WorldWideScience

Sample records for alloy-617 inconel

  1. Mechanical and electrochemical properties of inconel alloy 617 after refurbishment through heat treatment

    OpenAIRE

    Kawthar-Ali, Mahmoud H.

    2002-01-01

    The transition piece in gas turbine is an important component, which joins the combustion chamber to the turbine nozzles. These pieces are made from an alloy that resist high temperature and thermal loading and being considerably expensive. The high operating temperature and thermal fatigue limit the lifetime of such component Consequently, the life extension of the alloy through sound refurbishment process is in demand. The refurbishment of Inconel 617 alloy after 37000 hours of operation in...

  2. CREEP AND CREEP-FATIGUE OF ALLOY 617 WELDMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jill; Carroll, Laura; Wright, Richard

    2014-08-01

    The Very High Temperature Reactor (VHTR) Intermediate Heat Exchanger (IHX) may be joined to piping or other components by welding. Creep-fatigue deformation is expected to be a predominant failure mechanism of the IHX1 and thus weldments used in its fabrication will experience varying cyclic stresses interrupted by periods of elevated temperature deformation. These periods of elevated temperature deformation are greatly influenced by a materials’ creep behavior. The nickel-base solid solution strengthened alloy, Alloy 617, is the primary material candidate for a VHTR-type IHX, and it is expected that Alloy 617 filler metal will be used for welds. Alloy 617 is not yet been integrated into Section III of the Boiler and Pressure Vessel Code, however, nuclear component design with Alloy 617 requires ASME (American Society of Mechanical Engineers) Code qualification. The Code will dictate design for welded construction through significant performance reductions. Despite the similar compositions of the weldment and base material, significantly different microstructures and mechanical properties are inevitable. Experience of nickel alloy welds in structural applications suggests that most high temperature failures occur at the weldments or in the heat-affected zone. Reliably guarding against this type of failure is particularly challenging at high temperatures due to the variations in the inelastic response of the constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) [ref]. This work focuses on the creep-fatigue behavior of nickel-based weldments, a need noted during the development of the draft Alloy 617 ASME Code Case. An understanding of Alloy 617 weldments when subjected to this important deformation mode will enable determination of the appropriate design parameters associated with their use. Specifically, the three main areas emphasized are the performance reduction due to a weld discontinuity in terms of the reduced number of

  3. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  4. Corrosion of Alloy 617 in high-temperature gas environments

    International Nuclear Information System (INIS)

    High-temperature gas-cooled reactors (HTGRs) with helium gas as the primary coolant have been considered as one type of the Generation IV nuclear power reactor systems. Several nickel-based superalloys, including Alloy 617, are potential structural materials to serve as pressure boundary components, such as the intermediate heat exchanger (IHX) in an HTGR. Impurities in a helium coolant, such as H2O and O2, can interact with structural materials at working temperatures of >900 °C, leading to serious degradation on these materials. In addition, defects in IHX surface coatings would allow these species to reach and interact with the external surfaces of these components, leading to similar or even more serious degradation. In this study we investigated the oxidation behavior of Alloy 617 in high-temperature, gaseous environments with various levels of O2 and H2O. A series of general corrosion tests were conducted at test temperatures of 650 °C, 750 °C, 850 °C and 950 °C under various coolant compositions of dry air, 1% O2, 10% relative humidity (RH), and 50% RH. Preliminary results showed that the surface morphologies of the Alloy 617 samples exhibited distinct evidence of intergranular corrosion. Compact chromium oxide layers were observed on the sample surfaces. The oxidation mechanisms of this alloy in the designated environments are discussed

  5. Aging of Alloy 617 at 650 and 750 Degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Julian Benz; Thomas Lillo; Richard Wright

    2013-01-01

    Alloy 617 has been selected as the primary candidate for heat exchanger applications in advanced reactors. For the VHTR this application could require extended service up to a reactor outlet temperature of 950°C. A key hurdle to using this alloy in the VHTR heat exchanger application is qualifying the alloy for Section III of the ASME Boiler and Pressure Vessel Code. In order to Code qualify the material it is necessary to characterize the influence of long term aging on the mechanical behavior. Alloy 617 has been aged at 650 and 750°C for times up to 5300 hours. The microstructure after aging has been characterized using optical and transmission electron microscopies. It has been determined that in addition to carbides, a significant volume fraction of ?’ phase (Ni3Al) is formed at these temperatures. The ?’ does not contribute significantly to changing the tensile or impact properties of the aged material. It does, however, appear to increase creep resistance and impede creep crack growth.

  6. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    Energy Technology Data Exchange (ETDEWEB)

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  7. Properties of Alloy 617 for Heat Exchanger Design

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard Neil [Idaho National Laboratory; Carroll, Laura Jill [Idaho National Laboratory; Benz, Julian Karl [Idaho National Laboratory; Wright, Julie Knibloe [Idaho National Laboratory; Lillo, Thomas Martin [Idaho National Laboratory; Lybeck, Nancy Jean [Idaho National Laboratory

    2014-10-01

    Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.

  8. Report on FY15 alloy 617 code rules development

    Energy Technology Data Exchange (ETDEWEB)

    Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hollinger, Greg [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Pease, Derrick [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Carter, Peter [Stress Engineering Services, Inc., Houston, TX (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Due to its strength at very high temperatures, up to 950°C (1742°F), Alloy 617 is the reference construction material for structural components that operate at or near the outlet temperature of the very high temperature gas-cooled reactors. However, the current rules in the ASME Section III, Division 5 Subsection HB, Subpart B for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 650°C (1200°F) (Corum and Brass, Proceedings of ASME 1991 Pressure Vessels and Piping Conference, PVP-Vol. 215, p.147, ASME, NY, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650°C (1200°F), is well below the temperature range of interest for this material for the high temperature gas-cooled reactors and the very high temperature gas-cooled reactors. The only current alternative is, thus, a full inelastic analysis requiring sophisticated material models that have not yet been formulated and verified. To address these issues, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature (Carter, Jetter and Sham, Proceedings of ASME 2012 Pressure Vessels and Piping Conference, papers PVP 2012 28082 and PVP 2012 28083, ASME, NY, 2012), and have been recently revised to incorporate comments and simplify their application. Background documents have been developed for these two code cases to support the ASME Code committee approval process. These background documents for the EPP strain limits and creep-fatigue code cases are documented in this report.

  9. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    Science.gov (United States)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  10. Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Global Egineering and Technology, LLC, Coral Gables, FL (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-25

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of 900-950°C . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, 1200 °F, is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures.

  11. Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria

    International Nuclear Information System (INIS)

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of 900-950°C . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, 1200 °F, is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures.

  12. Progress Report on Alloy 617 Time Dependent Allowables

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant

  13. Procurement and Initial Characterization of Alloy 230 and CMS Alloy 617

    International Nuclear Information System (INIS)

    Material for initial testing of alloy 230 and a controlled-chemistry variant of alloy 617 has been procured in the form of plates. 3/4-inch thick alloy 230 plate was commercially procured from Haynes International, and 2-inch thick CCA 617, an existing controlled-chemistry variant of alloy 617, was obtained from Alstom Power through the ultra-supercritical fossil energy program. This report describes the procurement of these plates and their characteristics in terms of vendor-supplied chemistry and mechanical properties. Further detailed characterization tests are planned for this fiscal year, and this report will be updated in September 2006 to include the results of these tests

  14. Analysis of Creep Rupture Data of Alloy 617 for VHTR Application

    International Nuclear Information System (INIS)

    A new Alloy 617 Code Case is planned to be approved by 2015. In this study, the creep rupture data of Alloy 617, which were produced through a series of creep tests at 850-950 .deg. C at the Korea Atomic Energy Research Institute (KAERI), were analyzed using various creep laws, and the material constants were obtained and discussed.A very high temperature reactor (VHTR) is one of the most promising Gen-IV reactors for the economic production of electricity and hydrogen. Its major components are the reactor internals, reactor pressure vessel (RPV), hot gas ducts (HGD), and intermediate heat exchangers (IHX). Since the VHTR components are designed to be used for a 60 year lifetime at a high temperature, the creep behavior is very important for the design application due to creep damage during the long service life at elevated temperatures. Alloy 617 is a candidate IHX structural material because of its high temperature creep properties. However, the ASME design code for Alloy 617 was not developed for design use. Therefore, material works to complete the ASME Alloy 617 code case development are ongoing according to a next-generation nuclear plant (NGNP) research and development plan. Through this plan, a new Alloy 617 Code Case is planned to be approved by 2015. In this study, the creep rupture data of Alloy 617, which were produced through a series of creep tests at 850-950 .deg. C at the Korea Atomic Energy Research Institute (KAERI), were analyzed using various creep laws, and the material constants were obtained and discussed. Creep rupture data of Alloy 617 tested at 850-950 .deg. C were analyzed using various creep laws, and material constants were obtained. The MMGR reduced the data scattering, and was well fitted for straight line of m ≅ 1.0 as m=0.97. The MMGR showed a better plot than the MGR. In the plot of ZHP and stress, a straight line was for n'=5.87 regardless of the three different temperatures. Thus, it can be inferred that the same creep

  15. Microstructure and Mechanical Properties of Solution Heat-Treated Alloy 617 ODS Alloy

    International Nuclear Information System (INIS)

    Alloy 617 is a solution hardened Ni-based Superalloy containing Cr, Co, Mo, and Fe, and is among the best candidate materials for the key components of VHTR (Very High Temperature Reactor) system. As an alternative, Oxide Dispersion Strengthened (ODS) Ni-based superalloys, are known to possess superior high temperature mechanical properties and long-term high temperature microstructural stability due to the nano sized oxide dispersoids, which effectively hinder the dislocation motion at high temperature. This study is focused on the fabrication and characterization of nanosized oxide dispersion strengthened alloy 617. The influences of alloy composition and processing variables such as the content of Y2O3, hot extrusion ratio, and hydrogen reduction on the microstructure and mechanical properties were studied. From the analyses of microstructure of solution heat treated Alloy 617 ODS alloy specimens, a proper solid solution heat treatment temperature to reduce carbides is 1250 .deg. C. The major phases present in the alloy 617 ODS were found to be M23C6 and Al-O

  16. Time-dependent Creep Crack Growth Behavior of Alloy 617 at 800 .deg. C

    International Nuclear Information System (INIS)

    The VHTR components are designed to be used for a 60 year lifetime at a high temperature, the creep crack growth (CCG) behavior as well as creep behavior is very important for the design application due to creep damage during the long service life at elevated temperatures. Alloy 617 is a major candidate material for the IHX component. The design of the component, which will operate well into the creep range, will require a good understanding of creep crack growth deformation. Efforts are now being undertaken in the Generation IV program to provide data needed for the design and licensing of the nuclear plants, and with this goal in mind, to meet the needs of the conceptual designers of the VHTR system, 'Gen-IV Materials Handbook DB' is being established through an international collaboration program of several GIF (Gen-IV Forum) countries. CCG experimental data should be prepared to 'the Gen-IV Materials Handbook DB' website, because the CCG data for Alloy 617 are not available in the ASME design code. In this paper, experimental creep crack growth data were obtained through a series of CCG tests performed under different applied loads at 800 .deg. C. The CCG behavior was characterized in terms of the C* fracture mechanics parameter, and the CCGR equation for Alloy 617 was presented. Experimental CCG data of Alloy 617 were obtained from a series of creep crack growth tests under different applied loads at 800 .deg. C

  17. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  18. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  19. An improved methodology for determining tensile design strengths of Alloy 617

    International Nuclear Information System (INIS)

    This paper presents an improved methodology for determining high-temperature tensile design strengths of Alloy 617, which is regarded as one of main structural materials for very high temperature reactor (VHTR) system. In establishing time-independent allowable stress values, an existing ASME standard procedure is preliminarily analyzed and their limitations are pointed out. Then, an improved methodology, which has a consistent and quantifiable design margin at low and high temperatures for tensile strengths, is proposed and compared with the ASME method. To find suitable curves of temperature trend to the tensile strength data, three fitting methods are demonstrated, and a statistical technique is adopted for design use. The results will be utilized to reasonably determine the tensile design strengths of Alloy 617 for application in the VHTR system

  20. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  1. Fatigue and creep crack propagation behaviour of Alloy 617 in the annealed and aged conditions

    International Nuclear Information System (INIS)

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 deg. C under constant stress intensity (ΔK) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650 deg. C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including γ' (Ni3Al) after short times, occurred during ageing. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 deg. C and a stress intensity of K = 40 MPa√(m). The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material ageing or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 deg. C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 deg. C. (authors)

  2. High temperature environmental interactions of Inconel 617: A paper study for the TEF

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.S.

    2000-06-16

    Inconel alloy 617 has been selected as the material of choice for the retort of the furnace for the Tritium Extraction Facility. To monitor retort performance and suitability for continued service, representative sample coupons should be suspended on the inside (process side) and outside (annulus side) of the retort for periodic metallographic analysis or hardness testing. Surface dealloying and hardness could be used to monitor the ``health'' of the retort in this surveillance program.

  3. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  4. Influences on the thermomechanical fatigue crack growth of the nickel alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Michael; Schweizer, Christoph; Brontfeyn, Yakiv [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2015-02-01

    The following contribution deals with the experimental investigation and theoretical evaluation of fatigue crack growth under isothermal and non-isothermal conditions at the nickel alloy 617. The microstructure and mechanical properties of alloy 617 are influenced significantly by the thermal heat treatment and the following thermal exposure in service. Hence, a solution annealed and a long-time service exposed material condition is studied. The crack growth measurement is carried out by using an alternate current potential drop system, which is integrated into a thermomechanical fatigue (TMF) test facility. The measured fatigue crack growth rates results in a function of material condition, temperature and load waveform. Furthermore, the results of the non-isothermal tests depend on the phase between thermal and mechanical load (in-phase, out-of-phase). A fracture mechanic based, time dependent model is upgraded by an approach to consider environmental effects, where almost all model parameters represent directly measurable values. A consistent of all results and a good correlation with the experimental data can be achieved.

  5. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  6. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  7. Creep-Fatigue Behavior of Alloy 617 at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expected reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised of a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain

  8. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    Science.gov (United States)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  9. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    International Nuclear Information System (INIS)

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 oC for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  10. Rules for design of alloy 617 nuclear components to very high temperatures

    International Nuclear Information System (INIS)

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950 degrees C are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982 degrees C. The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing

  11. Rules for design of Alloy 617 nuclear components to very high temperatures

    International Nuclear Information System (INIS)

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950 degree C (1742 degree F) are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982 degree C (1800 degree F). The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing. 4 refs., 9 figs., 1 tab

  12. Temperature effect on the creep behavior of alloy 617 in air and helium environments

    International Nuclear Information System (INIS)

    The temperature effect on creep and oxidation behaviors in air and helium (He) environments was investigated at 950, 900 and 850 °C for Alloy 617, which is considered as a prime candidate material for VHTR components. Creep data were obtained with different stress levels at the three temperatures. Oxidation microstructural features such as the surface oxide layer, internal oxidation and decarburization were analyzed by observing each crept specimen. At 950 and 900 °C, the creep rupture time in He environment was shorter than that in air, and the thickness of the surface oxide layer was thicker than in air. The deterioration of creep resistance in the He environment was due to a thicker oxide-layer thickness, which reduced the effective area carrying the creep load. On the other hand, at 850 °C, the creep rupture time was almost the same regardless of both environments. The surface oxide-layer thickness was reduced by about 50% compared to the temperatures of 950 and 900 °C. The temperature of 850 °C could be assumed as a boundary temperature at which the He effects disappeared. It was found that the relationship between the creep data and surface oxide-layer thickness was in accordance with both environments

  13. Progress Report on Long Hold Time Creep Fatigue of Alloy 617 at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Laura Jill [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep-fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep-fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep-fatigue data are calculated for the creep-fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.

  14. Progress Report on Long Hold Time Creep Fatigue of Alloy 617 at 850°C

    International Nuclear Information System (INIS)

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep-fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep-fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep-fatigue data are calculated for the creep-fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.

  15. New Methodology to Predict the Long-term Creep Strength of Alloy 617 for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Alloy 617 is a prime candidate material for the very high temperature gas-cooed reactor(VHTR) components due to its superior creep resistance above 800 .deg. C when compared to other candidate alloys; Haynes 230, Hastelloy-X and Alloy 800. Considerable creep data for Alloy 617 is available in the literature, and a draft Alloy 617 code case and ASME Boiler and Pressure Vessel (BPV) Code-Section II have also provided allowable stress values for a 105 h design period at temperatures up to 982 .deg. C. However, the creep and oxidation behaviors for Alloy 617 are not well understood yet, and their long-term creep strength should be predicted for use in a design and analysis. So far, Larson-Miller (LM) parameter method known as a time-temperature parameter (TTP) has been the most commonly used to predict the long-term creep life from short-term creep data. TTP constant C in the LM method is unique for a given set of creep rupture data to be analyzed. Temperature dependency of a rupture life, dlogtr /d(1/T), should not change in the data set. But, this assumption is not always valid, because the C for the rupture life changes from a high value of the short term creep to a low value of the long term creep. So, Maruyama et al. have reported that the multi region analysis for Q in Orr-Sherby-Dorn (OSD) parameter could evaluate the long-term rupture of austenite stainless steels and 9-12% Cr steels accurately. However, an overestimation of the long term rupture in the LM parameter has not been reported for Alloy 617, and furthermore, to avoid it, a multi constant method for the C in the LM parameter has not been demonstrated by others. In this paper, a longer creep life for above 105h at 950 .deg. C was accurately predicted by using a new method with two C values in the LM parameter. Also, oxidation behavior was investigated by using a scanning electron microscope (SEM) and an energy dispersive X-ray spectroscopy (EDX) analysis

  16. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M6C). Most of this precipitates are evenly distributed in the materials. Few M23C6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M23C6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  17. Interaction between particle precipitation and creep behavior in the NI-base Alloy 617B: Microstructural observations and constitutive material model

    International Nuclear Information System (INIS)

    The creep behavior of the Ni-base Alloy 617B was analyzed at 725 °C with the focus on microstructural changes during temperature and stress exposure. High resolution electron microscopy of crept specimens reveals the precipitation behavior of secondary phases such as Cr-rich M23C6-carbides and the γ'-phase. Physical models are used to describe the Ostwald coarsening of the γ' particles and the evolution of the yield strength of the alloy. Together with the results from hot tensile tests and hardness measurements, a constitutive model for Alloy 617B has been developed. This model takes account of precipitation strengthening which is consistent with the microstructural observations, internal back stress due to dislocation hardening and material damage, all by evolutionary equations

  18. Interaction between particle precipitation and creep behavior in the NI-base Alloy 617B: Microstructural observations and constitutive material model

    Energy Technology Data Exchange (ETDEWEB)

    Haan, J., E-mail: j.haan@iwm.rwth-aachen.de; Bezold, A., E-mail: a.bezold@iwm.rwth-aachen.de; Broeckmann, C., E-mail: c.broeckmann@iwm.rwth-aachen.de

    2015-07-29

    The creep behavior of the Ni-base Alloy 617B was analyzed at 725 °C with the focus on microstructural changes during temperature and stress exposure. High resolution electron microscopy of crept specimens reveals the precipitation behavior of secondary phases such as Cr-rich M{sub 23}C{sub 6}-carbides and the γ'-phase. Physical models are used to describe the Ostwald coarsening of the γ' particles and the evolution of the yield strength of the alloy. Together with the results from hot tensile tests and hardness measurements, a constitutive model for Alloy 617B has been developed. This model takes account of precipitation strengthening which is consistent with the microstructural observations, internal back stress due to dislocation hardening and material damage, all by evolutionary equations.

  19. Preliminary Development of A Unified Viscoplastic Constitutive Model for Alloy 617 with Special Reference to Long Term Creep Behavior - HTR2008-58215

    International Nuclear Information System (INIS)

    The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail. (authors)

  20. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  1. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Hsiao-Ming, E-mail: hmtung2@gmail.com [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan, ROC (China); Mo, Kun; Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  2. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Science.gov (United States)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  3. A Study on the Effect of Strain Rate on the Dynamic Recrystallization Mechanism of Alloy 617B

    Science.gov (United States)

    Jiang, He; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-07-01

    The effect of strain rate on dynamic recrystallization (DRX) behavior and mechanism of alloy 617B was investigated by isothermal compression test in a temperature range of 1393 K to 1483 K (1120 °C to 1210 °C) with a wide strain rate scope of 0.01 to 20 s-1. The microstructure evolution was investigated comprehensively by optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into the effect of strain rate on DRX mechanism. The study shows that DRX is accelerated at both low strain rate and high strain rate conditions with an apparent sluggish kinetics at the intermediate strain rate of 1 s-1. In the low strain rate condition (i.e., mechanism is crucial for the promotion of DRX at high strain rate. High strain rate could lead to enhanced pile-up of dislocation and higher stored energy, which can facilitate the process of DRX. In addition, distortion or subdivision of twins and "grain fragment" are detected when the strain rate is higher than 1 s-1, which provide additional DRX nucleation mechanism. As a result, the combined effect leads to the higher DRX nucleation rate to promote DRX at high strain rate. The effect of strain rate on DRX is the completion result between sufficiency of time on the one hand and adiabatic heat and enhanced nucleation mechanism on the other.

  4. A Study on the Effect of Strain Rate on the Dynamic Recrystallization Mechanism of Alloy 617B

    Science.gov (United States)

    Jiang, He; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-07-01

    The effect of strain rate on dynamic recrystallization (DRX) behavior and mechanism of alloy 617B was investigated by isothermal compression test in a temperature range of 1393 K to 1483 K (1120 °C to 1210 °C) with a wide strain rate scope of 0.01 to 20 s-1. The microstructure evolution was investigated comprehensively by optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into the effect of strain rate on DRX mechanism. The study shows that DRX is accelerated at both low strain rate and high strain rate conditions with an apparent sluggish kinetics at the intermediate strain rate of 1 s-1. In the low strain rate condition (i.e., <1 s-1), DRX is mainly controlled by the growth of DRX nuclei due to the sufficient time. When the strain rate is higher than 1 s-1, besides the commonly accepted reason of adiabatic heat generated by high strain rate, enhanced DRX nucleation mechanism is crucial for the promotion of DRX at high strain rate. High strain rate could lead to enhanced pile-up of dislocation and higher stored energy, which can facilitate the process of DRX. In addition, distortion or subdivision of twins and "grain fragment" are detected when the strain rate is higher than 1 s-1, which provide additional DRX nucleation mechanism. As a result, the combined effect leads to the higher DRX nucleation rate to promote DRX at high strain rate. The effect of strain rate on DRX is the completion result between sufficiency of time on the one hand and adiabatic heat and enhanced nucleation mechanism on the other.

  5. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  6. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  7. Evaluation of mechanical properties of the alloy NiCr22Co12Mo (Alloy 617) for heat exchanging components of HTGRs

    International Nuclear Information System (INIS)

    The HTR-materials program in Germany has been directed towards the qualification of high temperature alloys for heat exchanging components of advanced nuclear process heat plants. From the available conventional alloys, the nickel-base alloy NiCr22Co12Mo (Alloy 617) has been selected for the highest working temperatures. With respect to the design of intermediate heat exchanger and methane reformer tubes long term properties for different semifinished products and weldments of this material have been determined. The experimental work included creep and creep rupture tests, fatigue and creep/fatigue tests and short term mechanical tests after thermal ageing. With regard to the development of fracture mechanics criteria for leak before break argumentations, additional creep and fatigue crack growth experiments have been carried out. Typical examples of the data obtained will be presented. The implementation of the data in the derivation of design curves and the formulation of design rules will be shown. (author). 17 figs, 1 tab

  8. Draft ASME Boiler and Pressure Vessel Code Section III, Division 5, Section HB, Subsection B, Code Case for Alloy 617 and Background Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep fatigue data are calculated for the creep fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.

  9. Creep behaviour of as received, aged and cold worked INCONEL 617 at 850 deg. C and 950 deg. C

    International Nuclear Information System (INIS)

    The effect of initial microstructure on alloy 617 creep behaviour has been investigated at 850 deg. C and 950 deg. C. The solution treated material shows non-classical creep behaviour at both temperatures with a strain rate drop at the beginning of the tests followed by a creep rate increase to a plateau before the onset of the tertiary creep. The intragranular secondary carbides which precipitate early at test temperature are responsible of the strong initial hardening effect by pinning the dislocations. This effect is overpassed during the thermo mechanical ageing of the alloy which induces growth of these carbides. Prior 1000 h thermal ageing at the temperature test totally removes the strain rate drop and reduces the lifetime. The intragranular microstructure has evolved thanks to the prior thermal ageing before the creep tests. Microstructural examinations also show the presence of grain boundary migration and recrystallization in the material during creep tests of the as received and aged materials. Preliminary cold work treatment highly reduces the strain rate of Inconel 617 and enhances the lifetime at 850 deg. C while the opposite is observed at 950 deg. C.

  10. Identifying and Understanding Environment-Induced Crack propagation Behavior in Ni-based Superalloy INCONEL 617

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Longzhou

    2012-11-30

    The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or

  11. Dynamic recrystallization behavior of nickel-base alloy 617 for 700 ℃ ultra-super-critical rotors%700℃超超临界转子用镍基617合金的动态再结晶行为

    Institute of Scientific and Technical Information of China (English)

    朱怀沈; 聂义宏; 赵帅; 白亚冠; 吴赟

    2015-01-01

    用Gleeble-3500热模拟机对镍基617合金进行等温热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,并对压缩试样的微观组织进行分析。通过对试验数据的计算,得到了镍基617合金的动态再结晶激活能和本构关系方程;建立了动态再结晶图,获得了镍基617合金发生动态再结晶所需的临界变形量与Z参数的关系。结果表明,变形参数对镍基617合金热变形后的显微组织具有重要影响,较高的变形温度和较低的应变速率有利于动态再结晶的发生。%Isothermal compression tests of nickel-base alloy 617 were performed on Gleeble-3500 thermal simulator. A series of true stress-strain curves under different deformation conditions were measured and the microstructure of the alloy after hot compression deformation was investigated. By the calculations of the data, the dynamic recrystallization activation energies and the constitutive equation of nickel-base alloy 617 were obtained, the dynamic recrystallization diagram of nickel-base alloy 617 was established and the relationship between the parameter Z and critical strain for dynamic recrystallization was discussed. The results show that deformation parameters have important influences on microstructure of nickel-base alloy 617. The lower strain rate at higher deformation temperature benefits the dynamic recrystallization.

  12. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    . These calculations provide thermodynamic data characteristic of the chromium behavior in these alloys. These activity results call into question those previously measured by Hilpert and Ali-Khan (1978, 'Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: I. Alloy IN-643, J. Nucl. Mater., 78, pp. 265-271; 1979, Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: II. Inconel Alloy 617 and Nimonic Alloy PE 13, J. Nucl. Mater., 80, pp. 126-131), largely used in the literature. (authors)

  13. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  14. Microstructure Investigation of Modified Inconel 706 Superalloys

    OpenAIRE

    Kindrachuk, Vitaliy

    2006-01-01

    In dieser Arbeit wird die Nickel-Basis-Superlegierung Inconel 706 untersucht. Die Legierung ist stabil in einem Temperaturbereich bis zu 650°C und findet Anwendung bei der Herstellung von Gas- und Dampfturbinen. Das Ziel ist die Legierung zu optimieren um den Einsatz bei 700°C und eine Lebensdauer im Bereich von 200 000 h zu ermöglichen. Zwei Modifizierungen von Inconel 706 werden betrachtet: Rhenium (Re)-zulegiertes Inconel 706 und die Legierung DT 706 mit geänderter Zusammensetzung. Die Mik...

  15. Development of INCONEL 600 precision tube (1)

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Yeong Han; Jo, Bong Hyeon; Lee, Dong Hee; Kim, Wan Kyo; Jeong, Pyeong Keun; Yoon, Hwang Lo; Chio, Seok Sik [Sammi Steel Co. Ltd., Changwon (Korea, Republic of)

    1994-07-01

    Steam generator, being connected with nuclear fuel reactor is one of the most important part of nuclear power plant and consists of a large number of INCONEL 600 tubes. Approximately 160 tons of tubes are needed for a single nuclear power plant. All of INCONEL 600 steam generator tubes for domestic nuclear power plants have been imported. The aim of this research is to develop INCONEL 600 precision tubes for steam generator of nuclear power plant. If this research is conducted successfully, we can produce nuclear fuel tubes, Ni-alloy precision tubes and stainless steel precision tubes for many purposes and technology of INCONEL 600 steam generator tubes are similar to those of other tubes above mentioned. In the current study, development of preliminary manufacturing process of INCONEL 600 precision tubes for steam generator and investigation of material`s metallurgical characteristics were conducted. The main scope of this research is as follows. First, the preliminary manufacturing process design was conducted after investigations of foreign manufacturing processes and technical reports. Second, the results of investigations of material`s metallurgical characteristics through the manufacturing process were applied to the production technology of tentative INCONEL 600 precision tubes for sample. Third, preliminary process routes were established and samples of INCONEL 600 precision tube were produced by this process. As the results of this research, 14 pieces of INCONEL 600 precision tubes were produced by preliminary manufacturing process and the material`s metallurgical characteristics were investigated through the processes. But the SCC test could not be conducted due to the absence of equipment. In order to apply the results of SCC test to the manufacturing process, we need a SCC tester which can simulate SCC characteristics under high temperature and high pressurized circulating water. 95 refs., 55 figs., 20 tabs.

  16. Total hemispherical emissivity of Inconel 718

    International Nuclear Information System (INIS)

    Highlights: • We have measured the total hemispherical emissivity for Inconel 718 from about 600–1250 K. • Oxidation in air at 1073 K resulted in an increase in emissivity. • Sandblasting of Inconel 718 was also observed to increase the emissivity. • Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase in the emissivity. • Coating of graphite powder onto the 220 grit sandblasted Inconel 718 did show an increase in emissivity. - Abstract: Total hemispherical emissivity for Inconel 718 was measured in anticipation of its application in Very High Temperature Gas Reactors (VHTRs). A majority of current emissivity data for Inconel 718 is in the form of spectral measurements. The data presented here were obtained with an experimental apparatus based on the standard ASTM C835-06 for total hemispherical emittance. Measurements of Inconel 718 were made for four different surface types including: (i) ‘as-received’ from the manufacturer, (ii) oxidized in air and humidified helium, (iii) sandblasted with aluminum oxide powder, and (iv) with a thin coating of nuclear grade graphite powder (grade NGB-18). The emissivity for the ‘as-received’ sample ranged from 0.21 to 0.28 in the temperature interval from 760 K to 1275 K. Oxidation in air at 1073 K resulted in an increase in emissivity into the range from 0.2 at 650 K to 0.52 at 1200 K. There was no dependence on the oxidation times studied here. Oxidation with humidified helium at 1073 K produced less of an increase in emissivity than the oxidation in air but there was an increase up to the range from 0.2 at 600 K to 0.35 at 1200 K. Sandblasting of Inconel 718 was also observed to increase the emissivity up to the range from 0.43 at 780 K to 0.53 at 1270 K when 60 grit sized powder was used and up to the range from 0.45 at 683 K to 0.57 at 1267 K when 120 and 220 grit sized powders were used. Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase

  17. Total hemispherical emissivity of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Benjamin P.; Nelson, Shawn E.; Walton, Kyle L.; Ghosh, Tushar K.; Tompson, Robert V.; Loyalka, Sudarshan K., E-mail: LoyalkaS@missouri.edu

    2015-06-15

    Highlights: • We have measured the total hemispherical emissivity for Inconel 718 from about 600–1250 K. • Oxidation in air at 1073 K resulted in an increase in emissivity. • Sandblasting of Inconel 718 was also observed to increase the emissivity. • Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase in the emissivity. • Coating of graphite powder onto the 220 grit sandblasted Inconel 718 did show an increase in emissivity. - Abstract: Total hemispherical emissivity for Inconel 718 was measured in anticipation of its application in Very High Temperature Gas Reactors (VHTRs). A majority of current emissivity data for Inconel 718 is in the form of spectral measurements. The data presented here were obtained with an experimental apparatus based on the standard ASTM C835-06 for total hemispherical emittance. Measurements of Inconel 718 were made for four different surface types including: (i) ‘as-received’ from the manufacturer, (ii) oxidized in air and humidified helium, (iii) sandblasted with aluminum oxide powder, and (iv) with a thin coating of nuclear grade graphite powder (grade NGB-18). The emissivity for the ‘as-received’ sample ranged from 0.21 to 0.28 in the temperature interval from 760 K to 1275 K. Oxidation in air at 1073 K resulted in an increase in emissivity into the range from 0.2 at 650 K to 0.52 at 1200 K. There was no dependence on the oxidation times studied here. Oxidation with humidified helium at 1073 K produced less of an increase in emissivity than the oxidation in air but there was an increase up to the range from 0.2 at 600 K to 0.35 at 1200 K. Sandblasting of Inconel 718 was also observed to increase the emissivity up to the range from 0.43 at 780 K to 0.53 at 1270 K when 60 grit sized powder was used and up to the range from 0.45 at 683 K to 0.57 at 1267 K when 120 and 220 grit sized powders were used. Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase

  18. Weldability of Inconel 718 - a review

    International Nuclear Information System (INIS)

    The report discusses the main issues related to weldability of Inconel 718. How the problem of strain age cracking during post weld treatment is avoided in this alloy has also been discussed. It also elaborates phases present in the alloys of 718 and its solidification metallurgy

  19. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  20. Economical Inconel 718%经济型Inconel 718合金

    Institute of Scientific and Technical Information of China (English)

    狄志高; 黄漫

    2012-01-01

    为了降低Inconel 718合金的生产成本,设计了常规方案和经济方案两种试验方案:常规方案用纯金属冶炼718合金,经济方案用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼718合金.运用两种方案在真空感应炉内分别冶炼了一炉718合金并浇铸成锭,将两支铸锭按照相同的工艺参数进行扩散退火、轧制成材及热处理,随后取样进行力学性能及金相组织分析.试验结果表明,用两种方案冶炼的718合金均能满足国内优质Inconel718合金的技术标准,且用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼的Inconel 718合金可降低18%的原料成本.%In order to decrease the production costs of Inconel 718 alloy, two kinds of test programs were designed including conventional program and economical program. The conventional program was designed to smelt Inconel 718 alloy with elemental metal. The economical program was designed to smelt Inconel 718 alloy with Nb-Fe and Cr-Fe instead of metal Nb and Cr. Two heats of 718 alloy were smelted separately by two kinds of test programs in vacuum induction furnace, molten alloy were casted to two ingots. Under the same processing parameter, two ingots were carried out diffusion annealing, roll forming and heat treatment. Specimens were taken to analyze the mechanical properties and metallurgical structure. The testing results show Inconel 718 alloy by both kinds of test programs can reach domestic technical standard of superior alloy. Compared with conventional program, economical program of using Nb-Fe and Cr-Fe instead of metal Nb and Cr can decrease 18% costs of the raw material.

  1. Bending of pipes with inconel cladding; Curvamento de tubos revestidos com inconel

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [PROTUBO, Macae, RJ (Brazil)

    2008-07-01

    The pipes used in offshore equipment, such as wet Christmas trees, sub sea manifolds and rigid platform risers, as well as some pipes for refineries and ships, must have mechanical resistance to high pressure and also be resistant to corrosion from acids. Some special materials, such as stainless steel, duplex and super duplex steel are used to resolve this problem, but the cost is very high. Besides the problem of cost, these materials have other drawbacks, such as the difficulty of welding them, a technology mastered in few countries. As a better alternative, the use has been increasing of carbon steel and API pipes coated internally with inconel by welding deposition. This groundbreaking technology, of proven efficiency, has a far superior cost-benefit relation. Carbon steel and API pipes, besides having better mechanical resistance to high pressure and corrosion resistance, can be fabricated with technology mastered worldwide. Nickel alloys, such as inconel, are highly resistant to corrosion and temperature, and in these aspects are better than stainless steels. The pipes for transportation equipment and for refining hydrocarbons, as mentioned above, require various turns and special geometries, which generally are solved by the use of bends and spools made by high-frequency induction. This technology, already well established for various carbon and stainless steels, was developed to work with pipes coated internally with inconel (inconel cladding). Therefore, our work describes the process of fabricating bends from API steel pipes with inconel cladding, demonstrating the efficacy of this technology along with its quality gains and cost reduction. (author)

  2. Corrosion Performance of Inconel 625 in High Sulphate Content

    Science.gov (United States)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  3. Hot tensile tests of Inconel 718

    Science.gov (United States)

    1980-01-01

    The physical metallurgy of near-solidus integranular cracking in Inconel 718 welds was investigated. The data, although inconclusive, suggest at least two mechanisms which might explain intergranular cracking (microfissuring) in the heat-affected zone of several high temperature alloys. One theory is based on the separation of intergranular liquid while the other involves mechanical failure of solid ligaments surrounded by intergranular liquid. Both mechanisms concentrate strain in the grain boundaries resulting in low strain (1%) intergranular brittleness. The mechanisms reported might also pertain to the physical metallurgy of casting, powder metallurgy sintering and hot isostatic pressing.

  4. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  5. Hydrogen embrittlement of sensitized inconel 600

    International Nuclear Information System (INIS)

    Tensile tests under cathodic charging were carried out on sensitized Inconel 600 alloy poly crystals. The maximum sensitivity of hydrogen embrittlement (HE) was recognized on the specimen sensitized at 973K, and the specimen fractured with intercrystalline mode. The effect of cold working before the sensitized treatment was recognized in the sensitivity of HE and the morphology of fractured surface. When the prestrain increased, the sensitivity of HE was decreased and the fracture morphology changed from intercrystalline to transgranular. On the single crystal specimen, no effect was recognized in both the sensitized temperature and the cold working before sensitization. Intercrystalline and transcrystalline cracks occurred on the surface of polycrystal specimen by hydrogen charging under no loading condition. Also, the cracks on the surface of single crystal specimen were produced along {001} planes hydrogen under the same condition. (author)

  6. Fatigue strength on superalloy Inconel 600

    International Nuclear Information System (INIS)

    In this paper, the strain controlled fatigue test at room temperature in air and the fractographic study on superalloy Inconel 600 are performed. From the test results, the relations between nominal stresses and number of cycles are obtained to show that the stress increases slightly in the early period, then remains stable at constant value for a subsequent long period, and then steeply drops immediately before the final failure. The relationships on strain amplitude with fatigue life are introduced. The values of fictitious stress amplitude calculated from the test results are just lying between the two best fit curves from ASME, Sec. III, Division I, Appendix Table 1.9.1/2 in 1983 and Transaction of ASME, Nov. 1977, p. 584. From the microscopic examination of the fatigue fracture, there are three failure process zones: fatiguecrack origin appearance zone, stable radial spread zone, and final fast fracture zone. (author)

  7. Manifestations of DSA in austenitic stainless steels and inconel alloys

    International Nuclear Information System (INIS)

    The aim of the investigation was to examine and compare different types of DSA (Dynamic Strain Aging) manifestations in AISI 316 austenitic stainless steel (SS) and Inconel 600 and Inconel 690 alloys by means of slow strain rate tensile testing, mechanical loss spectrometry (internal friction) and transmission electron microscopy (TEM). Another aim was to determine differences in the resulting dislocation structures and internal friction response of materials showing and not showing DSA behaviour

  8. Circular Vibration Planing of Inconel 718

    Science.gov (United States)

    Hettiarachchi, Nandita Kalyanakumara; Moriwaki, Toshimichi; Shibasaka, Toshiro; Nakamoto, Keiichi

    Circular vibration milling (CVM) is achieved by vibrating a milling cutter about the machine tool spindle axis in a circular path, in addition to its rotary motion. CVM has been proven capable of producing better surface finishes on difficult to cut materials. However, the CVM process is far slower than conventional milling process. In circular vibration planing (CVP) process, the cutting tool is clamped without rotation and fed at a speed comparable to the feed speed of conventional milling. By superimposing circular vibration motion, necessary cutting speed could be achieved keeping the feed speed at realistic values. Inconel 718 was machined by CVP and conventional milling at a similar feed rate. It was observed that CVP could reduce tool wear and hence produce better surface finishes than conventional milling. A geometric simulation showed a major difference between uncut chip shapes of the two processes. The difference of uncut chip shapes suggests that in CVP process, less rubbing occurs between tool flank face and work before the tool penetrates in to the work to form a chip. The reduced rubbing of the flank face is proposed as the reson for reduced tool wear in CVP when compared with conventional milling.

  9. Weldability testing of Inconel trademark filler metals

    International Nuclear Information System (INIS)

    This paper presents the findings of a research program aimed at quantifying the weld solidification cracking susceptibility and weld metal liquation cracking susceptibility of Inconel trademark filler materials 52, 82, 152 and 182 deposited on a variety of materials intended for pressurized water reactor applications. A cursory investigation on the repair weldability of Filler Metal 52 using the Gleeble trademark thermo-mechanical simulation technique is also included. The brittle temperature range (BTR) in the fusion zone and HAZ was determined using the longitudinal-Varestraint test and spot-Varestraint test, respectively, and used as a weldability index for quantification of susceptibility to weld solidification cracking and HAZ liquation cracking. Results from this study showed that Filler Metals 52 exhibited the best resistance to both weld solidification cracking and weld metal liquation cracking followed by 82, 152 and 182 for the base metal combinations tested in this study. Repair weldability study suggested that the resistance to weld metal liquation cracking of 52 all weld metal would not be significantly reduced after ten times of weld simulation at peak temperatures of 900 C and 1,300 C

  10. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  11. Stainless steel 301 and Inconel 718 hydrogen embrittlement

    Science.gov (United States)

    Allgeier, R. K.; Forman, R.

    1970-01-01

    Conditions and results of tensile tests of 26 Inconel 718 and four cryoformed stainless steel specimens are presented. Conclusions determine maximum safe hydrogen operating pressure for cryogenic pressure vessels and provide definitive information concerning flaw growth characteristics under the most severe temperature and pressure conditions

  12. Precipitation Study in Inconel 625 Alloy by Positron Annihilation Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    M.Ahmad; W. Ahmad; M.A.Shaikh; Mahmud Ahmad; M.U. Rajput

    2003-01-01

    Precipitation in Inconel 625 alloy has been studied by positron annihilation spectroscopy and electron microscopy. The observeddependence of annihilation characteristics on aging time is attributed to the change of the positron state due to the increaseand decrease of the density and size of the γ″ precipitates. Hardness measurements and lifetime measurements are in goodagreement.

  13. Corrosion testing of INCONEL alloy 690 for PWR steam generators

    International Nuclear Information System (INIS)

    INCONEL alloy 690, an austenitic, high-chromium modification of INCONEL alloy 600, was developed to resist stress-corrosion cracking and general corrosion in hightemperature aqueous environments associated with nuclear steam generators. Tests in nitric acid and nitric-hydrofluoric acid show that the high chromium content provides alloy 690 with good resistance to highly oxidizing environments over a wide range of high temperatures and oxygen concentrations, in the presence of crevices and lead or chloride contamination. Alloy 690 releases a negligible amount of material when exposed to high-velocity water at elevated temperatures. In constant extension rate tests, alloy 690 resists crack propagation in a deaerated 10 pct solution of sodium hydroxide better than alloy 600. Long-time tests also suggest greater resistance to intergranular attack in deaerated caustic solutions and to the oxidation of radioactive waste disposal involving nitric-hydrofluoric acid dissolution and vitrification

  14. Detecting Grain-Boundary Chromium Depletion in Inconel 600

    Science.gov (United States)

    Airey, G. P.; Vaia, A. R.; Pessall, N.; Aspden, R. G.

    1981-11-01

    Techniques to evaluate grain-boundary chromium depletion in Inconel Alloy 600 were investigated. Procedures studied were a modified Huey test, reactivation polarization, magnetic permeability measurements, and eddy current measurements. Results from these tests were correlated with susceptibility to stress-assisted intergranular cracking in polythionic acid. Thermally treated Inconel Alloy 600 steam generator tubing was the principal source of material evaluated, but experimental heats of Ni-Cr-Fe alloys with 8-18 wt.% Cr were prepared to determine the critical chromium level below which stress-assisted intergranular cracking occurs; this critical chromium content was found to be between 9.8 and 11.7 wt.%. All four techniques were considered suitable to evaluate grain-boundary chromium depletion; the modified Huey test and reactivation polarization technique showed a greater sensitivity than the magnetic permeability and eddy current measurements.

  15. Microstructure and oxidation behaviour of aluminized coating of inconel 625

    International Nuclear Information System (INIS)

    Microstructural and oxidation characteristics of aluminized coated Inconel 625 have been examined using scanning electron microscopy (SEM) and fine-probe spot and linescan EDS microanalysis techniques. The formation of slowly growing adherent metallic coatings is essential for protection against the severe environments. Aluminising of the superalloy samples was carried out by pack cementation process at 900 deg. C. in an argon atmosphere. The samples were subsequently oxidized in air at various temperatures to examine performance of the pack aluminized coated alloy. The microstructural changes that occurred in the aluminized layer at various exposure temperature and time were examined to study the oxidation behavior and formation of different phases in the aluminized coating deposited on Inconel 625. (author)

  16. Creep-rupture tests of internally pressurized Inconel 702 tubes

    Science.gov (United States)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  17. Stress corrosion cracking of Inconel in high temperature water

    International Nuclear Information System (INIS)

    Some Inconel samples were subjected to hot water corrosion testing (350 deg. C), under stress slightly above the elastic limit. It has been observed that different types of alloys - with or without titanium - could suffer serious intergranular damage, including a complete rupture, within a three months period. In one case, we observed an unusual intergranular phenomenon which appeared quite different from common intergranular corrosion. (author)

  18. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  19. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  20. Thermal stability and environmental compatibility of Inconel 617

    International Nuclear Information System (INIS)

    The thermal stability and environmental compatibility of Inconel 617, a prime nuclear process heat steam reformer candidate alloy, are described in this paper. This commercially available wrought nickel-base alloy has excellent high-temperature strength but is subject to loss of toughness and ductility due to thermal instability. Work done to improve the thermal stability of this alloy is discussed. Room-temperature tensile and toughness data and microstructural information for Inconel 617 specimens exposed at elevated temperatures are presented. Preliminary data indicate that controlling the chemistry of Inconel 617 can provide a substantial improvement in thermal stability. Preliminary work to define the range of high-temperature gas-cooled reactor (HTGR) primary coolant compositions within which minimal deleterious gas/metal reactions occur with Inconel 617 is described. Within this gas chemistry range a stable surface oxide forms and only slight carburization occurs. In other gas chemistry ranges, rapid carburization or decarburization can occur. The gas corrosion experiments discussed are part of a series of relatively short-term exposures to HTGR helium in which the effects of different H2O concentrations (0.01 to 1.0 Pa) were determined as a function of the systematic variation of a second constituent (CO and CH4 for this work) in the test gas. The composition of the basic HTGR helium was 40 Pa H2, 4 Pa CO, 0.02 Pa CO2, 2 Pa CH4 in helium at 0.2 MPa. Two other CO levels (1 and 12 Pa) and one additional CH4 level (0.63 Pa) were used in these experiments. Experimental exposure methods are discussed and the results of gas-metal interaction studies are presented. These results include carbon analyses and optical and scanning electron microscopy to determine the morphology and type of surface and subsurface microstructures. (author). 15 refs, 6 figs, 5 tabs

  1. Effects of pre-deformation in topological characterization of inconel 600 submitted to isothermal treatments

    International Nuclear Information System (INIS)

    INCONEL 600 samples were performed at thermal treatment between 5500C and 7900C during 3 hours after uniaxial tension testing. At each pair hardening-temperature were determined the microhardness and microstrostructure. With the objetive of to determine the influence of the hardening up to INCONEL's mechanical behavior, were plotted microhardness X temperature. (Author)

  2. Mechanical properties and microstructure evaluation of powder bed fused inconel 625 nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Michael J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    The objectives of this report were to optimize and fabricate full density Inconel 625 samples using direct metal laser fusion, an additive manufacturing process; and to compare and evaluate precipitation and solid solution strengthening of Inconel 625 produced by PBF to conventional processed material.

  3. Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy

    Science.gov (United States)

    Calvo, Jessica; Penalva, Mariluz; Cabrera, José María

    2016-06-01

    Inconel 718 presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These properties, oriented to satisfy the design requirements of gas turbine components, depend on microstructural features such as grain size and precipitation. In this work, precipitation-temperature-time diagrams have been derived based on a stress relaxation technique and the characterization of precipitates by scanning electron microscopy. By using this methodology, the effect of strain accumulation during processing on the precipitation kinetics can be determined. The results show that the characteristics of precipitation are significantly modified when plastic deformation is applied, and the kinetics are slightly affected by the amount of total plastic deformation.

  4. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    . Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular......, focus is put on how the composition of the dendrite core is affected by modifications to the alloy. It has previously been shown that when the overlay material corrodes, the corrosion take place in the dendrite core. Therefore, the discussion will be directed towards explaining the extent to which the...

  5. Tribological behavior of inconel 718 in sodium cooled reactor environments

    International Nuclear Information System (INIS)

    Results of the present study on the tribological behavior of Inconel 718 in a sodium environment are summarized as follows: (a) Stroke lengths less than or equal to one-half the test pin diameter result in higher friction coefficients. (b) At elevated temperatures, the formation of a lubricative surface film can significantly influence the frictional behavior. (c) Tangential forces present during static dwell periods result in greater bonding tendencies. (d) Increasing contact pressure during static dwell periods results in lower breakaway friction coefficients

  6. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  7. Material properties of a dissimilar metal weld Inconel 600/ Inconel 82 weld filler/ Carbon Steel (Gr.106 B)

    International Nuclear Information System (INIS)

    Inconel 600 pipes welded to Carbon-Steel are used in CANDU nuclear reactors. Fracture of these welded pipes has important consequences in term of safety, and therefore their mechanical properties need to be better understood. In this study, the weld region was analyzed at various length-scales using optical microscopy, micro hardness testing, small and large scale tensile testing, and Digital Image Correlation (DIC). Micro-hardness profiles showed variations across the weld and through thickness and were justified in terms of residual stresses. Local stress-strain curves were built using DIC and showed good agreement with stress-strain curves obtained from miniature tensile samples. (author)

  8. Surface Integrity of Inconel 718 by Ball Burnishing

    Science.gov (United States)

    Sequera, A.; Fu, C. H.; Guo, Y. B.; Wei, X. T.

    2014-09-01

    Inconel 718 has wide applications in manufacturing mechanical components such as turbine blades, turbocharger rotors, and nuclear reactors. Since these components are subject to harsh environments such as high temperature, pressure, and corrosion, it is critical to improve the functionality to prevent catastrophic failure due to fatigue or corrosion. Ball burnishing as a low plastic deformation process is a promising technique to enhance surface integrity for increasing component fatigue and corrosion resistance in service. This study focuses on the experimental study on surface integrity of burnished Inconel 718. The effects of burnishing ball size and pressure on surface integrity factors such as surface topography, roughness, and hardness are investigated. The burnished surfaces are smoother than the as-machined ones. Surface hardness after burnishing is higher than the as-machined surfaces, but become stable over a certain burnishing pressure. There exists an optimal process space of ball sized and burnishing pressure for surface finish. In addition, surface hardness after burnishing is higher than the as-machined surfaces, which is confirmed by statistical analysis.

  9. Signals produced by inconel mineral insulated coaxial cables in neutron and gamma ray fields

    International Nuclear Information System (INIS)

    Mineral insulated (MI) cables used with self-powered flux detectors in CANDU reactors employ Inconel 600 as the sheath and core-wire material, and MgO as the insulation. A study was undertaken to obtain a more fundamental understanding of the current producing processes in such MI cables and to determine how these processes are related to cable geometries. A number of Inconel-Inconel cables were irradiated in the NRU, ZED-2, and Pool Test reactors at CRNL and a Gammacel-220 60Co irradiator. Additional data were obtained from the Bruce Nuclear Generating Station-A. (auth)

  10. The effect of laser pulse tailored welding of Inconel 718

    Science.gov (United States)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  11. Corrosion of Inconel X750 in simulated BWR core environment

    International Nuclear Information System (INIS)

    The corrosion tests of Inconel X750 in the simulated core environment by using an irradiated test loop were performed. From the experiments, the followings were clarified; 1. corrosion rate was proportional to minus cubic root of the time and the value was evaluated to be 19±4 mdm after one year, 2. the value was markedly high compared to other reported experimental data, but it had a good coincidence with the value evaluated from activity balance data in actual BWR plants, 3. the most important chemical specie which affected the corrosion behavior was identified to be hydrogen peroxide, and 4. the rate of specimens pre-filmed in the high temperature atmosphere at 700deg C for 5 hrs was reduced to be one third or less than that of specimens pre-oxidized in steam at 390deg C for 13 hrs which was the same condition for actual BWR fuel springs. (author)

  12. Thermal fatigue behavior of cast superalloy Inconel 713LC

    Energy Technology Data Exchange (ETDEWEB)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammadmehdi; Zangeneh-Madar, Karim; Abaszade, Hasan; Zare, Esmail; Hejazi, Seyed Amir [MA University, Tehran (Iran, Islamic Republic of). Dept. of Materials Engineering

    2014-11-15

    The thermal fatigue behavior of superalloy Inconel 713LC was investigated at peak temperatures of 900, 1 000 and 1 100 C. Thermal fatigue tests were performed on self-constraint single-edge V-type notch specimens. The effect of the maximum temperature, T{sub max} in the thermal cycles on the crack characteristics was studied. Under identical test conditions a comparable crack propagation rate was observed for all three peak temperatures. The results showed that cycle numbers for crack initiation decreased while crack propagation rate increased with the increase in peak temperature. Therefore, it was concluded that in the current experimental conditions, thermal fatigue resistance reduced dramatically with the rise of upper temperature. Through optical microscopy and scanning electron microscopy observation, it was found that the primary cracks generally propagated along a preferential direction. Microstructure changes after thermal fatigue are also discussed on the basis of scanning electron microscopy observation.

  13. RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718

    Directory of Open Access Journals (Sweden)

    M. Aruna,

    2010-09-01

    Full Text Available Machining of hard materials used in aerospace applications require hard and tough cutting tools. Ceramic tools and cermets are used in machining of nickel alloys for such applications. In this study finish turning of Inconel 718 is carried out with cermet tools. Cutting parameters are designed using Taguchi’s DOE and the experiments are conducted for the designed parameters. The surface finish measurement is carried for the various conditions and data obtained are used to build up the mathematical surface model using response surface methodology. The adequacy of the developed mathematical model is proved by ANOVA. The findings of this study show new results and the second order model was quite adequate.

  14. Microstructure of irradiated inconel 706 fuel pin cladding

    International Nuclear Information System (INIS)

    A fuel pin from the HEDL-P-60 experiment with a cladding of solutionannealed Inconel 706 breached in an apparently brittle manner at a position 12.7 cm above the bottom of the fuel column with a crack of 5.72 cm in length after 5.0 atomic percent burnup in Experimental Breeder Reactor (EBR-II). Temperatures (time-averaged midwall) and fast fluences for the fractured area range from 4470C and 5.5 X 1022 neutrons (n)/cm2 to 5260C and 6.1 X 1022 n/cm2 (E > 0.1 MeV). Specimens of the fractured fuel pin section were successfully prepared and examined in both a scanning electron microscope and a transmission electron microscope. The fracture surfaces of the breached section showed brittle intergranular fracture characteristics for both the axial and circumferential cracks. Formation of γ in the matrix near the breach confirmed that the irradiation temperature at the breached area was below 5000C, in agreement with other estimates of the temperature for the area, 447 to 5260C. A hexagonal /eta/-phase, Ni3 (titanium, niobium), precipitated at boundaries near the breach. A more extensive /eta/-phase coating at grain boundaries was found in a section irradiated at 6500C. The /eta/-phase plates at grain boundaries are expected to have a detrimental effect on alloy ductility. A plane of weakness in this region along the (111) slip planes will develop in Inconel 706 because the /eta/-plates have a (111) habit relationship with the matrix

  15. Mechanical properties of hot deformed Inconel 718 and X750

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2012-02-01

    Full Text Available Purpose: Variations of a flow stress vs. true strain illustrate behavior of material during plastic deformation. Stress-strain relationship is generally evaluated by a torsion, compression and tensile tests.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloys of Inconel 718 and X750 at constant true strain rates of 10-4, 4x10-4s-1 within temperature through which precipitation hardening phases process occurred (720-1150°C using thermomechanical simulator Gleeble and dilatometer Baehr 850D/L equipped with compression unit. True stress-true strain curves analysis of hot deformed alloys were described.Findings: On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σpl -T i σpl - ε and compression data were used to determine material’s constants. These constants allow to derive a formula that describes the relationship between strain rate (ε, deformation temperature (T and flow stress σpl.Research limitations/implications: Study the flow stress will be continued on the samples after the aging process.Practical implications: The results of high-temperature deformation of the examined Inconel alloys may possibly find some practical use in the workshop practice to predict a flow stress values, but only within particular temperature and strain rate ranges. The results of the study can be used in the aerospace industry to produce blades for jet engines.Originality/value: The results of the study can be used in the aerospace industry to produce blades for jet engines.

  16. Application of eddy current inspection to the Inconel weld of BWR internals

    International Nuclear Information System (INIS)

    In order to definite the basic specifications of application of ECT (Eddy Current Test) to Inconel weld of BWR internals, the inspection and numerical analysis were carried out. The characteristics of the existing ECT probe were studied by making sample as same as CRD stud tube, measuring the relative permeability and electric conductivity of Inconel and alloy and evaluating ECT probe. On the basis of the results obtained, the basic specifications were determined and a new eddy current probe for inspection was designed and produced. The new ECT probe was able to detect small notch in Inconel weld, to classify the defects by eddy current inspection signal and sizing the length and depth. It is concluded that the new ECT probe is able to apply the Inconel weld of BWR internals. (S.Y.)

  17. Effect of carbide on hydrogen environment embrittlement of Inconel 718

    International Nuclear Information System (INIS)

    Tensile properties of Inconel 718 Ni-base superalloy were investigated in high-pressure hydrogen and in argon at room temperature. The effect of Nb-Ti carbide on hydrogen environment embrittlement (HEE) of the superalloy was also examined. The results obtained are as follows: (1) Hydrogen decreased elongation, reduction of area and ultimate tensile strength of the superalloy. HEE increased with decreasing the strain rate. Dimple rupture was mainly observed in argon, but brittle transgranular and intergranular fracture were observed in hydrogen. The crack initiation occurred at carbides both in argon and in hydrogen. Then the crack propagated in the matrix with ductile fracture in argon and with brittle fracture in hydrogen, respectively. (2) The finite element analysis (FEA) was applied to the crack initiation of the superalloy during the monotonic tensile process with the FEA model, which contained one particle at the center surrounded by the matrix. The effect of the shape of the particle on the maximum effective stress in the particle was simulated. The maximum effective stress in the particle increased markedly with increasing the average stress above the proof stress. The increasing order of the maximum effective stress depended on the shape of the particle. It was reasonable that the maximum effective stress in the carbide is high enough to break the carbide itself. It was also expected that the control of the shape of the carbide could improve HEE of the superalloy. (author)

  18. Swelling and microstructure of neutron irradiated Inconel 706

    International Nuclear Information System (INIS)

    The swelling behaviour and the related microstructure evolution of SA INCONEL 706 irradiated up to 100dpa in Phenix as stressed tube samples and fuel pins are described. The TEM observations of the irradiated samples and corresponding unirradiated specimens annealed at the same irradiation temperature show that neutron irradiation induces the intragranular nucleation of a high density of Ni3 Ti-η platelets and small cavities which do not grow up to 100dpa. At higher temperature, it is shown that the swelling is responsible of the major part of the deformation. TEM examinations of thin foils prepared from pins areas irradiated at 5900C confirm that substantial void swelling can occur in the regions where the high density of finely distributed η platelets give place to a cellular η phase which tends to spread over the grains. At least we discuss about the correlation between the microstructure evolution under irradiation and the swelling resistance and the mechanical properties observed on this irradiated material

  19. Barium silicate glass/Inconel X-750 interaction. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jr., P. V.; Siegel, W. T.; Miley, D. V.

    1980-01-01

    Water reactor safety programs at the Idaho National Engineering Laboratory have required the development of specialized instrumentation. An example is the electrical conductivity-sensitive liquid level transducer developed for use in pressurized-water reactors (PWRs) in which the operation of the sensing probe relies upon the passage of current through the water between the center pin of the electrode and its shell such that when water is present the resulting voltage is low, and conversely, when water is absent the voltage is high. The transducer's ceramic seal is a hot-pressed glass ceramic; its metal housing is Inconel X-750. The ceramic material provides an essential dielectric barrier between the center pin and the outer housing. The operation of the probe as well as the integrity of the PWR environment requires a hermetically-bonded seal between the ceramic and the metal. However, during testing, an increasing number of probe assemblies failed owing to poor glass-to-metal seals as well as void formation within the ceramic. Therefore, a program was initiated to characterize the metallic surface with respect to pre-oxidation treatment and determine optimum conditions for wetting and bonding of the metal by the glass to obtain baseline data relevant to production of acceptable transducer seals.

  20. Counter permeation of deuterium and hydrogen through Inconel 600

    International Nuclear Information System (INIS)

    Permeation of hydrogen isotopes through a high-temperature alloy used for heat exchanger and reformer tubes is an important problem in the hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR). An objective of this study is to investigate an effect of existence of hydrogen (H2) in a tube outside on the amount of permeated deuterium (D2) through the tube. It was found that the amount of permeated D2 decrease with increasing the partial pressure of H2 in the tube outside when the partial pressure of D2 in the tube is lower than 100 Pa and that of H2 in the tube outside is larger than 10 kPa. The amount of permeated D2 on counter permeation process was predicted quantitatively by using the effectiveness factor for diffusivity of deuterium in Inconel 600 and by taking into account of the equilibrium state for the hydrogen isotopes including HD molecules on the surface. From the results obtained in this study, it is supposed that the amount of tritium permeated from the primary circuit of the HTTR to the utilization system will be reduced by the existence of high pressure H2 in the steam reformer tube in the HTTR hydrogen production system. (author)

  1. Barium silicate glass/Inconel X-750 interaction

    International Nuclear Information System (INIS)

    Water reactor safety programs at the Idaho National Engineering Laboratory have required the development of specialized instrumentation. An example is the electrical conductivity-sensitive liquid level transducer developed for use in pressurized-water reactors (PWRs) in which the operation of the sensing probe relies upon the passage of current through the water between the center pin of the electrode and its shell such that when water is present the resulting voltage is low, and conversely, when water is absent the voltage is high. The transducer's ceramic seal is a hot-pressed glass ceramic; its metal housing is Inconel X-750. The ceramic material provides an essential dielectric barrier between the center pin and the outer housing. The operation of the probe as well as the integrity of the PWR environment requires a hermetically-bonded seal between the ceramic and the metal. However, during testing, an increasing number of probe assemblies failed owing to poor glass-to-metal seals as well as void formation within the ceramic. Therefore, a program was initiated to characterize the metallic surface with respect to pre-oxidation treatment and determine optimum conditions for wetting and bonding of the metal by the glass to obtain baseline data relevant to production of acceptable transducer seals

  2. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2013-12-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  3. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  4. Hydrostatic Stress Effect on the Yield Behavior of Inconel 100

    Science.gov (United States)

    Allen, Phillip A.; Wilson, Christopher D.

    2003-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has negligible effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of various geometries. Fatigue tests and nonlinear finite element analyses (FEA) of Inconel 100 (IN100) equal-arm bend specimens and new monotonic tests and nonlinear finite element analyses of IN100 smooth tension, smooth compression, and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions were performed. A new FEA constitutive model was developed that incorporates a pressure-dependent yield function with combined multilinear kinematic and multilinear isotropic hardening using the ABAQUS user subroutine (UMAT) utility. In all monotonic tensile test cases, the von Mises constitutive model, overestimated the load for a given displacement or strain. Considering the failure displacements or strains for the DENT specimen, the Drucker-Prager FEM s predicted loads that were approximately 3% lower than the von Mises values. For the failure loads, the Drucker Prager FEM s predicted strains that were up to 35% greater than the von Mises values. Both the Drucker-Prager model and the von Mises model performed equally-well in simulating the equal-arm bend fatigue test.

  5. Experimental Investigations during Dry EDM of Inconel - 718

    Science.gov (United States)

    BHANDARE, A. S.; DABADE, U. A.

    2016-02-01

    Dry EDM is a modification of the conventional EDM process in which the liquid dielectric is replaced by a gaseous medium. Tubular tool electrodes are used and as the tool rotates, high velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. It is now known that apart from being an environment- friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone. Keeping literature review into consideration, in this paper, an attempt has been made by selecting compressed air as a dielectric medium, with Inconel - 718 as a work piece material and copper as a tool electrode. Experiments are performed using Taguchi DoE orthogonal array to observe and analyze the effects of different process parameters to optimize the response variables such as material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). In the current work, a unit has been developed to implement dry EDM process on existing oil based EDM machine.

  6. Low-temperature embrittlement of Ti-6Al-4V and Inconel-718 by high pressure hydrogen

    Science.gov (United States)

    Chandler, W. T.; Walter, R. J.

    1970-01-01

    Notched specimens of titanium alloy and Inconel-718 exhibit little reduction of notch strength at certain low temperatures under 2000 lb/sq in. hydrogen, unnotched specimens are not embrittled at these temperatures. The degree of Inconel-718 embrittlement is lower than earlier observations under 1000 lb/sq in. hydrogen.

  7. Effect of pulse energy and density on laser peening of Inconel 600 without a protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Choi, Jong Wan; Chung, Chinman [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Weon JIn; Park, Kwang Soo [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2014-05-15

    In this study, a laser peening process without protective coating on an Inconel 600 plate is being developed for application to a BMI (bottom mounted instrument) J-weld and nozzle inner wall in a PWR reactor vessel to prevent PWSCC occurring in weld areas during operating nuclear power plants. To obtain the optimum peening conditions, laser peening was performed in water at different peening parameters to obtain the maximum compressive residual stress and depth on the Alloy 600 plate. From a study on laser peening without a protective surface coating, the effect of its process has been proved to be high enough to prevent Inconel 600 material for stress corrosion cracking. The effect of laser peening on susceptibility to stress corrosion cracking of Inconel 600 was confirmed by stress corrosion cracking tests; no stress corrosion cracking was occurred in a laser-peened specimen, while an un-peened specimen failed by cracking in a very short period of testing time.

  8. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  9. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al2O3 and Cr2O3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni3Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr2O3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr2O3

  10. Characterization of serrated yielding in service exposed Inconel 625 alloy

    International Nuclear Information System (INIS)

    The Alloy-625 is an austentic alloy which is being used for a variety of components in the aerospace, marine, chemical and nuclear industries. Tensile tests have been carried out on service exposed Inconel 625 ammonia cracker tube used at heavy water production plant to study the effect of microstructure on the mechanical properties of the material. Owing to temperature gradient during in service condition the microstructure was different in top (T), middle (M) and bottom (B) sections of the tube. The stress-strain curve obtained from conventional tensile test was found to exhibit serrated yielding with in an intermediate temperature regime of 250-600 °C. Both normal and inverse Portevin-Le Chatelier (PLC) effect could be identified at lower and higher temperature regime respectively. The normal behavior was associated with type (A+B) serrations and interstitial atom C was held responsible for the aging of dislocations in this region. On the contrary, the serrations were of type C in nature in inverse PLC regime and were attributed to the locking of dislocations by substitutional Mo atoms. Further analyses of activation energy and transition temperature for normal to inverse PLC dynamics, supported with Transmission Electron Microscopy (TEM) observation revealed that the basic deformation mechanism was different in M and B samples than that in the T samples. While the deformation in T samples were achieved by usual dislocation migration, in M and B samples it was through the propagation of stacking faults in large γ” precipitates. The transition temperature from normal to inverse PLC dynamics also varied appreciably in T samples than that of the M and B ones which could be explained in terms of the delayed depletion of Mo solutes in solution for T samples. (author)

  11. Formation of the oxide films on Inconel 718 for the IVHM grapple assembly

    International Nuclear Information System (INIS)

    The objective of this test was to determine conditions for producing an iridescent colored oxide on Inconel 718 parts within a very limited schedule. The goal was to develop a process that would be compatible with the normal precipitation hardening treatment and, at the same time, produce a satisfactory film on surfaces that have been machined after precipitation hardening. Conditions for producing the film could not degrade the hardness of the Inconel 718. The purpose of the oxide was to reduce the possibility of wear and galling on bearing surfaces of the In-Vessel Handling Machine (IVHM) grapple mechanism during its pre-operational acceptance test

  12. Stress-corrosion-cracking testing of INCONEL alloys 600 and 690 In high-temperature caustic

    International Nuclear Information System (INIS)

    This study determined the effects of composition, heat treatment, and microstructure on the resistance of INCONEL alloy 690 to stress-corrosion cracking in caustic. The results were compared with the effects of the same factors on INCONEL alloy 600. Both alloys were evaluated in the annealed condition and after a post-anneal exposure to 7040C (13000F) for 15 hours. Resistance to SCC was determined by constant-extension-rate tests (CERT) in deaerated 10% sodium hydroxide at 288 to 3160C (550 to 6000F)

  13. Identification of dynamically precipitated phases in hot-working Inconel 718 alloy

    OpenAIRE

    A. Nowotnik; J. Sieniawski; G. Mrówka-Nowotnik

    2008-01-01

    Purpose: The main purpose of this paper was to analyze how localized flow/structural inhomogeneties that may develop during hot deformation can affect a precipitated phases and to determine what kind of particles are present in the microstructure of hot-worked Inconel 718 superalloy.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloy of Inconel 718 at constant true strain rates of 10-4 and 4x10-4s-1 at temperature of 720 and 850...

  14. Inconel alloy 625 clad steel for application in wet scrubber systems

    International Nuclear Information System (INIS)

    Test panels from INCONEL 625 clad plate were successfully installed in two wet flue gas scrubber systems. In one system INCONEL 625 clad plate was located in the roof section of the absorber just ahead of the outlet ducting. The test plates, including weld seams, showed no signs to corrosion after six months of exposure. In the other scrubber test plates located in the outlet duct of an I.D. fan house, in the stack lining, and in the absorber quench area were unattacked after nine months

  15. Metallurgical and mechanical properties of Inconel 600 and stellite; Estudio del comportamiento mecanico-metalurgico de alceacion inconel 600 y estelita

    Energy Technology Data Exchange (ETDEWEB)

    Cstillo, Martin; Villa, Gabriel; Vite, Manuel [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Palacios, Francisco [Instituto Nacional de Investigacion Nuclear (ININ), Estado de Mexico (Mexico); Hernandez, Luis H; Urriolagoita, Guillermo [Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-01-15

    The present work studies the metallurgical and mechanical properties of two alloys, Inconel 600 and stellite, which are within the group of high hardness alloys or superalloys, which are deposited through the electrical weld process to the metallic arc with coated electrode (SMAW) and thereinafter analyzed through electron microscopy, diffractometry and abrasion, Impact and hardness test. The relationship between the microstructure and the final properties of the coating (hardness and abrasion wear resistance) was observed. [Spanish] Este trabajo presenta el estudio sobre las propiedades metalurgicas y mecanicas de dos aleaciones, inconel 600 y estelita, clasificadas dentro del grupo de aleaciones de alta dureza o superaleaciones; las cuales fueron depositadas mediante el proceso de soldadura electrica al arco metalico con electrodo revestido (SMAW) y fueron analizadas mediante microscopia electronica (SEM), difractometria pruebas de abrasion, impacto y dureza. Se observo la relacion entre la microstructura y las propiedades del recubrimiento, como son: dureza, resistencia a la abrasion, resistencia al impacto, ente otras.

  16. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  17. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    International Nuclear Information System (INIS)

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO2 laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  18. The study of welding residual stress test technology on inconel 690 alloy

    International Nuclear Information System (INIS)

    The influence factors in measuring residual stress of Inconel 690 alloy with blind hole method. The fit between hole, strain gauge, and drilling depth were studied. The coefficients of A and B were determined. The satisfactory data were obtained in measuring residual stress of butt weld by above research results. (authors)

  19. Evaluation of the susceptibility to intergranular corrosion in the nickel base alloy inconel 718

    International Nuclear Information System (INIS)

    The behaviour of the Inconel 718 relating to the intergranular corrosion resistance in asreceived condition and in two states of sensitization is studied. The recommendation insert inn the ASTM G-28 and DIN 50.914 has been followed. (E.G.)

  20. Effect of reduction of strategic columbium additions in Inconel 718 alloy on the structure and properties

    International Nuclear Information System (INIS)

    The amount of columbium which can be removed from Inconel alloy 718 without degrading its high temperature properties was determined. The elements that are substituted are: vanadium and tungsten together and separately increasing the molybdenum level from 3.0% to 5.8% and increasing the boron to 0.04%

  1. Incompatibility between Zircaloy-2 and Inconel X-750 during Temperature Transients

    DEFF Research Database (Denmark)

    Warren, M. R.; Rørbo, Kaj; Adolph, Eivind

    1975-01-01

    The incompatibility of Zircaloy-2 and Inconel X-750 has been investigated between 1000°C and 1200°C (1200°C being the currently allowable maximum temperature in the acceptance criteria for ECCS for water reactors). It has been found for the temperatures of 1000°C and 1200°C that oxide thicknesses...

  2. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  3. Hydrogen Permeability of Incoloy 800H, Inconel 617, and Haynes 230 Alloys

    International Nuclear Information System (INIS)

    A potential issue in the design of the NGNP reactor and high-temperature components is the permeation of fission generated tritium and hydrogen product from downstream hydrogen generation through high-temperature components. Such permeation can result in the loss of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system. The issue will be addressed in the engineering design phase, and requires knowledge of permeation characteristics of the candidate alloys. Of three potential candidates for high-temperature components of the NGNP reactor design, the hydrogen permeability has been documented well only for Incoloy 800H, but at relatively high partial pressures of hydrogen. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. The hydrogen permeability of Haynes 230 has not been published. To support engineering design of the NGNP reactor components, the hydrogen permeability of Inconel 617 and Haynes 230 were determined using a measurement system designed and fabricated at the Idaho National Laboratory. The performance of the system was validated using Incoloy 800H as reference material, for which the permeability has been published in several journal articles. The permeability of Incoloy 800H, Inconel 617 and Haynes 230 was measured in the temperature range 650 to 950 C and at hydrogen partial pressures of 10-3 and 10-2 atm, substantially lower pressures than used in the published reports. The measured hydrogen permeability of Incoloy 800H and Inconel 617 were in good agreement with published values obtained at higher partial pressures of hydrogen. The hydrogen permeability of Inconel 617 and Haynes 230 were similar, about 50% greater than for Incoloy 800H and with similar temperature dependence.

  4. Identification of dynamically precipitated phases in hot-working Inconel 718 alloy

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2008-12-01

    Full Text Available Purpose: The main purpose of this paper was to analyze how localized flow/structural inhomogeneties that may develop during hot deformation can affect a precipitated phases and to determine what kind of particles are present in the microstructure of hot-worked Inconel 718 superalloy.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloy of Inconel 718 at constant true strain rates of 10-4 and 4x10-4s-1 at temperature of 720 and 850°C. The dynamic behaviour were explained through observation of the microstructure using standard optical, scanning and transmission electron microscopy. Precipitated phases were identified using EDS technique and based on selected area diffraction pattern.Findings: Microstructural observations of deformed at high temperatures, previously solution treated Inconel superalloy revealed non uniform deformation effects. Distribution of molybdenum- and niobium-rich carbides affected by localized flow was found. Microstructural examination of the alloy also shown shear banding penetrating through the whole grains.Practical implications: The experiments on hot deformation of age hardenable Inconel 718 superalloy and the analysis of dynamic precipitation process have a practical aspect. This interaction could become an important feature of high temperature performance and may also influence the production of specific structures of this material.Originality/value: Even though the number of research has focused on the hot deformation behaviour of Inconel 718, there is still scarcity of data referring to the analysis of dynamic structural processes which operate during hot deformation of this precipitation hardenable alloy: in particular dynamic precipitation and dynamic particles coarsening.

  5. Fretting wear behavior of Inconel 690 in hydrazine environments%Inconel 690在联氨溶液中的磨损行为

    Institute of Scientific and Technical Information of China (English)

    张晓宇; 任平弟; 彭金方; 朱旻昊

    2014-01-01

    The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 °C) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.%在控制法向载荷分别为20、50和80 N,位移幅值分别为80、150和200μm的两种不同环境下,以Si3N4陶瓷球/Inconel690平面接触的方式,在PLINT高温微动试验机上进行微动腐蚀试验,循环次数为2×104。结果表明:在滑移区,当载荷、位移幅值一定时,相同温度联氨溶液中的稳态摩擦因数比其在蒸馏水中高;稳态摩擦因数随溶液的温度增加而增加;磨损体积随溶液温度增加而增加。Inconel 690在联氨溶液摩擦过程中,磨损程度除受到位移幅值、荷载影响以外,温度对磨损体积有显著影响。温度的增加即降低溶液的溶解氧又促进联胺与溶解氧的吸收反应,起到降低氧化腐蚀的作用。在蒸馏水中Inconel 690合金材料的磨损

  6. Effect of Orientation on Tensile Properties of Inconel 718 Block Fabricated with Electron Beam Freeform Fabrication (EBF3)

    Science.gov (United States)

    Bird, R. Keith; Atherton, Todd S.

    2010-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation

  7. Mode conversion of guided waves in Inconel tubes with Ni coating

    International Nuclear Information System (INIS)

    Electrosleeving is one of the promising methods to repair a defective steam generator tubing in the nuclear power plant. It requires a nondestructive inspection in order to verify the structural Integrity in the coated region. In this study, a feasibility of ultrasonic guided wave for Inconel tube with Ni coating was investigated. Phase and group velocity dispersion curves for Inconel tube with Ni coating were calculated to get an optimum condition of guided wave propagation. An eight-segments ultrasonic transducer was designed and fabricated to generate L(0,2) mode, and receive signals around circumference. The received signal from the beginning of Ni coating showed almost similar amplitude along the angular circumference and matched to longitudinal L(0,2) mode. However, the received signals from the end of Ni coating were different along the angular circumferences. It seems that the longitudinal mode be converted to flexural mode at the end of Ni coating.

  8. Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment

    Science.gov (United States)

    Romano, John; Ladani, Leila; Sadowski, Magda

    2016-03-01

    The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.

  9. Role of refractory elements in modifying the service life of Inconel 625 ammonia cracker tubes

    International Nuclear Information System (INIS)

    Inconel 625 is the preferred material of cracker tube/components for cracking of enriched ammonia in NH3-H2 Mono-thermal Chemical Exchange Process based heavy water production plants in India.These tubes are designed for a service life of 100,000 h at operating temperatures between 550 to 650 °C. Refractory elements play important roles in imparting the necessary service life to Inconel 625. Under operating conditions, they undergo precipitation reactions which significantly undermines the service life of these tubes due to precipitation induced hardening and embrittlement. This paper present how the service life of cracker tubes is affected by the precipitation of phases bearing refractory elements, and also the necessary heat treatment required to rejuvenate the alloy. (author)

  10. Effect of δ Phase on Hydrogen Embrittlement of Inconel 718 by Notch Tensile Tests

    Institute of Scientific and Technical Information of China (English)

    Liufa LIU; Chen LU; Wenjiang DING; Akio Hirose; Kojiro F.Kobayashi

    2005-01-01

    The effect of δ phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 was investigated by conducting notch tensile tests. Notch tensile specimens with various precipitation morphologies of δ phase were prepared with different heat treatments, and hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength (NTS) due to the charged hydrogen was used to evaluate the hydrogen embrittlement sensitivity. The results show that δ phase has deleterious effect on NTSs, and the fracture of hydrogen-charged specimens initiated near the notch surfaces. The loss of NTS caused by precharged hydrogen can be greatly decreased by dissolving δ phase. δ-free Inconel 718 alloy is proposed for the applications in hydrogen environments.

  11. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Sorensen, N.R.

    1998-02-01

    This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.

  12. Microstructure and mechanical properties of Inconel 617 degraded at high temperature with atmosphere

    International Nuclear Information System (INIS)

    Full text of publication follows. Inconel 617 is a candidate tube material of intermediate heat-exchanger and hot gas duct for high temperature gas-cooled reactors (HTGR) for hydrogen production. The microstructure and mechanical properties of Inconel 617 were investigated after exposure at 1050 deg C in air and helium. Oxide layers were observed by cross-section image. The de-lamination of oxide layer occurs because of the difference of thermal expansion coefficient between oxide layer and matrix. The depth of Cr-depleted zone and internal oxide increased with exposure time. It was observed that the carbide phase was changed on grain boundary during exposure. These carbides were coarsened increasing exposure time. High temperature compression test and hardness test were carried out after aging at 1050 deg C. The changes of yield strength and hardness were observed with increasing aging time. (authors)

  13. Solute redistribution and Rayleigh number in the mushy zone during directional solidification of Inconel 718

    Institute of Scientific and Technical Information of China (English)

    Wang Ling; Dong Jianxin; Liu Lin; Zhang Lei

    2009-01-01

    The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX)techniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra) profiles along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the odentated dendrite array could prompt the fluid flow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326℃ for Inconel 718 where the fluid flow most easily occurred.

  14. Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718

    Institute of Scientific and Technical Information of China (English)

    Ling Wang; Jianxin Dong; Yuliang Tian; Lei Zhang

    2008-01-01

    The microstructure and composition of the residual liquid at different temperatures were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX) associated with the Thermo-calc software calculation of the equilibrium phase diagrams of Inconel 718 and segregated liquid. The liquid density difference and Rayleigh number variation dur-ing solidification were estimated as well. It is found that the heavy segregation of Nb in liquid prompts the precipitation of δ and Laves phase directly from liquid and the resultant quenched liquid microstructure consists of pro-eutectic γ+eutectic, or complete eutectic according to the content of Nb from low to high. The liquid density increases with decreasing temperature during the solidi-fication of Inconel 718 and the liquid density difference is positive. The largest relative Rayleigh number occurs at 1320℃ when the liquid fraction is about 40vol%.

  15. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  16. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    Energy Technology Data Exchange (ETDEWEB)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures.

  17. Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718

    International Nuclear Information System (INIS)

    This research article addresses the joining of 5 mm thick plates of Inconel 718 by activated flux tungsten inert gas (A-TIG) welding process using SiO2 and TiO2 fluxes. Microstructure studies inferred the presence of Nb rich eutectics and/or laves phase in the fusion zone of the A-TIG weldments. Tensile studies corroborated that the ultimate tensile strength of TiO2 flux assisted weldments (885 MPa) was better compared to SiO2 flux assisted weldments (815 MPa) and the failure was observed in the parent metal for both the cases. Impact test results portrayed that both the weldments were inferior in toughness as compared to the parent metal, which was due to the presence of oxide inclusions. Also, the study investigated the structure–property relationships of the A-TIG weldments of Inconel 718

  18. Precipitation and Cr depletion profiles of Inconel 182 during heat treatments and laser surface melting

    OpenAIRE

    Baoa, Gang; Yamamoto, Motomichi; Shinozaki, Kenji

    2009-01-01

    Thermodynamic and kinetic modeling was conducted to simulate Cr depletion profiles near grain boundaries in Inconel 182 during heat treatments and laser surface melting (LSM) using Thermo-Calc and DICTRA code. The effect of Nb addition was also considered in the modeling. Based on the good agreement with Cr concentration distributions during the heat treatments measured experimentally, Cr depletion profiles adjacent to grain boundaries during the heat treatments and the LSM process were model...

  19. Effect of heat treatment on fatigue crack growth rate of inconel 690

    International Nuclear Information System (INIS)

    The effects of heat treatment on fatigue crack growth rates (FCGRs) of Inconel 690 have been investigated in terms of carbide morphology and grain size. Cycling tests in air at room temperature have shown that FCGR in low stress intensity factor range (ΔK) region can be effectively reduced by increasing the grain boundary carbide precipitate size and grain size. Decrease in FCGR is attributed to the crack tip blunting at the precipitates of grain boundary chromium carbides

  20. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    OpenAIRE

    Enrico Lertora; Chiara Mandolfino; Carla Gambaro

    2014-01-01

    Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kin...

  1. MODELING AND SIMULATION OF DYNAMIC RECRYSTALLIZATION AND GRAIN GROWTH DURING HOT WORKING OF INCONEL 783 SUPERALLOY

    OpenAIRE

    JONG-TAEK YEOM; EUN JEOUNG JUNG; JEE HOON KIM; JEOUNG HAN KIM; JAE-KEUN HONG; NHO-KWANG PARK; KOOK-JOO KIM; SEUNG-SIK CHOI

    2010-01-01

    In this study, the modeling of recrystallization and grain growth was investigated to predict the microstructure evolution during hot working of INCONEL 783 superalloy (Alloy 783). The recrystallization model was constructed on the basis of the Avrami formation. A least-square optimization technique was used to determine several important parameters within the model from isothermal heat treatment and hot compression test results. High temperature compression tests were carried out under diffe...

  2. Relationship between ferromagnetic properties and grain size of Inconel alloy 600

    International Nuclear Information System (INIS)

    Inconel alloy 600 is widely used in steam generator tubings where sensitization due to chromium depletion occurs at grain boundaries and the sensitization induces tubing failures. Though the alloy usually exhibits paramagnetic properties, it shows ferromagnetic properties along grain boundaries when chromium depletion occurs. This means that magnetic nondestructive evaluation of sensitization is possible. Therefore, as a fundamental study to develop magnetic nondestructive evaluation technique for sensitization, the relationship between ferromagnetic properties and grain size in Inconel 600 was investigated using isothermal heat treatment. The grain was controlled using solution annealing, and then, specimens were heat treated at 873, 923, and 973 K within 400 h. The saturation magnetization increases as heat treatment time increases and eventually peaks. The peak time depends on the heat treatment temperature. The coercivity increases during the initial heat treatment stage, and decreases as the duration of heat treatment increases. The maximum saturation magnetization decreases as the grain diameter increases and is inversely proportional to the grain diameter squared, which is consistent with the fact that the ferromagnetic phase only formed along grain boundaries. - Highlights: • Relationship between ferromagnetism and grain size in Inconel 600 was clarified. • The saturation magnetization increases and eventually peaks during heat treatment. • The coercivity increases during the initial heat treatment stage, and then decreases. • The saturation magnetization is inversely proportional to the grain diameter squared. • The magnetic property changes are explained by the Cr depletion at grain boundaries

  3. Increase in structural stability by control of precipitation in alloys derived from Inconel 718

    International Nuclear Information System (INIS)

    The alloys studied are derived from Inconel 718 by increasing the ratio R=(Ti+Al)/Nb, which favor precipitation of the γ'-Ni3(Ti,Al) phase during aging at the expense of the metastable γ''-Ni3Nb phase responsible for considerable hardening of the reference alloy. It was possible in this way to define a region of the composition space R and S (S=Ti+Al+Nb) such that any alloy of this region gives rise to an original precipitation where the particles consist of γ' phase cubes plated on all six faces with the γ'' phase. These compact morphology precipitates show great stability of nature, size and shape at steady temperatures up to around 700 deg C, unlike Inconel 718 where the growth of the γ'' plates and their subsequent conversion to the stable β-Ni3Nb phase cause the alloy to age rapidly above 600 deg C. A comparison of the mechanical properties of Inconel 718 and one of the compact morphology precipitation alloys shows that for the derived alloy these properties can be as good or better after the aging treatment (hardness, tensile strength, short-term creep, low-cycle fatigue) and distinctly improved after long maintenance at temperatures of 700 deg C or above (hardness, long-term creep)

  4. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    International Nuclear Information System (INIS)

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes

  5. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Junyoung; Park, Sangyoon; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Sojin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes.

  6. Impact of shelf life on measured prompt fraction of spare Inconel in-core flux detectors

    International Nuclear Information System (INIS)

    Prompt fraction measurements associated with spare self-powered Inconel In-Core Flux Detectors (ICFDs) carried out a few years after installation on Shut Down System number 1 (SDS1) and Reactor Regulating System (RRS) at Darlington Nuclear Generating Station (DNGS), were found to be lower than those of the original detectors. These detectors, spares and originals, were manufactured in the late 80s, however, the former were kept at manufacturer's warehouse and latter were installed in the reactor core within a few years after manufacturing. Although the prompt fractions of the spare detectors were relatively low, the electronic/electrical behavior of the spare detectors was intact. The first batch of the original detectors performed as per the design requirements. Therefore, it is suspected that during shelf life, spare Inconel in-core flux detectors underwent changes that lowered their measured values of prompt fraction, which were taken within a few years after installation in the reactor. Detailed study of detectors' material composition and impurity concentrations revealed no association with the lower prompt fraction measurements. The evaluation of the limited data of the original and spare Inconel ICFDs installed at Darlington showed: 1. The reduction in prompt fraction was roughly proportional to the shelf life of the detectors; and 2. The rate of reduction in prompt fraction during storage was about double the rate of reduction during operation in the reactor. Above observations were based on the data provided by DNGS for a few detectors. The purpose of this paper is two fold, firstly to present the results of the complete study carried out to investigate the cause of relatively low prompt fractions measured on spare SDS1 and RRS Inconel ICFDs at DNGS, and secondly to generate interest/awareness within other CANDU utilities to add to the database of prompt fractions of spare Inconel ICFDs measured after installation. The data will help to improve statistical

  7. Porosity reduction in Nd-YAG laser welding of stainless steel and inconel alloy by using a pulsed wave

    International Nuclear Information System (INIS)

    This study investigates the influence of the Nd-YAG laser power wave mode on the porosity and mechanical properties of SUS 304L and inconel 690 weldments. Initially, a rectangular laser power waveform is specified. The output is then progressively changed from a pulsed wave mode to a continuous wave mode by reducing the value of ΔP (ΔP = Pp-Pb, where Pp is the peak power and Pb is the base power) to zero. Bead-on-plate (BOP) and butt welding are performed at a constant mean output power (1.7 kW). The BOP results demonstrate that the depth/width (D/W) ratio of both materials increases with ΔP and attains a maximum value when full penetration just occurs. The D/W ratio and the travel speed for full penetration are higher for SUS 304L than for inconel 690. In butt-welds of inconel 690 and SUS 304L, the porosity ratio decreases from 7.1% to 0.5% and from 2.1% to 0.5%, respectively, as ΔP increases from 0 to 2780 W. Therefore, the tensile strength and percentage elongation are enhanced significantly in inconel 690. The degree of porosity reduction in inconel 690 exceeds that of SUS 304L. This suggests that the viscosity of the molten inconel 690 metal is higher than that of SUS 304L. Consequently, the effect of porosity reduction due to the increase in molten metal fluidity caused by increasing ΔP is greater for inconel 690 than for SUS 304L

  8. Surface Roughness and Tool Wear on Cryogenic Treated CBN Insert on Titanium and Inconel 718 Alloy Steel

    Science.gov (United States)

    Thamizhmanii, S.; Mohideen, R.; Zaidi, A. M. A.; Hasan, S.

    2015-12-01

    Machining of materials by super hard tools like cubic boron nitride (cbn) and poly cubic boron nitride (pcbn) is to reduce tool wear to obtain dimensional accuracy, smooth surface and more number of parts per cutting edge. wear of tools is inevitable due to rubbing action between work material and tool edge. however, the tool wear can be minimized by using super hard tools by enhancing the strength of the cutting inserts. one such process is cryogenic process. this process is used in all materials and cutting inserts which requires wear resistance. the cryogenic process is executed under subzero temperature -186° celsius for longer period of time in a closed chamber which contains liquid nitrogen. in this research, cbn inserts with cryogenically treated was used to turn difficult to cut metals like titanium, inconel 718 etc. the turning parameters used is different cutting speeds, feed rates and depth of cut. in this research, titanium and inconel 718 material were used. the results obtained are surface roughness, flank wear and crater wear. the surface roughness obtained on titanium was lower at high cutting speed compared with inconel 718. the flank wear was low while turning titanium than inconel 718. crater wear is less on inconel 718 than titanium alloy. all the two materials produced saw tooth chips.

  9. Reaction of Inconel 690 and 693 in Iron Phosphate Melts: Alternative Glasses for Waste Vitrification

    International Nuclear Information System (INIS)

    The corrosion resistance of candidate materials used for the electrodes (Inconel 690 and 693) and the melt contact refractory (Monofrax K-3) in a Joule Heated Melter (JHM) has been investigated at the University of Missouri-Rolla (UMR) during the period from June 1, 2004 to August 31, 2005. This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (DE-FG02-04ER63831). The unusual properties and characteristics of iron phosphate glasses, as viewed from the standpoint of alternative glasses for vitrifying nuclear and hazardous wastes which contain components that make them poorly suited for vitrification in borosilicate glass, were recently discovered at UMR. The expanding national and international interest in iron phosphate glasses for waste vitrification stems from their rapid melting and chemical homogenization which results in higher furnace output, their high waste loading that varies from 32 wt% up to 75 wt% for the Hanford LAW and HLW, respectively, and the outstanding chemical durability of the iron phosphate wasteforms which meets all present DOE requirements (PCT and VHT). The higher waste loading in iron phosphate glasses, compared to the baseline borosilicate glass, can reduce the time and cost of vitrification considerably since a much smaller mass of glass will be produced, for example, about 43% less glass when the LAW at Hanford is vitrified in an iron phosphate glass according to PNNL estimates. In view of the promising performance of iron phosphate glasses, information is needed for how to best melt these glasses on the scale needed for practical use. Melting iron phosphate glasses in a JHM is considered the preferred method at this time because its design could be nearly identical to the JHM now used to melt borosilicate glasses at the Defense Waste Processing Facility (DWPF), Westinghouse Savannah River Co. Therefore, it is important to have information for the corrosion of candidate electrode

  10. Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding

    International Nuclear Information System (INIS)

    Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100)BM//(100)WM at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetrically across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary

  11. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  12. Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wang_wei_310@163.com [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Yonghao, E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Ding, Xianfei, E-mail: xfding@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Shoji, Tetsuo, E-mail: tshoji@fri.niche.tohoku.ac.jp [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01, Aramaki Aoba, Aoba-ku, Sendai City 980-8579 (Japan)

    2015-09-15

    Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetrically across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.

  13. Segregation behaviour and phase developments during solidification of Inconel 625; effect of iron and carbon

    DEFF Research Database (Denmark)

    Højerslev, Christian; Tiedje, Niels; Hald, John

    2004-01-01

    The key to improve the performance of Inconel 625 weld overlays applied for corrosion resistance in waste incinerator plants is to understand the solidification process: At present, enhanced resistance against fireside corrosion in waste incinerator boilers is commonly achieved by overlay welding...... performed on representative samples of the weld overlay using a combination of X-ray diffraction and scanning electron microscopy. It was found that the concentration of niobium and molybdenum was larger in the interdendritic matrix (denoted ƒ×ID) compared to the dendrite core (ƒ×DC). In addition, both...

  14. Prediction of Solidification and Microstructure of Inconel Alloy Using Numerical Simulation

    International Nuclear Information System (INIS)

    Test castings of Inconel 713LC nickel alloy were prepared by pouring into shell molds in vacuum furnace. The temperature was experimentally measured in the course of solidification and cooling, and the structure was evaluated in as-cast condition. Applying thermal insulation of shells, the dependence of the structure of castings on cooling rate was monitored on test castings. The solidification pattern was solved numerically, using the ProCAST simulation program. Parameters for the simulation of as-cast structure were sought using the CAFÉ module of the ProCAST program. Calculation parameters were established with the experimentally determined temperature curves and structure.

  15. Influence of Overloads on Dwell Time Fatigue Crack Growth in Inconel 718

    OpenAIRE

    Saarimäki, Jonas; Moverare, Johan; Eriksson, Robert; Johansson, Sten

    2014-01-01

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ~700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which c...

  16. Modelling of high temperature fatigue crack growth in Inconel 718 under hold time conditions

    OpenAIRE

    Gustafsson, David; Lundström, Erik; Simonsson, Kjell

    2013-01-01

    Inconel 718 is a frequently used material for gas turbine applications at temperatures up to 650 °C. The main load cycle for such components is typically defined by the start-up and shut-down of the engine. It generally includes hold times at high temperatures, which have been found to have a potential for greatly increasing the fatigue crack growth rate with respect to the number of load cycles. However, these effects may be totally or partly cancelled by other load features, such as overloa...

  17. Summary of Studies of Aging and Environmental Effects on Inconel 617 and Haynes 230

    International Nuclear Information System (INIS)

    A number of very high temperature helium-cooled reactors have been built and operated for extended periods. The helium coolant in the primary circuit has been found to contain low levels of impurities after steady-state operation that can lead to an environmental degradation of the high temperature alloys used for internals and heat exchangers. Depending on the impurity concentration and the temperature, high temperature alloys can undergo oxidation, carburization, or decarburization. The concentration of H2O and CO is of particular interest because they essentially control the oxygen partial pressure and carbon activity, respectively. The optimum coolant chemistry for long-term stability of high temperature alloys is slightly oxidizing and results in formation of a tenacious and protective Cr2O3 scale. The most critical metallic component of the Next Generation Nuclear Plant (NGNP) is the heat exchanger. Inconel 617 is the primary candidate alloy for this application because of its superior creep resistance. The mechanisms of environmental interaction between this alloy and prototype Very High Temperature Reactor (VHTR) helium chemistries have been extensively studied. A modified type of Ellingham diagram that maps the ranges of carbon activity and oxygen partial pressure that result in each of the degradation mechanisms has been developed. The NGNP materials program has designed and built three test loops to extend previous studies on environmental effects of prototype impure helium on Inconel 617 by increasing temperatures and using test coupons that incorporate fusion welds in controlled impurity experiments. In addition, parallel studies have been initiated with a less well-characterized alloy, Haynes 230. The goal of this work is to determine the range of gas chemistries that give rise to stable oxide formation for these alloys at temperatures up to 1000 C. Stability of the microstructure and properties of Inconel 617 and Haynes 230 after extended exposure to

  18. THERMODYNAMIC MODELING OF THE SURFACE LAYER STRUCTURE ON INCONEL 600 OXIDIZED IN A CONTROLLED ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Abdallah Haouam

    2012-03-01

    Full Text Available Samples of Inconel 600 were isothermally oxidized in a controlled atmosphere with a special mounting at high-temperature oxidation. Along with this experimental study, a simulation of thermodynamic behavior of the material in the same oxidation conditions was carried out using the Thermo-Calc code. The thermodynamic modeling is able to predict the phase nature and its distribution in the structure of the surface layer resulting from the corrosion of the material in thermodynamic equilibrium in the absence of mechanical stress. The results of this simulation are supplemented to results obtained from the analysis by glow discharge spectrometry (GDS which is performed on the samples tested.

  19. Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel

    Science.gov (United States)

    Richmond, Joseph C.; Stewart, James E.

    1959-01-01

    The normal spectral emittance of Inconel and type 321 stainless steel with different surface treatments was measured at temperatures of 900, 1,200, 1,500, and 1,800 F over a wavelength range of 1.5 to 15 microns. The measurements involved comparison of the radiant energy emitted by the heated specimen with that emitted by a comparison standard at the same temperature by means of a recording double-beam infrared spectrophotometer. The silicon carbide comparison standard had previously been calibrated against a laboratory black-body furnace. Surface treatments included electropolishing, sandblasting, electro-polishing followed by oxidation in air for 1/2 hour at 1,800 F, sandblasting followed by oxidation in air for 1/2 hour at 1,800 F, application of National Bureau of Standards coating A-418, and application of NBS ceramic coating N-143. The normal spectral emittance of both alloys in the electropolished condition was low and decreased very slightly with increasing wavelength while in the sandblasted condition it was somewhat higher and did not vary appreciably with wavelength. The oxidation treatment greatly increased the normal spectral emittance of both the electropolished and sandblasted type 321 stainless steel specimens and of the electropolished Inconel specimens and introduced some spectral selectivity into the curves. The oxidation increased the normal spectral emittance of the sandblasted Inconel specimens only moderately. Of the specimens to which a coating about 0.002 inch thick was applied, those coated with A-418 had higher emittance at all wavelengths than did those coated with N-143, and the coated specimens of Inconel had higher spectral emittance at all wavelengths than did the corresponding specimens of type 321 stainless steel. Both coatings were found to be partially transparent to the emitted energy at this thickness but essentially opaque at a thickness of 0.005 inch. Coated specimens with 0.005 inch or more of coating did not show the effect

  20. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution

    International Nuclear Information System (INIS)

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  1. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium iom bombardment

    International Nuclear Information System (INIS)

    In order to try and outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (orig.)

  2. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium ion bombardment

    International Nuclear Information System (INIS)

    Trying to outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (author)

  3. Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures

    Science.gov (United States)

    Chen, Z.; Peng, R. Lin; Moverare, J.; Avdovic, P.; Zhou, J. M.; Johansson, S.

    2016-04-01

    The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

  4. KWU experience with Inconel X-750 and today's philosophy for high strength materials selection

    International Nuclear Information System (INIS)

    KWU uses Inconel-X-750 in BWR and PWR in structural components both for reactor pressure vessel internals and for fuel assembly and control assembly. Operating experience has been gained over more than 15 years. Common mode damage due to intercrystalline stress corrosion cracking (IGSCC) did not occur. The components can be divided into two categories: fasteners and guides such as bolts, nuts and centering fixtures, and springs in the form of helical-, disc- and leaf-springs. With respect to fasteners and guides, only singular cases of damages have occurred. The cause of the damage can be narrowed down and tracked back to unsuitable heat treatment of the material (anneal at 885 degree C) combined with design-related individual peak stresses, or to high secondary stresses due to thermal expansion in localized areas. With respect to spring assemblies, with one exception, no IGSCC damage has yet been observed. This is true despite the fact that, in particular, helical-springs are used in large numbers in a wide variety of components. The present procedure for selecting materials for use in high-strength components is primarily based on internationally-published experience and more important on our own investigations and operating experience. According to this experience, Inconel-X-750 is susceptible to IGSCC (even in favorable heat-treated conditions) only is sufficiently high tensile stresses are present

  5. Effect of thermal exposure on microstructure and nano-hardness of broached Inconel 718

    Directory of Open Access Journals (Sweden)

    Chen Zhe

    2014-01-01

    Full Text Available Inconel 718 is a high strength, heat resistant superalloy that is used extensively for components in hot sections of gas turbine engines. This paper presents an experimental study on the thermal stability of broached Inconel 718 in terms of microstructure and nano-hardness. The broaching process used in this study is similar to that used in gas turbine industries for machining fir-tree root fixings on turbine discs. Severe plastic deformation was found under the broached surface. The plastic deformation induces a work-hardened layer in the subsurface region with a thickness of ∼50 μm. Thermal exposure was conducted at two temperatures, 550 ∘C and 650 ∘C respectively, for 300 h. Recrystallization occurs in the surface layer during thermal exposure at 550 ∘C and α-Cr precipitates as a consequence of the growth of recrystallized δ phases. More recrystallized grains with a larger size form in the surface layer and the α-Cr not only precipitates in the surface layer, but also in the sub-surface region when the thermal exposure temperature goes up to 650 ∘C. The thermal exposure leads to an increase in nano-hardness both in the work-hardened layer and in the bulk material due to the coarsening of the main strengthening phase γ′′.

  6. Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist

    Science.gov (United States)

    Follansbee, Paul S.

    2016-09-01

    Deformation in Inconel 718 in the presence of combined effects of the stress anomaly and dynamic strain aging is analyzed according to an internal state variable model formulation. The analysis relies on the availability of experimental data in regimes of behavior where both the stress anomaly and dynamic strain aging are absent. A model that introduces two internal state variables—one characterizing interactions of dislocations with solute atoms and one characterizing interaction of dislocations with precipitates—is shown to adequately describe the temperature and strain-rate dependence of the yield stress in several superalloy systems. Strain hardening is then added with a third internal state variable to enable description of the full stress-strain curve. These equations are extrapolated into regimes where the stress anomaly and dynamic strain aging are present to identify signatures of their effects and to compare to similar analyses in a variety of metal systems. Dynamic strain aging in Inconel 718 follows similar trends to those observed previously. The magnitude of the stress anomaly tracks measurements of stress vs test temperature in pure Ni3Al. Several trends in the strain-rate sensitivity of elevated temperature deformation in superalloys are identified based on limited availability of measurements over a wide range of strain rates or tests using strain-rate changes.

  7. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    Science.gov (United States)

    Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.

    2016-05-01

    Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  8. Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures

    Science.gov (United States)

    Chen, Z.; Peng, R. Lin; Moverare, J.; Avdovic, P.; Zhou, J. M.; Johansson, S.

    2016-07-01

    The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

  9. Effect of temperature on fatigue crack growth rate in inconel 690

    International Nuclear Information System (INIS)

    The effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at room temperature, 150 .deg. C, 300 .deg. C and 400 .deg. C in air environment. Fatigue tests was performed on compact tension(CT) specimens made to thickness 8mm. Heat treatment was performed to obtain various microstructures. Tests was conducted at load ratio 0.1, at frequency 10Hz using sinusoidal waveform. Crack length was monitored by compliance method using sensor probe. Tensile tests was performed to obtain yield strength for fatigue test at each testing temperature. Fracture modes were studied using scanning electron microscopy(SEM). Tensile properties of Inconel 690 were dependent on grain size and testing temperature. As temperature and grain size increased, yield strength decreased. At temperature above 300 .deg. C, the serrations which were an evidence of dynamic strain aging (DSA) were observed for all cases of materials. Fatigue crack growth rate decreased with increasing grain size. At low Δ K, grain size effect was significant at room temperature, which was due to roughness induced crack closure. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chormium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  10. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    Science.gov (United States)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  11. Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment

    Directory of Open Access Journals (Sweden)

    A. Hernas

    2007-04-01

    Full Text Available Purpose: Aircraft industry often uses nickel super-alloys for blades of jet engine turbines. This paper summarises analysis of influence of heat treatment on structural characteristics of nickel super-alloy INCONEL 713LC.Design/methodology/approach: Experimental investigation castings made of commercially produced nickel super-alloy INCONEL 713LC. Material was after heat treatment subjected to detailed structural analysis with use of methods of light microscopy (LM, or scanning electron microscopy (SEM on microscopes OLYMPUS IX71 and JEOL JSM 50A.Findings: Mode of optimum heat treatment was proposed. On the basis of obtained results it is possible to recommend a heat treatment, which would consist of heating and dwell at the temperature exceeding 1240°C (min. 1260°C, so that precipitates at the grain boundaries dissolve completely, with subsequent slow cooling down to the temperature of approx. 940-950°C, so that there occurs intensive intra-granular precipitation of inter-metallic phase γ’.Research limitations/implications: The experiment was limited by occurrence a void in cast alloys.Practical implications: Aircraft industry often uses nickel super-alloys for blades of jet engine turbines.Originality/value: On the basis of obtained results it is possible to recommend the most suitable heat treatment, which produce intensive intra-granular precipitation of inter-metallic phase γ’. It was received a new know-how in this field.

  12. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting

    International Nuclear Information System (INIS)

    In this study Inconel 718 cylinders were fabricated by selective laser melting in either argon or nitrogen gas from a pre-alloyed powder. As-fabricated cylinders oriented in the build direction (z-axis) and perpendicular to the build direction (x-axis) exhibited columnar grains and arrays of γ″ (body-centered tetragonal) Ni3Nb oblate ellipsoidal precipitates oriented in a strong [2 0 0] texture determined by combined optical metallography, transmission electron microscopy, and X-ray diffraction analysis. Fabricated and hot isostatic pressed (HIP) components exhibited a more pronounced [2 0 0] columnar γ″ phase precipitate architecture parallel to the laser beam or build direction (spaced at ∼0.8 μm), and a partially recrystallized fcc grain structure. Fabricated and annealed (1160 °C for 4 h) components were ∼50% recrystallized and the recrystallized regions contained spheroidal γ′ precipitates distributed in a dense field of fine γ″ precipitates. The γ″ precipitates were always observed to be coincident with {1 0 0} planes of the γ-fcc NiCr matrix. Some δ phase precipitates in the unrecrystallized/recrystallized interfaces and recrystallized grain boundaries were also observed in the annealed samples. The microindentation (Vickers) hardness was 3.9 GPa for the as-fabricated materials, 5.7 GPa for the HIP material, and 4.6 GPa for the annealed material. Corresponding tensile properties were comparable with wrought Inconel 718 alloy.

  13. Laser post-processing of Inconel 625 made by selective laser melting

    Science.gov (United States)

    Witkin, David; Helvajian, Henry; Steffeney, Lee; Hansen, William

    2016-04-01

    The effect of laser remelting of surfaces of as-built Selective Laser Melted (SLM) Inconel 625 was evaluated for its potential to improve the surface roughness of SLM parts. Many alloys made by SLM have properties similar to their wrought counterparts, but surface roughness of SLM-made parts is much higher than found in standard machine shop operations. This has implications for mechanical properties of SLM materials, such as a large debit in fatigue properties, and in applications of SLM, where surface roughness can alter fluid flow characteristics. Because complexity and netshape fabrication are fundamental advantages of Additive Manufacturing (AM), post-processing by mechanical means to reduce surface roughness detracts from the potential utility of AM. Use of a laser to improve surface roughness by targeted remelting or annealing offers the possibility of in-situ surface polishing of AM surfaces- the same laser used to melt the powder could be amplitude modulated to smooth the part during the build. The effects of remelting the surfaces of SLM Inconel 625 were demonstrated using a CW fiber laser (IPG: 1064 nm, 2-50 W) that is amplitude modulated with a pulse profile to induce remelting without spallation or ablation. The process achieved uniform depth of melting and improved surface roughness. The results show that with an appropriate pulse profile that meters the heat-load, surface features such as partially sintered powder particles and surface connected porosity can be mitigated via a secondary remelting/annealing event.

  14. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora

    2014-01-01

    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  15. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Science.gov (United States)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  16. Multiaxial creep of tubes of Alloy 800 and Alloy 617 at high temperature

    International Nuclear Information System (INIS)

    The deformation behaviour under multiaxial loading at temperature higher than 800 deg. C is strongly controlled by creep. For dimensioning and inelastic analysis the use of v. Mises theory and Norton's creep law for stationary creep are demonstrated for different combination of internal pressure and axial or torsional stress or strains. The experimental results are in satisfactory agreement with the theoretical predicted deformation behaviour if values for the coefficient k and n in Norton's creep law are used, which are close to the real creep resistance in the component. (author). 11 refs, 12 figs, 2 tabs

  17. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    International Nuclear Information System (INIS)

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔKth value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanism of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔKth values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc

  18. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    Science.gov (United States)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-04-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{s} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  19. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    Science.gov (United States)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  20. Modeling of precipitation and Cr depletion profiles of Inconel 600 during heat treatments and LSM procedure

    International Nuclear Information System (INIS)

    A model based on the thermodynamic and kinetic was conducted to simulate the Cr depletion profiles near the grain boundary in Inconel 600 during the heat treatments and laser surface melting (LSM) process using Thermo-Calc and Dictra code. Based on the good agreement of Cr concentration distribution during heat treatments measured by experiments, the microsegregation of Cr induced by cellular microstructure formed during the LSM process was also modeled. The Cr depletion profile was evaluated using the Cr depletion area below the critical Cr concentration for intergranular cracking/intergranular stress corrosion cracking (IGC/IGSCC) susceptibility (8 mass%). Comparing with the result of Streicher test, the Cr depletion area calculated showed good coherence with the IGC/IGSCC susceptibility. The sample after SR + LTS treatment with the largest Cr depletion area showed the worst IGC/IGSCC resistance, while, the sample after LSM process with the smaller Cr depletion area showed the excellent IGC/IGSCC resistance

  1. EXPERIMENTAL INVESTIGATION AND THERMODYNAMIC CALCULATION ON PHASE PRECIPITATION OF INCONEL 740

    Institute of Scientific and Technical Information of China (English)

    S.Q. Zhao; Y. Jiang; J.X. Dong; X.S. Xie

    2006-01-01

    A novel nickel-based superalloy INCONEL 740 was under development for application in ultra-supercritical superheater tubers above 750℃. The precipitation behaviors of η phase andγ′ particles of the alloy were investigated through experimental study and phase computation.Experimental results showed that η phase formed a Widmanst(a)tten pattern structure following long-term exposure at elevated temperatures and that the coarsening of γ′ particle follows a cube rate law: (r)3 ∝t. Thermodynamic calculation results showed that Al and Ti had an important effect on the precipitation behavior of γ′ and η phases. Two suggested novel modified alloys, wherein the Al and Ti contents were modified, were designed and melted for the experimental study. The preliminary results indicated that the modified alloys exhibited higher structural stability following long-term exposure at 750℃ till 5000h.

  2. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    International Nuclear Information System (INIS)

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology

  3. MICROSTRUCTURES AND THE STRUCTURE STABILITY OF INCONEL 725, A NEW AGE-HARDENABLE CORROSION RESISTANT SUPERALLOY

    Institute of Scientific and Technical Information of China (English)

    J.X. Dong; M.C. Zhang; S.K. Mannan

    2003-01-01

    INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The microstructure observations and the phase iden-tification after a standard heat treatment were investigated. The results show thatmary carbide phase TiC, as well as M6C carbide and a little extent MC (mainly TiC)precipitates which nucleate mainly at grain boundaries. An isothermal aging studywas carried out on this alloy for up to 10 000 hours at 593℃. This additional agingdid not affect the tensile strength. However, microstructures show that the thermalexposure has a little additional effect. With increasing the exposure time, the size ofcipitated at grain boundaries have an increased and complex tendency on a few grainboundaries. The experimental results illustrate the excellent structure stability of theage-hardenable IN725 at 593℃.

  4. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Raju, S. E-mail: sraju@igcar.ernet.in; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P

    2004-02-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 {mu}m thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2{theta} values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10{sup -6} K{sup -1}.

  5. A study on fretting fatigue life for the Inconel alloy 600 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae-do [Department of Mechanical Engineering, Yeungnam University, Kyongsan (Korea, Republic of); Park, Dae-kyu [Graduate School of Mechanical Engineering, Yeungnam University, Kyongsan (Korea, Republic of); Woo, Seung-wan [Department of Mechanical Engineering, Yeungnam University, Kyongsan (Korea, Republic of); Yoon, Dong-hwan [Graduate School of Mechanical Engineering, Yeungnam University, Kyongsan (Korea, Republic of); Chung, Ilsup, E-mail: ilchung@yu.ac.k [Department of Mechanical Engineering, Yeungnam University, Kyongsan (Korea, Republic of)

    2010-10-15

    Fatigue tests of the Inconel 600, a type of nickel-chromium based heat resistant alloy used for steam generator tubes in nuclear power plants, were carried out. Temperature increase to 320 {sup o}C did not change the fatigue strength much, but the fretting condition caused a significant reduction in the fatigue strength. The reduction at 10{sup 7} cycles was about 70% for both of room and the high temperatures. An apparatus to realize the fretting condition has been developed and instrumented to measure the normal and friction forces. The bridge type of contact pad was fabricated of SUS 409 stainless steel. Fracture surfaces and wear scars were observed by electron microscope and the profiles of wear scar were measured by non-contact 3D-profiler.

  6. Processing and Microstructural Evolution of Superalloy Inconel 718 during Hot Tube Extrusion

    Institute of Scientific and Technical Information of China (English)

    Shihong ZHANG; Zhongtang WANG; Bing QIAO; Yi XU; Tingfeng XU

    2005-01-01

    The processing parameters of tube extrusion for superalloy Inconel 718 (IN 718), such as slug temperature, tools temperature, choice of lubricant, extrusion ratio and extrusion speed, were determined by experiment in this paper. An appropriate temperature range recommended for the slug is 1080~1120℃, and the temperature range recommended for the tools is 350~500℃. The microstructural evolution of superalloy IN 718 during tube extrusion was analyzed.With the increase of the deformation the cross crystal grains were slightly refined. While the vertical crystal grain is elongated evidently and the tensile strength increased along the axial rake. Glass lubricants have to be spread on the slug surface after being heated to 150~200℃, vegetable oil or animal oil can be used as the lubricant on the surface of the tools to reduce the extrusion force remarkably.

  7. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    International Nuclear Information System (INIS)

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 μg/cm2). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in caustic

  8. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  9. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  10. Gas carburization of Inconel 617. Advanced Gas Cooled Reactor Materials Program

    International Nuclear Information System (INIS)

    This report describes the progress in the Advanced Gas Cooled Reactor Materials Program on efforts to produce uniformly carburized specimens of Inconel 617 with different carbon levels. This material will be used to determine the effect of carbon content on the mechanical properties and physical properties important for design and use of components in the primary circuit of an advanced HTGR system. The results of gas carburization and high temperature homogenization heat treatments are discussed. Also described are electron microprobe analysis methods for measuring the carbon gradients in the carburized and homogenized material. Recommendations are given for additional work needed to increase the homogeneity of carburized material and for producing material with uniform carbon concentration. Recommendations for improving the accuracy of the EPMA carbon gradient analyses also are included

  11. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    Science.gov (United States)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  12. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy

    International Nuclear Information System (INIS)

    The hot working characteristics of δ phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s-1, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like δ phase and the precipitation of spherical δ phase particles coexisted during the deformation, and the content of δ phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like δ phase was spheroidized and transferred to spherical δ phase particles. In the center with largest strain, the plate-like δ phase disappeared and spherical δ phase appeared in the interior of grains and grain boundaries.

  13. EXPERIMENTAL INVESTIGATION OF INCONEL 718 DURING DIE-SINKING ELECTRIC DISCHARGE MACHINING

    Directory of Open Access Journals (Sweden)

    PUSHPENDRA S BHARTI,

    2010-11-01

    Full Text Available This work investigates the machining characteristics of Inconel 718 during die-sinking electric discharge machining process with copper as tool electrode. Experiments have been carried out to see the effects of input parameters like shape factor, pulse-on-time, discharge current, duty cycle, gap voltage, flushing pressure and tool electrode lift time on performance measures like material removal rate, surface roughness and tool wear rate. Taguchi’s method has been used as Design of Experiments technique for experimental investigation. Experiments have been designed as per Taguchi’s L36 orthogonal array. Analysis of variance (ANOVA is employed to indicate the level of significance of machining parameters. Discharge current and pulse-on time are found the most influential common input parameter on each performance measure. Duty cycle and tool electrode lift time are found the least influential parameters.

  14. An experimental study on fretting wear behavior of cross-contacting Inconel 690 tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ilsup, E-mail: ilchung@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, 214-1 Daedong, Kyungsan 712-749 (Korea, Republic of); Lee, Myungho [R and D Institute, STX Metal, 67-14 Sinchon-dong, Changwon 642-370 (Korea, Republic of)

    2011-10-15

    Highlights: > A fretting wear tester employing a piezoelectric actuator has been developed. > Inconel 690 tubes were tested in RT ambient and 80 deg. C in-water conditions. > The dependence of the wear rate on the work rate is in bilinear fashion. > SEM photos show the transition is due to the change of the fretting wear regime. > Easier debris discharge and the extensive abrasion yields higher wear rate in water. - Abstract: A fretting wear test rig employing a piezoelectric actuator has been developed, which is equipped with a heating and water circulation system. The fretting wear tests of cross-contacting Inconel 690 tubes, which is widely used for power plant steam generator, have been carried out in room temperature ambient and 80 deg. C in-water conditions. Maximum normal load was 55 N, and the sliding amplitude was below 50 {mu}m. Scars of the mixed-slip and the gross-slip fretting wear have been measured in terms of scar diameter and wear volume. From the relationship between the work rate and the wear rate, a threshold of work rate has been defined, and this is found to be closely related with fretting wear regimes. The wear coefficients have been evaluated in the gross-slip regime. Distinct fretting wear mechanisms have been observed for the two different test conditions from SEM microphotographs. The crack formation, large particle separation and resulting third body effect were significant in room temperature ambient condition. The protective nature of the tribologically transformed layers coupled with non-uniform contact results in the lower wear coefficient while smooth wear scar and extensive abrasion produces higher wear volume in the other condition.

  15. Microstructure evolution and mechanical properties of Inconel 740H during aging at 750 °C

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chong, E-mail: chongyan871210@sina.com [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Central Iron and Steel Research Institute, Beijing 100084 (China); Zhengdong, Liu [Central Iron and Steel Research Institute, Beijing 100084 (China); Godfrey, Andy; Wei, Liu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yuqing, Weng [Central Iron and Steel Research Institute, Beijing 100084 (China)

    2014-01-01

    The microstructure evolution of Inconel 740H during aging at 750 °C for up to 3000 h was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), three-dimensional atom probe (3DAP) analysis and micro-phase analysis. The mechanical properties of samples after aging were also studied. The grain size increased substantially during the whole aging period. Two different types of grain boundary carbides were observed; block-shaped and needle-shaped. Both were identified to be M{sub 23}C{sub 6} by selected area diffraction measurements. The grain boundary carbides did not coarsen significantly during aging, with the weight fraction increasing only from 0.20% to 0.28%. In contrast, a much higher coarsening rate of γ′ precipitates was observed, as evidenced from both TEM observations and SAXS analysis. 3DAP was used to study the elemental partitioning behavior between γ′ precipitates and γ matrix as well as the evolution in width of the γ/γ′ interface. A large increase in the width of γ/γ′ interfaces was seen between 1000 h and 3000 h aging. In addition, for the sample aged at 750 °C for 3000 h, Cr enrichment on the γ matrix side of the γ/γ′ interface was found. Tensile tests at 750 °C of the aged samples showed a gradual decrease in elevated-temperature yield strength after 500 h, when this alloy was over-aged. The critical precipitate size for the transition from precipitate cutting by weakly coupled dislocations to strongly coupled dislocations for Inconel 740H was calculated to be approximately 50 nm, which agrees well with the experiment measurements of elevated-temperature yield strength. The room temperature impact toughness of all samples decreased during aging as the grain size kept growing.

  16. Effect of cold drawing ratio on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejon 305-353 (Korea, Republic of); Jeong, Hi Won; Yoo, Young Soo [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-10-15

    Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawing ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.

  17. Effect of cold drawing ratio on γ′ precipitation in Inconel X-750

    International Nuclear Information System (INIS)

    Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawing ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M23C6, and the fast diffusion path, i.e., dislocation, needed to form M23C6. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction

  18. Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting

    Science.gov (United States)

    Nandwana, Peeyush; Peter, William H.; Dehoff, Ryan R.; Lowe, Larry E.; Kirka, Michael M.; Medina, Francisco; Babu, Sudarsanam S.

    2016-02-01

    Powder bed-based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reuse time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented.

  19. A study on the thermal expansion characteristics of Inconel-82 filler wire by high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Panneerselvam, G.; Antony, M.P. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102 (India); Raju, S.; Jose, R.; Divakar, R.; Mohandas, E. [Materials Characterization Group, Physical Metallurgy Section, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102 (India); Sivasubramanian, K. [Safety Engineering Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102 (India)

    2004-01-01

    The lattice parameter (a) change with respect to temperature (T) has been measured by high temperature X-ray diffraction (HT-XRD) technique for Inconel-82 filler wire used in the TIG welding of a dissimilar joint involving Inconel-600 and commercially pure iron. By taking proper precautions to minimise the temperature gradient across the sample thickness, and by suitably calibrating the shift in 2{theta} produced as a result of sample buckling at high temperatures, we could obtain fairly reliable estimates of lattice parameter in the temperature range 300-1200 K. The lattice parameter and the coefficient of mean linear thermal expansion at 300 K, have been found to be 3.546(2)x10{sup -10} m and 11.03x10{sup -6} K{sup -1}, respectively.

  20. Ultrasonic measurements for in-service assessment of wrought Inconel 625 cracker tubes of heavy water plants

    International Nuclear Information System (INIS)

    The degradation in mechanical properties of Inconel 625 ammonia cracker tubes occurs during the service for long duration in heavy water plants. The present study brings out the possibility of using Poisson's ratio (derived from measurement of time of flight of ultrasonic waves) in combination with hardness measurements, as an effective non-destructive tool for assessment of in-service degradation of Inconel 625 cracker tubes and qualification of re-solution annealing heat treatment for their rejuvenation. Further, the study also indicates the feasibility of extending the life of some of the tubes beyond the presently followed 120 000 h, before they are taken up for re-solution annealing, without affecting their serviceability. However, further studies are required to identify quantitative criterion for Poisson's ratio and hardness values, for deciding on the basis for removal of the tubes for rejuvenation

  1. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    Directory of Open Access Journals (Sweden)

    Kamran Shah

    2014-01-01

    Full Text Available Laser direct metal deposition (LDMD has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process.

  2. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

    Science.gov (United States)

    Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao

    2015-07-01

    The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.

  3. Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering

    International Nuclear Information System (INIS)

    Highlights: ► Mass attenuation coefficient of Inconel 738 superalloy was measured. ► Gamma-ray energies were changed by Compton scattering technique. ► Effective atomic number and electron density are also calculated. ► All parameters decrease with increased energy. ► The experimental values are in good agreement with theoretical ones. - Abstract: The mass attenuation coefficient of Inconel 738 superalloy has been measured at different gamma ray energies by using the Compton scattering technique. The theoretical values of mass attenuation coefficient of a glass sample were calculated using WinXCom program. The effective atomic number and electron density are also calculated. The results showed that the mass attenuation coefficients, effective atomic number and electron density increase with the decrease in gamma ray energies which is in good agreement with theoretical values (less than 2% error)

  4. Fatigue behaviour of a cast nickel-based superalloy Inconel 792-5A at 700 degree C:

    OpenAIRE

    Kruml, Tomáš; Obrtlík, Karel; Petrenec, Martin; POLÁK, Jaroslav

    2006-01-01

    Cylindrical specimens of a cast polycrystalline superalloy, Inconel 792-5A, were cyclically strained under total strain control at 700 compositumC up to the point of fracture. Cyclic hardening curves, the cyclic stress-strain curve and the fatigue-life curve were recorded. The dislocation recorded structure was studied using the technique of oriented foils in a transmission electron microscope. Scanning electron microscopy was used to investigate the surface relief. High amplitude straining i...

  5. Investigation of surface integrity in high-speed ball end milling of cantilever shaped thin plate of Inconel 718

    OpenAIRE

    N.N. Bhopale; R.S. Pawade

    2012-01-01

    The paper addresses the effects of cutting speed and feed on the work piece deflection and surface integrity during milling of cantilever shaped Inconel 718 plate under different cutter orientations. The experiments were conducted on a CNC vertical milling machine using 10 mm diameter TiAlN coated solid carbide ball end milling cutter. Surface integrity is assessed in terms of micro hardness beneath the machined surface. The micro-hardness profile shows different patterns at various cutting p...

  6. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    Science.gov (United States)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  7. Experimental and modeling results of creep–fatigue life of Inconel 617 and Haynes 230 at 850 °C

    International Nuclear Information System (INIS)

    Creep–fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep–fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep–fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep–fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep–fatigue life. The linear damage summation could predict the creep–fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep–fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep–fatigue life prediction results for both materials.

  8. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    International Nuclear Information System (INIS)

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  9. Pitting resistance of TiN deposited on Inconel 600 by plasma-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    TiN films were deposited on Inconel 600 by PACVD using the gaseous mixture of TiCl4, N2, H2, and Ar in order to increase the pitting resistance of Inconel 600. The pitting resistance was examined using a potentiodynamic polarization technique with a chloride solution. The effect of chloride concentration in the electrolyte on the pitting potential was also investigated. Inconel 600 coated with TiN film shows a superior pitting resistance to that without TiN film in condition that the thickness of the film is greater than a certain critical value. As the deposition temperature as well as the RF power increases, the residual Cl concentration in the film decreases, resulting in the improvement of the pitting resistance. However, the TiN films deposited at too high RF powers, even though the Cl concentration in TiN film is very small, show inferior pitting resistance, which is due to the formation of the network type microvoids structure. ((orig.))

  10. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  11. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  12. Service experience and stress corrosion of Inconel 600 bellows expansion joints in turbine-steam environments

    International Nuclear Information System (INIS)

    Over 100 Inconel 600 single and 2-ply expansion joints exposed to less than 3800C high purity water for times up to 12 years at 100 to 250 psig have experienced failures in only 7 cases. Mill annealed sheets are gas tungsten welded and may or may not be stress relieved. Design and structural details are given; statistics on number of joints and service times are listed. Details of 7 failures include pressures, boiler type, water treatment, turbine inlet conditions, temperatures and other parameters. Steam was greater than 3150C and 140 psig. Deposits from failed joints showed magnetite, various carbonates, calcium, silicates, and sodium orthophosphate. The sulfate anion was found also in some locations. Microscopic examination of failed zones showed carbide aggregations. Hydroxide and sodium ions were found in cracks. Failures were attributed to caustic stress corrosion cracking resulting from excursions of water treatment chemicals. Laboratory tests were made of stressed samples in high purity, low oxygen water, boiling ferric sulfate, inhibited sulfuric acid, potassium-sodium hydroxide; in 2700C air with fused caustic-steam environments was 25 ksi. Silicon dioxide promoted cracking in K-NaOH. Annealed specimens did not crack in 3300C high purity water even after pickling in nitric-hydrofluoric acid. Caustic concentrations over 50 percent were necessary for cracking

  13. Lattice strain development in Inconel-690 under bi-axial compression and tension

    Science.gov (United States)

    Toda, Rebecca Midori

    Nuclear reactor steam generator tubes, manufactured from Nickel alloys such as Inconel 690 (INC690), are potentially susceptible to failure by Stress Corrosion Cracking where crack initiation may be exacerbated by internal stress fields. A more comprehensive understanding of this potential failure mechanism was gained via an exploration of a model of INC690.s behaviour under Constrained loading conditions in compression and tension. An Elasto-Plastic Self-Consistent (EPSC) model was used to predict the lattice stresses and strains resulting from Constrained loading in INC690 for four crystallographic planes. The internal strain fields generated under such conditions were shown to be markedly different from those developed under Uniaxial loading. Finite Element Modeling was used to design tensile and compression samples as well as a testing rig that would allow the application of a compressive load along one axis of the specimen with simultaneous constraint along another and free-deformation along the third. Lattice strain measurements were done for both compressive and tensile loading using Time-Of-Flight neutron diffraction. The predicted and experimental values showed reasonable agreement; mainly in terms of crystallographic plane interaction and behaviour. Iterative computer modeling was used to achieve a more realistic depiction of the lattice strains developed. This research allowed for an extension on the Uniaxial findings by examining the material's behaviour under more complex loading that better approximates steam generator tube operating conditions.

  14. Influence of overloads on dwell time fatigue crack growth in Inconel 718

    International Nuclear Information System (INIS)

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate

  15. Examination of inconel X-750 screw of Chooz-A internal components

    International Nuclear Information System (INIS)

    During the 1984/85 routine shutdown of CHOOZ-A pressurized water reactor, several bolt heads of the core barrel joint were found broken after 100 000 hours of operation. These failures were attributed to intergranular strengths corrosion cracking of the Inconel X-750 bolts. However, to state more precisely the origin of failures, additional mechanical tests (microhardness, tensile tests) and metallurgical examinations (fractography, optical and electron microscopy) have been performed on irradiated bolts. The microhardness measurements reveal a marked hardening which happens between 3.4 and 6.5 104h, then saturates for longer operation time. The tensile tests at room temperature show a decrease in total elongation, yield and ultimate strengths, which seems related with the value of release torque. On the other hand, TEM examinations allow to detect a significant change in Inc. X-750 microstructure after 100000 h operation. This change mainly includes additional precipitation during operation at 2700C and nucleation of defects induced by irradiation at low fluence (dislocation loops and bubbles or microvoids). In conclusion, to explain the observed failures, both thermal ageing and irradiation effects have to be taken in account

  16. Investigation of INCONEL X750 screws from internal structures of Chooz-A reactor

    International Nuclear Information System (INIS)

    During the 1984/85 routine shutdown of CHOOZ-A pressurized water reactor, several bolt heads of the core barrel joint were found broken after 100 000 hours of operation. These failures were attributed to intergranular strengths corrosion cracking of the Inconel X-750 bolts. Additional mechanical tests (microhardness, tensile tests) and metallurgical examinations (fractography, optical and electron microscopy) have been performed on irradiated bolts. The microhardness measurements reveal a marked hardening which happens between 3.4 and 6.5 104h, then saturates for longer operation time. The tensile tests at room temperature show a decrease in total elongation, yield and ultimate strengths, which seems related with the value of release torque. TEM examinations allow to detect a significant change in Inc. X-750 microstructure after 100000 h operation. This change mainly includes additional precipitation during operation at 2700C and nucleation of defects induced by irradiation at low fluence (dislocation loops and bubbles or microvoids). In conclusion, both thermal ageing and irradiation effects have to be taken in account

  17. Mechanical Characterization of an Additively Manufactured Inconel 718 Theta-Shaped Specimen

    Science.gov (United States)

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; Cooper, Ryan C.; Cornwell, Paris A.; Wang, Yanli; Sochalski-Kolbus, Lindsay M.; Dehoff, Ryan R.; Babu, Sudarsanam S.

    2016-02-01

    Two sets of "theta"-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlation between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. The spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.

  18. 3D imaging and characterisation of strengthening particles in inconel 718 using FIB tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, Adam; Gruszczynski, Adam; Czyrska-Filemonowicz, Aleksandra [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-07-01

    The Inconel 718 is a commercial nickel-base superalloy, widely used for critical pieces in turbine engines. Its microstructure consists of the {gamma} matrix and strengthening coherent nanoparticles {gamma}' and {gamma}''. In the present work FIB tomography technique was used for imaging and characterisation of strengthening particles. FIB tomography is based on a serial sectioning procedure using a FIB/SEM dual beam workstation. Repeated removal of layers as thin as several nm for some hundred times allows to investigate at total a volume of some {mu}m3 with a voxel size as 2.5 nm x 2.5 nm x 2.5 nm. 3D mapping of nanoparticles with high Z-resolution by serial FIB slicing (in a distance of about 2.5 nm) and SEM imaging was performed. Ga ion beam at 30 kV was used to perform a precise in-situ milling. The SEM images at accelerating voltage 1.5 kV were taken with using ESB detector. The real 3D-data of precipitates obtained by FIB tomography, open a new possibility for microstructure analysis of materials for industrial applications.

  19. Radiation blistering in Inconel-625 due to 100 KeV helium ion irradiation

    International Nuclear Information System (INIS)

    The objective of this study was to determine whether the change of angle of incidence of an ion beam impinging on surface blisters during their growth phase (before exfoliation) could influence the blister skin thickness and the blister crater depth. Polished, polycrystalline Inconel-625 samples were irradiated at room temperature and at normal incidence to the major sample surface with 100 keV helium ions to a total dose of 6.24x1018 ions/cm2. The results revealed that many exfoliated blisters leave craters which have two or three concentric pits. The blister skin thickness near the center of the blister was found to agree well with the calculated projected range of 100 keV He ions in nickel. However, the blister skin thickness of some exfoliated blisters along the edge of the fracture surface showed different thicknesses. A model is proposed to explain the observed blister crater/blister fracture features in terms of a change of angle of incidence of the incident ions to the surface during the growth phase of surface blisters. (orig.)

  20. Analisis Kegagalan Retak dan Teknologi Perbaikan Sudu Turbin Jenis Inconel 792 pada Pesawat Terbang

    Directory of Open Access Journals (Sweden)

    Suharno .

    2013-01-01

    Full Text Available Penelitian untuk melakukan analisis terhadap kegagalan retak telah dilakukan pada sudu turbin dari Auxiliary Power Unit (APU pesawat terbang. Bahan sudu turbin adalah paduan super  Inconel 792. Pengujian yang dilakukan meliputi inspeksi visual, pengujian komposisi kimia, fractography, pengujian kekerasan, dan metalografi.Hasilnya menunjukkan bahwa patah dimulai dari celah dan retak makro dan kemudian menjalar/merambat menjadi retak terbuka di permukaan.Hal ini kemungkinan disebabkan oleh mekanisme retak panas selama perbaikan las sebelumnya. Kandungan Aluminium dan Titanium yang tinggi pada logam las, menjadikan material menjadi rapuh, hal ini ditunjukkan oleh fitur intergranular dibandingkan dengan aspek pembelahan transgranular menunjukkan bahwa keuletan pada lasan rendah. Dibandingkan dengan sudu yang tidak rusak (gagal, ukuran butir dari sudu turbin yang rusak adalah sangat berbeda menunjukkan eksposisi terhadap panas baik dari siklus termal pengelasan atau lingkungan operasi normal pada suhu tinggi.Teknik perbaikan lebih lanjut dikembangkan berdasarkan keberhasilan PQTR yang di uji dengan kekerasan mikro, destructive dan non destructive test.Untuk tujuan ini maka dipilih las GTAW yang diikuti dengan solution dan aging treatment.

  1. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  2. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    Science.gov (United States)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  3. Experimental Investigation and Optimization of Response Variables in WEDM of Inconel - 718

    Science.gov (United States)

    Karidkar, S. S.; Dabade, U. A.

    2016-02-01

    Effective utilisation of Wire Electrical Discharge Machining (WEDM) technology is challenge for modern manufacturing industries. Day by day new materials with high strengths and capabilities are being developed to fulfil the customers need. Inconel - 718 is similar kind of material which is extensively used in aerospace applications, such as gas turbine, rocket motors, and spacecraft as well as in nuclear reactors and pumps etc. This paper deals with the experimental investigation of optimal machining parameters in WEDM for Surface Roughness, Kerf Width and Dimensional Deviation using DoE such as Taguchi methodology, L9 orthogonal array. By keeping peak current constant at 70 A, the effect of other process parameters on above response variables were analysed. Obtained experimental results were statistically analysed using Minitab-16 software. Analysis of Variance (ANOVA) shows pulse on time as the most influential parameter followed by wire tension whereas spark gap set voltage is observed to be non-influencing parameter. Multi-objective optimization technique, Grey Relational Analysis (GRA), shows optimal machining parameters such as pulse on time 108 Machine unit, spark gap set voltage 50 V and wire tension 12 gm for optimal response variables considered for the experimental analysis.

  4. Influence of the Oxygen Partial Pressure on the Oxidation of Inconel 617 Alloy at High Temperature

    International Nuclear Information System (INIS)

    Ni-based superalloy Inconel 617 (IN617) is one of the main candidate structural materials for high temperature components (heat exchanger) of the gas-cooled fast reactor (GFR), a possible candidate for generation IV nuclear reactor. The material in operating conditions will be exposed to impure He at a temperature of around 850 C. The impurities are expected to be oxidizing (such as O2, H2O) but since no feedback experience is available for this type of reactor, the level of impurities is completely unknown. Hence, an attempt has been made to understand the influence of oxygen partial pressure on oxide composition and on the oxidation mechanisms of IN617 at 850 C. To achieve this, oxidation tests were performed at 3 different range of partial pressure: 10-5, 0. 2 and 200 mbar. Tests were performed from 1 h to 28 days and the obtained oxide layers were characterized using MEB, EDX, XPS, XRD and GD-OES. The oxide layers were mainly composed of chromia containing TiO2 and thickening with time. Aluminium oxide formed internally. Other oxides were detected in the scale, such as NiO, CoO, MoO3 and MnO2, except for the lowest oxygen partial pressure experiments, where a selective oxidation took place. The scale-growth mechanism was cationic for low and medium oxygen partial pressure conditions. A growth following a transient oxidation mechanism was observed for high oxygen partial pressure. (authors)

  5. Effect of Grain Size Distribution on Processing Maps for Isothermal Compression of Inconel 718 Superalloy

    Science.gov (United States)

    Wang, Jianguo; Liu, Dong; Hu, Yang; Yang, Yanhui; Zhu, Xinglin

    2016-02-01

    Cylindrical specimens of Inconel 718 alloys with three types of grain size distribution were used in the compression tests and processing maps were developed in 940-1040 °C and 0.001-10 s-1. The equiaxed fine grain is more effective on the dynamic softening behavior. For partial recrystallized microstructure, the peak efficiency of power dissipation occurs at the strain rate of 0.001 s-1, and the temperature range of 1000-1020 °C. In order to obtain homogeneous microstructure with fine grains, the partial recrystallized microstructure should be deformed at the low temperature and slow strain rates. The area fraction of instability domains decreases with strain increasing. The peak efficiency of power dissipation increases with average grain size decreasing. The efficiency of power dissipation will be stimulated by the precipitation of δ phase at slow strain rate of 0.001-0.01 s-1, and the initial deformed substructure at the strain rate of 0.1-1 s-1. Equiaxed fine grain is the optimum state for forging process and dynamic recrystallization. The grain size distribution has slight influence on the microstructure evolution at high temperatures.

  6. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    International Nuclear Information System (INIS)

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm−2 was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm−2. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni3Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni3Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed

  7. A comparative study on fiber laser and CO2 laser welding of Inconel 617

    International Nuclear Information System (INIS)

    Highlights: • The difference change of weld bead geometry occurs in fiber and CO2 laser welding. • The melting efficiency in fiber laser and CO2 laser welding is analyzed. • Secondary dendrite arm spacing and cooling rate in two laser weldings is studied. • The second phase in two laser welding with different heat input is investigated. - Abstract: A comparative study on the influence of fiber laser welding (FLW) and CO2 laser welding (CLW) on the weld bead geometry and the microstructure of fusion zone (FZ) of Inconel 617 was investigated. In CLW joints, the weld bead geometry is Y-type shape. In FLW joints, the weld bead geometry transforms from Y-type to I-type with the decrease of the heat input. The minimum heat input required to achieve the full penetration of the weldment in FLW is lower than the CLW. The melting efficiency in FLW is higher than that in CLW. From the top to the root regions, the secondary dendrite arm spacing (SDAS) in fiber laser welded FZ undergoes a smaller change than that in CO2 laser welded FZ. The elements of Ti, Mo, Cr and Co segregate into the interdendritic regions both in FLW and CLW process. The second phases in CLW with the highest input of 360 J/mm are much larger and more than ones in FLW with the highest heat input of 210.5 J/mm

  8. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.S., E-mail: yuzaisong@tpri.com.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Yuan, Y.; Zhou, R.C.; Zhang, H.J.; Wang, H.Z. [Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China)

    2015-05-14

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm{sup −2} was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm{sup −2}. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni{sub 3}Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni{sub 3}Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed.

  9. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    Science.gov (United States)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  10. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting

    Science.gov (United States)

    Zhang, Baicheng; Bi, Guijun; Nai, Sharon; Sun, Chen-nan; Wei, Jun

    2016-06-01

    In this study, micron-size TiB2 particles were utilized to reinforce Inconel 625 produced by selective laser melting. Exceptional microhardness 600-700 HV0.3 of the composite was obtained. In further investigation, the microstructure and mechanical properties of Inconel 625/TiB2 composite can be significantly influenced by addition of TiB2 particles during SLM. It was found that the long directional columnar grains observed from SLM-processed Inconel 625 were totally changed to fine dendritic matrix due to the addition of TiB2 particles. Moreover, with laser energy density (LED) of 1200 J/m, a Ti, Mo rich interface around TiB2 particles with fine thickness can be observed by FESEM and EDS. The microstructure evolution can be determined by different laser energy density (LED): under 1200 J/m, γ phase in dendrite grains; under 600 J/m, γ phase in combination of dendritic and acicular grains; under 400 J/m, γ phase acicular grains. Under optimized LED 1200 J/m, the dynamic nanohardness (8.62 GPa) and elastic modulus (167 GPa) of SLM-processed Inconel 625/TiB2 composite are higher compared with those of SLM-processed Inconel 625 (3.97 GPa and 135 GPa, respectively).

  11. High Temperature Oxidation Behavior of Inconel Alloy 740H in Pure Steam%Inconel 740H 合金在纯水蒸气环境中的高温氧化行为

    Institute of Scientific and Technical Information of China (English)

    鲁金涛; 杨珍; 徐松乾; 赵海平; 赵新宝; 谷月峰

    2015-01-01

    The oxidation behavior of Inconel alloy 740 H in dynamic pure steam at 750 ℃ was studied with high temperature oxidation test.The results show that the mass gain of Inconel alloy 740 H during oxidation followed a parabolic law approximately.The oxide products grew coarse with the increase of oxidation time.The scale morphology was significantly different from those after oxidation in dry air.But non obvious cracks and spallation were observed.After oxidation for 100 h,the protective Cr2 O 3 film formed on the surface.The thickness of oxide film increased with time increasing.After oxidation for 1 000 h,the oxide film was composed of Cr2 O 3 and a small amount of (Mn,Ni)Cr2 O 4 spinel.Beneath the oxide scale,chromium depletion region was found and a small amount of inner oxides identified as Al2 O 3 and TiO 2 were observed.%通过高温氧化试验研究了 Inconel 740 H 合金在750℃的动态纯水蒸气环境中的氧化行为。结果表明:Inconel 740 H 合金的氧化增重近似遵循抛物线规律,随氧化时间的延长氧化产物粗大;氧化膜形貌与在干燥空气中氧化的明显不同,但未发现明显的氧化膜开裂和剥落现象;合金氧化100 h 后形成连续的 Cr2 O 3氧化膜,氧化膜厚度随着氧化时间的增加而增大;氧化1000 h后形成的氧化膜主要由 Cr2 O 3和少量的(Mn,Ni)Cr2 O 4尖晶石组成,靠近氧化膜的合金内部出现明显的贫铬区,并伴生少量的 Al2 O 3和 TiO 2内氧化产物。

  12. Influence of Strengthening Elements on Precipitation of Thermodynamic Equilibrium Phases in Inconel Alloy 740H%Inconel 740H主要强化元素对热力学平衡相析出行为的影响

    Institute of Scientific and Technical Information of China (English)

    符锐; 林富生; 赵双群; 迟成宇

    2013-01-01

    Thermodynamic calculation was carried out on the Ni-based Inconel alloy 740H for 700 ℃ advanced ultra supercritical (A-USC) superheaters and reheaters,so as to study the influence of the main strengthening elements on precipitation of the equilibrium phases.Results show that both γ' and M23C6 in the alloy have a good stability in a wide temperature range.Elements Al,Ti and Nb affect much but element Co influences little on the precipitation of phases γ',ηand σ,in which Al promotes the precipitation and stabilization of γ' and σ,but suppresses the precipitation of η,while Ti and Nb promote precipitation of all the phases γ',ηand σ.Elements C and Cr respectively affect much on the precipitation quantity and temperature of M23C6.The composition of Inconel alloy 740H can be optimized by reasonably control the mass fractions of elements Al,Ti,Nb,C,Cr and Co.%对700℃等级超超临界电站过热器/再热器管材所用镍基高温合金Inconel 740H进行热力学相计算并研究了主要析出强化元素对其平衡析出相析出行为的影响.结果表明:合金中γ '相和M23C6碳化物稳定温度范围较宽;Al、Ti和Nb3种元素对γ'相、η相和σ相的析出行为影响较大,而Co元素对其影响不大,其中Al对γ'相和σ相的析出和稳定有促进作用,对η相却有抑制作用,Ti和Nb对γ'相、η相和σ相均有促进作用;C对M23C6碳化物析出量的影响显著,而Cr对M23C6的析出温度影响显著.将Al、Ti、Nb、C和Cr的质量分数控制在一定范围内并适当减小Co的质量分数,可以使Inconel 740H合金的成分范围得到一定的优化.

  13. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    Science.gov (United States)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  14. Effect of specimen geometry on low-cycle fatigue property of Inconel 617 at HTGR temperatures

    International Nuclear Information System (INIS)

    In order to select a suitable specimen geometry for the evaluation of environment effect on fatigue property at HTGR temperatures, comparison was made between low-cycle fatigue strengths obtained for two types of specimens, solid cylindrical and hourglass specimens. A set of low-cycle fatigue tests were carried out on Ni-base wrought alloy Inconel 617 at 800 deg C and 1000 deg C in air and helium 4-nine purity. Strain was measured by two types of extensometers; (1) Hourglass specimen with a diametral extensometer, (2) Solid cylindrical specimen with a diametral extensometer, and (3) Solid cylindrical specimen with an axial extensometer. In all cases, the axial strain was controlled. The life of the hourglass specimens was consistently longer than that of the solid cylindrical specimens in both environments. The life of test type (2) was nearly equal to that of type (1) in air, but in helium the life of type (2) was between those (1) and (3). The effects of segregation and grain size on the specimen geometry were discussed. In the cases of the specimens machined at right angle to the segregation layer and those with fine grains, the difference of the lives obtained for two types of specimens increased. Furthermore, the difference of crack initiation behaviors in air and helium was discussed. The internal oxidation layer and the decarburized zone were observed near the specimen surface in helium, and more surface cracks occured in helium than in air. These may be related to the larger difference in lives of two types of specimens in helium, compared to in air. (author)

  15. Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718

    Science.gov (United States)

    Venkatesan, K.; Ramanujam, R.; Kuppan, P.

    2016-04-01

    This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.

  16. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  17. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718

    International Nuclear Information System (INIS)

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  18. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  19. Effects of solution heat treatment on the microstructure and hardness of Inconel 740 superalloy prepared by electron beam smelting

    International Nuclear Information System (INIS)

    Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The effect of solution heat treatment on electron beam smelting 740 was investigated. • TiNiSi phase’s content changes exponentially with solution temperature increasing. • γ′ precipitates coarsening occurs at 1150 °C, higher temperature cause their solution. • γ″ phase transformed into Nb0.03Ni3Ti0.97 phase at 1210 °C. - Abstract: Electron beam smelting (EBS) was used to prepare the Inconel 740 superalloy. The microstructure and hardness of Inconel 740 were investigated both under hot working condition and followed by solution heat treatment under high temperature ranging from 1120 to 1210 °C for 30 min. The results show that fine γ′ nucleus and primary MC carbides exist in the hot working superalloy. With increasing temperature of solution treatment, TiNiSi phase is gradually solutionized into the matrix, whose volume fraction decreases exponentially. γ′ precipitates coarsening occurs at 1150 °C, while higher temperature solution treatment leads to the solution of γ′ precipitates. γ″ phase has been found keeping a stringent coherent relationship with Nb0.03Ni3Ti0.97 phase at 1180 °C, and utterly transformed into Nb0.03Ni3Ti0.97 phase at 1210 °C. The hardness of the solution-treated superalloy is lower than that of hot working, the value decreases at first and then increases with increasing of solution temperature, which is attributed to dislocations interaction and localized shear stress caused by γ′ precipitates and local stress fields

  20. Effects of solution heat treatment on the microstructure and hardness of Inconel 740 superalloy prepared by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116023 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116023 (China); Li, Jiayan; Li, Pengting [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116023 (China); Dong, Chuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian 116023 (China); Shi, Shuang; Liao, Jiao; Qin, Shiqiang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116023 (China)

    2015-07-25

    Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The effect of solution heat treatment on electron beam smelting 740 was investigated. • TiNiSi phase’s content changes exponentially with solution temperature increasing. • γ′ precipitates coarsening occurs at 1150 °C, higher temperature cause their solution. • γ″ phase transformed into Nb{sub 0.03}Ni{sub 3}Ti{sub 0.97} phase at 1210 °C. - Abstract: Electron beam smelting (EBS) was used to prepare the Inconel 740 superalloy. The microstructure and hardness of Inconel 740 were investigated both under hot working condition and followed by solution heat treatment under high temperature ranging from 1120 to 1210 °C for 30 min. The results show that fine γ′ nucleus and primary MC carbides exist in the hot working superalloy. With increasing temperature of solution treatment, TiNiSi phase is gradually solutionized into the matrix, whose volume fraction decreases exponentially. γ′ precipitates coarsening occurs at 1150 °C, while higher temperature solution treatment leads to the solution of γ′ precipitates. γ″ phase has been found keeping a stringent coherent relationship with Nb{sub 0.03}Ni{sub 3}Ti{sub 0.97} phase at 1180 °C, and utterly transformed into Nb{sub 0.03}Ni{sub 3}Ti{sub 0.97} phase at 1210 °C. The hardness of the solution-treated superalloy is lower than that of hot working, the value decreases at first and then increases with increasing of solution temperature, which is attributed to dislocations interaction and localized shear stress caused by γ′ precipitates and local stress fields.

  1. Influence of a treatment of age hardening on the mechanical properties of Inconel 625 in the presence of hydrogen gas

    International Nuclear Information System (INIS)

    Inconel 625 presents good mechanical properties and has excellent corrosion behaviour with temperatures being able to reach 1000oC. These mechanical properties are obtained by a heat treatment of structural hardening. Utilization of this super alloy for hydrogen gas must be preceded by a study of its embrittlement. The method of rupture of the discs, under hydrogen pressure or helium pressure has to undertake this study at ambient temperature. We show that for this material, obtaining the mechanical characteristics, by the heat treatment of hyper-hardening and by application of structural hardening, the ambient temperature of a catastrophic embrittlement vis-a-vis hydrogen gas

  2. Effect of thermal barrier coating on low cycle fatigue behavior of cast Inconel 713LC at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Hutařová, S.; Čelko, L.; Juliš, M.; Podrábský, T.; Šulák, Ivo

    Zurich : Trans Tech Publications, 2014 - (Clark, G.; Wang, C.), s. 848-853 ISBN 978-3-03835-008-8. ISSN 1022-6680. - (Advanced Materials Research. 891-892). [Fatigue 2014 - International Fatigue Congress /11./. Melbourne (AU), 02.03.2014-07.03.2014] R&D Projects: GA ČR(CZ) GAP107/11/2065; GA MPO FR-TI4/030 Institutional support: RVO:68081723 Keywords : High temperature fatigue * TBC * Inconel 713LC * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Low Cycle Fatigue and Analysis of the Cyclic Stress-strain Response in Superalloy Inconel 738LC

    Czech Academy of Sciences Publication Activity Database

    Tobiáš, Jiří; Chlupová, Alice; Petrenec, Martin; Polák, Jaroslav

    Praha: Institute of Theoretical and Applied Mechanics AS CR, v.v.i, 2012 - (Náprstek, J.; Fischer, C.), s. 1407-1411 ISBN 978-80-86246-40-6. [Engineering Mechanics 2012 /18./. Svratka (CZ), 14.05.2012-17.05.2012] R&D Projects: GA ČR(CZ) GAP204/11/1453 Institutional support: RVO:68081723 Keywords : low cycle fatigue * Inconel 738LC * hardening/softening curves * cyclic stress-strain curve * fatigue life curve Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.engmech.cz/2012/proceedings/

  4. Surface residual stress distributions in as-bent Inconel 600 U-bend and Incoloy 800 90-degree bend tubing samples

    International Nuclear Information System (INIS)

    Selected data showing typical macroscopic residual stress distributions in U-bent Inconel 600 and 90 degrees bends in Incoloy 800 are presented. The results indicate regions of both high magnitude tension and compression in the longitudinal direction around the circumference of the bends at the apex. The microscopic residual stress, or percent plastic strain and macroscopic residual distributions in the surface of cross-roll straightened and ground Inconel 600 tubing are described. The results indicate a compressive surface layer accompanied by a yield strength gradient from 90 ksi at the surface to 30 ksi at a depth of 0.003 in

  5. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Science.gov (United States)

    Bakare, M. S.; Voisey, K. T.; Roe, M. J.; McCartney, D. G.

    2010-11-01

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH) 2, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  6. Catalyst-assisted vertical growth of carbon nanotubes on Inconel coated commercial copper foil substrates versus sputtered copper films

    International Nuclear Information System (INIS)

    We have compared the growth of multi-walled carbon nanotubes using thermal chemical vapor deposition (CVD) on two types of substrates, copper foils and sputtered copper films. In both cases an initial 12 nm thin film of Inconel is first deposited on the Cu before growing the nanotubes. The Inconel thin film can act as both a catalyst for nanotube growth as well as a support for the additional Fe catalyst that is supplied in the form of ferrocene during CVD growth. The surfaces of the underlying copper substrates are very different and play a role in the resulting carbon nanotube density. A quantitative analysis of the density and alignment of the resulting carbon nanotubes using scanning electron microscopy shows that the smooth surface of the sputtered copper substrate leads to improvement in vertical growth and density of nanotubes as opposed to the much rougher electropolished Cu foil. We show that this is related to the differences in catalyst islands distributions and graphitic crystallinity seen on the surfaces of the two types of substrates after heating the samples in the CVD chamber. This demonstrates that the surface of the starting substrate plays an important role in the subsequent catalyst surface distribution and therefore the resulting nanotube density.

  7. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    Science.gov (United States)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-07-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  8. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    Directory of Open Access Journals (Sweden)

    Victor Hugo C. de Albuquerque

    2015-05-01

    Full Text Available Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 \\(^\\circ\\C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms and accurate (accuracy of 88.75% and harmonic mean of 89.52 for the application proposed.

  9. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Huang, Tingting; Yang, Chuanguang; Junjie, Lin; Lin, Jinxin

    2015-12-01

    Inconel-718 has received an extensive using in mold industry. The selective laser melting (SLM) is providing an ideal means for manufacturing mold insert with complex geometrical features and internal architecture. During the manufacturing of high quality mold inserts with conformal cooling channel, the parameters play a vital role in the SLM process. In the study, the Inconel-718 alloys were manufactured by SLM with 2×2 mm2, 3×3 mm2, 5×5 mm2, and 7×7 mm2 island scanning strategies. The microstructure, mechanical property, and residual stress were investigated by optical microscope, tensile test and Vickers micro-indentation, respectively. It can be found that the relative density increased with enlarging the island size; the results on the microstructure indicated that the cracks and more pores were detected in the 22-specimen; whilst the microstructures of all specimens were composed of fine dendritic grains, cellular, and columnar structures; the tensile testing suggested that the ultimate tensile strength and yield strength of all samples was similar; while the outcome of the residual stress showed that the value of residual stress was ranked in the following sequence: 22-specimenprocessing application in SLM. Through integrated into account, the 55-scanning strategy is a promising candidate for manufacturing of mold inserts.

  10. Influence of INCONEL 625 composition on the activation characteristics of the vacuum vessel of experimental fusion tokamaks

    International Nuclear Information System (INIS)

    The radioactive inventory, the decay heat and the contact dose rate of permanent components such as the vacuum vessel of two experimental fusion tokamaks, the compact IGNITOR-ULT and the ITER-EDA fusion machines, are evaluated by using the ENEA-Bologna integrated methodology. The vacuum vessel material considered is the INCONEL 625. The neutron flux is calculated using the VITAMIN-C 171-group library, based on EFF-2 data and the 1-D transport code XSDRNPM in the S8-P3 approximation. The ANITA-2 code, using updated cross sections and decay data libraries based on EAF-3 and IRDF90 evaluation files is used for activation calculations. The fusion neutron source has been normalised to a neutron first wall load of 2 MW/m2 and 1 MW/m2 for IGNITOR-ULT and ITER, respectively. The material irradiation have been described by multistep time histories, resulting in the designed total fluence. Variations in the composition of INCONEL 625 have been assessed and their impact on the activation characteristics are discussed, also from the point of view of waste disposal. (orig.)

  11. Spectral effects on stress relaxation of Inconel X-750 springs in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M.; Butcher, F.J.; Ariani, I.; Douglas, S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Garner, F.A.; Greenwood, L. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    2008-07-01

    CANDU reactors have been operating for periods up to about 25 years. During this time there are changes to the nuclear reactor core components that are a function of operating environment and time. It is important to know how the properties of critical core components are likely to change over the life of a reactor and therefore their behaviours are characterised long before the end of the reactor design life. Tests are typically conducted in materials test reactors. The behaviour of a material is often characterised as a function of fast neutron fluence and the expected effect of operating time is established by simply extrapolating as a function of fluence. This may be appropriate when the neutron energy spectrum for the materials test reactor matches closely the neutron spectrum where the component resides in the power reactor. However, in cases where the spectrum is very different one has to convert the accumulated dose into a unit that is common in its effect on the material properties. For many property changes in nuclear reactor cores this unit is displacements per atom (dpa). There are different processes that cause atomic displacements and the main ones have to be included in any dpa calculation in order to accurately predict how a given component will perform. One property that is significantly affected by irradiation is stress. Irradiation-induced stress relaxation is a phenomenon that has been used as a method for studying in-reactor creep. Stress relaxation also results in a loss of tension in springs if these springs are in a reactor core environment. This paper describes the stress relaxation of Inconel X-750 in the National Research Universal (NRU) materials test reactor and relates this to the expected relaxation of springs that are installed in the periphery of CANDU reactors. The results show that spectral effects are particularly significant for certain components at the edge of the CANDU reactor core where the neutron spectrum is changing

  12. Metallographic study of cracks formation factors in Inconel 718 and waspaloy during welding by electron beam and the tungsten inert gas process

    International Nuclear Information System (INIS)

    Study of physico-chemical aspects of cracks formation during welding of Inconel 718 and waspaloy. In both alloys cracks are caused by an intergranular or interdendritic decohesion at the level of liquid films under stress produced by the welding thermal cycle. Constraints repartition, liquation and external sollicitations influence are studied

  13. INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; FENG Z; GAN H; PEGG IL

    2009-11-05

    Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

  14. Modification of Johnson-Cook Model for Hot Deformation Behavior of Inconel 625 Alloy%Inconel625合金Johnson-Cook本构模型的一种改进

    Institute of Scientific and Technical Information of China (English)

    俞秋景; 刘军和; 张伟红; 于连旭; 刘芳; 孙文儒; 胡壮麒

    2013-01-01

    The hot deformation behavior of Inconel 625 alloy was investigated by compression tests.The results show that the slope of the true stress-true strain curve increases with the drop of the temperature and the rise of strain rate,indicating a complex interactive influence of temperature,strain and strain rate on the strain hardening and recrystallization.However,the constitutive equation built by Johnson-Cook model fails to predict precisely the stress-strain relation of Inconel 625 alloy due to the ignorance of the interaction.Accordingly,the JC model was modified by taking into account of the interactive effects of temperature,strain and strain rate.The comparison between the experimental data and the predicting value shows that the modified JC model fits accurately.%通过热压缩试验对Incone1625合金的热变形行为进行了测试.结果显示真应力-真应变曲线的斜率随着温度的降低和应变速率的升高而增大.这表明温度,应变和应变速率之间通过一种复杂的交互作用共同对应变硬化和再结晶产生影响.用Johnson-Cook模型建立的本构方程由于忽略了这个交互作用而不能很好地预测此合金的应力-应变关系.为此对Johnson-Cook模型做了改进.新的模型考虑了温度,应变和应变速率的交互作用.对比结果表明:修改的Johnson-Cook模型的预测值和实验值符合得很好.

  15. Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

    Science.gov (United States)

    Krishna, Ram; Atkinson, Helen V.; Hainsworth, Sarah V.; Gill, Simon P.

    2016-01-01

    Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ') present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ' precipitates in the `as-received' condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen

  16. Influence of sulfur on the passivity of inconel 600 in aqueous environment at 3000C. Relationship with stress corrosion

    International Nuclear Information System (INIS)

    Dissolution kinetics and repassivation of inconel 600 in simulated primary coolant circuits of PWR is studied by fast traction experiment under potentiostatic control. The notion of elementary electrochemical transient is introduced. The model of anodic dissolution - film rupture allows the calculation of crack growth in constant deformation rate tests. When sulfur concentration is smaller than 100 micrograms/g the current is low, above the current is high. Calculation of crack growth from high level current are consistent with experimental data. Influence of pH, temperature, solution composition are determined. A Comparative study with nickel, incoloy 690 and a 19% chromium alloy was carried out to understand fast traction phenomena. Chromium plays an important part without pollution a protecting chromium oxide is formed. In polluted environment sulfur prevent nucleation of this compound and chromium hydroxides are precipitated on the surface. With pure nickel there is no passivity in presence of sulfur

  17. Stress corrosion cracking of Inconel 600 tubing: Influence of thermal treatment, NaOH concentration and temperature

    International Nuclear Information System (INIS)

    A study has been performed concerning the role of thermal treatments on the SCC behaviour of Inconel 600 tubing in NaOH solutions in the temperature range 315-3600C. An additional investigation was undertaken to establish the effect of the NaOH concentration built-up under magnetite deposits. The changes in the microstructural variables in the four metallurgical conditions studied were identified by transmission electron microscopy (TEM). C-ring and slow strain rate tests (10-6 s-1) yielded identical results. SEM fractographs were additionally taken to reveal the cracking mode. It has been found that thermal treatment improves the SCC resistance in hot caustic solutions; particularly annealing at 6500C for 50 h appeared to impart the maximum improvement of SCC resistance. (orig.)

  18. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    International Nuclear Information System (INIS)

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 8710C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 5380C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 4270C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development

  19. Stress corrosion cracking of Inconel 600 tubing: Influence of thermal treatment, NaOH concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borello, A.; Masci, D.; Mignone, A.

    1988-09-01

    A study has been performed concerning the role of thermal treatments on the SCC behaviour of Inconel 600 tubing in NaOH solutions in the temperature range 315-360/sup 0/C. An additional investigation was undertaken to establish the effect of the NaOH concentration built-up under magnetite deposits. The changes in the microstructural variables in the four metallurgical conditions studied were identified by transmission electron microscopy (TEM). C-ring and slow strain rate tests (10/sup -6/ s/sup -1/) yielded identical results. SEM fractographs were additionally taken to reveal the cracking mode. It has been found that thermal treatment improves the SCC resistance in hot caustic solutions; particularly annealing at 650/sup 0/C for 50 h appeared to impart the maximum improvement of SCC resistance.

  20. The effect of grain size on the corrosion behaviour of Inconel 600 in high-temperature steam

    International Nuclear Information System (INIS)

    The effect of grain size on the corrosion behaviour of Inconel 600 has been studied in steam of 40 atm pressure at 8000C. A protective Cr2O3-rich scale is formed initially. After this introductory stage, nodular oxides nucleate at the positions where cracks have occurred in the Cr2O3-rich scale. The weight gain due to steam corrosion has a tendency to decrease with increasing grain size in the stage where the Cr2O3-rich scale is formed. This tendency is reversed in the nodular oxide-forming stage, where the weight gain increases with increasing grain size. The effect of grain size on the corrosion behaviour in the two stages is discussed. (author)

  1. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    Science.gov (United States)

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical. PMID:19903242

  2. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    Directory of Open Access Journals (Sweden)

    WANG Ling

    2007-08-01

    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  3. Investigation of surface integrity in high-speed ball end milling of cantilever shaped thin plate of Inconel 718

    Directory of Open Access Journals (Sweden)

    N.N. Bhopale

    2012-12-01

    Full Text Available The paper addresses the effects of cutting speed and feed on the work piece deflection and surface integrity during milling of cantilever shaped Inconel 718 plate under different cutter orientations. The experiments were conducted on a CNC vertical milling machine using 10 mm diameter TiAlN coated solid carbide ball end milling cutter. Surface integrity is assessed in terms of micro hardness beneath the machined surface. The micro-hardness profile shows different patterns at various cutting parameters. It is observed that at large cutting speed as well as feeds, thicker work piece with larger work piece inclination shows higher micro hardness as compared to the other machining conditions.

  4. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal

    International Nuclear Information System (INIS)

    The influence of process parameters on microstructural characteristics of transient liquid phase (TLP) bonded Inconel 617 alloy was investigated. Experiments were carried out at 1065 deg. C using nickel based filler metal (Ni-4.5% Si-3% B) with B as the melting point depressant (MPD) element. Two different thickness of interlayer and various holding times were employed. The influence of these processing parameters on the characteristics of the joint area particularly size, morphology and composition of precipitates was investigated. The presence of MoB, Mo2B, M23C6, TiC, M23(B, C)6 and Ni3B precipitates in the diffusion layer and Ni3B, Ni3Si and Ni5Si2 precipitates in the interlayer at the interface between the base metal and interlayer were demonstrated using electron back scattered diffraction (EBSD), energy dispersive spectrometry (EDS) and TEM

  5. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    International Nuclear Information System (INIS)

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  6. Study of liquid phase formation kinetics due to solid/solid chemical interaction and its model. Application to the Zircaloy/Inconel

    International Nuclear Information System (INIS)

    A description is made of the chemical interaction between Inconel spacing grids and the Zircaloy of the sheaths. Experiments performed at 1000, 1100 and 1200 deg C with base Zircaloy and with a previously formed layer of ZrO2, show that the kinetics is parabolic. The difference between both types of experiments is that the oxide layer delays the initiation of the Inconel-Zry interaction. A model is presented, for the description of the solid/solid interaction, which leads to the formation of eutectic that is liquid at the experiment temperature. Also a model, which represents the oxide layer dissolution and predicts the instant in which it disappears completely, is presented. (Author)

  7. Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    Science.gov (United States)

    Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin

    2012-02-01

    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.

  8. Study on laser beam welding/superplastic forming technology of multi-sheet cylinder sandwich structure for Inconel718 superalloy with ultra-fine grains

    International Nuclear Information System (INIS)

    Highlights: ► In this study, we design the inner diameter variation of fixture for the structure. ► The welding problem of structure is solved by changing the diameter of the fixture. ► The multi-sheet cylinder sandwich structure is manufactured by LBW/SPF technology. ► Through SPF process, most Laves precipitated phase turns into δ precipitated phase. ► Nb concentration in the dendritics was improved greatly. -- Abstract: Multi-sheet cylinder sandwich structure of Inconel718 superalloy will be widely used in aerospace as heat resisting and heat shielding structure due to its lightweight, high strength and stiffness. Superplasticity of Inconel718 superalloy was investigated. Under T = 950 °C and initial strain rate with ε.=1.6×10-4s-1, the elongation of Inconel718 superalloy is 483.6%. The perfect superplastic forming temperature for Inconel718 superalloy is at 950 °C. The laser penetration welding parameters are as follows: power 1200 W, welding speed 1200 mm/min, defocusing amount −1 mm, shield gas flow 0.6 L/min, and the parameters for superplastic forming are as follows: temperature Tf = 950 °C, pressure Pf = 4.2 MPa, time tf = 130 min. The multi-sheet cylinder sandwich structure manufactured by laser beam welding/superplastic forming (LBW/SPF) technology has good shape, uniform wall thickness distribution, high symmetry in internal structure. Laves phase, harmful to the materials, translates to the δ phase which will help improve the performance of the material after SPF process. The hardness of laser welding joints is improved from 331.63 HV to 391.74 HV after the SPF process. The tensile strength of base material of multi-sheet cylinder sandwich structure has been increased about 261 MPa after the SPF process.

  9. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  10. Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Jeong, Hi Won [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-02-15

    Highlights: • Stress relaxation after aging 620 °C increased carbides and maintained γ′ fraction. • Aging temperature increase to 732 °C raised the γ′ increment after stress relaxation. • Small increase of carbides induced the large increase of γ′ after stress relaxation. • Loading for stress relaxation raised γ′ increment due to dislocation multiplication. - Abstract: Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ′ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ′ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ′ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ′ volume fraction and gained a smaller fraction of γ′ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ′ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M{sub 23}C{sub 6} secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ′ thereby decreasing the volume fraction of γ′ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ′ volume fraction was

  11. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    Directory of Open Access Journals (Sweden)

    Rojas-Morín, A.

    2011-04-01

    Full Text Available A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almería (PSA in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF® plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF region at the operational temperatures of both 650 °C and 900 °C.

    En el concentrador solar de disco parabólico DISTAL-I, situado en la Plataforma Solar de Almería (PSA, en España, se ha instalado un sistema para pruebas de ciclado térmico de materiales. Este sistema permite realizar pruebas abruptas de calentamiento y enfriamiento, en materiales para receptores solares de torre central, al exponerlos a radiación solar concentrada. Estas pruebas se realizan para simular las condiciones de operación de un receptor solar, las condiciones críticas y las condiciones normales. Con este sistema se ha estimado el tiempo de vida bajo fatiga térmica, en una placa de INCONEL 626LCF®, cuando es sometida a radiación solar concentrada. Asimismo, hemos desarrollado un modelo numérico que evalúa el desarrollo térmico en el material de la placa: adicionalmente, el modelo obtiene los esfuerzos de tensión-compresión en la placa, los cuales permiten la estimaciónde las curvas de fatiga vidaesfuerzo (S-N. Estas curvas

  12. Corrosion Resistance of Inconel 740H in Simulated Coal-ash/Flue-gas Environments%Inconel 740H合金在模拟煤灰/烟气中的抗腐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    侯世香; 吴正发; 袁晓娜; 刘东雨

    2016-01-01

    针对用于超超临界锅炉过热器管的镍基高温合金Inconel 740H,在750℃及合成烟气的条件下,研究了涂刷合成煤灰试样和无涂刷试样累计3000 h的腐蚀情况.利用XRD、EDS和SEM对试样的表面和截面进行了分析.结果表明,涂刷合成煤灰试样的腐蚀分为两个阶段,开始在表面生成Cr2O3保护膜,随时间的延长氧化膜被硫酸盐溶解,腐蚀程度较重.无涂刷试样的腐蚀为一个阶段,即氧化和硫化腐蚀.

  13. Effect of argon injection on the high Z impurity generation from the poloidal inconel limiter in FTU

    International Nuclear Information System (INIS)

    Argon injection experiment on FTU (Frascati Tokamak Upgrade) plasma has been utilised to clarify the physical mechanism responsible for impurity production. A simple O-D model for the SOL (scrape off layer), coupled with sputtering by the main deuteron flux and self-sputtering can reproduce the variation of impurity concentration, Ni in the case of inconel limiter in FTU, when Argon is puffed into the plasma. The increase of radiation power losses leads to a decrease of the SOL temperature, and therefore to a decrease of the sputtering yield. Since Zeff remains essentially unchanged by Ar puffing, a fraction of high Z impurity is substituted by Ar ions. As a consequence both the line radiation emission profile and the total radiation losses are modified, while all the other plasma parameters (temperature and density profiles, ohmic power and energy confinement time) remain unchanged. Radiation losses increase up to 80% of the input power, at relatively high densities, with a corresponding decrease of the heat load on the limiter surface

  14. Thermal outgassing properties of mechanically polished and of sand- and bead-blasted Inconel 600 surfaces up to 5000C

    International Nuclear Information System (INIS)

    In the present work, two different types of Inconel 600 samples have been investigated. The first one was mechanically polished and chemically cleaned in several steps and had a total hemispherical emissivity at 750C of epsilon1 = 0.146 and a surface roughness of CLA1 = 0.08 μm, while the second sample was sand- and bead-blasted with epsilon2 = 0.382 and CLA2 = 1.2 μm. The experimental studies were composed of the determination of desorption spectra from 200C up to 5500C at different heating rates, the investigation of the decrease of thermal outgassing rates during a longer heating interval at about 5000C and the measurement of equilibrium outgassing rates at higher temperatures of samples which have been heated several days at about 5000C. The total outgassing rates and the partial outgassing rates of the main components H2, H2O, CO and CO2 have been determined in these studies. Activation energies of desorption, rate constants and equilibrium surface coverages have been calculated from the experimental data using the theory of Redhead. (author)

  15. High-temperature-oxidation-induced ordered structure in Inconel 939 superalloy exposed to oxy-combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jingxi; Wise, Adam; Nuhfer, Thomas; Holcomb, Gordon R; Jablonski, Paul D; Sridhar, Seetharaman; Laughlin, David E

    2013-04-20

    In the integrated oxy-fuel combustion and turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O2. While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation that results in the loss of the strengthening precipitates. In an earlier study of the oxidation of Inconel 939 Ni-based superalloy exposed to oxy-fuel combustion environment for up to 1000 hours, a high-temperature-oxidation-induced phase transformation in the sub-surface region was noticed and a two-phase region formed at the expense of strengthening γ' phase. While one of the two phases was identified as the Ni-matrix (γ solid solution, face-center-cubic) phase, the other product phase remained unidentified. In this study, the crystal structure of the unknown phase and its orientation relationship with the parent Ni-matrix phase was investigated through electron diffraction and high-resolution transmission electron microscopy. It was determined that the crystal structure of the unknown phase could be modeled as a ternary derivative of the ordered η-Ni3Ti phase (D024) structure with lattice parameters of a = 0.5092 nm and c = 0.8336 nm, α = 90º, β = 90º and γ = 120º.

  16. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  17. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    International Nuclear Information System (INIS)

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line

  18. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    International Nuclear Information System (INIS)

    A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almeria (PSA) in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N) fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF) region at the operational temperatures of both 650 degree centigrade and 900 degree centigrade. (Author) 20 refs.

  19. Corrosion Characteristics of Inconel-600 at the NP(Cu)-HYBRID Decontamination Demonstration Test with HANARO FTL Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Young; Park, Sang Yoon; Won, Hui Jun; Kim, Seon Byeong; Choi, Wang Kyu; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been generally used to dissolve the chromium-rich oxide. AP is advantageous for the corrosion resistance, but increases the volume of secondary waste during the decontamination procedure. On the other hand, NP has a high corrosion rate but reduces secondary waste. For the safe use of an oxidative decontamination solution with high corrosive resistance and less amount of secondary waste are required. In this study, we modified NP oxidative decontamination solution by adding Cu{sup 2+} to reduce the corrosion rate. To evaluate the general corrosion characteristics, we measured the weight losses of selected specimens in an NP(Cu) and other solutions. The localized corrosion was observed using an optical microscope (OM). To compare the decontamination performance, we measured the contact dose rate of specimens treated in NP-HYBRID and NP(Cu)-HYBRID systems. The reduced corrosion characteristics of the Inconel-600 specimen in a NP(Cu) oxidative solution was observed in terms of generalized corrosion as well as localized corrosion. Less corrosion characteristics do not affect the performance of the overall decontamination compared to the NP-HYBRID process. Therefore, our results support that the NP(Cu)-HYBRID decontamination process is appropriate for the decontamination of the primary coolant system in a nuclear reactor.

  20. Flank wear and I-kaz 3D correlation in ball end milling process of Inconel 718

    Directory of Open Access Journals (Sweden)

    M.A.S.M. Tahir

    2015-12-01

    Full Text Available Tool wear may deteriorate the machine product quality due to high surface roughness, dimension exceeding tolerance and also to machine tool itself. Tool wear monitoring system is vital to be used in machining process to achieve high quality of the machined product and at the same time improve the productivity. Nowadays, many monitoring system developed using various sensor and statistical technique to analyze the signals being used. In this paper, I-kaz 3D method is used to analyze cutting force signal in milling process of Inconel 718 for monitoring the status of tool wear in milling process. The results from analyzing cutting force show that I-kaz 3D coefficient has a correlation with cutting tool condition. Tool wear will generate high value of I-kaz 3D coefficient than the sharp cutting tool. Furthermore, the three dimension graphical representation of I-kaz 3D for all cutting condition shown that the degree of scattering data increases with tool wear progression.

  1. Research and Improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740

    International Nuclear Information System (INIS)

    INCONEL alloy 740 is a newly developed Ni-Cr-Co-Mo-Nb-Ti-Al superalloy in the application to ultra-supercritical boilers with steam temperatures up to 700 deg. C. By means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), micro-chemical phase analyses, and corrosion-resisting test, this paper investigates the structure stability of the alloy at elevated temperature and concentrates on coal ash corrosion performance of the alloy under the simulated coal ash/flue gas condition. Experimental results show that the most important structure instabilities of the alloy during prolonged aging are γ' coarsening, γ' to η transformation and G phase formation at grain boundary. The performance of corrosion resistance of the alloy would meet the requirement of ultra-supercritical boiler tubes. The phase computation by means of Thermo-Calc has been adopted in chemical composition modification for structure stability improvement. Two suggested new modified alloys in adjustment of the Al and Ti contents and in control of Si level, and also in maintenance of Cr content of the alloy were designed and melted for experimental investigation. These two modified alloys exhibit more stable microstructure during 760 deg. C long time aging

  2. Influence of humidity on high temperature oxidation of Inconel 600 alloy: Oxide layers and residual stress study

    International Nuclear Information System (INIS)

    In order to understand the influence of humidity on high temperature oxidation of Inconel 600 alloy, in this work, water vapour (absolute humidity varying from 0% to 19%) was introduced in the thermal gravimetric analysis (TGA) system under artificial air between 600 °C and 900 °C. The oxides identification and the residual stress in the oxide layers have been studied by X-ray diffraction method in each of two oxide phases, simultaneously. The oxide surface morphology, cross-section microstructure and the chemical composition of the oxide layers were determined by FEG-SEM (Field Emission Gun Scanning Electron Microscope) observation and FEG-SEM EDS (Energy-dispersive X-ray spectroscopy) analysis. Depending on the oxidation temperature, the humidity and the oxidation duration, the oxide layer differed significantly. The residual stress levels in the different oxide layers (NiO-type layer and Cr2O3-type layer) have also been affected by the introduction of the water vapour. According to the analysis results, the residual stresses on oxide mainly came from the growth stress and thermomechanical stress; and the oxide growth stress was especially affected by humidity at high temperature.

  3. Diffusion of Cr, Fe, and Ti ions from Ni-base alloy Inconel-718 into a transition alumina coating

    International Nuclear Information System (INIS)

    Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV–vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 °C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. - Highlights: ► We investigated the diffusion of Cr into alumina coatings applied on IN-718. ► The ingress of Cr led to the formation of mixed alumina/chromium coatings. ► The mass gain of mixed alumina/chromium coatings was compared to uncoated IN-718. ► The mixed alumina/chromium coatings improved the oxidation resistance of IN-718.

  4. Control of interfacial reactions during liquid phase processing of aluminum matrix composites reinforced with INCONEL 601 fibers

    Science.gov (United States)

    Boland, F.; Colin, C.; Delannay, F.

    1998-06-01

    A comprehensive investigation is made of the parameters affecting the extent of interface reactions during squeeze casting of composites consisting of a matrix of either pure Al or alloy AS13 reinforced with fibers of INCONEL 601. The process parameters are the preform thickness and temperature, the fiber volume fraction, the temperature and mass of the liquid metal, and the temperature of the die. Adjustment of these process parameters made possible the full control of reactions. It is found that reactions proceed mainly in the solid state after decomposition of the oxide barrier layer covering the fibers. A simple kinetic model is developed that enlightens the role of this barrier layer. No trace of reaction could be detected in composites processed using preoxidized preforms. Alloying Al with Si also induces a drastic reduction of reactivity. The high ductility of the composites attests to the processing quality. An original procedure is proposed for measuring the activation energy for initiation of reactions by differential thermal analysis.

  5. Aspectos metalúrgicos de revestimentos dissimilares com a superliga à base de níquel inconel 625 Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys

    Directory of Open Access Journals (Sweden)

    Cleiton Carvalho Silva

    2012-09-01

    Full Text Available Prolongar a vida útil e aumentar a confiabilidade de equipamentos e tubulações de plantas de produção e processamento de petróleo é uma busca constante no setor de petróleo e gás. Tais aspectos dependem essencialmente do uso de ligas resistentes à corrosão. Neste contexto, a soldagem de revestimento com superligas à base de níquel tem sido uma alternativa interessante, pois confere aos equipamentos uma alta resistência à corrosão com um custo inferior, se comparado à fabricação de componentes ou tubulações maciças com superligas. Assim, o objetivo do presente trabalho foi investigar o comportamento metalúrgico de revestimento de superliga à base de níquel do tipo Inconel 625 depositados pelo processo TIG com alimentação de arame frio. As soldagens foram realizadas em uma bancada robotizada, empregando uma fonte eletrônica de soldagem com sistema de aquisição de dados para o monitoramento dos sinais de corrente e tensão. A caracterização microestrutural foi realizada através das técnicas de microscopia eletrônica de varredura (MEV e transmissão (MET, espectroscopia de energia dispersiva de raios-X (EDS. Os resultados mostraram que a microestrutura do metal de solda foi constituída por uma matriz γ com fases secundárias ricas em Nb. Foi encontrada a formação de precipitados complexos de carbonetos/nitretos de Ti e Nb.To extend the life and reliability of pipes and equipment in oil & gas production and processing settings is a continuous demand. These aspects are essentially dependent on corrosion resistant alloys used. In this context, the weld overlay with Ni-based superalloys is a great interesting alternative, since improve the corrosion resistance without increase the cost of manufacture when compared to massive equipment. Thus, the objective of this study was to evaluate the metallurgical aspects of Inconel 625 weld overlays deposited by GTAW cold wire feed process. The welds were performed using a

  6. Solidificação da zona de fusão na soldagem do AISI 304 com inconel 600 por laser de Nd: YAG Microstructure development in Nd: YAG laser welding of AISI 304 and Inconel 600

    Directory of Open Access Journals (Sweden)

    Maurício David M. das Neves

    2009-06-01

    Full Text Available Neste trabalho estudou-se a morfologia de solidificação da zona de fusão, numa junta formada a partir de materiais dissimilares, composta por aço inoxidável austenítico AISI 304 e por liga de níquel Inconel 600, soldada com laser pulsado de Nd:YAG. Os parâmetros do feixe laser e do sistema óptico foram selecionados, visando obter uma solda com penetração total e bom acabamento superficial. A caracterização microestrutural foi realizada por microscopia ótica, onde se observou uma zona de fusão com penetração total do tipo keyhole, a presença de pequenos poros e a ausência de trincas. As juntas soldadas foram caracterizadas também, por meio de microscopia eletrônica de varredura (MEV. Medidas realizadas por espectrometria de raios X por dispersão de energia na zona de fusão indicaram uma distribuição levemente heterogênea de níquel e ferro. Observou-se que o início de solidificação da zona de fusão ocorreu por meio de crescimento epitaxial. A morfologia de solidificação da ZF foi basicamente dendrítica e celular sendo, influenciada pelo gradiente de temperatura, velocidade de solidificação e composição química. As variações de composição química e da morfologia de solidificação não alteraram significativamente os valores de microdureza Vickers na zona de fusão. Resultados obtidos nos ensaios de tração indicaram valores de eficiência de soldagem adequados.An autogenous laser welding of dissimilar materials involving AISI 304 austenitic stainless steels and Inconel 600 nickel alloy was investigated in this study. Hence, the aim of this investigation was to study the solidification and microstructure of fusion zone when using a pulsed Nd:YAG laser. The laser and optical beam parameters were chosen to achieve a good weld with total penetration. Optical microscopy pictures showed a typical keyhole weld with total penetration, small pores and free of cracks. The x-ray spectrometry by energy dispersion

  7. Study on LBW/SPF Technology of Multi-sheet Cylinder Sandwich Structure for Inconel718 Superalloy%Inconel718合金多层夹芯筒结构LBW/SPF技术研究

    Institute of Scientific and Technical Information of China (English)

    曲凤盛; 卢振; 刑飞; 张凯锋

    2012-01-01

    The high temperature plasticity of the laser butt welding plate and LBW/SPF technology for Inconel718 superalloy with ultrafine grain were investigated. The results showed that when the tensile direction is vertical to laser welding seam, the maximum elonga- tion is 400.6% at temperature of 950 ℃ with initial strain rate of 3.1 ×10 -4 s -1. When the tensile direction is parallel to laser welding seam, the maximum elongation is 164.0% at temperature of 965 ℃ with initial strain rate of 6.2 × 10 -4 s -1. At the temperature of 950 ~ 980 ℃, the laser butt welding plate has good plasticity in free bulging state. The relative bulging height is higher than 1. 0. The laser welding problem of multi-sheet cylinder sandwich structure is settled through clamp apparatus which has internal stay of diametral varia- tion. The laser penetration welding parameters are the power of 1 200 W, welding speed of 1 200 mm/min, defocusing amount of - 1 mm, shield gas flow rate of 0.6 L/min. The parameters for superplastic forming are the temperature of 965 ℃, pressure of 4.2 MPa, time of 130 min. The multi-sheet cylinder sandwich structure by LBW/SPF composite technology has good shape, uniform wall thickness distribution, the high symmetry of internal structure.%研究了超细晶Inconel718合金激光对接板高温塑性及多层夹芯筒结构的LBW/SPF成形技术。结果表明:垂直焊缝拉伸时最大延伸率发生在温度为950℃、应变速率为3.1×10-4s-1条件下,为400.6%,平行焊缝拉伸时最大延伸率发生在温度为965℃,应变速率为6.2×10-4s-1条件下,为164.0%。对接板在950~980℃相对胀形高度均高于1.0。通过设计直径可变的卡具以及采取点焊加固等措施,解决了多层夹芯结构的激光焊接难题。激光穿透焊参数:功率1 200 W,焊速1 200 mm/min,离焦量-1 mm,保护气体流量0.6 L/min,超塑成形参数:温度Tf=965℃,压力Pf=4.2 MPa,时间tf=130 min。采用LBW/SPF技术制造的多层夹

  8. 激光选区熔化Inconel625合金开裂行为及抑制研究%Cracking Behavior and Inhibiting Process of Inconel 625 Alloy Formed by Selective Laser Melting

    Institute of Scientific and Technical Information of China (English)

    张洁; 李帅; 魏青松; 史玉升; 王联凤; 郭立杰

    2015-01-01

    裂纹是激光选区熔化(SLM,selective laser melting)镍基高温合金最严重的缺陷之一,严重削弱了材料的力学性能.采用逐行扫描策略制备了Inconel 625合金试样,利用扫描电子显微镜(SEM)、电子背散射衍射(EBSD)等检测方法研究了裂纹微观形貌、周边元素和晶粒分布等.SEM结果显示在常温下成形件内部形成大量缅小裂纹,裂纹长度约100μm.裂纹形成的内因是在快速凝固的过程中,由于Nb,Mo元素的局部偏析,形成(γ +Laves)共晶凝固.同时在脆性相Laves周围形成应力集中,导致沿着晶界开裂,SLM高凝固速率产生的残余应力是微裂纹产生的直接原因.通过基板加热工艺减小热残余应力,利用X射线测定了不同预热温度(150和300℃)下的残余应力值.结果显示基板预热降低了热残余应力,并最终抑制了裂纹的产生,随着温度的升高,裂纹数量逐渐减少,在预热温度300℃时裂纹数量最少.

  9. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    Science.gov (United States)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  10. Brazing of inconel 600 and SUS304 stainless steel with used of rapidly solidified nickel-base brazing foil

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Yasuyuki; Ariga, Tadashi (Tokai Univ., Tokyo (Japan))

    1992-05-01

    In this study, the clad material which have been brazed with the nickel-base heat resistant alloy; Inconel 600 on AISI304 stainless steel has been produced by the brazing using three types of nickel-base brazing foils. The three types of nickel-base brazing foils are 7Cr(4.5Si-7.0Cr-3.0B-3.0Fe-Ni bal.), 5Cr(4.5Si-5.0Cr-3.0B-3.0Fe-Ni bal.) and 10Cr(4.5Si-10.0Cr-3.0B-3.0Fe-Ni bal.). Brazing was done in an electrical resistant furnace in an argon gas atmosphere. The brazing temperatures employed in this study were 1050, 1100, 1150, 1200 and 1250degC and the brazing times were 10, 30, 60 and 120 min for all types of brazing foils. The property of the joint was estimated by the mechanical properties, microstructures and distributions of the elements which were investigated by SEM and EPMA. The brazed joint was obtained for all of brazing conditions in this study. The shear strength of the specimen increased with increasing brazing time except at 1050degC. At 1050degC, the shear strength of the specimen was not influenced by brazing time. In this case, the break of the specimen during the shear test occurred in the brazed layer. At 1250degC, the value of 450 MPa was obtained as the maximum shear strength in this study; the break of the specimen occurred in the base metal. The shear strength of the specimen increased with increasing brazing temperature. The shear strength of the specimen increased with increasing chromium content in the brazing foil to 7 mass%. (J.P.N.).

  11. Brazing of inconel 600 and SUS304 stainless steel with used of rapidly solidified nickel-base brazing foil

    International Nuclear Information System (INIS)

    In this study, the clad material which have been brazed with the nickel-base heat resistant alloy; Inconel 600 on AISI304 stainless steel has been produced by the brazing using three types of nickel-base brazing foils. The three types of nickel-base brazing foils are 7Cr(4.5Si-7.0Cr-3.0B-3.0Fe-Ni bal.), 5Cr(4.5Si-5.0Cr-3.0B-3.0Fe-Ni bal.) and 10Cr(4.5Si-10.0Cr-3.0B-3.0Fe-Ni bal.). Brazing was done in an electrical resistant furnace in an argon gas atmosphere. The brazing temperatures employed in this study were 1050, 1100, 1150, 1200 and 1250degC and the brazing times were 10, 30, 60 and 120 min for all types of brazing foils. The property of the joint was estimated by the mechanical properties, microstructures and distributions of the elements which were investigated by SEM and EPMA. The brazed joint was obtained for all of brazing conditions in this study. The shear strength of the specimen increased with increasing brazing time except at 1050degC. At 1050degC, the shear strength of the specimen was not influenced by brazing time. In this case, the break of the specimen during the shear test occurred in the brazed layer. At 1250degC, the value of 450 MPa was obtained as the maximum shear strength in this study; the break of the specimen occurred in the base metal. The shear strength of the specimen increased with increasing brazing temperature. The shear strength of the specimen increased with increasing chromium content in the brazing foil to 7 mass%. (J.P.N.)

  12. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H [ORNL; Nandwana, Peeyush [ORNL; Kirka, Michael M [ORNL; Dehoff, Ryan R [ORNL; Sames, William [Texas A& M University; ERDMAN III, DONALD L [ORNL; Eklund, Anders [Avure Technologies, Inc.; Howard, Ron [Avure Technologies, Inc.

    2015-04-01

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powder bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.

  13. 700℃超超临界锅炉过热器管材Inconel 740H合金冷变形行为研究%Cold Deformation Behavior of Inconel 740H Alloy for 700 ℃ Ultra-supercritical Boiler Superheater Tubes

    Institute of Scientific and Technical Information of China (English)

    江河; 董建新; 张麦仓; 姚志浩

    2015-01-01

    Inconel 740H合金荒管进行了不同变形量的冷轧实验,分析了其冷变形特性.通过冷变形后不同制度的退火处理,对Inconel 740H合金组织演变规律进行研究,建立了退火过程中再结晶晶粒长大方程.同时引入不均匀因子Z对组织均匀性进行评定.研究表明,Inconel 740H合金中间退火处理中的静态再结晶过程主要受退火温度和保温时间影响,所构建的再结晶晶粒长大方程与实验值吻合度较好.冷轧变形量为20%,中间退火制度为1100℃/5 min时得到的组织最为均匀.

  14. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    OpenAIRE

    Shamini Janasekaran; Ai Wen Tan; Farazila Yusof; Mohd Hamdi Abdul Shukor

    2016-01-01

    Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW), low-power Ytterbium (Yb)-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on ...

  15. Impact of hydrogen on the high cycle fatigue behaviour of Inconel 718 in asymmetric push-pull mode at room temperature

    OpenAIRE

    Bruchhausen, Matthias; Fischer, Burkhard; Ruiz, A.; Gonzalez Sanchez, Sergio; Hähner, Peter; Soller, Sebastian

    2014-01-01

    The influence of hydrogen on the high cycle fatigue (HCF) behaviour of Inconel 718 has been studied at room temperature in asymmetric push–pull mode using an ultrasonic HCF test rig. Fatigue tests have been carried out in gaseous hydrogen (GH2) and in Ar at a pressure of 30 MPa. Oscillating stresses with amplitudes (σa) up to 450 MPa and mean stresses (σm) up to 600 MPa have been applied. For a given σa and σm, the lifetime in Ar is generally longer than in GH2, which is explained by a hydrog...

  16. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  17. Influence of Hold Times on Fatigue Life and Fracture Behavior of Cast Superalloy INCONEL 713LC at 700°C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Man, Jiří; Petrenec, Martin; Polák, Jaroslav; Podrábský, T.

    Ottawa : NRCan - CANMET, 2009, s. 1-9. ISBN N. [International Conference on Fracture /12./. Ottawa (CA), 12.07.2009-17.07.2009] R&D Projects: GA AV ČR 1QS200410502; GA ČR GA106/08/1631; GA ČR GA106/07/1507 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue life * Hold times * High temperature * Inconel 713LC Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.icf12.org/

  18. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    OpenAIRE

    Hui Gon Chun; Tong Yul Cho; Jae Hong Yoon; Gun Hwan Lee

    2015-01-01

    High-velocity oxygen-fuel (HVOF) thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C) thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. ...

  19. Comparative Analysis of Properties and Microstructure of the Plastically Deformed Alloy Inconel®718, Manufactured by Plastic Working and Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2016-03-01

    Full Text Available Nickel superalloys as Inconel® are materials widely used in the aerospace industry among others for diffusers, combustion chamber, shells of gas generators and other. In most cases, manufacturing process of those parts are used metal strips, produced by conventional plastic processing techniques, and thus by hot or cold rolling. An alternative technology allowing for manufacturing components for jet engines is the technique of 3D printing (additive manufacturing, and most of all Direct Metal Laser Sintering, which is one of the latest achievement in field of additive technologies.

  20. Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    Dong-Gyu AHN; Kyung-Won BYUN

    2009-01-01

    Recently, laser cutting technologies begin to use for manufacturing mechanical parts of lnconel super-alloy sheet due to difficulties of machining of the Inconel material as a results of its extremely tough nature. The objective of this work is to investigate the influence of cutting parameters on surface characteristics of the cut section in the cutting of Inconel 718 super-alloy sheet using CW Nd:YAG laser through laser cutting experiments. Normal cutting experiments were performed using a laser cutting system with six-axis controlled automatic robot and auto-tracking system of the focal distance. From the results of the experiments, the effects of the cutting parameters on the surface roughness, the striation formation and the microstructure of the cut section were examined. In addition, an optimal cutting condition, at which the surface roughness is minimized and both the delayed cutting phenomenon and the micro-cracking are not initiated, is estimated to improve both the part quality and the cutting efficiency.

  1. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading

    International Nuclear Information System (INIS)

    Nickel-based superalloys, such as Inconel 939, are a long-established construction material for high-temperature applications and profound knowledge of the mechanical properties for this alloy produced by conventional techniques exists. However, many applications demand for highly complex geometries, e.g. in order to optimize the cooling capability of thermally loaded parts. Thus, additive manufacturing (AM) techniques have recently attracted substantial interest as they provide for an increased freedom of design. However, the microstructural features after AM processing are different from those after conventional processing. Thus, further research is vital for understanding the microstructure-processing relationship and its impact on the resulting mechanical properties. The aim of the present study was to investigate Inconel 939 processed by selective laser melting (SLM) and to reveal the differences to the conventional cast alloy. Thorough examinations were conducted using electron backscatter diffraction, transmission electron microscopy, optical microscopy and mechanical testing. It is demonstrated that the microstructure of the SLM-material is highly influenced by the heat flux during layer-wise manufacturing and consequently anisotropic microstructural features prevail. An epitaxial grain growth accounts for strong bonding between the single layers resulting in good mechanical properties already in the as-built condition. A heat treatment following SLM leads to microstructural features different to those obtained after the same heat treatment of the cast alloy. Still, the mechanical performance of the latter is met underlining the potential of this technique for producing complex parts for high temperature applications

  2. Analysis and modelling of the chemical interactions between Inconel grid spacers and Zircaloy cladding of LWR fuel rods; formation of liquid phases due to chemical interactions

    International Nuclear Information System (INIS)

    The experimental results show that the interactions obey parabolic rate laws at the examined temperatures of 1000, 1100 and 1200degC, with or without preoxidized Zircaloy. The fundamental difference of the experiments with preoxidized Zircaloy (oxide layer thickness ≤ 100μm) compared to as-received Zircaloy is the time delay of the start of the interaction between Inconel and Zircaloy. Two models will be presented to describe the experimental results: a) the DISOL code, which is able to simulate the oxidation of Zircaloy up to a given oxide layer thickness and then the dissolution of the ZrO2 layer by the Zircaloy, and b) the solid/solid interaction model that is able to describe the kinetics of the Inconel/Zircaloy interaction. The simple relations obtained as a result of this work can be introduced as modules in SFD code systems to describe the behavior of the core with increasing temperature. Comparison between the experimental results and the code predictions shows a good agreement. (orig.)

  3. Friction and wear behavior of Inconel 625 with Ni3Ti, TiN, TiC-CVD coatings in an HTGR environment

    International Nuclear Information System (INIS)

    The following conclusions apply to Inconel 625 with Ni3Ti, TiN, TiC-CVD coatings, tested in an HTGR environment in a temperature range between 500 and 9000C at a contact pressure of 3.45 MPa. The average wear rate is very small varying between 0.0 and 1.7 x 10-4 g/m. The wear rate shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases or as the sliding velocity decreases. Damage experienced by wear areas is minimal. Stick-slip friction was observed at low sliding velocity, however the friction coefficient is low (maximum 0.63) with an average value of about 0.44. The friction coefficient shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases, or as the sliding velocity decreases. Ni3Ti, TiN, TiC-CVD coatings, are considered effective in minimizing friction and wear damage of Inconel 625 in an HTGR environment

  4. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    Science.gov (United States)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  5. Combined strengthening of multi-phase and graded interface in laser additive manufactured TiC/Inconel 718 composites

    International Nuclear Information System (INIS)

    Laser metal deposition (LMD) additive manufacturing of TiC particle reinforced Inconel 718 composite parts was performed. The influence of laser energy density (LED) on densification, microstructures and wear behaviour of LMD-processed composites was studied. It showed that using a LED of 280 J mm−3 produced ∼5% porosity in LMD-processed composites, caused by the aggregation of reinforcing particles. A further increase in LED above 350 J mm−3 yielded near-full densification. Two categories of reinforcing phases, i.e. the substoichiometric TiCx particles and the in situ (Ti,M)C (M = Mo, Nb and Cr) carbide having 7–10 at% Nb and Mo contents, were formed in the matrix of LMD-processed composites. The TiCx reinforcing particles changed from an irregular poly-angular shape to a smoothened and refined structure as the LED increased. An increase in LED resulted in a larger amount of phase formation and an enhanced degree of crystal growth of the in situ (Ti,M)C reinforcement. The interfacial graded layer with thickness of 0.2–1.2 µm, which was identified as (Ti,M)C (M = Mo, Nb and Cr) carbide with 5–6 at% Mo and Nb contents, was tailored between the TiCx particles and the matrix. At an optimal LED of 420 J mm−3, a considerably low coefficient of friction of 0.38 and resultant low wear rate of 1.8 × 10−4 mm3 N−1 m−1 were obtained in sliding tests, due to the combined strengthening of the interfacial graded layer and the multiple reinforcing phases. The wear resistance decreased at an excessive LED because of the coarsening of reinforcement crystals and the decrease in microstructural uniformity of composites. (paper)

  6. 300℃氮气中交变载荷条件下Inconel 690合金的微动磨损特性%Fretting wear behavior of Inconel 690 alloy under alternating load conditions at 300℃ in nitrogen environment

    Institute of Scientific and Technical Information of China (English)

    张晓宇; 任平弟; 蔡振兵; 彭金方; 刘建华; 朱旻昊

    2016-01-01

    The fretting wear mechanisms and kinetic behaviours of Inconel690 alloy were investigated on the improved PLINT fretting rig under alternating loads conditions in high-temperature controlled-atmosphere environments. The results show that the fretting running behaviors are closely related to the normal excitation frequency. In parallelogram shapedFt−D curves, the friction fluctuates periodically, and accordingly the fretting runs in the slip regime (SR). Five stages of friction force curves can be observed at 300℃ in nitrogen environment, including initial stage, ascending stage, peak value stage descending stage and steady stage. The fretting wear behaviors for Inconel 690 alloy strongly depend on the normal load, displacement amplitude, temperature, atmosphere, excitation frequency and other test conditions. The super position effect of fretting wear behavior due to the combined effect of alternating normal force and tangential force is produced, so that delamination phenomenon becomes much more prominent. The abrasive wear and delamination are the major mechanisms of Inconel 690 at 300℃ in nitrogen environment.%采用改进后的PLINT高温可控气氛的微动磨损试验机,研究Inconel 690合金在300℃氮气及法向交变载荷条件下的微动磨损机制和动力学特性。结果表明:微动运行行为与激振频率密切相关,微动的Ft−D曲线呈现摩擦力周期波动的平行四边形型特征,微动运行于滑移区。在300℃氮气环境中,摩擦力的动态变化可以分为5个阶段,即跑合阶段、上升阶段、峰值阶段、下降阶段和稳定阶段。Inconel 690合金的微动损伤行为强烈地依赖于载荷、位移幅值、环境温度、气氛及激振频率等试验条件。从表面损伤形貌看,损伤微结构与试验参数密切相关;由于交变法向力和切向力共同作用,微动产生叠加效应,使剥层现象更加突出。在300℃氮气环境下,Inconel 690合金的损

  7. ASTM 4130自动氩弧焊堆焊 Inconel 625焊接工艺%Procedure of 625 Overlay Weld on ASTM 4130 75K

    Institute of Scientific and Technical Information of China (English)

    郭必永

    2014-01-01

    通过理论分析及试验结合的方法,确认ASTM 413075K调质钢自动氩弧焊堆焊Inconel 625的工艺确认,根据API 6A Ed 20th和ASME IX-2010的要求进行评定,此结果可为生产提供一定的指导。%T hrough the combination of theoretical analysis and test ,the procedure of 625 overlay weld on ASTM 4130 75K which was quenched and tempered steel ,by automatic argon tungsten arc welding ,was evaluated according to API 6A Ed 20th and ASME IX-2010 requirements ,and provides guidance for production .

  8. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 2

    International Nuclear Information System (INIS)

    The redox potential of 3 H2O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless steel alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 13 refs., 522 figs., tabs

  9. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 1

    International Nuclear Information System (INIS)

    The redox potential of 3 H2O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 279 figs., tabs

  10. Effect of the Fine-Grained Structure on the Fatigue Properties of the Heat-Resistant Nickel-Iron Alloy Inconel 718

    Science.gov (United States)

    Mukhtarov, Sh. Kh.; Shakhov, R. V.

    2015-10-01

    It is well known that ultrafine-grained nickel alloys with average grain sizes d = 0.1-1 μm possess improved hot workability and can be used for superplastic forming or rolling. However, microstructure refinement can worsen some performance characteristics of the alloy, for example, heat-resistant or fatigue properties. In the present work, fatigue characteristics of the fine-grained alloy Inconel 718 are investigated. Ultrafine-grained alloys with average grain sizes d = 0.1-1 μm were manufactured by multiple forging with stage-by-stage deformation temperature decrease. During standard heat treatment of the alloy performed to obtain the desired properties, the γ-grain size was controlled by precipitations of δ-phase particles along the boundaries. Results of low-cycle fatigue tests of the fine-grained alloy at room and elevated temperatures are compared with the properties of the coarse-grained alloy.

  11. Tensile properties of haynes alloy 230 and inconel 617 after long exposures to LiF-22CaF2 and vacuum at 1093 K

    Science.gov (United States)

    Whittenberger, J. D.

    1994-12-01

    As a part of a study of a space-based thermal energy storage system utilizing the latent heat of fusion of the eutectic salt LiF-20CaF2 (mole%), the two wrought Ni-base superalloys Haynes alloy 230 and Inconel 617 were subjected to molten salt, its vapor, and vacuum for periods as long as 10,000 h at 1093 K. Following exposure, the microstructures were characterized, and samples from each superalloy were tensile tested between 77 and 1200 K. Neither the structure nor mechanical properties revealed evidence for additional degradation due to exposures to the salt. Although some loss in tensile properties was noted, particularly at 77 K, this reduction could be ascribed to the influence of simple aging at 1093 K.

  12. A preliminary mechanical property and stress corrosion evaluation of VIM-VAR work strengthened and direct aged Inconel 718 bar material

    Science.gov (United States)

    Montano, J. W.

    1987-01-01

    This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.

  13. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  14. Inconel740H主要强化元素对热力学平衡相析出行为的影响

    Institute of Scientific and Technical Information of China (English)

    符锐; 林富生; 赵双群; 迟成宇

    2013-01-01

    对700℃等级超超临界电站过热器/再热器管材所用镍基高温合金Inconel740H进行热力学相计算并研究了主要析出强化元素对其平衡析出相析出行为的影响.结果表明:合金中),’相和M:。C。碳化物稳定温度范围较宽;Al、Ti和Nb3种元素对y1目、77相和口相的析出行为影响较大,而co元素对其影响不大,其中Al对7’相和d相的析出和稳定有促进作用,对刀相却有抑制作用,Ti和Nb对7’相、即相和口相均有促进作用;C对M。。c。碳化物析出量的影响显著,而Cr对M2。C。的析出温度影响显著.将Al、Ti、Nb、C和Cr的质量分数控制在一定范围内并适当减小Co的质量分数,可以使Inconel740H合金的成分范围得到一定的优化.

  15. Assessing the kinetics of high temperature oxidation of Inconel 617 in a dedicated HTR impure helium facility coupling thermogravimetry and gas phase chromatography

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: •New facility coupling thermogravimetry (TGA) with gas phase chromatography (GPC). •Dedicated for HT oxidation study in VHTR impure helium containing CO, H2O and H2. •The oxidation kinetics obeys a complete parabolic law due to a mixed kinetic regime. •CO contributes during initial stage of oxidation only for very low H2O partial pressure. •Long-term oxidation of Inconel 617 by H2O is diffusion controlled with constant kp. -- Abstract: A new facility coupling thermogravimetric analysis (TGA) with gas phase chromatography (GPC) has been developed. This facility is dedicated for studying high temperature oxidation of Inconel 617 in impure helium environment containing H2O, H2 and CO at very low partial pressures (in the Pa range), which is representative of the high temperature reactor (HTR) concept developed within the Generation IV Forum. Simultaneous acquisition of mass gain and gas composition has allowed the influence of carbon monoxide and water vapour on the kinetics of oxidation to be studied. GPC measurements of gas consumption have allowed the plotting of individual mass gain curves for oxidation by H2O and CO. During isothermal exposure at 1123 K for 20 h, the oxidation was mainly due to water vapour with a minor contribution of carbon monoxide during the first hours. The contribution of water vapour to the oxidation kinetics was extracted. It was shown to obey a complete parabolic law and to be limited by an interfacial reaction during the first few hours of oxidation and to be controlled by a mixed interfacial and diffusion process, diffusion becoming the rate-determining step for long term oxidation. There was very good agreement between GPC measurements and the experimental TGA results

  16. Assessing the kinetics of high temperature oxidation of Inconel 617 in a dedicated HTR impure helium facility coupling thermogravimetry and gas phase chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Chapovaloff, J., E-mail: chpvlff@aol.com [AREVA NP, Centre Technique, Département Corrosion-Chimie, 30 Bd de l’industrie, 71200 Le Creusot (France); Ecole Nationale Supérieure des Mines, SMS-EMSE, CNRS: UMR5146, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, 91191 Gif sur Yvette (France); Combrade, P., E-mail: pierre.combrade@orange.fr [AREVA NP, Centre Technique, Département Corrosion-Chimie, 30 Bd de l’industrie, 71200 Le Creusot (France); ACXCOR, 63, chemin de l’Arnica, 42660 Le Bessat (France); Pijolat, M., E-mail: mpijolat@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR5148, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France); Wolski, K., E-mail: wolski@emse.fr [Ecole Nationale Supérieure des Mines, SMS-EMSE, CNRS: UMR5146, LCG, 158 Cours Fauriel, 42023 Saint Etienne (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •New facility coupling thermogravimetry (TGA) with gas phase chromatography (GPC). •Dedicated for HT oxidation study in VHTR impure helium containing CO, H{sub 2}O and H{sub 2}. •The oxidation kinetics obeys a complete parabolic law due to a mixed kinetic regime. •CO contributes during initial stage of oxidation only for very low H{sub 2}O partial pressure. •Long-term oxidation of Inconel 617 by H{sub 2}O is diffusion controlled with constant kp. -- Abstract: A new facility coupling thermogravimetric analysis (TGA) with gas phase chromatography (GPC) has been developed. This facility is dedicated for studying high temperature oxidation of Inconel 617 in impure helium environment containing H{sub 2}O, H{sub 2} and CO at very low partial pressures (in the Pa range), which is representative of the high temperature reactor (HTR) concept developed within the Generation IV Forum. Simultaneous acquisition of mass gain and gas composition has allowed the influence of carbon monoxide and water vapour on the kinetics of oxidation to be studied. GPC measurements of gas consumption have allowed the plotting of individual mass gain curves for oxidation by H{sub 2}O and CO. During isothermal exposure at 1123 K for 20 h, the oxidation was mainly due to water vapour with a minor contribution of carbon monoxide during the first hours. The contribution of water vapour to the oxidation kinetics was extracted. It was shown to obey a complete parabolic law and to be limited by an interfacial reaction during the first few hours of oxidation and to be controlled by a mixed interfacial and diffusion process, diffusion becoming the rate-determining step for long term oxidation. There was very good agreement between GPC measurements and the experimental TGA results.

  17. Production and welding technology of some high-temperature nickel alloys in relation to their properties

    International Nuclear Information System (INIS)

    The most effective matching of alloys to the needs of advanced high-temperature gas-cooled reactors requires not only a knowledge of material properties, but also some understanding of the inherent general characteristics of this type of alloy. Some of the characteristic features of high-temperature nickel-based alloys are explored and general guidelines offered for their most effective use. Examples are drawn from three commercial materials: Inconel alloy 617, Incoloy alloy 800H, and Nimonic alloy 86. Such items as hot and cold working, heat treating, welding, and mechanical properties are considered

  18. Study on Selective Laser Melting Additive Manufacturing Process of INCONEL Ni-based Superalloy%INCONEL系镍基高温合金选区激光熔化增材制造工艺研究

    Institute of Scientific and Technical Information of China (English)

    张颖; 顾冬冬; 沈理达; 田宗军

    2014-01-01

    Influence of the process parameters on densification behavior ,microstructure characteristics,microhardness and wear performance of SLM-processed Inconel 718 alloy samples was studied comprehensively. The result shows that at a lower laser linear energy density (η),the balling effect caused a low densification level. At a higher value of laser energy density with reasonable process parameters,nearly full dense Inconel 718 part was obtained. Besides,as laser energy density increased,microstructures of Inconel 718 parts experienced such changes:coarsened columnar dendrites,clustered dendrites,slender and uniformly distributed columnar dendrites. Samples manufactured at optimized process parameters exhibited high microhardness of 397.8 HV0.2,low mean COF value of 0.40 and low wear rate of 4.78 ×10-4 mm3/Nm. The formation of fine microstructure and the protective tribolayer gave the sample good wear performance.%研究了激光加工工艺参数对选区激光熔化工艺成形的Inconel 718合金试样的致密化行为、显微组织特征、硬度及摩擦磨损性能的影响。结果表明:当激光线能量密度(η)较低时,球化效应的出现使试样的致密度水平较低;在较高的线能量密度与合适的加工参数下,可获得接近完全致密的Inconel 718合金试样。同时,随着激光线能量密度的增加,SLM成形Inconel 718合金试样的显微组织经历了粗大的柱状树枝晶、聚集的枝晶、细长而均匀分布的柱状枝晶等变化过程。在优化工艺参数下,成形试样的显微硬度高达397.8 HV0.2;摩擦系数和磨损率较低,分别为0.40和4.78×10-4 mm3/Nm;且试样内部显微组织均匀细小,摩擦试样的表面形成摩擦保护层,使试样的摩擦磨损性能较好。

  19. DESGASTE POR ABRASIÓN DEL ACERO API 5L X65 REVESTIDO CON NIOBIO POR ASPERSIÓN TÉRMICA A PLASMA Y CON INCONEL 625 POR SOLDADURA

    Directory of Open Access Journals (Sweden)

    JOSE MATOS

    2012-01-01

    Full Text Available El objetivo de este trabajo fue evaluar y caracterizar el comportamiento mecánico en desgaste del acero API 5L X65, revestido con niobio en comparación al desempeño del revestimiento de la aleación de inconel 625 empleados en la industria de petróleo y gas. El revestimiento de niobio fue obtenido por el proceso de aspersión térmica a plasma de arco no transferido y el revestimiento inconel 625 por soldadura con electrodo revestido. La resistencia al desgaste por abrasión fue evaluada según la norma Petrobras N-2568, en un tribómetro CTER, la rugosidad y el volumen de material desgastado se determinó a través de perfilometría y la dureza de los revestimientos por microscopia Vickers. Los revestimientos obtenidos fueron caracterizados respecto a su morfología por microscopia electrónica de barrido (MEB y microscopía óptica (MO. La mayor dureza del revestimiento con niobio obtenido puede haber contribuido a reducir la tasa de desgaste en comparación con el revestimiento de inconel 625.

  20. Inconel 740H主要强化元素对热力学平衡相析出行为的影响

    Institute of Scientific and Technical Information of China (English)

    符锐; 林富生; 赵双群; 迟成宇

    2013-01-01

    针对700℃先进超超临界电站过热器/4g热器管用镍基高温合金Inconel 740H,通过热力学相计算研究了主要析出强化元素对其平衡析出相析出行为的影响.结果表明:合金中7’相和M23C6碳化物稳定温度范围宽,稳定性好;A1、Ti和Nb3种合金成分对y相、叩相和dr相的析出和稳定性影响大,而Co的影响不大,其中A1对’,’相和d相的析出和稳定起促进作用,对7/相起抑制作用,Ti和Nb对y’相、∞相和口相均起促进作用;C显著影响M23C6碳化物的析出量,Cr显著影响M23C6碳化物的析出温度.Al、Ti和Nb的质量分数分别控制在1.2V0~1.4%、1%~1.5%和1%~1.6%为宜;同时,c的质量分数保持在0.05%左右,Cr的质量分数也应保持25%左右,Co的质量分数有所减小,不会影响y’相和M:。c。碳化物等强化相的析出量,从而对Inconel 740H合金的成分范围进行了一定的优化.

  1. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  2. In-situ heat treatment and polythionic acid testing of Inconel 600 Row 1 steam-generator U-bends. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gilkison, J.M.

    1983-04-01

    U-bend leakage in Row 1 steam generator tubes has been reported at some operating plants. The leakage in these U-bends has been attributed to stress corrosion cracking that initiated at the ID surface of the tubes. The objective of Project S191-3 is to demonstrate the feasibility of heating the U-bends from the bore of the tube to a temperature that will reduce the residual stresses at the U-bend and thereby provide added resistance to stress corrosion. A number of U-bends fabricated from 3/4-inch and 7/8-inch O.D. mill annealed Inconel Alloy 600 tubing were heated to 788/sup 0/C (1450/sup 0/F) for 15 minutes using specially designed electrical resistance heaters. The results of these tests showed that the resistance heaters were capable of heating the U-bends to the desired temperatures and thus cause a significant reduction in the residual stresses. However, a desired improvement in microstructure was not detected. No significant distortion in the U-bends was detected, but the tube support plate was heated sufficiently to possibly cause unacceptable local thermally induced stresses.

  3. In-situ heat treatment and polythionic acid testing of Inconel 600 Row 1 steam-generator U-bends. Final report

    International Nuclear Information System (INIS)

    U-bend leakage in Row 1 steam generator tubes has been reported at some operating plants. The leakage in these U-bends has been attributed to stress corrosion cracking that initiated at the ID surface of the tubes. The objective of Project S191-3 is to demonstrate the feasibility of heating the U-bends from the bore of the tube to a temperature that will reduce the residual stresses at the U-bend and thereby provide added resistance to stress corrosion. A number of U-bends fabricated from 3/4-inch and 7/8-inch O.D. mill annealed Inconel Alloy 600 tubing were heated to 7880C (14500F) for 15 minutes using specially designed electrical resistance heaters. The results of these tests showed that the resistance heaters were capable of heating the U-bends to the desired temperatures and thus cause a significant reduction in the residual stresses. However, a desired improvement in microstructure was not detected. No significant distortion in the U-bends was detected, but the tube support plate was heated sufficiently to possibly cause unacceptable local thermally induced stresses

  4. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    Directory of Open Access Journals (Sweden)

    Hui Gon Chun

    2015-01-01

    Full Text Available High-velocity oxygen-fuel (HVOF thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. The graphite and excessively sprayed oxygen formed carbon oxide gases, and these gases formed porous coating by evolution of the gases. The surface properties were improved by HVOF coating and were improved further by CO2 laser heat treatment (LH. Wear resistance of In718 surface was improved by coating and LH at 25°C and an elevated temperature of 450°C, resulting in reduction of wear trace traces, and was further improved by LH of the coating in reducing wear depth. Corrosion resistance due to coating in sea water was improved by LH. HVOF coating of WC-metal powder on a metal surface and a LH of the coating were highly recommended for the improvement of In718 surface properties, the friction behavior, and wear resistance.

  5. A mechanical property and stress corrosion evaluation of VIM-ESR-VAR work strengthened and direct double aged Inconel 718 bar material

    Science.gov (United States)

    Montano, J. W.

    1986-01-01

    Presented are the mechanical properties and the stress corrosion resistance of triple melted vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR), solution treated, work strengthened and direct double aged Inconel 718 alloy bars 4.00 in. (10.16) and 5.75 in. (14.60 cm) diameter. Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature. Additional charpy impact and compact tension tests were performed at -100 F (-73 C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100 F(-73 C) while longitudinal compact (LC) tension fracture toughness strength remained above 79 ksi (86.80 MPa) at ambient and at -100 F(-73 C) temperatures. No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.

  6. Effects of surface condition on the corrosion of candidate structural materials in a simulated HTGR-GT environment

    International Nuclear Information System (INIS)

    A simulated high-temperature gas-cooled reactor (HTGR) helium environment was used to study the effects of surface finish conditions on the subsequent elevated-temperature corrosion behavior of key candidate structural materials. The environment contained helium with 500 μatm H2/50 μatm CO/50 μatm CH4/2O at 9000C with total test exposure durations of 3000 hours. Specimens with lapped, grit-blasted, pickled, and preoxidized surface conditions were studied. Materials tested included two cast superalloys, IN 100 and IN 713LC; one centrifugally cast high-temperature alloy, HK 40 one oxice-dispersion-strengthened alloy, Inconel MA 754; and three wrought high-temperature alloys, Hastelloy Alloy X, Inconel Alloy 617, and Alloy 800H

  7. Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kulawik, K., E-mail: kulawik@agh.edu.pl [AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Buffat, P.A., E-mail: philippe.buffat@epfl.ch [AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Ecole Polytechnique Fédérale de Lausanne, CIME, Station 12, CH-1015 Lausanne Switzerland (Switzerland); Kruk, A., E-mail: kruczek@uci.agh.edu.pl [AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Wusatowska-Sarnek, A.M., E-mail: agnieszka.wusatowska-sarnek@pw.utc.com [Pratt & Whitney, 400 Main Street, East Hartford, CT 06108 (United States); Czyrska-Filemonowicz, A., E-mail: czyrska@agh.edu.pl [AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2015-02-15

    Microstructural characterization of Inconel 718 superalloy after three different heat treatment variants was performed by electron microscopy and electron tomography techniques, taking advantage of recent development in quantitative electron microscopy. Distribution maps of the chemical elements, collected by ChemiSTEM™ EDX system, offer a clear contrast between γ′, γ″, and the γ matrix. It was found that the γ′ phase contains mainly Ni, Al, and Ti, while the γ″ phase contains Ni, Nb, and Ti. Thus application of the Al and Nb STEM–EDX elemental maps enables identification and size measurements of γ′ and γ″ nanoparticles. 3D morphology of γ′ and γ″ precipitates was examined by electron microscopy and FIB–SEM tomography. Employed methods revealed that in all three heat treatment variants the γ′ particles are almost spheroidal while the γ″ precipitates are mainly elongated-disc shaped. However, the precipitate sizes differed for each variant contributing to differences in the yield strength. Tomographic images were used for estimation of the volume fraction of the both strengthening phases. - Highlights: • ChemiSTEM™ EDX elemental maps bring a fast mean to differentiate γ′ and γ″ particles. • Such maps enable for the explicit size measurements of γ′ and γ″ nanoparticles. • Explicit γ′ and γ″ phases total volume fraction was measured employing FIB–SEM. • γ′/γ″ co-precipitates and sandwich-like γ′/γ″/γ′ particles were present. • HRSTEM-HAADF imaging revealed atomic columns of the γ′/γ″ co-precipitates.

  8. Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography

    International Nuclear Information System (INIS)

    Microstructural characterization of Inconel 718 superalloy after three different heat treatment variants was performed by electron microscopy and electron tomography techniques, taking advantage of recent development in quantitative electron microscopy. Distribution maps of the chemical elements, collected by ChemiSTEM™ EDX system, offer a clear contrast between γ′, γ″, and the γ matrix. It was found that the γ′ phase contains mainly Ni, Al, and Ti, while the γ″ phase contains Ni, Nb, and Ti. Thus application of the Al and Nb STEM–EDX elemental maps enables identification and size measurements of γ′ and γ″ nanoparticles. 3D morphology of γ′ and γ″ precipitates was examined by electron microscopy and FIB–SEM tomography. Employed methods revealed that in all three heat treatment variants the γ′ particles are almost spheroidal while the γ″ precipitates are mainly elongated-disc shaped. However, the precipitate sizes differed for each variant contributing to differences in the yield strength. Tomographic images were used for estimation of the volume fraction of the both strengthening phases. - Highlights: • ChemiSTEM™ EDX elemental maps bring a fast mean to differentiate γ′ and γ″ particles. • Such maps enable for the explicit size measurements of γ′ and γ″ nanoparticles. • Explicit γ′ and γ″ phases total volume fraction was measured employing FIB–SEM. • γ′/γ″ co-precipitates and sandwich-like γ′/γ″/γ′ particles were present. • HRSTEM-HAADF imaging revealed atomic columns of the γ′/γ″ co-precipitates

  9. Surface state of Inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample

    International Nuclear Information System (INIS)

    Research highlights: → As USP processing time increases more compressive surface stresses are induced until a saturation level is reached. → The distance between part and radiating surface notably influences the surface state. → A greater number of shot balls leads to less impacts of lower energy on the part surface. → Surface nanocrystallization can only be achieved with large impacting energies of the balls. -- Abstract: Plates of Inconel 718 in precipitated state have been subjected to ultrasonic shot peening (USP), varying the distance from the radiating surface of the booster to the sample, the processing time and the material (WC/Co and steel) and number of shot balls, in order to study the effect of these parameters on the final state generated by the USP process. A change to more compressive residual stresses at the surface of the treated parts has been measured in all cases. For higher USP processing times and/or lower booster-sample distances, the degree of plastic deformation in the treated material increases, leading to a change to more compressive surface stresses and a higher density of impact marks in the treated surface. The same occurs when WC/Co balls are used instead of steel balls. The tendency to more compressive stresses reaches a saturation level after a certain processing time, when the system is not able to force the material to continue with more plastic deformation. If a higher quantity of balls is used, there will be less impacts of the shots with the surface and their energy will be lower (due to losses of energy after inelastic collisions). This diminishes the effect of the impacts in introducing compressive stresses and leads to less and shallower impact marks in the treated surface.

  10. The corrosion behaviour (stress corrosion and intergranular corrosion) of the tube materials inconel 600 and incoloy 800 for nuclear steam generators in treated secondary cycle water during tube burst tests in the temperature range from 270 to 3500C

    International Nuclear Information System (INIS)

    Surface removal, intergranular corrosion and stress corrosion of the materials No. 2.4640 (Inconel 600) and No. 1.4558 (Incoloy 800) were investigated in solutions of NaOH, Na2HPO4 and Na3PO4 whose concentrations were about 10,000 higher than those given in the guidelines. The test parameters varied were the alkalising agent and the pH value and, in addition, temperature (270, 310 and 3500C); the possible influence of low temperature sensitation (for 1000 and 10,000 hours) was also investigated. (orig.)

  11. Research on Mechanical Properties and Corrosion Behavior of Welded Joints of X65/316L and AISI4130/Inconel625 Clad Pipe%X65/316L与AISI4130/Inconel625复合管焊接接头力学性能及腐蚀行为研究

    Institute of Scientific and Technical Information of China (English)

    吴星东; 谢树军

    2014-01-01

    X65/316L and AISI4130/Inconel625 clad pipe were successfully welded with ERNiCrMo-3 filler metal, and the mechanical properties and corrosion behavior of the welded joints were studied in this paper. Tensile test, all-weld metal tensile test, impact test, as well as hardness test were performed to characterize the mechanical properties of the joints. The CO2 stress corrosion test and electrochemical corrosion test were conducted on clad pipe joints according to the corresponding standards of ASTM G39 and ASTM G5. The results showed that tensile strength of the joint achieved 583 MPa and crack propagated along X65/316L base metal; however, the yield strength, tensile strength and elongation of the weld metal reached to 441.4 MPa, 725.9 MPa, 37.67%, respectively. The absorbed impact energy of the weld metal at-10℃was 157 J, and the hardness value of joint presented gradient transition. After CO2 stress corrosion test, the weightlessness of clad pipe welded sample reached the standard, and no crack was observed in base metal and weld; the corrosion resistance of weld and HAZ is was equal to that of base metal after electrochemical corrosion test.%采用ERNiCrMo-3焊丝成功焊接X65/316L与AISI4130/Inconel625复合管,研究了复合管焊接接头的力学性能和腐蚀行为。采用拉伸试验、全焊缝拉伸试验、冲击试验、硬度测试表征了焊接接头的力学性能。参照ASTM G39和ASTM G5的相应标准对复合管焊接接头进行了CO2应力腐蚀和电化学腐蚀性能测试。结果表明,复合管焊接接头的抗拉强度达到583 MPa,断裂发生在 X65/316L 母材处;焊缝屈服强度为441.4 MPa,抗拉强度为725.9 MPa,延伸率达到37.67%;在-10℃试验条件下,焊缝的冲击吸收功为157 J,接头硬度值呈现梯度过渡。复合管焊接试样经过CO2应力腐蚀试验后失重达标,在母材和焊缝处没有观察到裂纹;电化学腐蚀试验后焊缝和热影响区的耐蚀性与母材相当。

  12. Materials corrosion and mitigation strategies for APT, end of FY `97 report: Inconel 718 in-beam corrosion rates from the `97 A6 irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lillard, R.S.; Pile, D.L.; Butt, D.P.

    1998-08-01

    This report summarizes the results from the 1997 irradiation of the corrosion insert at the LANSCE A6 Target Station. It addresses the corrosion measurements made on the in-beam Inconel 718 probe only. To simulate the environment that materials may be exposed to in a spallation neutron target/blanket cooling loops, samples were irradiated by the proton beam at the A6 Target Station of the Los Alamos Neutron Scattering Center (LANSCE). EIS measurements have demonstrated that the polarization resistance of IN718 decreases from approximately 3 x 10{sup 5} ohms prior to irradiation to approximately 1,000 ohms during irradiation at a proton beam current of 400 {micro}A. From the polarization resistance measurements, corrosion rate as a function of beam current was calculated for several different scenarios of beam/sample interaction. As the beam spot was small relative to the size of the IN718 corrosion probe (2{sigma} = 3 cm vs. 1.3 cm diam. x 15.9 cm length respectively), The first method for calculating corrosion rate used beam profile as a criterion for the area of highest damage. The beam spot intensity profile at LANSCE has been characterized and found to be a Gaussian distribution rotated about a central axis. From this relationship, and R{sub p} as a function of beam current, corrosion rate as a function of radial distance from the center of the beam was calculated for each beam current. Physical evidence from change in thickness measurements made on tungsten rods irradiated at 1 mA during the FY 96 irradiation period suggest that this Gaussian damage profile is an accurate depiction of beam/sample interaction. From this method the corrosion rate of IN718 during irradiation at a beam current of 1.0 mA is calculated to be approximately 0.002 inches per yr (2 mpy). The second method assumed that the predominant contributor to the corrosion current comes from an area defined by 2{sigma}. Further, the method assumed that the corrosion rate was uniform over this area

  13. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  14. Interactions in Zircaloy/UO2 fuel rod bundles with Inconel spacers at temperatures above 1200deg C (posttest results of severe fuel damage experiments CORA-2 and CORA-3)

    International Nuclear Information System (INIS)

    In the CORA experiments test bundles of usually 16 electrically heated fuel rod simulators and nine unheated rods are subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of an LWR. An aim of CORA-2, as a first test of its kind, was also to gain experience in the test conduct and posttest handling of UO2 specimens. CORA-3 was performed as a high-temperature test. The transient phases of CORA-2 and CORA-3 were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1000deg C, leading the bundles to maximum temperatures of 2000deg C and 2400deg C for tests CORA-2 and CORA-3, respectively. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO2 interaction, complete Inconel spacer destruction, and relocation of melts and fragments to lower elevations in the bundle, where extended blockages have formed. In both tests the fuel rod destruction set in together with the formation of initial melts from the Inconel/Zry interaction. The lower Zry spacer acted as a catcher for relocated material. In test CORA-2 the UO2 pellets partially disintegrated into fine particles. This powdering occurred during cooldown. There was no physical disintegration of fuel in test CORA-3. (orig./MM)

  15. Materials for nuclear diffusion-bonded compact heat exchangers

    International Nuclear Information System (INIS)

    This paper discusses the characteristics of materials used in the manufacture of diffusion bonded compact heat exchangers. Heatric have successfully developed a wide range of alloys tailored to meet process and customer requirements. This paper will focus on two materials of interest to the nuclear industry: dual certified SS316/316L stainless steel and nickel-based alloy Inconel 617. Dual certified SS316/316L is the alloy used most widely in the manufacture of Heatric's compact heat exchangers. Its excellent mechanical and corrosion resistance properties make it a good choice for use with many heat transfer media, including water, carbon dioxide, liquid sodium, and helium. As part of Heatric's continuing product development programme, work has been done to investigate strengthening mechanisms of the alloy; this paper will focus in particular on the effects of nitrogen addition. Another area of Heatric's programme is Alloy 617. This alloy has recently been developed for diffusion bonded compact heat exchanger for high temperature nuclear applications, such as the intermediate heat exchanger (IHX) for the very high temperature nuclear reactors for production of electricity, hydrogen and process heat. This paper will focus on the effects of diffusion bonding process and cooling rate on the properties of alloy 617. This paper also compares the properties and discusses the applications of these two alloys to compact heat exchangers for various nuclear processes. (author)

  16. High temperature behavior of candidate VHTR heat exchanger alloys - HTR2008-58200

    International Nuclear Information System (INIS)

    Several nickel based solid solution alloys are under consideration for application in heat exchangers for very high temperature gas cooled reactors. The principal candidates being considered for this application by the Next Generation Nuclear Plant (NGNP) project are Inconel 617 and Haynes 230. While both of these alloys have an attractive combination of creep strength, fabricability, and oxidation resistance a good deal remains to be determined about their environmental resistance in the expected NGNP helium chemistry and their long term response to thermal aging. A series of experiments has been carried out in a He loop with controlled impurity chemistries within the range expected for the NGNP. The influence of oxygen partial pressure and carbon activity on the microstructure and mechanical properties of Alloys 617 and 230 has been characterized. A relatively simple phenomenological model of the environmental interaction for these alloys has been developed. (authors)

  17. Investigating the effect of aging on transpassive behavior of Ni-based alloys in sulfuric acid with shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS)

    International Nuclear Information System (INIS)

    Highlights: ► Correlation between transpassive current density and observation of surface Cr species in the Raman spectra. ► In both alloys 617 and 230, heat treatment resulted in delayed onset of the transpassive region. ► Spectroscopy shows heat treatment makes more Cr available to the surface. - Abstract: The effect of high temperature aging on the electrochemical behavior of Ni superalloys has implications for their use in Generation IV nuclear reactors. Linear sweep voltammetry, shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS), and X-ray photoelectron spectroscopy (XPS) were used to interrogate the passivation layer formed on heat-treated and as-received samples of Inconel 617 and Haynes 230. Results demonstrate that heat treatment improves electrochemical corrosion resistance for both alloys. The improved electrochemical behavior is associated with differences in the spectra; specifically, the appearance of a mixed Cr(III/VI) oxide.

  18. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718; Aspects probabilistes et microstructuraux de l'amorcage des fissures de fatigue dans l'alliage INCO 718

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, F

    2004-03-15

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  19. In Situ Measurements of Spectral Emissivity of Materials for Very High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    G. Cao; S. J. Weber; S. O. Martin; T. L. Malaney; S. R. Slattery; M. H. Anderson; K. Sridharan; T. R. Allen

    2011-08-01

    An experimental facility for in situ measurements of high-temperature spectral emissivity of materials in environments of interest to the gas-cooled very high temperature reactor (VHTR) has been developed. The facility is capable of measuring emissivities of seven materials in a single experiment, thereby enhancing the accuracy in measurements due to even minor systemic variations in temperatures and environments. The system consists of a cylindrical silicon carbide (SiC) block with seven sample cavities and a deep blackbody cavity, a detailed optical system, and a Fourier transform infrared spectrometer. The reliability of the facility has been confirmed by comparing measured spectral emissivities of SiC, boron nitride, and alumina (Al2O3) at 600 C against those reported in literature. The spectral emissivities of two candidate alloys for VHTR, INCONEL{reg_sign} alloy 617 (INCONEL is a registered trademark of the Special Metals Corporation group of companies) and SA508 steel, in air environment at 700 C were measured.

  20. Optimal matched filter design for ultrasonic NDE of coarse grain materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2016-02-01

    Coarse grain materials are widely used in a variety of key industrial sectors like energy, oil and gas, and aerospace due to their attractive properties. However, when these materials are inspected using ultrasound, the flaw echoes are usually contaminated by high-level, correlated grain noise originating from the material microstructures, which is time-invariant and demonstrates similar spectral characteristics as flaw signals. As a result, the reliable inspection of such materials is highly challenging. In this paper, we present a method for reliable ultrasonic non-destructive evaluation (NDE) of coarse grain materials using matched filters, where the filter is designed to approximate and match the unknown defect echoes, and a particle swarm optimization (PSO) paradigm is employed to search for the optimal parameters in the filter response with an objective to maximise the output signal-to-noise ratio (SNR). Experiments with a 128-element 5MHz transducer array on mild steel and INCONEL Alloy 617 samples are conducted, and the results confirm that the SNR of the images is improved by about 10-20 dB if the optimized matched filter is applied to all the A-scan waveforms prior to image formation. Furthermore, the matched filter can be implemented in real-time with low extra computational cost.

  1. Qualification of metallic materials for application in advanced high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    As in conventional high temperature technology, the qualification of metallic materials for high temperature reactor (HTR) applications is based on creep behavior, fatigue properties, corrosion resistance, and thermal stability. Of specific interest are the effects of the primary coolant helium, which contains trace impurities of hydrogen, methane, carbon monoxide, and water vapor, on mechanical behavior. In addition, irradiation effects on the properties of absorber rod cladding and tritium permeation from the primary coolant into the process gas are important areas for investigation. The results show that, for test times of up to 20,000 h, the creep-rupture strength in air and in HTR helium lies in the same scatter band. The results of low cycle fatigue tests indicate a beneficial effect of HTR helium on the cycles of failure. Investigations of corrosion in HTR helium have shown that acceptable corrosion resistance can be achieved by strict control of the impurity content of the helium. Using the available creep-rupture data and the linear damage accumulation rule, the acceptable service lives of intermediate heat exchanger tubes were calculated for Inconel alloy 617 at 9500 C. The data that are being accumulated from the various test programs will form the basis of a design code for nuclear components operating at temperatures greater than or equal to 8000 C

  2. Microstructure and precipitation effects in inconel alloy 600.

    OpenAIRE

    Gane, Peter James

    1992-01-01

    The main objectives of the project were to investigate the interactions of carbon, titanium and aluminium contents, grain size and cold working, with precipitation reactions which occur during heat treatments similar to those experienced as a consequence of commercial PWR Steam Generator (SG) tube processing. In order to carry out this investigation commercial material was supplemented by a range of experimental casts. The selected casts allowed the investigation of the following comp...

  3. Composite spacer with inconel grid and zircaloy band

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.B.; Matzner, B.; Latter, G.M.

    1992-02-18

    This patent describes a spacer for use in a nuclear fuel bundle having a plurality of fuel rods. It includes spring metal spacer cells, each cell having: at least one spring leg, the spring leg inwardly deflected at the medial portion thereof for spring contact with a fuel rod within the spacer cell; at least two rod encircling arms affixed at remote ends of the spring legs; each rod encircling arm defining stops for abutting a fuel rod whereby the spring leg can bias an encircled fuel rod within the cells into the stops; the rod encircling arms having differential length including a first portion of the arms having a relatively longer length and a second portion of the arms having a relatively shorter length; the cells confronted into cell pairs with the spring legs remote from one another.

  4. Real structure of milled inconel 738LC turbine blades

    Czech Academy of Sciences Publication Activity Database

    Pala, Z.; Kolařík, K.; Beránek, L.; Čapek, J.; Kyncl, J.; Mušálek, Radek; Ganev, N.

    Vol. 996. Zürich: Trans Tech Publications, 2014 - (François, M.; Montay, G.; Panicaud, B.; Retraint, D.; Rouhaud, E.), s. 646-651. (996). ISSN 1662-8985. [European Conference on Residual Stresses, ECRS 2014/9./. Troyes (FR), 07.07.2014-10.07.2014] Institutional support: RVO:61389021 Keywords : Milling * Nickel super-alloys * Turbine blades Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.scientific.net/AMR.996.646

  5. Carburization of austenitic alloys by gaseous impurities in helium

    International Nuclear Information System (INIS)

    The carburization behavior of Alloy 800H, Inconel Alloy 617 and Hastelloy Alloy X in helium containing various amounts of H2, CO, CH4, H2O and CO2 was studied. Corrosion tests were conducted in a temperature range from 649 to 10000C (1200 to 18320F) for exposure time up to 10,000 h. Four different helium environments, identified as A, B, C, and D, were investigated. Concentrations of gaseous impurities were 1500 μatm H2, 450 μatm CO, 50 μatm CH4 and 50 μatm H2O for Environment A; 200 μatm H2, 100 μatm CO, 20 μatm CH4, 50 μatm H2O and 5 μatm CO2 for Environment B; 500 μatm H2, 50 μatm CO, 50 μatm CH4 and 2O for Environment C; and 500 μatm H2, 50 μatm CO, 50 μatm CH4 and 1.5 μatm H2O for Environment D. Environments A and B were characteristic of high-oxygen potential, while C and D were characteristic of low-oxygen potential. The results showed that the carburization kinetics in low-oxygen potential environments (C and D) were significantly higher, approximately an order of magnitude higher at high temperatures, than those in high-oxygen potential environments (A and B) for all three alloys. Thermodynamic analyses indicated no significant differences in the thermodynamic carburization potential between low- and high-oxygen potential environments. It is thus believed that the enhanced carburization kinetics observed in the low-oxygen potential environments were related to kinetic effects. A qualitatively mechanistic model was proposed to explain the enhanced kinetics. The present results further suggest that controlling the oxygen potential of the service environment can be an effective means of reducing carburization of alloys

  6. Mechanical Properties of Ni-base ODS Alloy Influenced by Process Variables

    International Nuclear Information System (INIS)

    According to a recent investigation, no proven industrial technology could be directly used for such applications. For example, extensive work on Alloy 617 which is the candidate material for the intermediate heat exchanger (IHX) in very high temperature reactors (VHTR) shows that Alloy 617 exhibit quite good creep properties, the maximum service temperature of Alloy 617 is much less than that required for the VHTR-IHX applications. In this regard, oxide dispersion strengthened (ODS) materials have received a great attention owing to their excellent mechanical properties at higher temperatures, e.g., creep resistance. As part of an alloy development program for nickel base ODS alloy, we have produced an ODS Alloy 617 via mechanical alloying and hot extrusion, and characterized its microstructural evolution during the process and evaluated mechanical properties at elevated temperatures. The current work reports the effects of process variables and yttria contents on the microstructure and mechanical properties of ODS Alloy 617. From the experimental work on the influences of yttria content, and process variables such as hot-extrusion ratio and hydrogen reduction on the mechanical properties of ODS Alloy 617, it is concluded that reduction of yttria contents from 0.6 wt.% to 0.45 wt.% and increasing hot extrusion ratio from 6.25:1 to 9:1 improve the ductility at elevated temperatures without the sacrifice of strength

  7. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  8. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  9. FY16 Progress Report on Test Results In Support Of Integrated EPP and SMT Design Methods Development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [RI Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-08

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating an SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. This report presents the recent test results for Type 2 SMT specimens on Alloy 617, Pressurization SMT on Alloy 617, Type 1 SMT on Gr. 91, and two-bar thermal ratcheting test results on Alloy 617 with a new thermal loading profile.

  10. Positron annihilation study of ageing and creep on inconel X750

    International Nuclear Information System (INIS)

    The correlation of positron annihilation characteristics with microstructrual changes occurring in a Ni-base alloy is experimentally studied using lifetime and angular-correlation methods. The samples are examined at room temperature after various ageing phases and after creep rupture; their structure is also investigated by differential chemical analysis, by electron microscopy and by small-angle neutron scattering. The comparison of the results obtained with the various techniques shows the field of applicability of the positron annihilation technique for material testing in cases of technological interest. (author)

  11. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    Science.gov (United States)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740H. In terms of stress rupture ductility, IN740H modified 1 performed the best, followed by IN740H modified 2, IN740, and IN740H. G-phase, η, M23C 6, and MX precipitated in IN740 during stress rupture testing. IN740H and the two modified alloys displayed M23C6 precipitates that were often in lamellar form and blocky MX precipitates. However, IN740H displayed more extensive formation of lamellar precipitates along grain boundaries after both aging and during stress rupture testing, which negatively influenced stress rupture life and ductility. Grain size was also shown to influence stress rupture life and ductility; a larger grain size increased stress rupture life, but decreased ductility as shown by the IN740H modified 1 and 2 alloy results. Transmission electron microscopy analysis was performed to assess the lamellar precipitation in IN740H. These precipitates were identified to be Cr-rich M23C6 that form by discontinuous cellular precipitation (DCP). The M23C6 precipitates were found to adopt different {111} habit planes based on the conditions of DCP boundary migration. Discontinuous precipitation of lamellar M23C6 is harmful to stress rupture life and ductility.

  12. Effect of Temperature on cyclic stress components of Inconel 738LC superalloy

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Šmíd, Miroslav; Obrtlík, Karel; Polák, Jaroslav

    Brno: VUTIUM Brno, 2008 - (Pokluda, J.; Lukáš, P.; Šandera, P.; Dlouhý, I.), s. 1358-1365 ISBN 978-80-214-3692-3. [ECF17 - European Conference on Fracture /17./. Brno (CZ), 02.09.2008-05.09.2008] R&D Projects: GA ČR GA106/08/1631; GA ČR GA106/07/1507; GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z20410507 Keywords : Low cycle fatigue * High temperatrures * superalloy * internal and effective stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Oxidation assisted intergranular cracking under loading at dynamic strain aging temperatures in Inconel 718 superalloy

    International Nuclear Information System (INIS)

    Highlights: • Mechanical properties are controlled by DSA, precipitation hardening and OAIC. • Between 600 and 700 °C the critical strain for serrations increases with temperature. • This is related to the consumption of matrix elements (especially Nb: for γ′ and γ″). • A reduction in ductility occurs (related to the OAIC) when the DSA is no longer effective. • This reduction is accompanied by an increase in intergranular brittle fracture. - Abstract: It is well established that 718 superalloy exhibits brittle intergranular cracking when deformed under tension at temperatures above 600 °C. This embrittlement effect is related with grain boundary penetration by oxygen (Oxygen Assisted Intergranular Cracking – OAIC). Simultaneously, impacting on its mechanical properties, the precipitation of coherent γ′ and γ″ phases occur above 650 °C and Dynamic Strain Aging (DSA) occurs in the temperature range between 200 and 800 °C. Although literature indicates that OAIC is the mechanism that controls mechanical properties at high temperatures, its interactions with DSA and precipitation are still under discussion. The objective of this work is to investigate the interactions between the embrittlement phenomena (OAIC and DSA) and the hardening mechanism of γ′ and γ″ precipitation on the mechanical properties of an annealed 718 superalloy. Tensile tests were performed at a strain rate of 3.2 × 10−4 s−1 under secondary vacuum, in temperatures ranging from 200 to 800 °C. Fracture surfaces were observed by scanning electron microscopy (SEM) and precipitation by transmission electron microscopy (TEM). The effect of DSA and precipitation on the strength and of OAIC on the ductility was verified

  14. A study on the deformation mechanism of inconel alloys for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S. H.; Kim, H. Y.; Ahn, Y. C.; Lee, H. S.; Sohn, W. H.; Cha, S. I.; Bae, Y. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    The microstructure and the mechanical properties of lnconel 600 and 690 steam generator tube were investigated to develop the lnconel steam generator tube for nuclear power plant. The grain size and shape of lnconel 690 alloy were dependent on Mill Annealing temperature. It is shown that the smaller grain and the more serrated grain boundary, the higher tensile strength and creep resistance. The carbides were analyzed by using SEM and TEM after Thermal Treatment. Also, the quantitative analysis of carbide precipitation with Thermal Treatment was conducted by SPEED method. Thermal Treatment temperature was 705 deg C for lnconel 600 alloy and 720 deg C for lnconel 690 alloy. It is observed by XRD that the M{sub 23}C{sub 6} type and M{sub 7}C{sub 3}-type carbides were simultaneously precipitated in lnconel 600 alloy and only M{sub 23}C{sub 6}-type carbides were precipitated in lnconel 690 alloy. While the carbide length and thickness increased with increasing Thermal Treatment time, the growth rate of carbide length was higher than that of carbide thickness. The distance between carbides decreased for the first 15 hour Thermal Treatment for lnconel 600 alloy and 10 hour for lnconel 690 alloy, respectively, and then increased again. The distance between carbides decreased until the carbide precipitation reached at 90% of maximum precipitation because the carbides were precipitated and grown simultaneously. After 90% precipitation time, the precipitation ceased and only growth of the carbides took place, so the distance between carbides decreased. The serrations in stress-strain curves of in lnconel 690 could be interpreted in the temperature range from 200 deg C to 600 deg C. The phenomena and controlling mechanism of serrations were analyzed by investigating the critical strains for the onset of the serrations. The controlling mechanism for A1 serration was generation of vacancy by deformation, and those for A2 serration and B serrations were diffusion of substitutional alloying element, lattice diffusion of carbons, respectively. Besides, the C serration was formed above the temperature of 5OO deg C with irregular periods. It was shown through the creep test for lnconel 690 alloy that stress exponent, n, was 5, and activation energy for creep was about 265 k]/mol. An activation energy value for creep was similar to that for self diffusion of Ni, which is 250 k]/mol. It perhaps indicates that the controlled mechanism for high temperature deformation of lnconel 690 alloy was dislocation climb. 65 refs., 51 figs., 10 tabs. (Author)

  15. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    OpenAIRE

    Alexandre Royer; Thierry Barrière; Jean-Claude Gelin

    2016-01-01

    The binder plays the most important role in the metal injection molding (MIM) process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of...

  16. Laser deposition of Inconel 625/tungsten carbide composite coatings by powder and wire feedstock

    OpenAIRE

    Abioye, Taiwo E.

    2014-01-01

    There is an increasing global demand to extend the life span of down-hole drilling tools in order to improve operation effectiveness and efficiency of oil and gas production. Laser cladding of tungsten carbide/Ni-based alloy metal matrix composite (MMC) coatings is currently being utilised for this purpose. However, the effect of tungsten carbide dissolution on the corrosion performance of the MMC coatings has not been completely understood. In this work, a study was carried out in which lase...

  17. The influence of testing conditions on burst pressure assessment for inconel tubing

    International Nuclear Information System (INIS)

    Because at the lack of normalization for burst testing of tubes with TWD flaws, large divergences are observed between laboratory results. This could result in either unsafe or unduly penalizing consequences. Testing flawed tubes under representative conditions (high leak rate without any sealing provision) yielded results matching previous laboratory data that were obtained with a locally reinforced bladder. This should not be construed to validate any similar laboratory technique, as the particular combination of materials (plastic and metal) strength and thickness, together with other testing details (such as load rate) may affect the results. (author)

  18. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, T.; Tilson, W.; Jones, Z.

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.

  19. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    International Nuclear Information System (INIS)

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered γ′ precipitates (357–442 nm), with blocky MC and discreet M23C6 carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered γ′ precipitates in “ogdoadically” diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical γ′ precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: ► Homogeneous microstructures of γ′ spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. ► γ′ spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. ► Microstructure γ′ spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. ► Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  20. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    International Nuclear Information System (INIS)

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  1. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  2. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M23C6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M23C6. Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  3. Grinding performance evaluation of porous composite-bonded CBN wheels for Inconel 718

    Directory of Open Access Journals (Sweden)

    Chen Zhenzhen

    2014-08-01

    Full Text Available For high-efficiency grinding of difficult-to-cut materials such as titanium and nickel alloys, a high porosity is expected and also a sufficient mechanical strength to satisfy the function. However, the porosity increase is a disadvantage to the mechanical strength. As a promising pore forming agent, alumina bubbles are firstly induced into the abrasive layer to fabricate porous cubic boron nitride (CBN wheels. When the wheel porosity reaches 45%, the bending strength is still high up to 50 MPa with modified orderly pore distribution. A porous CBN wheel was fabricated with a total porosity around 30%. The grinding performance of the porous composite-bonded CBN wheel was evaluated in terms of specific force, specific grinding energy, and grinding temperature, which were better than those of the vitrified one under the same grinding conditions. Compared to the vitrified CBN wheel, clear straight cutting grooves and less chip adhesion are observed on the ground surface and there is also no extensive loading on the wheel surface after grinding.

  4. High-cycle fatigue of Ni-base superalloy Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.

    2010-01-01

    Roč. 32, č. 6 (2010), s. 908-913. ISSN 0142-1123 R&D Projects: GA MPO FT-TA4/023; GA MŠk MEB080812 Institutional research plan: CEZ:AV0Z20410507 Keywords : IN 713LC * High-cycle fatigue * Effect of mean stress * Fractography * Casting defetcts * Extreme value statistics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  5. Microstructural Evolution and Creep Rupture Behavior of INCONEL RTM Alloy 740H Fusion Welds

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Electron microscopy techniques were used to investigate the causes of reduced creep-rupture life in INCONEL® alloy 740H ® fusion welds with a specific focus on understanding the formation and evolution of γ'-free zones along grain boundaries. Investigation of creep-rupture specimens revealed four operational factors that influence the formation of these precipitate-free zones, and the identity of large second phase particles typically found within them has been determined. A stress-free aging has demonstrated the influence of stress on the formation of the precipitate-free regions and has illustrated what appear to be the initial stages of their development. It is concluded that the mechanism of precipitate-free zone formation in alloy 740H is moderate discontinuous precipitation accompanied by significant discontinuous growth of the γ' phase. These discontinuous reactions are likely exacerbated by microsegregation within the welded microstructure and by the mechanical deformation associated with grain boundary sliding during creep. Thermodynamic and kinetic modeling were used to determine appropriate heat treatment schedules for homogenization and second phase dissolution of welds in alloy 740H. Following these simulations, a two-step heat treatment process was applied to specimens from a single pass gas tungsten arc weld (GTAW). Scanning electron microscopy (SEM) has been used to assess the changes in the distribution of alloying elements as well as changes in the fraction of second phase particles within the fusion zone. Experimental results demonstrate that homogenization of alloy 740H weld metal can be achieved by an 1100°C/4hr treatment. Complete dissolution of second phase particles could not be completely achieved, even at exposure to temperatures near the alloy's solidus temperature. These results are in good agreement with thermodynamic and kinetic predictions.

  6. Optimizing the Machining Parameters of Micro-EDM for Inconel 718

    OpenAIRE

    Venkatesan, R; Manikandan, R.

    2012-01-01

    This paper aims to study on the feasibility of micron size hole manufacturing using micro Electric Discharge Machining (Micro-EDM). Main and auxiliary unit of the micro-EDM machine tool and their functions are described in some detail. The technological and electrical parameters that are effective in Micro-EDM are stated explicitly. Geometry of the machined micro-holes and resolidified material around the hole entrance are observed. Several descriptive pictures, obtained by Scanning Ele...

  7. Grinding performance evaluation of porous composite-bonded CBN wheels for Inconel 718

    Institute of Scientific and Technical Information of China (English)

    Chen Zhenzhen; Xu Jiuhua; Ding Wenfeng; Ma Changyu

    2014-01-01

    For high-efficiency grinding of difficult-to-cut materials such as titanium and nickel alloys, a high porosity is expected and also a sufficient mechanical strength to satisfy the function. However, the porosity increase is a disadvantage to the mechanical strength. As a promising pore forming agent, alumina bubbles are firstly induced into the abrasive layer to fabricate porous cubic boron nitride (CBN) wheels. When the wheel porosity reaches 45%, the bending strength is still high up to 50 MPa with modified orderly pore distribution. A porous CBN wheel was fabricated with a total porosity around 30%. The grinding performance of the porous composite-bonded CBN wheel was evaluated in terms of specific force, specific grinding energy, and grinding temper-ature, which were better than those of the vitrified one under the same grinding conditions. Com-pared to the vitrified CBN wheel, clear straight cutting grooves and less chip adhesion are observed on the ground surface and there is also no extensive loading on the wheel surface after grinding.

  8. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy

    International Nuclear Information System (INIS)

    The micromechanisms of fatigue crack propagation in a forged, polycrystalline IN 718 nickel-based superalloy are evaluated. Fracture modes under cyclic loading were established by scanning electron microscopy analysis. The results of the fractographic analysis are presented on a fracture mechanism map that shows the dependence of fracture modes on the maximum stress intensity factor, Kmax, and the stress intensity factor range, ΔK. Plastic deformation associated with fatigue crack growth was studied using transmission electron microscopy. The effects of ΔK and Kmax on the mechanisms of fatigue crack growth in this alloy are discussed within the context of a two-parameter crack growth law. Possible extensions to the Paris law are also proposed for crack growth in the near-threshold and high ΔK regimes. (orig.)

