WorldWideScience

Sample records for alloy-214x

  1. Wear behavior of 2-1/4 Cr-1Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    International Nuclear Information System (INIS)

    Wilson, W.L.

    1983-05-01

    A series of prototypic steam generator 2-1/4 Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, ''over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-1/4 Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 μm (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 μm (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 μm maximum tube wear allowance would not be exceeded in service. Softer, ''over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-1/4 Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-1/4 Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs

  2. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-01-01

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable β phase began. However, when 4 mass% Fe or greater was added, the β phase was entirely retained with a bcc crystal structure. Moreover, the ω phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of ω phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9 o ) and Ti-5Nb-5Fe (29.5 o ) alloys were greater than that of c.p. Ti (2.7 o ) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  3. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Changhua 51591, Taiwan (China); Lee, Chih-Jhan [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China)

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  4. Creep-rupture behavior of 2-1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in a simulated HTGR helium environment

    International Nuclear Information System (INIS)

    Lai, G.Y.; Wolwowicz, R.J.

    1979-12-01

    Creep-rupture testing was conducted on 1 1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in flowing helium containing nominal concentration of following gases: 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 . This environment is believed to represent maximum permissible levels of impurities in the primary coolant for the steam-cycle system of a high-temperature gas-cooled reactor (HTGR) when it is operating continuously with a water and/or steam leak at technical specification limits. Two or three heats of material for each alloy were investigated. Tests were conducted at 482 0 C and 760 0 C (1200 0 F and 1400 0 F) for Alloy 800H, and at 760 0 C and 871 0 C (1400 0 F and 1600 0 F) for Hastelloy Alloy X for times up to 10,000 h. Selected tests were performed on same heat of material in both air and helium environments to make a direct comparison of creep-rupture behaviors between two environments. Metallurgical evaluation was performed on selected post test specimens with respect to gas-metal interactions which included oxidation, carburization and/or decarburization. Correlation between gaseous corrosion and creep-rupture behavior was attempted. Limited tests were also performed to investigate the specimen size effects on creep-rupture behavior in the helium environment

  5. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  6. Mechanical alloying of Cu-xCr (x = 3, 5 and 8 wt.%) alloys

    International Nuclear Information System (INIS)

    Aguilar, C.; Ordonez, S.; Guzman, D.; