7 at.% Pd; the Sn samples were alloyed with a maximum of 0.3 at.% Cd, 6.0 at.% In, 0.3 at.% Sb, and 2.2 at.% Bi. The addition of impurities had a large effect on eta for the In alloys, with eta reversing sign for some Sn and Pb alloy contents (chi). The T/sub c/-vs-epsilon curves also became nonlinear for some chi. The possible relationship of the In alloy results to changes in the Fermi surface due to the addition of impurities is discussed. For the Sn alloy samples, there was no change in eta with any impurity. The change in room-temperature resistivity with strain was also measured. There was only a slight decrease in the dependence of resistivity on strain for the In--Sn and In--Pb data and no effect on the In--Tl or Sn alloy data

  4. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  5. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  6. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas A [Los Alamos National Laboratory

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  7. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    International Nuclear Information System (INIS)

    Richmond, S; Bridgewater, J S; Ward, J W; Allen, T H

    2010-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH 2 ). The heats of solution for PuH S and PuD S are determined from PCT data in the ranges 350-625 deg. C for gallium alloyed Pu and 400-575 deg. C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  8. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng-Hui [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Guo, Wei-Guo, E-mail: weiguo@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Wei-Dong [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Su, Yu [Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lin, Xin [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Yuan, Kang-Bo [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-10-28

    To understand and evaluate the thermomechanical property of Ti–6Al–4V alloy prepared by the 3D laser deposition technology, an uniaxial compression test was performed on cylindrical samples using an electronic universal testing machine and enhanced Hopkinson technique, over the range of strain rate from 0.001/s to 5000/s, and at initial temperatures from the room temperature to 1173 K. The microstructure of the undeformed and deformed samples was examined through optical microscopy and the use of scanning electron microscope (SEM). The experimental results show the followings: (1) the anisotropy of the mechanical property of this alloy is not significant despite the visible stratification at the exterior surfaces; (2) initial defects, such as the initial voids and lack of fusion, are found in the microstructure and in the crack surfaces of the deformed samples, and they are considered as a major source of crack initiation and propagation; (3) adiabatic shear bands and shearing can easily develop at all selected temperatures for samples under compression; (4) the yield and ultimate strengths of this laser-deposited Ti–6Al–4V alloy are both lower than those of the Ti–6Al–4V alloy prepared by forging and electron beam melting, whereas both of its strengths are higher than those of a conventional grade Ti–6Al–4V alloy at high strain rate only. In addition to compression tests we also conducted tensile loading tests on the laser-deposited alloy at both low and high strain rates (0.1/s and 1000/s). There is significant tension/compression asymmetry in the mechanical response under high-strain-rate loading. It was found that the quasi-static tensile fracturing exhibits typical composite fracture characteristic with quasi-cleavages and dimples, while the high-strain-rate fracturing is characterized by ductile fracture behavior.

  9. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  10. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  11. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  12. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.

    Science.gov (United States)

    Wieding, Jan; Fritsche, Andreas; Heinl, Peter; Körner, Carolin; Cornelsen, Matthias; Seitz, Hermann; Mittelmeier, Wolfram; Bader, Rainer

    2013-12-16

    The repair of large segmental bone defects caused by fracture, tumor or infection remains challenging in orthopedic surgery. The capability of two different bone scaffold materials, sintered tricalciumphosphate and a titanium alloy (Ti6Al4V), were determined by mechanical and biomechanical testing. All scaffolds were fabricated by means of additive manufacturing techniques with identical design and controlled pore geometry. Small-sized sintered TCP scaffolds (10 mm diameter, 21 mm length) were fabricated as dense and open-porous samples and tested in an axial loading procedure. Material properties for titanium alloy were determined by using both tensile (dense) and compressive test samples (open-porous). Furthermore, large-sized open-porous TCP and titanium alloy scaffolds (30 mm in height and diameter, 700 µm pore size) were tested in a biomechanical setup simulating a large segmental bone defect using a composite femur stabilized with an osteosynthesis plate. Static physiologic loads (1.9 kN) were applied within these tests. Ultimate compressive strength of the TCP samples was 11.2 ± 0.7 MPa and 2.2 ± 0.3 MPa, respectively, for the dense and the open-porous samples. Tensile strength and ultimate compressive strength was 909.8 ± 4.9 MPa and 183.3 ± 3.7 MPa, respectively, for the dense and the open-porous titanium alloy samples. Furthermore, the biomechanical results showed good mechanical stability for the titanium alloy scaffolds. TCP scaffolds failed at 30% of the maximum load. Based on recent data, the 3D printed TCP scaffolds tested cannot currently be recommended for high load-bearing situations. Scaffolds made of titanium could be optimized by adapting the biomechanical requirements.

  13. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  14. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  15. Method for estimating the lattice thermal conductivity of metallic alloys

    International Nuclear Information System (INIS)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist

  16. Mechanical Properties of Spray Cast 7XXX Series Aluminium Alloys

    OpenAIRE

    SALAMCI, Elmas

    2014-01-01

    Mechanical properties of spray deposited and extruded 7xxx series aluminium alloys were investigated in peak aged condition. To study the influence of Zn additions on the mechanical behaviour of spray deposited materials, three alloy compositions were selected, namely: SS70 (11.5% Zn), N707 (10.9% Zn) and 7075 (5.6% Zn). After ageing treatment, notched and unnotched specimens of spray deposited alloys were subjected to tensile tests at room temperature. Experimental results showed...

  17. Thermodynamic Analysis on Relation Between T0 and σM in a Ti44Ni47Nb9 Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of heat treatment on martensitic transformation behavior has been investigated in Ti44Ni47Nb9 alloy.The relation between transformation temperatures and critical stress of stress induced martensitic transformation is interpreted in terms of thermodynamic theory. It is shown that the decrease in transformation temperature in specimens of slow cooling rate or low temperature aging after solution heat treatment results from the changes of Ni/Ti ratio in the matrix. The increase of critical stress of stress induced martensitic transformation is a consequence of the decrease of transformation temperatures.

  18. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  19. The corrosion behaviour and structure of amorphous and thermally treated Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Raicheff, R.; Zaprianova, V.; Petrova, E.

    2003-01-01

    The corrosion behaviour of magnetic amorphous alloys Fe 78 B 13 Si 9 , Fe 81 B 13 Si 4 C 2 and Fe 67 Co 18 Bi 4 S 1 obtained by rapid quenching from the melts are investigated in a model corrosive environment of 1N H 2 SO 4 . The structure of the alloys, is, characterized by DTA, SEM, TEM, X-ray and electron diffraction techniques. The dissolution kinetics of the,alloys is studied using gravimetric and electrochemical polarization measurements. It is established that the corrosion rate of the amorphous Fe 67 Co 18 Bt 4 S 1 alloy is up to 50 times lower than that of Fe 78 Bi 3 Si 9 alloy and the addition of cobalt leads to a considerable reduction of the rates of both partial corrosion reactions, while the addition of carbon results only in a moderate decrease (2-3 times) of the corrosion rate. It is also shown that the crystallization of the amorphous Fe 78 B 13 Si 9 alloy (at 700 o C for 3 h) leads to formation of multiphase structure consisting of crystalline phases α-Fe and Fe 3 (B,Si). After crystallization an increase of the rate of both hydrogen evolution and anodic dissolution reactions is observed which results in a considerable (an order of magnitude) increase of the corrosion rate of the alloy. (Original)

  20. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  1. Long-term biodegradation and associated hydrogen evolution of duplex-structured Mg–Li–Al–(RE) alloys and their mechanical properties

    International Nuclear Information System (INIS)

    Leeflang, M.A.; Dzwonczyk, J.S.; Zhou, J.; Duszczyk, J.

    2011-01-01

    Highlights: ► We perform long-term in vitro degradation tests of Mg-Li-based and Mg-Y-RE alloys for 600 days needed for vascular stents. ► We find a differentiation in degradation behavior between Mg-9Li-2Al and Mg-Y-RE alloys after 94 days of immersion tests. ► We find a flat H 2 release profile of Mg-9Li-2Al alloy, while other alloys exhibit bell-shaped H 2 release profiles. ► We obtain a 33% elongation value of Mg-9Li-2Al alloy, being sufficient for stent expansion during ballooning. ► We conclude that Mg-9Li-2Al alloy is a potential biodegradable stent material and worth further investigation. - Abstract: Preliminary in vivo tests of two magnesium alloys, i.e. AE21 and WE43, as biodegradable vascular stent materials, have yielded encouraging results. However, their degradation is desired to be prolonged, mechanical stability over a defined time improved and ductility needed for stent expansion enhanced. A search for alternative magnesium alloys that can better meet these clinical requirements is needed. The present research aimed to evaluate the long-term degradation behavior, hydrogen evolution rates and mechanical properties of three lithium-containing magnesium alloys, namely LA92, LAE912 and LAE922 with a duplex crystal structure, in comparison with those of a WE-type alloy. Immersion tests in Hank's balanced salt solution for 600 days showed that the LA92 alloy degraded much less than the LAE912 and the LAE922 alloys. It even outperformed the WE-type alloy after immersion for 94 days. Moreover, unlike the other three alloys investigated, the LA92 alloy displayed a steady hydrogen evolution rate over the whole period of immersion tests. In addition, it possessed an elongation value of 33%, being much higher than the WE-type alloy. Thus, this alloy has a greater potential of meeting the requirements of radially expandable stents in mechanical properties and degradation performance.

  2. Effects of alloying and processing modifications on precipitation and strength in 9%Cr ferritic/martensitic steels for fast reactor cladding

    Science.gov (United States)

    Tippey, Kristin E.

    P92 was modified with respect to alloying and processing in the attempt to enhance high-temperature microstructural stability and mechanical properties. Alloying effects were modeled in ThermoCalcRTM and analyzed with reference to literature. ThermoCalcRTM modeling was conducted to design two low-carbon P92-like low-carbon alloys with austenite stabilized by alternative alloying; full conversion to austenite allows for a fully martensitic structure. Goals included avoidance of Z-phase, decrease of M23C6 phase fraction and maintained or increased MX phase fraction. Fine carbonitride precipitation was optimized by selecting alloying compositions such that all V and Nb could be solutionized at temperatures outside the delta-ferrite phase field. A low-carbon alloy (LC) and a low-carbon-zero-niobium alloy (0Nb) were identified and fabricated. This low-carbon approach stems from the increased creep resistance reported in several low-carbon alloys, presumably from reduced M23C6 precipitation and maintained MX precipitation [1], although these low-carbon alloys also contained additional tungsten (W) and cobalt (Co) compared to the base P92 alloy. The synergistic effect of Co and W on the microstructure and mechanical properties are difficult to deconvolute. Higher solutionizing temperatures allow more V and Nb into solution and increase prior austenite grain size; however, at sufficiently high temperatures delta-ferrite forms. Optimal solutionizing temperatures to maximize V and Nb in solution, while avoiding the onset of the delta ferrite phase field, were analyzed in ThermoCalcRTM. Optical microscopy showed ThermoCalc RTM predicted higher delta-ferrite onset temperatures of 20 °C in P92 alloys to nearly 50 °C in the designed alloys of the critical temperature. Identifying the balance where maximum fine precipitation is achieved and delta-ferrite avoided is a key factor in the design of an acceptable P92-like alloy for Generation IV reactor cladding. Processing was

  3. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    Science.gov (United States)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  4. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  5. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  6. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  7. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  8. Mechanical behaviour of Nd-Fe-B alloys in the semi-solid state

    International Nuclear Information System (INIS)

    Oliveira, I.L.; Sinka, V.; Ferrante, M.

    1996-01-01

    Two alloys with composition Nd 17.6 Fe 75.3 B1.2 Cu 5.9 and Nd 15.9 Fe 77.7 B 5 Cu 1.4 were vacuum induction melted and cast into cylindrical ingots. Samples with 12.3 and 13 mm diameter were deformed with different rates and deformation ratios. One alloy was deformed at 800 deg C between two parallel disks under constant load. Results show that these alloys behave as no-Newtonian fluids. This fact gives a better understanding of both magnetic and crystallographic texture development. Also, changes were detected in the behaviour of semisolid in the course of deformation. (author)

  9. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  10. Investigation of phase transformations of U2.5Zr7.5Nb and U3Zr9Nb alloys aging at 600 deg C

    International Nuclear Information System (INIS)

    Cantagalli, Natalia Mattar; Tanure, Leandro Paulo de Almeida Reis; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa

    2009-01-01

    Investigation has been made of the effects of high-temperature aging (600 deg C) on the phase transformations in the U2.5Zr7.5Nb and U3Zr9Nb alloys. These alloys have been produced with vacuum induction melting (VIM) furnace in cast ingots. The ingots were homogenized at 1000 deg C for 24 hours in vacuum of -4 torr, and cooled to room temperature at a rate of 3 deg C/min. Specimens from these homogeneous materials, cut in 3 mm high and 10 mm diameter, were reheated to γ phase at 850 deg C, for 1 hour, and aging at 600 deg C at different times from 0.5 to 24 hours. The phases decomposition were characterized by X-ray diffraction (XRD), metallographic, micro-probe analyze by energy dispersive spectrometry (EDS) and microhardness methods. It was verified that the decomposition of the δ phase proceeds in two steps. The first is a discontinuous precipitation of a lamellar two-phase aggregate composed of alpha solid solution and a metastable gamma phase. The metastable gamma phase has a constant composition at given temperature. After longer annealing, it decomposes eutectoidally into the equilibrium (α + δ 2 ) phases mixture. During this process a modification of the original lamellar microstructure takes place. The obtained metastable phases of these alloys of different compositions were analyzed in relation to their constitution, heat treatability and micrographic features and the results confronted with available distinct uranium alloys data from literature. (author)

  11. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    International Nuclear Information System (INIS)

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  12. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  13. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  14. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  15. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  16. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  17. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  18. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  19. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  20. Initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.; Shan, D.; Han, E.

    2006-01-01

    The pretreatment processes and initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloy were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results showed that alkaline cleaning could remove the greases and oils from the substrate surface. Acid etching could wipe off the metal chippings and oxides. The hydrofluoric acid activating process which could improve the adhesion of coating to substrate played a key role in the subsequent process of electroless nickel plating. The nickel coating was deposited preferentially on the primary α phase and then spread to the eutectic α phase and β phase. The nickel initially nucleated on the primary α phase by a replacement reaction, then grew depending on the autocatalysis function of nickel. The coating on the β phase displayed better adhesion than that on the α phase due to the nails fixing effect. (author)

  1. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  2. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    OpenAIRE

    Deng Zhenghua; Li Huaji; Zhao Wanjun

    2013-01-01

    Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in...

  3. Alloying effect of 3D transition elements on the ductility of chromium

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Fukumori, J.; Morinaga, M.; Furui, M.; Nambu, T.; Sakaki, T.

    1996-01-01

    Chromium and its alloys have good corrosion resistance in corrosive environments and good oxidation resistance at high temperatures. In addition, they exhibit an excellent combination of low density and high creep strength. However, there is still a large barrier to the practical use because of their poor ductility at room temperature. According to recent investigations, an environmental effect was found on the ductility of high purity polycrystalline chromium. In this study, in order to find a way to improve the ductility of chromium at room temperature, the alloying effect on the ductility of chromium was investigated experimentally in several test environments

  4. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  5. Excellent enhancement of corrosion properties of Fe–9Al–30Mn–1.8C alloy in 3.5% NaCl and 10% HCl aqueous solutions using gas nitriding treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-Chang; Lin, Chih-Lung; Chao, Chuen-Guang; Liu, Tzeng-Feng, E-mail: Lewischen815@gmail.com

    2015-06-05

    Highlights: • The FeAlMnC alloy was gas-nitrided to simultaneously achieve the aging effect. • Anti-corrosion components AlN, Fe{sub 3}N and Fe{sub 4}N were identified by using GIXRD method. • The present nitrided alloy showed a great improvement in corrosion resistance. • The nitrided sample showed an excellent coherence between nitrided layer and matrix. • The nitrided and then stretched sample maintained satisfactory corrosion behavior. - Abstract: The as-quenched Fe–9.0Al–30Mn–1.8C (in wt.%) alloy gas nitrided at 550 °C for 4 h show excellent corrosion resistance investigated in 3.5% NaCl and 10% HCl solutions. Owing to the high corrosion resistance components, the gas-nitrided layer consists mainly of AlN with a slight amount of Fe{sub 3}N and Fe{sub 4}N identified by grazing incidence X-ray diffraction technique. Therefore, the pitting potential and corrosion potential of the nitrided sample are +1860 mV and +30 mV, respectively. Surprisingly, it is worthy to be pointed out that the nitrided and then tensile-tested alloy reveals very shallow in fracture depth and the excellent lattice coherence is shown between the nitrided layer and the substrate. Moreover, due to the extremely high nitrogen concentration (about 17–18 wt.%) at stretched surface, the corrosion resistance of present gas-nitrided and then tensile-tested alloy is superior to those optimally gas-nitrided or plasma-nitrided high-strength alloy steels, as well as martensitic stainless steels. The nitrided and then stretched alloy still retains a satisfactory corrosion resistance (E{sub pit} = +890 mV; E{sub corr} = +10 mV). Furthermore, only nanoscale-size pits were observed on the corroded surface after being immersed in 10% HCl for 24 h.

  6. Electronic structure of the L-cysteine films on dental alloys studied by ultraviolet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ogawa, K; Takahashi, K; Azuma, J; Kamada, M; Tsujibayashi, T; Ichimiya, M

    2013-01-01

    The valence electronic structures of the dental alloys, type 1, type 3, K14, and MC12 and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The electronic states of the MC12 dental alloy originate dominantly from Cu 3d states and Pd 4d states around the top of the valence bands, while the 4∼7-eV electronic structure of MC12 originates from the Ag 4d states. The peak shift and the change in shape due to alloying are observed in all the dental alloys. For the L-cysteine thin films, new peak or structure observed around 2 eV on all the dental alloys is suggested to be due to the bonding of S 3sp orbitals with the dental alloy surfaces. The Cu-S bond as well as the Au-S and Au-O bonds may cause the change in the electronic structure of the L-cysteine on type 1, type 3 and K14. For MC12, the interaction with L-cysteine may be dominantly due to the Pd-S, Cu-S, and Ag-O bonds, while the contribution of the Ag-S bond is small.

  7. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines

    Science.gov (United States)

    1982-07-01

    conventional alpha beta titanium alloy in the beta processed condition. Figures 18a and 18b show the general features of phase arrangement, plates of the...sheet after various processes are shown in Figure 53. Welding was performed by a manual tungsten inert gas ( TIG ) technique in an argon-filled dry box... Processing studies continue to show that many of the methods of forging, joining, etc. developed for conventional titanium alloys can be applied to alpha

  8. Moessbauer effect studies of magnetic interactions in iron and dilute iron alloys

    International Nuclear Information System (INIS)

    Woude, F. van der; Schurer, P.J.; Sawatzky, G.A.

    1975-01-01

    A temperature-dependent Moessbauer study was conducted in FeX alloys, where X = Al, Si, Ti, V, Cr, Mn, Co, and Ni, aimed at solving the problem of 'what is localized and what is itinerant in iron ferromagnetism'. The experimental results are interpreted using a phenomenological model based on a modified Zener-Vonsovskij theory. Absorption spectra of FeX alloys were measured as a function of temperature. It was found that the 3d magnetic moments in iron were mainly localized while exchange coupling was provided by partly itinerant 3d electrons. (L.D.)

  9. Glass forming ability of Al–Ni–La alloys with Si addition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, J.J.; Xiong, X.Z. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Inoue, A. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); WPI-Advanced Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Kong, L.T. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, J.F., E-mail: jfli@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-25

    (Al{sub 85.5}Ni{sub 9.5}La{sub 5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 9}La{sub 5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 9.5}La{sub 4.5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 10}La{sub 4}){sub 100−x}Si{sub x} and (Al{sub 86}Ni{sub 10.5}La{sub 3.5}){sub 100−x}Si{sub x} alloys, where x = 0.0, 0.2, 0.5, 1.0, 1.5 and 2.0, were cast under the same suction casting conditions into a wedge-shaped copper mold for investigating the effect of Si addition on the glass-forming ability (GFA). The GFA of the Al–Ni–La base alloys, except for the optimal glass former (Al{sub 85.5}Ni{sub 9.5}La{sub 5}), is enhanced when a proper content of Si is added. The largest content of Si up to which GFA can be enhanced changes in the following order of the base alloys: Al{sub 86}Ni{sub 9}La{sub 5}, Al{sub 86}Ni{sub 9.5}La{sub 4.5}, Al{sub 86}Ni{sub 10}La{sub 4} and Al{sub 86}Ni{sub 10.5}La{sub 3.5}. The enhancement of GFA due to Si addition becomes more significant as the La content decreases. This is presumably because more free Al atoms are present in the base alloy. - Highlights: • 0.2–2.0 at. % Si was added to each ternary base alloy. • Wedge-shaped samples were suction cast to obtain the glass-forming ability (GFA). • The GFA of the ternary non-optimal glass formers can be enhanced by Si addition. • The number of free-Al atoms dominates the best Si addition.

  10. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  11. A hybrid finite-element and cellular-automaton framework for modeling 3D microstructure of Ti–6Al–4V alloy during solid–solid phase transformation in additive manufacturing

    Science.gov (United States)

    Chen, Shaohua; Xu, Yaopengxiao; Jiao, Yang

    2018-06-01

    Additive manufacturing such as selective laser sintering and electron beam melting has become a popular technique which enables one to build near-net-shape product from packed powders. The performance and properties of the manufactured product strongly depends on its material microstructure, which is in turn determined by the processing conditions including beam power density, spot size, scanning speed and path etc. In this paper, we develop a computational framework that integrates the finite element method (FEM) and cellular automaton (CA) simulation to model the 3D microstructure of additively manufactured Ti–6Al–4V alloy, focusing on the β → α + β transition pathway in a consolidated alloy region as the power source moves away from this region. Specifically, the transient temperature field resulted from a scanning laser/electron beam following a zig-zag path is first obtained by solving nonlinear heat transfer equations using the FEM. Next, a CA model for the β → α + β phase transformation in the consolidated alloy is developed which explicitly takes into account the temperature dependent heterogeneous nucleation and anisotropic growth of α grains from the parent β phase field. We verify our model by reproducing the overall transition kinetics predicted by the Johnson–Mehl–Avrami–Kolmogorov theory under a typical processing condition and by quantitatively comparing our simulation results with available experimental data. The utility of the model is further demonstrated by generating large-field realistic 3D alloy microstructures for subsequent structure-sensitive micro-mechanical analysis. In addition, we employ our model to generate a wide spectrum of alloy microstructures corresponding to different processing conditions for establishing quantitative process-structure relations for the system.

  12. Airline fuel saving through JT9D engine refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Allison, J.W.; Weisel, D.R.

    1981-01-01

    Areas are identified in the JT9D engine where the potential exists for either further performance recovery following repair, or for improved performance retention. A number of new procedures and tools which will improve performance recovery are described. Improvements in inspection techniques are discussed. Operational techniques which will improve performance retention and impact degree of refurbishment required are also presented.

  13. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  14. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  15. First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer

    Science.gov (United States)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2017-08-01

    Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.

  16. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y2O3 particles

    International Nuclear Information System (INIS)

    Genc, Aziz; Luetfi Ovecoglu, M.

    2010-01-01

    Research highlights: → Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. → Reinforcement of the selected Ni-W powders with WC and Y 2 O 3 particles and further MA together for 12 h. → There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. → Sintering of the developed composites and the characterization investigations of the sintered samples. → Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y 2 O 3 particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 o C for 1 h under Ar and H 2 gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  17. Secondary side IGA/IGSCC of SG alloys 600, 690 and 800 : R and D program in EDF Laboratories

    International Nuclear Information System (INIS)

    Vaillant, F.; DeBouvier, O.; Bouchacourt, M.; Stutzmann, A.; Lemaire, P.

    1998-01-01

    Many steam generators (SGs) equipped with 'mill-annealed' (MA) Alloy 600 tubings suffer significant secondary side corrosion. Until now, no degradation has been observed with either Alloy 600 TT or Alloy 690 for new SGs. The understanding of IGA/SCC of Alloy 600 MA in plants and the development of predictive models have become an important challenge to assess the life span and to reduce the maintenance costs of SGs. As degradation occurs in crevice environments which are varied and little known, EDF has undertaken an important program to improve the knowledge of crevice environments which lead to cracking. Corrosion tests are performed on Alloys 600 MA (also on 600 TT) in various environments in order to reproduce the deposits and the cracking observed on pulled tubes in laboratory conditions. Other corrosion tests are conducted in environments containing some pollutants identified by analyses of secondary water after hideout-return (sulfates) or oxidizing compounds : the influences of pH and potential are evaluated on Alloy 600 (MA or TT) and also on Alloys 690 and 800. A comprehensive model is proposed using IGA/SCC results of Alloy 600 in caustic environments. The thermomechanical parameters of the tubes and the field environmental conditions, introduced in the model, confirm some important features of SGs tubings. The model will be improved to include other detrimental environments. It will provide a useful tool to predict the life span (then steam generator replacements) and to optimize the maintenance policy of SGs still equipped with Alloys 600 MA and particularly with 600 TT (frequency and best locations of inspections). Margins will also be assessed for new SGs equipped with Alloy 690, and a comparison will be performed with Alloy 800. (author)

  18. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laleh, M., E-mail: laleh.m.1992@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Kargar, Farzad, E-mail: farzad.kargar@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: > Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. > Thickness of the deformed layer increased with increasing of the balls size. > Top surface microhardness for all of the SMATed samples increased significantly. > SMAT increased the surface roughness; increase in balls diameter increased the roughness. > SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 {mu}m, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 {mu}m for 2 mm balls to 150 {mu}m for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  19. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Laleh, M.; Kargar, Farzad

    2011-01-01

    Highlights: → Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. → Thickness of the deformed layer increased with increasing of the balls size. → Top surface microhardness for all of the SMATed samples increased significantly. → SMAT increased the surface roughness; increase in balls diameter increased the roughness. → SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 μm, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 μm for 2 mm balls to 150 μm for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  20. Determination of maintainability for Dacia 1304, 1,9 D utility vehicle

    Science.gov (United States)

    Budiul Berghian, A.; Vasiu, T.; Birtok Baneasa, C.

    2018-01-01

    The study analyses the ability to be maintained or rehabilitation of Dacia 1304, 1,9D utility vehicle. The paper comprises the determination of its maintainability using the Weibull++8 specialized software.

  1. Enhancement of magnetic properties of Co2MnSi Heusler alloy prepared by mechanical alloying method

    International Nuclear Information System (INIS)

    Rabie, Naeemeh; Gordani, Gholam Reza; Ghasemi, Ali

    2017-01-01

    Highlights: • Ferromagnetic Heusler alloys of Co 2 MnSi were synthesized at low temperature. • There is an at least 30% reduction in the phase formation temperature. • Saturation magnetization of alloy was increased significantly after annealing. - Abstract: Ferromagnetic Heusler alloys of Co 2 MnSi were synthesized by mechanical alloying method at low temperature. The effect of milling time and annealing process on structural and magnetic properties of ferromagnetic alloy samples were studied by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer methods, respectively. Structural characteristics such as crystallite size, phase percentage, and lattice parameter determined using the Rietveld method. The values of these parameters were obtained 362.9 nm, 5.699 Å and 98.7%, respectively for annealed sample. Magnetization studies show that the Co2MnSi phase is formed at 15 h of milling and is optimized after 20 h of milling. VSM results showed that saturation magnetization (M s ) of milled samples reduces from 112 to 75 (emu/g) with increasing milling time and then increased gradually to 95 emu/g. The effect of post-annealing on the structural and magnetic properties of milled samples was also investigated. The saturation magnetization of annealed sample (120 emu/g) is higher than the optimum milled sample (95 emu/g) due to increasing preferential ordered L2 1 structure.

  2. Carburization of austenitic alloys by gaseous impurities in helium

    International Nuclear Information System (INIS)

    Lai, G.Y.; Johnson, W.R.

    1980-03-01

    The carburization behavior of Alloy 800H, Inconel Alloy 617 and Hastelloy Alloy X in helium containing various amounts of H 2 , CO, CH 4 , H 2 O and CO 2 was studied. Corrosion tests were conducted in a temperature range from 649 to 1000 0 C (1200 to 1832 0 F) for exposure time up to 10,000 h. Four different helium environments, identified as A, B, C, and D, were investigated. Concentrations of gaseous impurities were 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 and 50 μatm H 2 O for Environment A; 200 μatm H 2 , 100 μatm CO, 20 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 for Environment B; 500 μatm H 2 , 50 μatm CO, 50 μatm CH 4 and 2 O for Environment C; and 500 μatm H 2 , 50 μatm CO, 50 μatm CH 4 and 1.5 μatm H 2 O for Environment D. Environments A and B were characteristic of high-oxygen potential, while C and D were characteristic of low-oxygen potential. The results showed that the carburization kinetics in low-oxygen potential environments (C and D) were significantly higher, approximately an order of magnitude higher at high temperatures, than those in high-oxygen potential environments (A and B) for all three alloys. Thermodynamic analyses indicated no significant differences in the thermodynamic carburization potential between low- and high-oxygen potential environments. It is thus believed that the enhanced carburization kinetics observed in the low-oxygen potential environments were related to kinetic effects. A qualitatively mechanistic model was proposed to explain the enhanced kinetics. The present results further suggest that controlling the oxygen potential of the service environment can be an effective means of reducing carburization of alloys

  3. A comparative study of ausforming of shape memory alloys with A2 and B2 structures

    International Nuclear Information System (INIS)

    Hornbogen, E.

    1999-01-01

    Ausforming implies plastic deformation of austenite (β) at temperatures T AF M d , at which no stress- or strain-induced transformation can occur. It introduces a variety of extrinsic lattice defects, which in turn modify the course of transformation, the structure of martensite, and increase the conventional strength of the alloys. The temperature range of ausforming has to be subdivided into three subranges, depending on whether the β-phase is (1), disordered; (2), ordered; or (3) capable of precipitation of a second phase or massive transformation. For the Cu-base alloys the ranges 1 and 3, and for Ni-Ti 2 and 3 may apply. This causes a different hot-deformation behavior of the two types of alloys: the formation of dislocation groupings (2-d, 3-d-nets, and Moires) in the brass-type alloys which undergo ordering during cooling from T AF. In addition a particular twinning mechanism and the formation of a rolling texture are found in ordered Ni-Ti. In Ni-Ti-alloys premartensitic R-phase formation can be caused by ausforming. Ausforming leads to lower temperatures but not to suppression of martensitic transformation cycles. Conventional strength is increased in both types of alloys. (orig.)

  4. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  5. Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying.

    Science.gov (United States)

    González, S; Pellicer, E; Fornell, J; Blanquer, A; Barrios, L; Ibáñez, E; Solsona, P; Suriñach, S; Baró, M D; Nogués, C; Sort, J

    2012-02-01

    The influence of partial substitution of Mg by Pd on the microstructure, mechanical properties and corrosion behaviour of Mg(72-x)Zn(23)Ca(5)Pd(x) (x=0, 2 and 6 at.%) alloys, synthesized by copper mould casting, is investigated. While the Mg(72)Zn(23)Ca(5) alloy is mainly amorphous, the addition of Pd decreases the glass-forming ability, thus favouring the formation of crystalline phases. From a mechanical viewpoint, the hardness increases with the addition of Pd, from 2.71 GPa for x=0 to 3.9 GPa for x=6, mainly due to the formation of high-strength phases. In turn, the wear resistance is maximized for an intermediate Pd content (i.e., Mg(70)Zn(23)Ca(5)Pd(2)). Corrosion tests in a simulated body fluid (Hank's solution) indicate that Pd causes a shift in the corrosion potential towards more positive values, thus delaying the biodegradability of this alloy. Moreover, since the cytotoxic studies with mouse preosteoblasts do not show dead cells after culturing for 27 h, these alloys are potential candidates to be used as biomaterials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  7. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  8. Research on modulated structure alloys

    International Nuclear Information System (INIS)

    Tsujimoto, Tokuzo; Saito, Kazuo; Hashimoto, Kenki

    1982-01-01

    Research was carried out for the purposes of clarifying the cause of modulated structure formation, developing the structure control method utilizing modulated structure and clarifying the suitability of modulated structure alloys as radiation damage-resisting materials. The research on structure control method encountered a difficulty in the analysis of experimental results, bu the following results were obtained in the other items. The method of solving a diffusion equation including a nonlinear term was found in course of the clarification of the cause of modulated structure formation. As a means of detecting faint unevenness in solid solution, of which the deviation of composition is a few %, the structure analysis method utilizing magnetic property was developed. This method was applied to Ni-9.6 at.% Ti alloy, and the process of expanding amplitude in composition variation in spinodal decomposition and the formation of solute atomshort region at the time of nucleation-growth were confirmed. Utilizing the high energy electron beam generated in a superhigh voltage electron microscope, electron beam irradiation experiment was carried out on precipitation hardening alloys with modulated structure. As the result, it was found that in Ni-Ti alloy, the amount of void swelling resistance showed the change with the increase of modulated structure period. (Kako, I.)

  9. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  10. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  11. Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities

    International Nuclear Information System (INIS)

    Nomura, Naoyuki; Tanaka, Yuko; Suyalatu; Kondo, Ryota; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2009-01-01

    The magnetic susceptibilities and microstructures of Zr-Nb binary alloys were investigated to develop a new metallic biomaterial with a low magnetic susceptibility for magnetic resonance imaging (MRI). The magnetic susceptibility was measured with a magnetic susceptibility balance, and the microstructure was evaluated with an X-ray diffractometer (XRD), an optical microscope (OM), and a transmission electron microscope (TEM). Zr-Nb alloys as-cast showed a minimum value of magnetic susceptibility between 3 and 9 mass% Nb, and the value abruptly increased up to 20 mass% Nb, followed by a gradual increase with the increase of the Nb content. XRD, OM, and TEM revealed that the minimum value of the susceptibility was closely related to the appearance of the athermal ω phase in the β phase. Since the magnetic susceptibility of Zr-3Nb alloy consisting of an α' phase was as low as that of Zr-9Nb alloy consisting of the β and ω phases, that of the ω phase was lower than that of the α' and β phases. When Zr-16Nb alloy was heat-treated, the isothermal ω phase appeared, and, simultaneously, the magnetic susceptibility decreased. Therefore, the ω phase contributes to the decrease of the magnetic susceptibility, independently of the formation process of the ω phase. The magnetic susceptibility of the Zr-3Nb alloy as-cast was almost one-third that of Ti-6Al-4V alloy, which is commonly used for medical implant devices. Zr-Nb alloys are useful for medical devices used under MRI. (author)

  12. [The measurement of thermal expansion coefficient of Co-Cr alloy fabricated by selective laser melting].

    Science.gov (United States)

    Tian, Xiao-mei; Zeng, Li; Wei, Bin; Huang, Yi-feng

    2015-12-01

    To investigate the thermal expansion coefficient of different processing parameters upon the Co-Cr alloy prepared by selective laser melting (SLM) technique, in order to provide technical support for clinical application of SLM technology. The heating curve of self-made Co-Cr alloy was protracted from room temperature to 980°C centigrade with DIL402PC thermal analysis instrument, keeping temperature rise rate and cooling rate at 5 K/min, and then the thermal expansion coefficient of 9 groups of Co-Cr alloy was measured from 20°C centigrade to 500°C centigrade and 600°C centigrade. The 9 groups thermal expansion coefficient values of Co-Cr alloy heated from 20°C centigrade to 500°C centigrade were 13.9×10(-6)/K,13.6×10(-6)/K,13.9×10(-6)/K,13.7×10(-6)/K,13.5×10(-6)/K,13.8×10(-6)/K,13.7×10(-6)/K,13.7×10(-6)/K,and 13.9×10(-6)/K, respectively; when heated from 20°C centigrade to 600°C centigrade, they were 14.2×10(-6)/K,13.9×10(-6)/K,13.8×10(-6)/K,14.0×10(-6)/K,14.1×10(-6)/K,14.1×10(-6)/K,13.9×10(-6)/K,14.2×10(-6)/K, and 13.7×10(-6)/K, respectively. The results showed that the Co-Cr alloy has good matching with the VITA VMK 95 porcelain powder and can meet the requirement of clinic use.

  13. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Chlup, Zdeněk; Dlouhý, Antonín; Dobeš, Ferdinand; Roupcová, Pavla; Vilémová, Monika; Matějíček, Jiří

    2017-01-01

    Roč. 689, MAR (2017), s. 252-256 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Creep * High-entropy alloy (HEA) * Mechanical alloying * Oxide dispersion strength ened (ODS) alloy * Powder metallurgy * Spark plasma sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFM-A); Materials engineering (UFP-V) Impact factor: 3.094, year: 2016

  14. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  15. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified; Estudo da transferencia de calor em varetas combustiveis 3D do reator EPRI-9R 3D modificado

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results.

  16. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  17. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  18. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  19. Elaboration and characterisation of Pd-Cr alloys for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Souleymane, B.; Fouda-Onana, F.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Palladium (Pd) alloys have been considered as alternative catalyst cathodes for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, particularly in liquid fuel cells. The purpose of this study was to investigate the ORR on various Pd-Cr alloys. Pd-Cr alloys were deposited on glassy carbon support and the electrocatalytic parameters for the ORR were determined in acid medium. The effect of the Pd-Cr alloy deposition parameters on its composition and electrocatalytic behaviour were determined. The study showed that there is a relationship between the composition of the alloy and the power of the Pd and Cr cathode. The parameters of the ORR were correlated to the alloy chemical and physical properties. EDS and XPS analysis revealed a segregation of Cr in the alloy.The variation of the work function (W) of the alloy with the alloy composition has shown a minimum value of W of 0.287 for a composition of the alloy of 70 per cent of Pd and 30 per cent of Cr. The electrochemically active surface area and the exchange current density of the ORR indicated that the mechanism of the ORR on Pd-Cr is similar to that on platinum. 9 refs., 2 figs.

  20. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  1. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  2. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunwang [Inner Mongolia University of Technology, College of Science, Hohhot (China); Shanghai Maritime University, College of Arts and Sciences, Shanghai (China); Zhao, Shilei; Jin, Yongjun; Hou, Qingyu [Inner Mongolia University of Technology, College of Science, Hohhot (China); Guo, Shaoqiang [Beihang University, Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beijing (China)

    2017-09-15

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni{sub 50}Ti{sub 50-x}Pr{sub x} (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys. (orig.)

  3. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  4. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  5. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  6. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.

    Science.gov (United States)

    She, Zuxin; Li, Qing; Wang, Zhongwei; Li, Longqin; Chen, Funan; Zhou, Juncen

    2012-08-01

    A novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy is reported in this paper. Hierarchical structure composed of micro/nano-featherlike CuO was obtained by electrodeposition of Cu-Zn alloy coating and subsequently an electrochemical anodic treatment in alkaline solution. After modification with lauric acid, the surface became hydrophobicity/superhydrophobicity. The formation of featherlike CuO structures was controllable by varying the coating composition. By applying SEM, ICP-AES, and water contact angle analysis, the effects of coating composition on the surface morphology and hydrophobicity of the as-prepared surfaces were detailedly studied. The results indicated that at the optimal condition, the surface showed a good superhydrophobicity with a water contact angle as high as 155.5 ± 1.3° and a sliding angle as low as about 3°. Possible growth mechanism of featherlike CuO hierarchical structure was discussed. Additionally, the anticorrosion effect of the superhydrophobic surface was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The interface model for anticorrosion mechanism of superhydrophobic surface in corrosive medium was proposed. Besides, the mechanical stability test indicated that the resulting superhydrophobic surfaces have good mechanical stability.

  7. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  8. Laser surface alloying of aluminium