  9. Nickel super alloy INCONEL 713LC - structural characteristics after heat treatment

    Directory of Open Access Journals (Sweden)

    A. Hernas

    2007-06-01

    Full Text Available Purpose: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Design/methodology/approach: Super alloy was commercially produced and was investigated by using the light microscopy (OLYMPUS IX 71 and local chemical microanalysis and by the scanning electron microscopy (JEOL JSM 50AFindings: We found a mode of optimum heat treatment. On the basis of obtained results it is possible to recommend a following regime of heat treatment: heating and dwell at the temperature exceeding 1240 °C (min. 1260 °C, so that precipitates at the grain boundaries dissolve completely, with subsequent slow cooling down to the temperature of approx. 940-950 °C, so that there occurs intensive intra-granular precipitation of intermetallic phase γ’.Research limitations/implications: The experiment was limited by occurrence a void in cast alloys.Practical implications: Nickel super alloy’s products are mainly using for construction parts of jet engines, gas turbines and turbo-blowers.Originality/value: Mode of optimum heat treatment was proposed. On the basis of obtained results it is possible to recommend the most suitable heat treatment, which produce intensive intra-granular precipitation of inter-metallic phase γ’. It was received a new know-how in this field.

  10. Velocity of crack growing of Inconel-600, sensitized, contaminated with sulphur in PWR type reactors

    International Nuclear Information System (INIS)

    The origin of the vessel head penetration cracking of Jose Cabrera NPP has been attributed to an IGA/SCC process in a highly sensitized Alloy 600 assisted by sulphur species, as both acid sulphates and reduced species originated by the thermal breakdown of the cationic resins present in the primary coolant. The thermal degradation of the cationic resins leads sulphonic acid group scission and sulphates. Under the operating conditions the reduction of sulphates to sulphides is produced. The sulphides formed from the reduction of sulphate can precipitate with metallic cations and be incorporated into the oxide layers of the materials, preferably into nickel alloys. Others components at Jose Cabrera NPP are fabricated from sensitized alloy 600, as bottom vessel penetrations. In order to determine the influence of sulphur incorporated to the oxide layers of bottom vessel penetration alloy 600, an experimental work has been performed to obtained crack growth rate data under PWR primary conditions on sensitized alloy 600. (Author) 5 refs

  11. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  12. A Study on the High Temperature Oxidation Behavior of Hastelloy X and Inconel 713C

    International Nuclear Information System (INIS)

    In order to preserve surface stability and mechanical properties of the substrate materials, coatings are applied to the alloy surfaces for the high temperature applications. Even with the application of coating, the substrate materials must also have its own resistance to the high temperature oxidation because the substrate may be catastrophically degraded when coatings are failed. In this research, Ni-base superalloys, IN 713C and Hastelloy X for the substrate materials of coatings, were examined by the isothermal and cyclic oxidation experiments. In the isothermal oxidation experiments, the dominant protective oxide scale of Hastelloy X was Cr2O3 and that of IN 713C was the Al-rich oxide scale. Both alloys formed protective oxide scales, and showed good isothermal oxidation resistance but IN 713C showed better oxidation resistance than Hastelloy X owing to the formation of Al-rich oxide scales. Also for cyclic oxidation experiments, due to the favorable adhesion between the substrate and oxide scales, IN 713C having thin Al-rich oxide scales showed better oxidation resistance than Hastelloy X throughout the temperature ranges tested. Comparing these two alloys IN 713C had better oxidation resistance but both alloys showed good oxidation resistance up to 1000 .deg. C

  13. Analysis of material response to ultrasonic vibration loading in turning Inconel 718

    International Nuclear Information System (INIS)

    The paper is focused on the analysis of the surface layer formed on a workpiece treated with ultrasonically assisted turning (UAT) in comparison to conventional turning (CT). Various experimental methods are used to study the difference between the two machining techniques: nanoindentation, light microscopy and scanning electron microscopy (SEM). The experimental part of the paper studies the material response to CT and UAT in terms of material's hardness, residual stresses, and changes in the microstructure. The difference in the distribution of residual stresses in the machined surface layer is further studied by means of numerical (finite element) simulations. A three-dimensional thermomechanically coupled finite element (FE) model of both UAT and CT is used to study temperature distributions in the process zone and thermally induced stresses. Numerical results are compared with the obtained experimental data

  14. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398. ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  15. Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys

    International Nuclear Information System (INIS)

    Research highlights: → Haynes 230 is susceptible to carburization, but Alloy 617 to decarburization and inter-granular oxidation. → Decarburization of Nickel-base superalloys can be accelerated in impure helium with H2. → Aging heat treatment causes inter-granular fracture primarily along inter-granular oxide and grain boundary carbides, which results in the loss of ductility. → Thin-plate specimen of Alloy 617 tends to favor failure by glide plane fracture when it is heavily decarburized. - Abstract: The influence of high temperature aging treatment on room temperature tensile properties of wrought nickel-base superalloys Alloy 617 and Haynes 230 was investigated. A significant decrease in elongation was observed for Alloy 617 exposed to a heavily oxidizing and decarburizing condition because of coarsening of grain boundary carbides and extensive inter-granular oxidation. On the other hand, Haynes 230 showed much lower ductility when exposed to a heavily carburizing condition, especially at 1000 deg. C because extensive carburization occurred due to a reaction with tungsten. Considerable loss of ductility for Alloy 617 and Haynes 230 was also observed in He-H2-H2O-CO-CO2-CH4 and He-H2O-CO-CO2 environments, which were the slightly oxidizing and decarburizing conditions. Loss of ductility was predominantly associated with brittle inter-granular cracking, while the extent of loss of ductility decreased depending on the decarburization depth. Decarburization was observed more extensively in helium with H2-H2O-CO-CO2-CH4 than helium with H2O-CO-CO2, and for Alloy 617 than for Haynes 230. Finally, the role of H2 in accelerating decarburization is discussed.

  16. Mechanical Properties of Candidate Materials for Hot Gas Duct of VHTR

    International Nuclear Information System (INIS)

    Hot gas duct of VHTR is operated at 950 .deg.. Ni based superalloys, such as Hastelloy XR, Alloy 617, Haynes 230, for hot gas duct have been candidate material because of good strength and corrosion properties at high temperature. Mechanical properties of these alloys are tested at high temperature to apply to hot gas duct of VHTR

  17. Low cycle fatigue with hold times of cast superalloy Inconel 792-5A at 800 °C

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Obrtlík, Karel; Petrenec, Martin; Polák, Jaroslav

    Žilina: Žilinská univerzita, 2012, s. 65-68. ISBN 978-80-554-0477-6. [International of PhD. students´ seminar SEMDOK 2012 /17./. Terchová (SK), 25.01.2012-27.01.2012] R&D Projects: GA ČR(CZ) GAP204/11/1453; GA ČR(CZ) GAP107/11/2065 Keywords : low cycle fatigue * superalloy * hold time * high temperatures * surface relief Subject RIV: JL - Materials Fatigue, Friction Mechanics

  18. Dwell effect on low cycle fatigue behaviour of cast superalloy Inconel 792-5A at 800 °C

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Obrtlík, Karel; Polák, Jaroslav

    Berlín: DMV, 2013, s. 113-118. ISBN 978-3-9814516-2-7. [LCF7 - International Conference on Low Cycle Fatigue /7./. Aachen (DE), 09.09.2013-11.09.2013] R&D Projects: GA ČR(CZ) GAP204/11/1453; GA ČR(CZ) GAP107/11/2065; GA MPO FR-TI4/030 Institutional support: RVO:68081723 Keywords : nickel base superalloy * low cycle fatigue * dwell * high temperature fatigue * surface relief * dislocation structure Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Multiaxial creep of tubes from Incoloy 800 H and Inconel 617 under static and cyclic loading conditions

    International Nuclear Information System (INIS)

    At temperatures above 8000C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)

  20. Determination of Yield and Flow Surfaces for Inconel 718 Under Axial-Torsional Loading at Temperatures Up to 649 C

    Science.gov (United States)

    Gil, Christopher M.

    1998-01-01

    An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.

  1. Modelling of fatigue crack growth in Inconel 718 under hold time conditions - application to a flight spectrum

    OpenAIRE

    Lundström, Erik; Simonsson, Kjell; Månsson, Tomas; Gustafsson, David

    2014-01-01

    Gas turbine operating cycles at high temperatures often consist of load reversals mixed with hold times; the latter occurring either as cruise for aero engines or at continuous power output for land based turbines, but also at low frequency loading conditions, e.g. slow “ramp up” of engine thrust. The hold time conditions cause the crack to grow by intergranular fracture due to material damage near the crack tip, thus rapidly increasing the crack growth rate. Since the damaged zone will affec...

  2. Effect of grit blasting surface treatment on high temperature low cycle fatigue life of Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.; Gejdoš, P.

    Brno: Brno University of Technology, 2015 - (Dlouhý, I.; Jan, V.; Maca, K.; Válka, L.), s. 139-144 ISBN 978-80-214-5146-9. [Multi Scale Design of Advanced Materials. Velké Bílovice (CZ), 28.05.2015-29.05.2015] R&D Projects: GA MŠk(CZ) EE2.3.20.0214; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Grit blasting * Surface relief * Surface microhardnes * High temperature fatigue life * Inocel 713LC Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  4. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    OpenAIRE

    Rojas-Morín, A.; Fernández-Reche, J.

    2011-01-01

    A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almería (PSA) in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the IN...

  5. Preliminary stress corrosion cracking modeling study of a dissimilar material weld of alloy (INCONEL) 182 with Stainless Steel 316

    International Nuclear Information System (INIS)

    Dissimilar welds (DW) are normally used in many components junctions in structural project of PWR (Pressurized Water Reactors) in Nuclear Plants. One had been departed of a DW of a nozzle located at a Reactor Pressure Vessel (RPV) of a PWR reactor, that joins the structural vessel material with an A316 stainless steel safe end. This weld is basically done with Alloy 182 with a weld buttering of Alloy 82. It had been prepared some axial cylindrical specimens retired from the Alloy 182/A316 weld end to be tested in the slow strain rate test machine located at CDTN laboratory. Based in these stress corrosion susceptibility results, it was done a preliminary semi-empirical modeling application to study the failure initiation time evolution of these specimens. The used model is composed by a deterministic part, and a probabilistic part according to the Weibull distribution. It had been constructed a specific Microsoft Excel worksheet to do the model application of input data. The obtained results had been discussed according with literature and also the model application limits. (author)

  6. Gas-turbine HTGR materials screening test program. Quarterly progress report, July 1, 1976--September 30, 1976. [IN 100; IN 713; MM004; M21; IN 738; RENE 100; MoTZM; Hastelloy X; Inconel 617; MA 753; IN 519, Inconel 706; Inconel 718; A286; 316 SS; Incoloy 800

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwasser, S.N.; Johnson, W.R.

    1976-09-30

    The duration of controlled-impurity creep-screening tests and unstressed aging tests has reached 10,000 hr. Creep and weight change data from testing up to 9,000 hr and results from post-test metallurgical evaluations of several recently returned 3,000-hr specimens, including alloys IN519 and MoTZM, are presented. Preliminary materials requirements for key GT-HTGR 850/sup 0/C (1562/sup 0/F) reactor outlet temperature reference design components are documented.

  7. Creep strength and microstructure in 23Cr-45Ni-7W Alloy (HR6W) and Ni-base superalloys for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Yonemura, Mitsuharu; Igarashi, Masaaki [Sumitomo metal Industries, Ltd., Hyogo (Japan). Corporate Research and Development Labs.

    2008-07-01

    Establishment of materials technologies on piping and tubing for advanced ultra super critical (A-USC) plants operated at steam temperatures above 700 C is a critical issue to achieve its hard target. 23Cr-45Ni-7W alloy (HR6W) has been developed in Japan, originally as a high strength tubing material for 650 C USC boilers. In order to clarify the capability of HR6W as a material applied to A-USC plants, creep strength and microstructure of HR6W were investigated in comparison with {gamma}'-strengthened Alloy 617 and other Ni-base superalloys, such as Alloy 263. It has been revealed that the amount of added W is intimately correlated with precipitation amount of Laves phase and thus it is a crucial factor controlling creep strength. Stability of long term creep strength and superior creep rupture ductility have been proved by creep rupture tests at 650-800 C up to 60000h. The 10{sup 5}h extrapolated creep rupture strengths are estimated to be 88MPa at 700 C and 64MPa at 750 C. Microstructural stability closely related with long term creep strength and toughness has also been confirmed by microstructural observations after creep tests and aging. Creep rupture strength of Alloy 617 has been found to be much higher than that of HR6W at 700 and 750 C, while comparable at 800 C. A thermodynamic calculation along with microstructural observation indicates that the amount of Laves phase in HR6W gradually decreases with increasing temperature, while that of {gamma}' in Alloy 617 rapidly decreases with increasing temperature and {gamma}' almost dissolves at 800 C. This may lead to an abrupt drop in creep strength of Alloy 617 above 750 C. Alloy 263, in which more {gamma}' precipitates than Alloy 617, shows much higher creep strength. However, it is suggested that inhomogeneous creep deformation is enhanced compared with HR6W and Alloy 617. Capability of HR6W as a material for A-USC plants was discussed in terms of creep properties, microstructural stability and other

  8. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  9. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  10. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  11. Influence of different etchants on the representation of microstructures in nickel alloys; Einfluss verschiedener Aetzmittel auf die Gefuegedarstellung in Nickellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Speicher, Magdalena; Scheck, Rudi; Maile, Karl [Stuttgart Univ. (Germany). Materialpruefungsanstalt

    2016-04-15

    This work presents a comparison of selected nickel alloys of the same condition which were treated by means of specifically chosen etching techniques. Microstructures on microscope images of wrought Alloy 617, a casting variant of Alloy 625, a polycrystalline casting alloy IN-738 LC, as well as of a monocrystalline superalloy CM 247 LC SX, respectively, are juxtaposed and evaluated. This approach allows for a comprehensive optical microscopy characterization of the characteristic microstructural features.

  12. Qualification of Ni-base superalloys for hot gas duct of VHTR

    International Nuclear Information System (INIS)

    Hot gad duct of VHTR is operated at 950 .deg. C. Ni based superalloys for hot gas duct have been candidate in other country such as Hastelloy X for Japan, Alloy 617 for USA, and Haynes 230 for France because of good strength and corrosion properties at high temperature. Mechanical properties of these alloys are tested and compared with ASME design Code to apply to hot gas duct of VHTR

  13. Influence of different etchants on the representation of microstructures in nickel alloys

    International Nuclear Information System (INIS)

    This work presents a comparison of selected nickel alloys of the same condition which were treated by means of specifically chosen etching techniques. Microstructures on microscope images of wrought Alloy 617, a casting variant of Alloy 625, a polycrystalline casting alloy IN-738 LC, as well as of a monocrystalline superalloy CM 247 LC SX, respectively, are juxtaposed and evaluated. This approach allows for a comprehensive optical microscopy characterization of the characteristic microstructural features.

  14. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    International Nuclear Information System (INIS)

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer

  15. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghoon [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Daejong [Nuclear Materials Technology Development Division, KAERI, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Lee, Ho Jung [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yoon, Duk Joo [Central Research Institute, KHNP, 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H{sub 2} environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H{sub 2} environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO{sub 3} oxides were formed on the MnCr{sub 2}O{sub 4}/Cr{sub 2}O{sub 3} oxide layer and sub-layer Cr{sub 2}O{sub 3} was formed in steam and steam + 20 vol.% H{sub 2} for Alloy 617. On the other hand, a MnCr{sub 2}O{sub 4} layer was formed on top of the Cr{sub 2}O{sub 3} oxide layer for Haynes 230. The extensive sub-layer Cr{sub 2}O{sub 3} formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  16. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    Science.gov (United States)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  17. Preliminary test results in support of integrated EPP and SMT design methods development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, T. -L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-09

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The second test concept is the two-bar thermal ratcheting tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. This report summaries the previous SMT results on Alloy 617, SS316H and SS304H and presents the recent development on SMT approach on Alloy 617. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed integrated EPP and SMT design methods development. The previous two-bar thermal ratcheting test results on Alloy 617 and SS316H are also summarized and the new results from two bar thermal ratcheting tests on SS316H at a lower temperature range are reported.

  18. Environmental effects of microstructure stability on nickel-base superalloys

    International Nuclear Information System (INIS)

    Next generation nuclear reactor VHTR (Very High Temperature gas-cooled Reactor) wants to achieve higher thermal efficiency and hydrogen production. IHX (Intermediate Heat eXchanger) will be exposed to the highest temperature condition among lots of structural components. Solid-solution hardening nickel-base superalloys Alloy 617 and Haynes 230 are expected to use for this applications. Studies on oxidation test and time dependent deformation at 900 .deg. C were conducted before. This study is focused on the microstructure evolution and mechanical properties at other temperature ranges. Furthermore, considering heat treatment history especially cooling rate effects on microstructure evolution, those of two superalloys are cooled down to room temperature by air and furnace. Materials behavior at intermediation temperature ranges from 600-900 .deg. C and diffusion bonding condition (1150 .deg. C) were evaluated. Vicker's hardness test and small-size tensile test were carried out for each specimen at room temperature. Hardness number and tensile strength were higher than any other temperature condition at 700 .deg. C due to gamma prime phases for Alloy 617. As the aluminum contents of Haynes 230 is far less than Alloy 617, there is no big difference for Haynes 230 at intermediate temperature ranges. The value of mechanical property of alloys at 1150 .deg. C air cooling condition was severely decreased and fully ductile fracture was detected for both alloys. On the other hand, the values showed the tendency of return to the intermediate temperature ranges when the specimen was slowly cooled down. Characteristic precipitates along the grain boundaries were detected. There was no other singularity up to 700 .deg. C for Alloy 617. However, lots of tiny M23C6 type carbide were formed after 800 .deg. C heat treatment, and those of carbide got bigger and bigger as the heat treatment temperature increased up to 900 .deg. C. For diffusion bonding temperature, grain boundary

  19. Effect of tensile dwell on low cycle fatigue of cast superalloy Inconel 792-5A at 800°C

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Obrtlík, Karel; Petrenec, Martin; Polák, Jaroslav

    488-489, - (2012) s. 735-738. ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/11/2065; GA ČR(CZ) GAP204/11/1453 Institutional research plan: CEZ:AV0Z20410507 Keywords : nickle base superalloy * elevated temperatures * low cycle fatigue * dwells Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. The application of photoelectron spectroscopy in the study of corrosion and oxidation mechanisms of alloys: Inconel 182, Fe/Cu(100 and U-Zr-Nb

    International Nuclear Information System (INIS)

    In. this work a study of the oxidation/corrosion process of three systems of metallic materials by Photoemission Spectroscopy is presented. In the first system, it was investigated the corrosion of Ineonel 182 at simulated Pressurized Water Reactor (PWR) environment. Samples with and without surface chemical treatment were exposed to the simulated environment for until 18 weeks. The oxide layer formed on the surfaces of the samples at different conditions was characterized by Scanning Electron Microscopy and XPS coupled with argon ion sputtering. The comparison between the oxide films grown on the samples showed that the oxide layer formed on the chemically treated sample is thinner and relatively Cr-rich. In second system it was studied the initial oxidation at room temperature of epitaxial films of Fe evapored on Cu (100). The films were deposited with two different thicknesses in order to get tbe fcc Fe (100) and bcc Fe (110) surfaces. The results, obtained by photoemission spectroscopy at the TEMPO beamline of the Synchrotron Soleil, showed the formation of distinct oxides films. The surfaces also presented different kinetics of oxidation and the (110) Fe-bcc showed highest reactivity. The analysis of the data indicated the Fe1-xO formation on fcc Fe (100) and suggested the Fe1-xO and FC304 formation on (110) Fe-bcc surface. In the last system, it was investigated the initial oxidation of U-Zr-Nb alloys at room temperature. For this experiment, the alloys were exposed to oxygen in ultra high vacuum. The analysis of the U 4f peak showed the fast formation of U)2 on the surfaces and similar kinetics of oxidation between the U and the U-Zr-Nb alloy. The alloying elements showed slower oxidation. The Zr 3d peak suggested the zr02 formation while the Nb 3d peak showed a remarkable enlargement that became necessary a deconvolution which indicated the formation ofNhO, Nb02 and N205. (author)

  1. Stress corrosion cracking of pressurized boundary materials of 600 MW nuclear power plant. The critical potential for SCC of SG tubing alloy inconel-690 in simulated secondary water

    International Nuclear Information System (INIS)

    The experimental method of slow strain rate tests (SSRTs) with constant applied electrochemical potential (ECP) was applied first time on steam generator (SG) tubing alloy In-690 to investigate the relations between stress corrosion cracking (SCC) behavior and ECP in simulated secondary water chemistry condition: 260 degree C, 1 x 10-6 Cl- un-deaerated water. The critical potentials (Ec) for SCC have been determined finally. SSRTs with constant ECP experiments were performed on SERT-5000 dP 9H tension tester, in all tests the nominal strain rate was 4.2 x 10-6/s. Anodic polarization was conducted on high temperature electrochemistry testing autoclave with a model 350A corrosion measurement system, with potential scanning rate 0.3 mV/s. The experimental materials were alloy In-690 provided by Sumitomo of Japan and Vallurac of France

  2. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  3. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    Science.gov (United States)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  4. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    Science.gov (United States)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  5. Oxidation and mechanical behaviors of solid-solution hardening nickel-base superalloys in high temperature helium environments

    International Nuclear Information System (INIS)

    Solid-solution hardening nickel-base superalloys Alloy 617 and Haynes 230 were examined for VHTR intermediate heat exchanger applications. This study focused on high temperature oxidation and aging degradation and how they affected low temperature embrittlement and creep behaviors at high temperatures. Oxidation tests and aging heat treatment were carried out at 900 .deg. C and 1000 .deg. C in impure helium environments that contained H2, H2O, CO, CO2, and CH4 in order to simulate VHTR coolant chemistry. The oxidation kinetics of the alloys followed the parabolic law of oxidation in all cases. In impure helium environments that had very low oxygen activity, a Cr2O3 layer, TiO2 ridges on the grain boundaries, and isolated MnCr2O4 grains on top of the Cr2O3 layer were formed for Alloy 617, while a Cr2O3 inner layer and a NiO outer layer were formed in air with high oxygen activity due to the different thermodynamics. For Haynes 230, a Cr2O3 inner layer and a protective MnCr2O4 outer layer formed, which increased the oxidation resistance. The oxidation kinetics of Haynes 230 was changed by Mn depletion at the initial stage of oxidation. A dense MnCr2O4 oxide layer grew on top of a Cr2O3 layer in impure helium environments for Haynes 230, while quasi-columnar MnCr2O4 grains grew in air, which resulted in a better oxidation resistance for the impure helium environments. Cellular Cr2O3 oxides for Alloy 617 and MnCr2O4 whiskers/platelets for Haynes 230 were formed in impure helium at 900 .deg. C due to the more rapid dissociation of water vapor and CO2 molecules compared to the oxygen molecules. The formation of irregular oxides are believed to have been due to a VLS mechanism based on the appearance of droplets on the tips of the whiskers, the formation of which was more preferential on the vertex of MnCr2O4 crystals. The effect of a small amount of CH4 and H2 on the oxidation kinetics of the alloys was insignificant. In slightly oxidizing and decarburizing environments

  6. Long-Term Aging Effects on Microstructure and Tensile Properties of Ni-base Superalloys

    International Nuclear Information System (INIS)

    Various alloying elements such as Mo, Co, W, Cr, Al, Mn and others are added in Ni-base superalloys to improve strength, creep, and oxidation resistance at high temperature. Some elements would form carbides such as M23C6, M6C and Ti(C,N) at grain boundaries and within grain. Strength and creep resistance are increased when intergranular carbides are present as discrete particles by pinning grain boundaries and thereby inhibit grain boundary sliding. Meanwhile, after long term exposure at high temperature, additional carbides are developed and diffused then coarsened at grain boundary. It could deteriorate mechanical properties. In this study, the effects of long-term ageing on the microstructure and mechanical properties of Ni-base superalloys were investigated. From the microstructure observation and tensile tests of Ni-base superalloy, Alloy 617 and Haynes 230, aged at 800 .deg. C and 900 .deg. C for 10000 h, the following conclusions were drawn; - During high temperature aging process for long time, additional carbides were developed and coarsened at grain boundary and inside grain. - Depending on the aging temperature, behaviors of carbides were different. In Alloy 617, linked carbides were formed at 900 .deg. C while discrete one was developed at 800 .deg. C at grain boundary. In case of Haynes 230, coarsened pool-like carbides surrounded by carbide depleted area were formed at 900 .deg. C, but it was not observed at 800 .deg. C. - Tensile strength of Alloy 617 and Haynes 230 were increased after aging at 800 .deg. C though it was decreased aging temperature at 900 .deg. C due to more carbide formation at 800 .deg. C. - Elongations of aged Ni-base superalloys were decreased by the effect of coarsened brittle carbide at grain boundary

  7. Embrittlement of fuel gas piping made of wrought nickel-based superalloy due to inadequate heat treatment; Versproedung von Brenngasleitungen aus Nickelbasisknetlegierung durch ungeeignete Waermebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Gaedicke, Tobias [Siemens AG, Berlin (Germany). Werkslaboratorien

    2013-10-01

    Cold-drawn and cold-bent seamless Alloy 617 pipes were received by a gas turbine engine manufacturer for final assembly. They exhibited multiple cracking on the surface. The extrados of bending zones were most affected by this condition. It was determined that the metallurgical root cause of the problem was inadequate heat treatment by the supplier of the semi-finished product. The cracking upon cold bending the seamless pipes was caused by embrittlement of the pipes' surface due to nitridation and a further drop in formability as a result of grin boundary embrittlement by secondary carbide precipitates. (orig.)

  8. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  9. Characterisation of oxidation and oxide layers of nickel-base superalloys at high temperature

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for several key components in a very high temperature gas-cooled reactor. The high temperature properties of those alloys such as creep and creep-fatigue strongly depend on characteristics of surface oxide layer. Therefore, in the present study, the oxidation behaviours of several nickel-base superalloys such as Alloy 617, Haynes 214 and Haynes 230 were investigated at 900 deg C and 1100 deg C in air and helium environments. Also, to understand the surface oxidation process, oxide layers were analysed by XRD, XPS and EDX. The results showed that the oxidation behaviours were strongly depended on the stability of the surface oxides. In case of Alloy 617 and Haynes 230, Cr2O3 was dominantly formed on the surface, and the weight increased significantly due to oxidation at the initial stage, but followed by a decrease due to volatilization of Cr2O3 layer, especially at 1100 deg C. Also, the partitioning of other minor alloying elements into the surface layer was observed but disappeared after long-term exposure. On the other hand, after forming transient phases like NiO and NiCr2O4, stable α-Al2O3 layer was dominantly formed later on the surface of Haynes 214, and the weight gain eventually reached to plateau. Based on the weight loss measurement and XRD analysis, the oxidation resistance of the alloys was discussed. (authors)

  10. The tensile properties of alloys 800H and 617 in the range 20 to 950deg C

    International Nuclear Information System (INIS)

    The tensile properties of Alloy 800H and Alloy 617 in the solution treated condition and after ageing or carburization have been determined for the temperature range 20 to 950deg C. It was found that ageing at 900deg C prior to testing led to an increase in strength and a decrease in ductility at test temperatures up to 700deg C. Above 700deg C, there was no significant difference between the tensile properties of solution treated and aged material. Carburization caused a severe loss of ductility in both alloys at temperatures of 20 to around 800deg C, but the ductility increased sharply at test temperatures above 800deg C, accompanied by a change in the fracture mode from fracture of the carbide particles themselves to void formation and separation at the carbide/matrix interface. The correlation between tensile properties and creep data was investigated in tests carried out at different strain rates. Reasonable agreement was found at 800 to 950deg C for Alloy 617 and at 800 to 900deg C for Alloy 800H. Strain ageing effects were observed in both alloys at some temperatures and strain rates; these effects were serrated flow, negative strain rate sensitivity, peaks in the normalized UTS-temperature curves and plateaus in the elongation-temperature curves. The experimental results were interpreted in the light of two current models for strain ageing, the dislocation-dislocation interaction model and the dislocation-solute interaction model. (orig.)

  11. Weldability of high strength Ni-based alloy USC141 as boiler tube for 700 C USC plant

    Energy Technology Data Exchange (ETDEWEB)

    Bao, G.; Sato, T. [Babcock-Hitachi K.K. Kure-shi, Hiroshima-ken (Japan); Imano, S.; Sato, J. [Hitachi, Ltd. Hitachi-shi, Ibaraki-ken (Japan); Uehara, T.; Toji, A. [Hitachi Metals, Ltd. Yasugi-shi, Shimane-ken (Japan)

    2007-07-01

    Recently the increase of steam temperature and pressure of power plant is required to enhance the thermal efficiency and reduce the CO{sub 2} emission. For the application to advanced USC (Ultra Super Critical) boiler with steam temperature around 700 C, the application of Ni-based alloy such as Alloy617 will be necessary. A new Ni-based alloy USC141 (20Cr-10Mo-2Ti-Al-bal.Ni) with excellent creep rupture strength and low thermal expansion has been developed by Hitachi Ltd. and Hitachi Metals Ltd. as the candidate material for 700 C USC turbine components. In present work, to investigate the possibility for boiler tube application of USC141, its weldability and high temperature strength properties were experimentally examined. The tested material as solution-treated condition shows higher creep rupture strength than that of Alloy617. GTAW (Gas Tungsten Arc Welding) trials of tubular specimen using NIMONIC263 filler wire were conducted successfully and the creep rupture strength of weld joint was as similar as that of parent metal. Therefore it is considered that USC141 has a promising potential as boiler tube candidate for 700 C class USC power plant. (orig.)

  12. Narrow gap HST welding process and its application to candidate pipe material for 700 C USC boiler component

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi; Fukuda, Yuji [Babcock-Hitachi K.K., Hiroshima (Japan). Kure Research Lab.; Mitsuhata, Koichi [Babcock-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2008-07-01

    Increasing steam temperature and pressure conditions of 700 C USC (Ultra Super Critical) power plants under consideration require the adoption of Ni-based alloys. One of the most crucial issues for the application of 700 C USC power plants is the establishment of welding technology for the thick-walled components. This paper reports the research results on the practicability of candidate material for the thickwalled components. The weld test was conducted on Ni-based Alloy617 (52Ni-22Cr- 13Co-9Mo-Ti-Al) by using the narrow gap HST (Hot wire Switching TIG) welding process developed by Babcock-Hitachi K.K with the matching filler wire of Alloy617. The weldability and strength properties of weld joint were examined. The sound weld joint was achieved. The advantages of narrow gap HST welding process for the thick-walled components of Ni-based alloy were discussed from the viewpoints of weld metal chemical composition and creep rupture strength. Due to the good shielding effect, the melting loss of alloy elements in the weld consumable during the narrow gap HST welding procedure was suppressed successfully. The narrow gap HST weld joint showed comparable strength with the parent metal. (orig.)

  13. Fatigue and creep cracking of nickel alloys for 700 C steam turbines

    International Nuclear Information System (INIS)

    Four materials of the types Inconel 706 (two heat treatment states), Inconel 617, and Waspaloy were tested as shaft materials for 700 to 720 C steam turbines. At an extrapolation time ratio of 10, Waspaloy was expected to have the highest creep strength (about 270 MPa at 700 C), with values of about 140 MPa at 700 C for Inconel 617. A preliminary evaluation of the 700 C creep rupture tests showed the highest creep rupture resistance for Inconel 617, followed by Waspaloy and Inconel 706

  14. The use of finite element analysis and notch tensile testing to determine the cryogenic fracture toughness of thick section weldment in forged CSUS-JN1 plate with Inconel 625 type filler metals

    International Nuclear Information System (INIS)

    The use of the notch tensile test to estimate the elastic-plastic fracture toughness (JIC) of structural alloys and weldments for superconducting magnets in fusion energy systems was studied. Notch tensile tests were performed with small round bar specimens containing an electro discharge machined (EDM) notch at liquid helium temperature (4 K) using crosshead rates of 3.3 x 10-3 and 20 mm/s. Notch tensile test specimens were 5 mm in diameter with a 30-mm reduced section. In the mid section of the specimen a 1 mm deep EDM notch of 0.2 mm width was machined around the girth, thus maintaining a starting diameter of 3 mm. Correlations between notch tensile strength, failure energy absorption, and JIC were assessed. A finite element analysis was also performed to compute directly the J-values. Comparisons of the predicted JIC with results obtained from conventional JIS Z 2284 standard tests were made. (author)

  15. The electrochemical corrosion behavior of austenitic alloys, cobalt or nickel based super alloys, structurally hardened martensitic, Inconel, zircaloy, super austenitic, duplex and of Ni-Cr or NTi deposits in tritiated water. 3 volumes

    International Nuclear Information System (INIS)

    The redox potential of 3 H2O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. The steels that are most resistant to this behavior are the super austenitic and super Duplex. To avoid corrosion, another solution is to decompose the radiolytic products by imposing a slight reducing potential. Corrosion inhibitors, which are stable in tritiated water, can be used. (author). 69 refs., 421 figs., tabs

  16. The electrochemical corrosion behavior of austenitic alloys, cobalt or nickel based super alloys, structurally hardened martensitic, Inconel, zircaloy, super austenitic, duplex and of Ni-Cr or NTi deposits in tritiated water. 3 volumes; Comportement electrochimique a la corrosion d`alliages austenitiques, superalliages base cobalt ou nickel, martensitiques a durcissement structural, inconel, zircaloy, superaustenitiques et duplex, de depots Ni-Cr et NTi en eau tritiee. 3 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G.

    1994-12-31

    The redox potential of {sup 3} H{sub 2}O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. The steels that are most resistant to this behavior are the super austenitic and super Duplex. To avoid corrosion, another solution is to decompose the radiolytic products by imposing a slight reducing potential. Corrosion inhibitors, which are stable in tritiated water, can be used. (author). 69 refs., 421 figs., tabs.

  17. Report on FY15 Two-Bar Thermal Ratcheting Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from

  18. Corrosion Issues of High Temperature Reactor Structural Metallic Materials

    International Nuclear Information System (INIS)

    Cooling helium of high temperature reactors (HTRs) is expected to contain a low level of impurities: oxidizing gases and carbon-bearing species. Reference structural materials for pipes and heat exchangers are chromia former nickel base alloys, typically alloys 617 and 230. And as is generally the case in any high temperature process, their long term corrosion resistance relies on the growth of a surface chromium oxide that can act as a barrier against corrosive species. This implies that the HTR environment must allow for oxidation of these alloys to occur, while it remains not too oxidizing against in-core graphite. First, studies on the surface reactivity under various impure helium containing low partial pressures of H2, H2O, CO, and CH4 show that alloys 617 and 230 oxidize in many atmosphere at intermediate temperatures (up to 890-970 degrees C, depending on the exact gas composition). However when heated above a critical temperature, the surface oxide becomes unstable. It was demonstrated that at the scale/alloy interface, the surface oxide interacts with the carbon from the material. These investigations have established an environmental area that promotes oxidation. When exposed in oxidizing HTR helium, alloys 617 and 230 actually develop a sustainable surface scale over thousands of hours. On the other hand, if the scale is destabilized by reaction with the carbon, the oxide is not protective anymore, and the alloy surface interacts with gaseous impurities. In the case of CH4-containing atmospheres, this causes rapid carburization in the form of precipitation of coarse carbides on the surface and in the bulk. Carburization was shown to induce an extensive embrittlement of the alloys. In CH4-free helium mixtures, alloys decarburize with a global loss of carbon and dissolution of the pre-existing carbides. As carbides take part in the alloy strengthening at high temperature, it is expected that decarburization impacts the creep properties. Carburization and

  19. 78 FR 42584 - Bureau of International Security and Nonproliferation: Report to Congress Pursuant to Section...

    Science.gov (United States)

    2013-07-16

    ... infiltrated tungsten; copper- beryllium; graphite; hastelloy; inconel; magnesium; molybdenum; nickel; niobium...); titanium; titanium diboride; tungsten; tungsten carbide; and zirconium. Dated: July 1, 2013. Thomas...

  20. Fracture assessment of a BWR pump nozzle

    International Nuclear Information System (INIS)

    Fracture mechanics calculations are performed to support the non-destructive testing (NDT) qualification programs for pump nozzle investigations of boiling water reactor (BWR) nozzles of reactor pressure vessels (RPVs), with the aim of the determination of qualification defects, which are located in the Inconel 182 weld of the pump nozzle at the bottom of the RPV. The ferritic nozzle and housing have an Inconel buttering and each part is cladded with Inconel 182 before it is mounted. All theses weldments are heat treated after welding; only the connecting weldment between pump housing and nozzle, which is also an Inconel 182 weld, performed on site, is in the as welded condition. (author)

  1. Achievements of the US-France I-NERI program on heat exchanger alloys for HTR

    International Nuclear Information System (INIS)

    As part of the US Department of Energy bilateral I-NERI initiatives, a 3-year collaborative R and D program has been completed on high temperature nickel base alloys for heat exchangers (IHX) of Generation IV high temperature gas-cooled reactors, named HTR. INL for the US and CEA for France were the leading organizations. The scope was to gain data on the mechanical and corrosion behaviors of Alloy 617 and Alloy 230 in the range of service conditions expected for a high temperature IHX, specifically the temperature, the load and cycling, and the helium impurity content. Main objectives were to compare the performances of both materials and to improve understanding of their properties to help establish the design criteria in terms of: baseline mechanical properties; resistance to creep, fatigue and creep-fatigue; resistance to thermal aging, corrosion and embrittlement. This paper presents the main achievements of that concerted R and D program. (author)

  2. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  3. Oxidation behaviors of Ni-base Superalloys for Nuclear Hydrogen production in Steam with and without Hydrogen Environments

    International Nuclear Information System (INIS)

    The high temperature steam electrolysis (HTSE) is one of the promising ways of the massive hydrogen production using the very high temperature gas cooled reactor (VHTR) because they has a higher efficiency below the 850 .deg. C and available to adapt the existing solid oxide fuel cell (SOFC) technologies. Intermediate heat exchanger (IHX) is important structural component which supply high temperature steam to the HTSE. Also, steam provided to the HTSE would be mixed with hydrogen in order to ensure reduction environment. Therefore, the candidate IHX materials require the high temperature oxidation resistance in steam with and without hydrogen environments. One of the candidate materials for the IHX is Ni-base superalloys such as Alloy 617 and Haynes 230 due to excellent high temperature oxidation resistance. In this study, oxidation behaviors of Ni-base superalloys were evaluated in steam with and without hydrogen environments

  4. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Science.gov (United States)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  5. A facility for conducting high-temperature oxidation experiments of alloys in helium environments containing part per million levels of impurities

    International Nuclear Information System (INIS)

    An experimental facility was constructed to study the corrosion of alloys in helium containing part per million (ppm) levels of CO, CO2, CH4 and H2 as impurities, relevant to the environment in the heat exchanger of the Very High Temperature Gas Cooled Reactor. The system provides the capability of exposing multiple specimens in up to seven separate helium environments, simultaneously, for durations of >1000 h and temperatures up to 1200 °C. Impurity concentrations are controlled down to 1 ppm accuracy and analyzed using a discharge ionization detector gas chromatograph. The utility and reliability of the facility in quantitatively accounting for the masses of reactants and products involved in the oxidation of alloy 617 at 900 °C and 1000 °C in the helium gas containing 15 ppm CO and 1.5 ppm CO2 is confirmed by the weight-gain measurements, gas-phase analysis and post-test microstructural analysis

  6. Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature

    Directory of Open Access Journals (Sweden)

    Mattias Calmunger

    2014-01-01

    Full Text Available In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L and one nickel-base alloy (Alloy 617 have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

  7. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  8. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Testing for investigation of damage mechanisms at high-temperature for the 700 C power plant

    Energy Technology Data Exchange (ETDEWEB)

    Czychon, Karl-Heinz; Metzger, Klaus [Grosskraftwerk Mannheim AG, Mannheim (Germany); Roos, Eberhard; Maile, Karl [Stuttgart Univ. (Germany). MPA

    2008-07-01

    The new project - coordinated by GKM is focused on the investigation of new materials in addition to already running R and D programmes. There is no overlap to these programmes, but a perfect complement. This could be illustrated by the specific test rig design, consisting of an internal super heater loop for long-term test and an external creep test loop for the systematic monitoring of the material deformation and damage behaviour. In addition an external test loop for turbine materials to evaluate oxidation behaviour of advanced coatings is implemented. In the project materials will be exposed to realistic loading conditions. The aim of the project is also the development and qualification of hot steam armatures for 725 C, using Ni-based alloy as structural materials. Within this scope problems with wear and erosion related with Alloy 617 have to be solved. (orig.)

  10. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  11. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  12. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-15

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA.

  13. Quantitative electron probe microanalysis investigation of the oxidation of high temperature alloys at low oxygen partial pressures

    International Nuclear Information System (INIS)

    Using electron probe microanalysis techniques, the oxidation of two high temperature alloys (alloy 617 and alloy 800 H) has been investigated. Specimens were exposed for up to 5000 h in a simulated methane reformer gas environment in the temperature range 800 to 9500C. Oxygen partial pressures were in the range 10-19 to 10-16 bar. In the investigation, particular attention was given to the determination of quantitative data for the oxide scales formed at the surface, the analysis of minor elements in the scale and the depletion effects in the matrix immediately below the scale. The oxide scale formed on alloy 800 H was found to comprise two layers, an outer layer containing Mn(1+x)Cr2(1-x)TixO4 (spinel) and MnTiO3 (Ilmenite type) and an inner layer of Cr2-yTiyO3 where 0.052-yTiyO3. Concentration profiles in the sub-surface regions for the constituent elements were measured and used to determine the mass flow at the surface in mg cm-2. The mass flow was then incorporated as a boundary condition in a diffusion program for calculation of the concentration profile. The program allowed derivation of the diffusion coefficients of Cr, Mn and Ti, and the values obtained were in good agreement with those published in the literature. It was found that the dissolution of chromium carbides in the near-surface regions caused by depletion of chromium to form the scale contributed up to 50% of the chromium consumed in oxidation in alloy 617. In alloy 800 H, the contribution was significantly lower. (orig.)

  14. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    International Nuclear Information System (INIS)

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA

  15. Oxidation characteristics of nickel-base superalloys at high temperature in air and helium atmospheres

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for piping and structural materials in a very high temperature gas cooled reactor (VHTR). They are subjected to the environmental degradation caused by a continuous process for oxidation due to small amount of impurities in He coolant during long term operation. In the present study, the oxidation behaviors of several nickel-base superalloys such as Alloy-617, Haynes-214 and Haynes-230 in particular, were studied at the temperature of 900 and 1100 C degrees in air, and in the high purity He environment. Oxide layers were analyzed by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray analysis). The differences in oxidation behaviors of these alloys were mainly caused by different protective oxide layers on surface. In the case of Alloy-617 and Haynes-230, Cr2O3 layer formed on the surface which is not stable at 1100 C degrees. Therefore, the weight increased significantly due to oxidation at the initial stage, which followed by a decrease due to the scaling and volatilization of Cr2O3 layer. On the other hand, since Haynes-214 has mainly Al2O3 oxide layer on surface which is more stable and has more dense structure at higher temperature, the weight gain eventually reaches to parabolic. Microstructural characteristics of internal carbides and carbide depletion zone were analyzed. With oxidation time, continuous grain boundary carbides of M23C6 type were getting thin or it disappeared partially. Especially, carbides on grain boundary disappeared entirely below oxide layer (carbide depletion zone). It was getting wide with oxidation time. For Haynes-214, the size of carbide depletion zone was smaller than other alloys because Al2O3 layer acted as a diffusion layer prevented effectively the penetration of oxygen into base metal. (authors)

  16. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  17. Niobium-3-tin internally cooled cabled superconductor (ICCS) technology I

    International Nuclear Information System (INIS)

    Recent work, using tantalum and Incoloy 903 sheathing has demonstrated that internally cooled, cabled superconductors (ICCS) can be compacted without current degradation. This paper compares Inconel 617 sheathing to previous results. Inconel 617 is a practical engineering material with a thermal contraction lying between stainless steel and Incoloy 903

  18. NIOBIUM-3-TIN INTERNALLY COOLED CABLED SUPERCONDUCTOR (ICCS) TECHNOLOGY I

    OpenAIRE

    Hoenig, M.; Steeves, M.; Cyders, C.

    1984-01-01

    Recent work, using tantalum and Incoloy 903 sheathing has demonstrated that internally cooled, cabled superconductors (ICCS) can be compacted without current degradation. This paper compares Inconel 617 sheathing to previous results. Inconel 617 is a practical engineering material with a thermal contraction lying between stainless steel and Incoloy 903.

  19. Abrasive blasting technology for decontamination of the inner surface of steam generator tubes

    International Nuclear Information System (INIS)

    The inner surfaces of bundled inconel tubes from steam generators in South Korean nuclear power plants are contaminated with cobalt and abrasive blasting equipment has been developed to efficiently remove the cobalt. The principal parameters related to the efficient removal using this equipment are the type of abrasive, the distance from the nozzle, and the blasting time. Preliminary tests were performed using oxidized inconel samples which enabled the simulation of cobalt removal from the radioactive inconel samples. The oxygen in the oxidized samples and the cobalt in the radioactive inconel were removed more effectively using the blasting distance, blasting time, and a silicon carbide abrasive. Using the developed abrasive blasting equipment, the optimum decontamination conditions for radioactive inconel samples were blasting for more than 6 minutes using silicon carbides under 5 atmospheric pressures

  20. Predictive methodology to address PWSCC of Alloy 600 locations in PWRS

    International Nuclear Information System (INIS)

    Contributing factors to primary water stress corrosion cracking (PWSCC) are susceptible microstructure, temperature, and residual and applied stresses. In order to predict PWSCC of Inconel 600 components in PWR type reactors, a number of steps were taken. All Inconel 600 components were located, fabrication history, weld procedures and material properties were identified. Service temperatures and approximate stresses were determined. Precise service stress evaluations of Inconel 600 locations by Finite Element and other analytical evaluations were made. Using data analysis, relative PWSCC susceptibility evaluations of Inconel 600 locations were made on the basis of the Westinghouse RSI model. Finally, a prioritized inspection plan for Inconel 600 locations was developed and recommendations provided. 11 figs., 2 tabs

  1. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    The mechanical properties of several weldments in 21-6-9 and 316LN stainless steel metals have been measured at 77 K and room temperature. Filler metals for the 211-6-9 included Nitronic 35W and 40W, 21-6-9, Inconel 82, 182, 625, and 625 PLUS. For the 316LN base metal, 316L, 316L-T3, 316L-4K-O, and Inconel 82 filler metals were used. At room temperature all of the filler metals had yield strengths that exceeded those of the base metals. At 77K only the Nitronics and the 21-6-9 filler metals exceeded those of the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77 K the impact toughness was greatly reduced for all of the filler metals, with the dramatic exception of Inconel 82. The 316L-4K-O filler metal showed higher impact energies than the other ferrite-containing filler metals, although the levels were still much lower than for the Inconel filler metals. The Inconel 82 filler had excellent fracture toughness at both temperatures

  2. Subcritical crack growth in the ligament between the instrumentation rods of the BBR pressure vessel bottom

    International Nuclear Information System (INIS)

    A fracture mechanics fatigue analysis is made for an assumed crack emanating from the bore of an instrumentation rod. This assumed crack has partially penetrated the Inconel buttering of the 22 Ni Mo Cr 37 on which the structural Inconel welds are laid. Our analysis shows that the assumed crack could only penetrate 26% of the remaining ligament of the Inconel structural weld as a result of the fatigue crack growth during the entire operating life of the pressure vessel. Therefore a leak caused by a flaw missed during pre-service and in-service non-destructive testing can be excluded. (author)

  3. Corrosion aspects of compatible alloys in molten salt (FLiNaK) medium for Indian MSR program in the temperature range of 550-750 °C using electrochemical techniques

    International Nuclear Information System (INIS)

    Corrosion behaviours of different alloys were evaluated in fluoride eutectic FLiNaK in the temperature range of 550-750 °C under static and dynamic conditions. Electrochemical polarization and impedance techniques were used to estimate corrosion rate. The results showed that the corrosion process was controlled by activation and in some cases by formation of passive layer. In static mode, the corrosion rates followed the order : Inconel 625 > Inconel 617 > Inconel 600 > Incoloy 800 > Ni 220 > Hastelloy N > Incoloy 800HT. In dynamic mode, Hastelloy N and Incoloy 800HT showed better corrosion resistance in comparison to other alloys. (author)

  4. Effects of the Helium Environment on Degradation of Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    The test results from nickel-base superalloys at 900 .deg. C showed that stable oxide layers were built up in the air conditions and its oxidation resistance was excellent. Haynes 230 formed multi-oxide layers such as MnCr2O4 and Cr2O3. Owing to the outermost MnCr2O4 which is a kind of spinel structure, oxidation resistance become better because it makes the oxygen diffusion difficult. On the other hand, Alloy 617 formed multi-oxide layers such as NiO, NiCr2O4, and Cr2O3. The outermost layers, NiO and NiCr2O4, could not carry out protective oxide layers because of its microscopic coarse structure. The test results from the both nickel-base superalloys at 1100 .deg. C showed that inner Cr2O3 oxide layer was exposed to the severe environment because of the spallation of the outermost oxide layer. In other words, oxidation resistance become poor on account of unstable oxide layers at high temperature. In the impure helium environments with very low oxygen activities such as He-H2O-CO-CO2 and He-H2-H2O-CO-CO2-CH4, a Cr2O3 layer, TiO2 ridges on grain boundaries, and isolated MnCr2O4 grains on top of the Cr2O3 layer were formed for Alloy 617, while a Cr2O3 inner layer and a MnCr2O4 outer layer were formed for Haynes 230. Mn depletion induced by forming MnCr2O4 was an important factor to increase oxidation resistance of Haynes 230 which resulted in the change in oxidation kinetics. A dense MnCr2O4 oxide layer was grown in impure helium environments for Haynes 230, while quasi-columnar MnCr2O4 grains were grown in air, which resulted in the better oxidation resistance in impure helium environments

  5. Corrosion and mechanical property at high temperature of nickel based alloy for VHTR

    International Nuclear Information System (INIS)

    Using a very high temperature reactor (VHTR), it is conceptually and practically possible to generate highly efficient electricity and produce massive hydrogen among generation IV nuclear power plants. The structural material for an intermediate heat exchanger (IHX) is exposed to high temperature of up to 950 .deg. C. In this harsh environment, nickel-based alloys such as Alloy 617 and Haynes 230 are considered as promising candidate materials for IHX material owing to their excellent creep resistances at high temperature. However, high-temperature degradation cannot be avoided even for nickel-based alloy. Helium which inevitably includes impurities such as H2, CH4, H2O and CO is used as a coolant in a VHTR. Material degradation is aggravated by corrosion under an impure helium environment, which is one of the main obstacles to overcome for the application and successful long-term operation of a VHTR. A review of the thermodynamics indicates which reactions are available on the surface of the materials among oxidation, carburization and decarburization, but it does not give US the kinetic preference. This kinetic preference can induce localized corrosion, kinetic irreversibility and long-term material instability leading to material degradation. In addition to a long-term corrosion test under a VHTR coolant environment, the development of new alloys superior to commercial nickel-based alloy also give way to the successful establishment of a VHTR. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by locking dislocation motion by an antiphase boundary at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow and very high temperature range of 850 to

  6. Effects of the Helium Environment on Degradation of Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, C. H.; Kim, D. J.; Datta, D.; Kim, M. W.; Kwon, J. H.; Arief, A.; Cho, J. Y. [KAIST, Daejeon (Korea, Republic of)

    2009-10-15

    The test results from nickel-base superalloys at 900 .deg. C showed that stable oxide layers were built up in the air conditions and its oxidation resistance was excellent. Haynes 230 formed multi-oxide layers such as MnCr{sub 2}O{sub 4} and Cr{sub 2}O{sub 3}. Owing to the outermost MnCr{sub 2}O{sub 4} which is a kind of spinel structure, oxidation resistance become better because it makes the oxygen diffusion difficult. On the other hand, Alloy 617 formed multi-oxide layers such as NiO, NiCr{sub 2}O{sub 4}, and Cr{sub 2}O{sub 3}. The outermost layers, NiO and NiCr{sub 2}O{sub 4}, could not carry out protective oxide layers because of its microscopic coarse structure. The test results from the both nickel-base superalloys at 1100 .deg. C showed that inner Cr{sub 2}O{sub 3} oxide layer was exposed to the severe environment because of the spallation of the outermost oxide layer. In other words, oxidation resistance become poor on account of unstable oxide layers at high temperature. In the impure helium environments with very low oxygen activities such as He-H{sub 2}O-CO-CO{sub 2} and He-H2-H{sub 2}O-CO-CO{sub 2}-CH{sub 4}, a Cr{sub 2}O{sub 3} layer, TiO{sub 2} ridges on grain boundaries, and isolated MnCr{sub 2}O{sub 4} grains on top of the Cr{sub 2}O{sub 3} layer were formed for Alloy 617, while a Cr{sub 2}O{sub 3} inner layer and a MnCr{sub 2}O{sub 4} outer layer were formed for Haynes 230. Mn depletion induced by forming MnCr{sub 2}O{sub 4} was an important factor to increase oxidation resistance of Haynes 230 which resulted in the change in oxidation kinetics. A dense MnCr{sub 2}O{sub 4} oxide layer was grown in impure helium environments for Haynes 230, while quasi-columnar MnCr{sub 2}O{sub 4} grains were grown in air, which resulted in the better oxidation resistance in impure helium environments

  7. Electron beam welding and laser welding of FRAGEMA fuel assembly components

    International Nuclear Information System (INIS)

    Neutron balance and activity of the primary coolant circuit are improved in PWR if inconel 718 is replaced by a zirconium alloy for fuel element grids. This paper examines laser welding and EB welding of these zirconium alloy grids

  8. Long range plan for flexible joint development program

    International Nuclear Information System (INIS)

    Objective is to develop bellows expansion joints into CDS and subsequent LMFBR and liquid metal applications. An assessment was performed on the use of Incoloy 800H and Inconel 718 as bellows materials

  9. Thermoelectric materials evaluation program spring design to minimize load relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, F.R.

    1980-03-31

    The recommended spring material for use in thermoelectric modules is either Inconel x or Elgiloy based on their excellent performance and availability. The stress level for generator applications is 75,000 psi. (FS)

  10. Assessment of high-strength stainless steel weldments for fusion energy applications

    International Nuclear Information System (INIS)

    Primary design considerations for the Compact Ignition Tokomak fusion reactor magnet cases are yield strength and toughness in the temperature range from liquid nitrogen to room temperature (77 to 300K). Type 21-6-9 stainless steel, also known as Nitronic 40, is the proposed alloy for this application. This study documented the mechanical properties, including tensile yield strength and Charpy V-notch impact toughness, at 77K and room temperature, of weldments made using seven different filler metals. Six welds were made with filler metal added as cold filler wire using the argon-shielded gas tungsten arc welding process. Filler metals included Nitronic 35W and 40W, 21-6-9, ERNiCr-3 (Inconel 82), ERNiCrMo-3 (Inconel 625), and Inconel 625 PLUS. All welds were prepared with a double-groove butt-weld geometry. At room temperature, all of the filler metals had yield strengths which exceeded the base metal. However, at 77K only the Nitronics and the 21-6-9 filler metals exceeded the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77K, impact toughness was greatly reduced for all of the filler metals with the exception of Inconel 82. This alloy had excellent toughness at both temperatures. The severe drop in the impact toughness of the Nitronic and 21-6-9 filler metals was attributed to the amount of ferrite present in these welds. At 77K, fracture occurred by a cleavage mechanism in the ferrite regions which allowed the crack to grow readily. The fully austenitic Inconel 82 material fractured by a microvoid coalescence mode at either test temperature. These results indicate that the Inconel 82 filler metal is the preferred material for welding 21-6-o stainless steel for this application

  11. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  12. Fatigue crack growth experiments and analyses - from small scale to large scale yielding at constant and variable amplitude loading

    OpenAIRE

    Ljustell, Pär

    2013-01-01

    This thesis is on fatigue crack growth experiments and assessments of fatigue crack growth rates. Both constant and variable amplitude loads in two different materials are considered; a nickel based super-alloy Inconel 718 and a stainless steel 316L. The considered load levels extend from small scale yielding (SSY) to large scale yielding (LSY) for both materials. The effect of different load schemes on the fatigue crack growth rates is investigated on Inconel 718 and compact tension specimen...

  13. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500oC for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  14. Bimetallic sleeve for repairing a heat exchanger tube locally damaged and repairing process of a such tube with this sleeve

    International Nuclear Information System (INIS)

    A tubular sleeve comprising two end sections made of the same metal as the heat exchanger tube and connected by a ring of an alloy suitable for welding is inserted into the tube and welded in place from the inside. The tube and end sections may be of Incoloy 800 while the ring is in Ni-Cr Alloy, Inconel 600 or Inconel 690. 3 figs

  15. Non-destructive evaluation of RbCl and Rb targets in Sr-82 production

    OpenAIRE

    Bach, H T; Hunter, H. T.; Summa, D. A.; Stull, C. J.; Olivas, E. R.; Connors, M A; Reass, D. A.; Moddrell, C.; Nortier, F. M.; John, K. D.

    2015-01-01

    Introduction Sr-82 is produced for PET cardiac imaging at the Isotope Production Facility (IPF) with 100-MeV proton beams. During irradiation, the target material (RbCl, Rb) and Inconel capsule are ex-posed for extended periods to intense radiation, thermally and mechanically induced stresses, and chemicals. The structural integrity of the Inconel capsules is of crucial importance to containing the target starting materials and produced Sr-82. Unexpected failure capsules severely affects t...

  16. Fatigue-crack propagation response of two nickel-base alloys in a liquid sodium environment

    International Nuclear Information System (INIS)

    The elevated temperature fatigue-crack propagation response of Inconel 600 and Inconel 718 was characterized within a linear-elastic fracture mechanics framework in air and low-oxygen liquid sodium environments. The crack growth rates of both nickel-base alloys tested in liquid sodium were found to be considerably lower than those obtained in air. This enhanced fatigue resistance in sodium was attributed to the very low oxygen content in the inert sodium environment. Electron fractographic examination of the Inconel 600 and Inconel 718 fatigue fracture surfaces revealed that operative crack growth mechanisms were dependent on the prevailing stress intensity level. Under low growth rate conditions, Inconel 600 and Inconel 718 fracture surfaces exhibited a faceted, crystallographic morphology in both air and sodium environments. In the higher growth rate regime, fatigue striations were observed; however, striations formed in sodium were rather ill-defined. These indistinct striations were attributed to the absence of oxygen in the liquid sodium environment. Striation spacing measurements were found to be in excellent agreement with macroscopic growth rates in both environments

  17. Microstructural studies on friction surfaced coatings of Ni-based alloys; Gefuegeuntersuchungen an reibgeschweissten Beschichtungen von Ni-Basislegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Javed; Puli, Ramesh; Kalvala, Prasad Rao; Misra, Mano [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering

    2015-07-01

    Inconel 625, Inconel 600, Inconel 800H were friction surfaced on steel and Inconel substrates. The interface between steel and Ni-based alloys showed intermixing of two alloys while the interface between two Ni-based alloys showed no such intermixing. The XRD results confirmed that this intermixed zone consisted of mechanical mix two separate metals and no intermetallics were noticed. Friction surfaced Inconel coatings were metallurgically bonded to steel and Inconel substrates with out any physical defects such as voids or cracks. Friction surfaced coatings showed equiaxed fine grained microstructures (4-18 μm) compared with their consumable rod counterparts (12 - 85 μm). Scanning electron microscope electron backscattered diffraction results showed that the coatings consisted of mainly high angle grain boundaries indicative of dynamic recrystallization mechanism. The temperatures recorded using Infra Red camera showed that the temperature attained at the interface between rod and the substrate is about 1100 C. The grain size of the consumable rod was relatively fine near the coating/substrate interface and relatively coarser away from interface indicating the change in strain and temperature the rod experienced at or away from the interface.

  18. Microstructural studies on friction surfaced coatings of Ni-based alloys

    International Nuclear Information System (INIS)

    Inconel 625, Inconel 600, Inconel 800H were friction surfaced on steel and Inconel substrates. The interface between steel and Ni-based alloys showed intermixing of two alloys while the interface between two Ni-based alloys showed no such intermixing. The XRD results confirmed that this intermixed zone consisted of mechanical mix two separate metals and no intermetallics were noticed. Friction surfaced Inconel coatings were metallurgically bonded to steel and Inconel substrates with out any physical defects such as voids or cracks. Friction surfaced coatings showed equiaxed fine grained microstructures (4-18 μm) compared with their consumable rod counterparts (12 - 85 μm). Scanning electron microscope electron backscattered diffraction results showed that the coatings consisted of mainly high angle grain boundaries indicative of dynamic recrystallization mechanism. The temperatures recorded using Infra Red camera showed that the temperature attained at the interface between rod and the substrate is about 1100 C. The grain size of the consumable rod was relatively fine near the coating/substrate interface and relatively coarser away from interface indicating the change in strain and temperature the rod experienced at or away from the interface.

  19. A computational approach for thermomechanical fatigue life prediction of dissimilarly welded superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krishnasamy, Ram-Kumar; Seifert, Thomas; Siegele, Dieter [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    In this paper a computational approach for fatigue life prediction of dissimilarly welded superheater tubes is presented and applied to a dissimilar weld between tubes made of the nickel base alloy Alloy617 tube and the 12% chromium steel VM12. The approach comprises the calculation of the residual stresses in the welded tubes with a multi-pass dissimilar welding simulation, the relaxation of the residual stresses in a post weld heat treatment (PWHT) simulation and the fatigue life prediction using the remaining residual stresses as initial condition. A cyclic fiscoplasticity model is used to calculate the transient stresses and strains under thermocyclic service loadings. The fatigue life is predicted with a damage parameter which is based on fracture mechanics. The adjustable parameters of the model are determined based on LCF and TMF experiments. The simulations show, that the residual stresses that remain after PWHT further relax in the first loading cycles. The predicted fatigue lives depend on the residual stresses and, thus, on the choice of the loading cycle in which the damage parameter is evaluated. It the first loading cycle, where residual stresses are still present, is considered, lower fatigue lives are predicted compared to predictions considering loading cycles with relaxed residual stresses. (orig.)

  20. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  1. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM)

  2. Novel Experiments to Characterize Creep-Fatigue Degradation in VHTR Alloys

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; J. A. Simpson; L. J. Carroll; R. N. Wright; T.-L. Sham

    2013-10-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterize creep-fatigue behavior of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasize the fatigue portion of the total damage and does not necessarily represent the behavior of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950°C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasize the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds.

  3. Mechanical properties of Ni-base superalloys in high temperature steam environments

    International Nuclear Information System (INIS)

    The effects of environmental damages on the mechanical properties of Ni-base superalloys, Alloy 617 and Haynes 230, were evaluated for VHTR-HTSE applications. Tensile tests were carried out at room temperature after ageing at 900 deg. C in vacuum, steam, and steam + 20 vol.% H2 environments up to 3 000 h. Also, creep rupture test were performed in air, steam, and steam + 20 vol.% H2 environments. The degradations such as oxidation, decarburization, and redistribution of carbides were studied in view of the interaction of materials with the environment. During the long-term ageing at 900 deg. C in vacuum, secondary phases such as M23C6 and M6C were precipitated and coarsened, which caused increase in tensile strength and decrease in ductility. For the specimens aged in steam environments, surface and internal oxides acted as preferential sites for crack initiation and consequently, decreased the tensile and creep strength. Also, the formation of decarburization region resulted in glide plane failure during tensile test and reduction in creep rupture life due to grain boundary migration and recrystallisation. During creep tests, tensile stress caused the crack and void formation in oxide layer. Consequently, fast diffusion of oxidant occurred and environmental damage were accelerated. Among the test conditions, such environmental damage was much severe in steam environments. (authors)

  4. Exploring the applicability of the LICON methodology for the creep assessment of a dissimilar metal weld

    International Nuclear Information System (INIS)

    The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. The LICON method predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation (CCI) tests in conjunction with the outcome of a mechanical analysis for the adopted multiaxial specimen geometry. The applicability of the methodology for long term creep strength prediction of martensitic 9%Cr and bainitic 1%Cr steels has already been demonstrated. This study has examined the applicability of the procedure for predicting long term uniaxial creep strengths for a dissimilar metal weld (DMW). It has required new developments to the original formulation. Application of the developed formulation for predicting uniaxial creep rupture behaviour of the investigated DMW shows an acceptable agreement with experimental observations which was not previously achievable. -- Highlights: • LICON predicts long term uniaxial creep strength from short term multiaxial tests. • Successful application of the method for 9% and 1%Cr steels has already been reported. • This study examined applicability of the method to a DMW (1CrMoV–Alloy 617–Alloy 625). • New developments have been proposed for LICON formulation to be applied for DMWs. • Developed formulation could successfully predict DMW long term uniaxial creep strength

  5. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    International Nuclear Information System (INIS)

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel

  6. Steam turbine materials and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Ziomek-Moroz, M.

    2007-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

  7. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  8. Application of Direct Current Potential Drop for the J-integral vs. Crack Growth Resistance Curve Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [ORNL; Nanstad, Randy K [ORNL; Sokolov, Mikhail A [ORNL

    2014-01-01

    The direct current potential drop (DCPD) technique has been applied to derive the J-integral vs. crack growth resistance curve (J-R curve) for fracture toughness characterization of structural materials. The test matrix covered three materials including type 316LN stainless steels, Ni-based alloy 617, and one ferritic-martensitic steel, three specimen configurations including standard compact, single edge bending, and disk-shaped compact specimens, and temperatures ranging from 20 C to 650 C. When compared with baseline J-R curves derived from the ASTM normalization method, the original J-R curves from the DCPD technique yielded much smaller Jq values due to the influence of crack blunting, plastic deformation, etc. on potential drop. To counter these effects, a new procedure for adjusting DCPD J-R curves was proposed. After applying the new adjustment procedure, the average difference in Jq between the DCPD technique and the normalization method was only 5.2% and the difference in tearing modulus was 7.4%. The promising result demonstrates the applicability of the DCPD technique for the J-R curve characterization especially in extreme environments, such as elevated temperatures, where the conventional elastic unloading compliance method faces considerable challenges.

  9. A study on fatigue crack propagation considering crack tip plasticity

    International Nuclear Information System (INIS)

    Fatigue crack propagation of materials considering crack tip plasticity was studied. For this, fatigue tests were performed with compact tension (CT) specimens of Inconel 690, Inconel 600, Inconel 718 and Type 304 stainless steel at room temperature. Fatigue test on Inconel 600 was performed to be used as a reference data of Inconel 690. Inconel 718 specimen, which has very high yield strength, was selected to simulate different plasticity at the crack tip in comparison with 304 stainless steel. The effect of specimen thickness on fatigue crack propagation was studied with 304 stainless steel of 3mm-, 6mm- and 25mm-thick specimens. Inconel 690 has been proposed as a substitute material for Inconel 600 in pressurized water reactor (PWR) steam generator tube application. This alloy was developed to improve the stress corrosion cracking resistance of Inconel 600. Now, it is known that Inconel 690 has better intergranular stress corrosion cracking (IGSCC) property than Inconel 600. But, more data of Inconel 690 about mechanical properties are needed in steam generator design. To investigate the effects of heat treatment on yield strength and fatigue crack propagation of Inconel 690, tensile tests and fatigue tests were performed on heat-treated specimen. From the test results, it is believed that chromium carbide precipitates at the grain boundaries reduce fatigue crack growth rate (FCGR) of Inconel 690 by crack tip blunting as far as the fatigue cracking is intergranular fracture mode. To investigate the effect of residual stress on fatigue crack propagation, residual stresses were introduced by induction-heat treatment. And, the distribution of residual stresses was measured with 3mm-thick 304 stainless steel by X-ray diffraction (XRD) measurement. From the tests, it was found that FCGR was increased in tensile residual stress region and decreased in compressive region. From the fatigue tests on 304 stainless steel, it was found that FCGR of thick specimen was faster

  10. Creep crack growth behavior of several structural alloys

    Science.gov (United States)

    Sadananda, K.; Shahinian, P.

    1983-07-01

    Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

  11. Microstructural and Mechanical Evaluation of a Cu-Based Active Braze Alloy to Join Silicon Nitride Ceramics

    Science.gov (United States)

    Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.

    2010-01-01

    Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.

  12. System studies of compact ignition tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  13. Maintenance technologies for SCC of PWR

    International Nuclear Information System (INIS)

    The recent technologies of test, relaxation of deterioration, repairing and change of materials are explained for safe and stable operation of pressurized water reactor (PWR). Stress corrosion cracking (SCC) is originated by three factors such as materials, stress and environment. The eddy current test (ECT) method for the stream generator pipe and the ultrasonic test method for welding part of pipe were developed as the test technologies. Primary water stress corrosion cracking (PWSCC) of Inconel 600 in the welding part is explained. The shot peening of instrument in the gas, the water jet peening of it in water, and laser irradiation on the surface are illustrated as some examples of improvement technology of stress. The cladding of Inconel 690 on Inconel 600 is carried out under the condition of environmental cut. Total or some parts of the upper part of reactor, stream generator and structure in the reactor are changed by the improvement technologies. Changing Inconel 600 joint in the exit pipe of reactor with Inconel 690 is illustrated. (S.Y.)

  14. The effect of dissolved zinc on the transport of corrosion products in PWRs

    International Nuclear Information System (INIS)

    This report describes an experimental program designed to evaluate the effects of dissolved zinc in the μg/kg-1 range in PWR coolant on activity transport. The program consisted of two phases. The first measured corrosion product releases from Inconel-600 with and without zinc in the coolant, and monitored the corresponding growth of oxide films. The second measured the pick-up of Co-60 by type 304 stainless steel and Inconel-600 with and without zinc in the coolant, and again monitored the corresponding growth of oxide films. Zinc in the range 10--40 μg/kg-1 lowered Co-60 pick-up by both materials by factors of 8--10, and generally led to thinner oxide films. A result showing that zinc led to a thicker film on Inconel, and a result that it had no significant effect on corrosion release from Inconel, were deemed to be anomalous. The mechanisms by which Co-60 pick-up was reduced by zinc were the inhibition of the growth of oxide films and the reduced incorporation of cobalt within the growing oxide. The latter dominated on stainless steel, and both were important on Inconel. A mathematical model of activation by Co-60 was adapted to the conditions of the experiment, and fitted to the data for stainless steel. Good fits to the data were obtained when logarithmic kinetics for film growth were assumed. 18 refs., 31 figs., 10 tabs

  15. Creep-rupture behaviour of four high temperature alloy weldments at 850 and 950 deg C

    International Nuclear Information System (INIS)

    Creep tests were conducted on weldments made with Hastelloy X (matching filler), Nimonic 86 (Inconel 112 filler), Inconel 617 (Inconel 112 filler) and Alloy 800H (Thermanit 21/33 filler) at 850 and 950 deg C in air and in controlled impurity helium. Plain and notched samples were used, the notch being in the weld metal. At 850 deg C, the welds achieved rupture strengths close to those expected for the parent materials. At 950 deg C, however, shortfalls in expected strength were found for the Hastelloy X and Inconel 617 welds. In Hastelloy X, welding reduced the rupture strength of the parent material but in the Inconel 617 weld, failure reflected inadequate strength of the filler. Various failure types were noted but failure often occurred near a structural or strength transition. In particular, a heat affected zone type of failure was promoted by a combination of strong filler and weaker parent. Notched samples achieved or exceeded rupture lives of their companion plain samples. Environmental effects were small, producing no consistent effect on rupture life although oxidation rates and surface crack nucleation were greater in air. Oxidation resistance of Thermanit 21/33 in air at 950 deg C was poor. (author)

  16. System studies of compact ignition tokamaks

    International Nuclear Information System (INIS)

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B2a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations

  17. Inspection of tubing defects with ultrasonic guided waves

    International Nuclear Information System (INIS)

    The purpose of this study is to show the utility of ultrasonic guided waves in 439 stainless steel heat exchanger and Inconel steam generator tubing inspection. Phase velocity and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel steam generator tube were presented. In experimental studies, ultrasonic guided wave applications were demonstrated for man made flaws. For the detection of EDM wears under a tube support plate in the heater exchanger tubing, a bore probe generated axisymmetric longitudinal guided wave modes in the tubing. For the detection and sizing of circumferential Laser notches in Inconel steam generator tubes, a variable angle beam transducer set up was used. Excellent detection results were demonstrated for EDM wears and Laser Notches with various modes and L(0,1) modes, respectively. Circumferential sizing of Laser notches was achieved with L(0,1) mode at 3.5 MHz.

  18. A study of the release rate of corrosion products for nuclear SG tubing

    International Nuclear Information System (INIS)

    Out-of-core radiation fields mainly are caused by activated corrosion product released from nuclear heat supply system. It is very important to minimize the generation of radioactive corrosion products which become a radiation source, in order to meet the needs of operation and maintenance. A study was conducted on determining the general corrosion rate and metal release rate for Inconel 690 (Japan), Inconel 690 (China), Inconel 600 and Incoloy 800 tubes on the primary water side of nuclear power plant simulation. The results show that the release rates of corrosion products of Alloy 690 on the primary water side is very low and that they decrease with the increase of chromium content in the alloys. (8 refs, 9 figs., 4 tabs.)

  19. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  20. Second generation "Flat-Fish" vacuum chamber for an ISR intersection

    CERN Multimedia

    1977-01-01

    The picture shows the part of the "Flat-Fish" chamber covering one side of the beam intersection region. The other side is covered by an equal part and both are welded toghether at their small end. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of stainless steel strings to the Split Field Magnet poles in order to take the atmospheric pressure forces. This was the thinnest vacuum chamber made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature.

  1. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  2. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  3. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, S. J. [Chungnam National Univ., Daejeon (Korea, Republic of)

    2015-05-15

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600.

  4. Detector response in a CANDU low void reactivity core

    International Nuclear Information System (INIS)

    The response of the in-core flux detectors to the CANFLEX Low-Void-Reactivity Fuel (LVRF) [1] bundles for use in the CANDU reactor at Bruce nuclear generation station has been studied. The study was based on 2 detector types - platinum (Pt)-clad Inconel and pure Inconel detectors, and 2 fuel types - LVRF bundles and natural-uranium (NU) bundles. Both detectors show a decrease of thermal-neutron-flux to total-photon-flux ratio when NU fuel bundles are replaced by LVRF bundles in the reactor core (7% for Inconel and 9% for Pt-clad detectors). The ratio of the prompt component of the net electron current to the total net electron current (PFe) of the detectors however shows a different response. The use of LVRF bundles in place of NU fuel bundles in the reactor core did not change the PFe of the Pt-clad Inconel detector but increased the PFe of the pure Inconel detector by less than 2%. The study shows that the Inconel detector has a larger prompt-detector response than that of the platinum-clad detector; it reacts to the change of fluxes in the reactor core more readily. On the other hand, the Pt-clad detector is less sensitive to perturbations of the neutron-to-gamma ratio. Nevertheless the changes in an absolute sense are minimal; one does not anticipate a change of the flux-monitoring system if the NU fuel bundles are replaced with the CANFLEX LVRF bundles in the core of the Bruce nuclear generating station. (authors)

  5. Sonic Infrared (IR) Imaging and Fluorescent Penetrant Inspection Probability of Detection (POD) Comparison

    International Nuclear Information System (INIS)

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) implemented two crack probability of detection (POD) experiments to compare in a quantitative manner the ability of Sonic Infrared (IR) Imaging and fluorescent penetrant inspection (FPI) to reliably detect cracks. Blind Sonic IR and FPI inspections were performed on titanium and Inconel registered specimens having statistically relevant flaw profiles. Inspector hit/miss data was collected and POD curves for each technique were generated and compared. In addition, the crack lengths for a number of titanium and Inconel registered reference standards were measured before and after repeated Sonic IR inspections to determine if crack growth occurred

  6. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  7. Examples of expert methodology. B : met cases in nuclear power plants

    International Nuclear Information System (INIS)

    In spite of especially severe quality controls of materials, stress corrosion is the most important problem met during PWR type reactors operating. Examples of corrosion (except stress corrosion) are presented. Intergranular corrosion is illustrated by stainless steel 18-10 family (fuels assemblies, heat exchanger of a breeder reactor) and by Inconel 600 (vapor generator J tubes), electrochemical corrosion by low alloy Mn-Ni-Mo steel coated with an austenitic steel (pressure vessel pipes), pitting corrosion by Inconel 600 (vapor generator) and by stainless steel 304L (raw water circuits), erosion/corrosion by carbon steels (PWR secondary circuits). (A.B.). 13 refs., 9 figs

  8. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    Science.gov (United States)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  9. Hydrogen gas embrittlement and the disc pressure test

    Science.gov (United States)

    Bachelet, E. J.; Troiano, A. R.

    1973-01-01

    A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.

  10. Evaluation of glass-contact materials for waste glass melters

    International Nuclear Information System (INIS)

    Alternative refractory and electrode materials have been evaluated as glass-contact materials for the vitrification of SRP waste. Monofrax K-3 is the optimum refractory, based on corrosion and thermal shock resistance. Inconel 690 is the recommended electrode alloy. However, a potentially more corrosion-resistant electrode alternative, UCAR metal ceramic, is being evaluated further. This material melts at a much higher temperature than Inconel 690. In the event of an unexpected high-temperature excursion in a melter, this material may offer significantly greater protection

  11. Evaluation of glass-contact materials for waste glass melters

    International Nuclear Information System (INIS)

    Alternative refractory and electrode materials have been evaluated as glass-contact materials for the vitrification of SRP waste. Monofrax K-3 (The Carborundum Co.) is the optimum refractory, based on corrosion and thermal-shock resistance. Inconel 690 (Huntington Alloys, Inc.) is the recommended electrode alloy. However, a potentially more corrosion-resistant alternative, UCAR Metal Ceramic, Grade LT-1 (Union Carbide Corp.), is being evaluated further. This material melts at a much higher temperature than Inconel 690. In the event of an unexpected high-temperature excursion in a melter, this material may offer significantly greater protection

  12. The Design Concept of a Steam Generator Cassette Mock-Up for ISI of Helical Tubes in SMART Steam Generator

    International Nuclear Information System (INIS)

    The SMART reactor steam generator is composed of 8 Steam Generator Cassettes (SGC) and each the SGC has a once-through-type, helical-coil-tube bundle structure using INCONEL alloy 690 tubes. The SGC installed in reactor vessel is a kind of heat exchanger made of INCONEL alloy 690 tubes. This paper introduces the design concepts of an SGC mock-up for the test probe insertion ability of In- Service Inspection (ISI). The backgrounds of selected tube material, size and tube composition are described

  13. The Design Concept of a Steam Generator Cassette Mock-Up for ISI of Helical Tubes in SMART Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Choung, Yun Hang; Kim, Dong Ok; Park, Jin Seok; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The SMART reactor steam generator is composed of 8 Steam Generator Cassettes (SGC) and each the SGC has a once-through-type, helical-coil-tube bundle structure using INCONEL alloy 690 tubes. The SGC installed in reactor vessel is a kind of heat exchanger made of INCONEL alloy 690 tubes. This paper introduces the design concepts of an SGC mock-up for the test probe insertion ability of In- Service Inspection (ISI). The backgrounds of selected tube material, size and tube composition are described.

  14. Investigations on intercrystalline resistance of plasma arc-welded coating materials X 2 CrNiNb 19 9 and S-NiCr 20 Nb

    International Nuclear Information System (INIS)

    The resistance to intercrystalline corrosion (IC) has been tested on single and double layer plasma arc-weldings of austenite steel X2CrNiNb199 as well as the alloy inconel 82 (S-NiCr 20 Nb) using short-term testing methods. The austenite platings can be considered as IC resistant. The inconel alloy tends to selective corrosion in the potential range of -30 to +30 mVEsub(H), the areas of greater precipitation are particularly attacked. (GSCH)

  15. Behavior under irradiation of zirconium alloy strips

    International Nuclear Information System (INIS)

    Tests on elementary cells in inconel 718, in zircaloy or zircaloy with inconel springs, have been made so as to evaluate the evolution under irradiation of the stress put on the fuel rod by the cell springs and the evolution of the boss form. That is why, after having given the essential of the results got during the bulk tests on unitary cells, we show more in detail the results given by relaxation and growth tests under neutron flux, realized with materials differing from materials used currently either because of final thermal treatment or because of their proper nature

  16. 我国700℃超超临界锅炉过热器管用高温合金选材探讨%Selection of Superalloys for Superheater Tubes of Domestic 700 ℃ A-USC Boilers

    Institute of Scientific and Technical Information of China (English)

    林富生; 谢锡善; 赵双群; 董建新

    2011-01-01

    简要介绍和比较了国内外700℃超超临界电站过热器和再热器管候选材料GH2984、Haynes 230、CCA 617、Nimonic 263、Inconel 740及其改型合金Inconel 740H的组织、持久强度和耐腐蚀性能等研究结果,对几种材料的强度、耐腐蚀性能、工艺性能和使用经济性进行了分析,并阐述了中国在发展700℃超超临界燃煤电站时锅炉用高温合金的选择.结果表明:Inconel 740H合金具有的持久强度最高、耐蚀性能最好,工艺性能和使用经济性良好,比Inconel 740合金具有更好的长期组织稳定性,它应是中国700℃超超临界锅炉过热器和再热器首选的管材;针对700℃超超临界机组用关键材料,提出了尽早开展自主研制,实现关键材料国产化的建议.%Research achievements on major candidate materials for superheater/reheater tubes of plants at home and abroad are reviewed and compared,such as the GH2984,Haynes 230,CCA 617,Nimonic 263,Inconel 740 and Inconel 740H,while their microstructure,stress rupture strength and corrosion resistance as well as their workability and economy were analyzed.A discussion is moreover carried out to the selection of superalloys for superheater/reheater tubes of domestic 700 ℃ A-USC power plants.Results show that superalloy Inconel 740H exhibits the highest stress rupture strength,strongest corrosion resistance,better workability and economy among above six alloys;its microstructure is more stable than that of Inconel 740 during long term aging,which is therefore at present believed to be most preferable for superheater/reheater tubes of domestic 700 ℃ A-USC power plants.For localization of key materials for relevant power plants,it is suggested that RD on these materials should be performed as early as possible.

  17. Steam generator chemical cleaning experience and prospects in Korea

    International Nuclear Information System (INIS)

    Several SGCC for the secondary side of steam generators have been successfully applied in Korea. Specific processes were developed by KEPCO research institute based on EPRI/SGOG processes. The primary purposes of SGCC in Korea are to mitigate the ODSCC of inconel-600HTMA tubes, CE-system80, and to restore the water level oscillation of inconel-600 TT tubes, Westinghouse, model F. This paper described background, field application, visual inspection, and a noted change of the application as a result of the sludge removal from the steam generators. And also the prospects of SGCC in Korea are briefly discussed. (author)

  18. Development of Environment and Irradiation Effects of High Temperature Materials

    International Nuclear Information System (INIS)

    Proposed materials, Mod.9Cr-1Mo steel (32 mm thickness) and 9Cr-1Mo-1W (100 mm thickness), for the reactor vessel were procured, and welded by the qualified welding technologies. Welding soundness was conformed by NDT, and mechanical testings were done along to weld depth. Two new irradiation capsules for use in the OR test hole of HANARO were designed and fabricated. specimens was irradiated in the OR5 test hole of HANARO with a 30MW thermal power at 390±10 .deg. C up to a fast neutron fluence of 4.4x1019 (n/cm2) (E>1.0 MeV). The dpa was evaluated to be 0.034∼0.07. Base metals and weldments of both Mod.9Cr-1Mo and 9Cr-1Mo-1W steels were tested tensile and impact properties in order to evaluate the irradiation hardening effects due to neutron irradiation. DBTT of base metal and weldment of Mod.9Cr-1Mo steel were -16 .deg. C and 1 .deg. C, respectively. After neutron irradiation, DBTT of weldment of Mod.9Cr-1Mo steel increased to 25 . deg. C. Alloy 617 and several nickel-base superalloys were studied to evaluate high temperature degradation mechanisms. Helium loop was developed to evaluate the oxidation behaviors of materials in the VHTR environments. In addition, creep behaviors in air and He environments were compared, and oxidation layers formed outer surfaces were measured as a function of applied stress and these results were investigated to the creep life

  19. Comprehensive Report For Proposed Elevated Temperature Elastic Perfectly Plastic (EPP) Code Cases Representative Example Problems

    Energy Technology Data Exchange (ETDEWEB)

    Greg L. Hollinger

    2014-06-01

    Background: The current rules in the nuclear section of the ASME Boiler and Pressure Vessel (B&PV) Code , Section III, Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200F (650C)1. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature 2, 3, and have been recently revised to incorporate comments and simplify their application. The revised code cases have been developed. Task Objectives: The goal of the Sample Problem task is to exercise these code cases through example problems to demonstrate their feasibility and, also, to identify potential corrections and improvements should problems be encountered. This will provide input to the development of technical background documents for consideration by the applicable B&PV committees considering these code cases for approval. This task has been performed by Hollinger and Pease of Becht Engineering Co., Inc., Nuclear Services Division and a report detailing the results of the E-PP analyses conducted on example problems per the procedures of the E-PP strain limits and creep-fatigue draft code cases is enclosed as Enclosure 1. Conclusions: The feasibility of the application of the E-PP code cases has been demonstrated through example problems that consist of realistic geometry (a nozzle attached to a semi-hemispheric shell with a circumferential weld) and load (pressure; pipe reaction load applied at the end of the nozzle, including axial and shear forces, bending and torsional moments; through-wall transient temperature gradient) and design and operating conditions (Levels A, B and C).

  20. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack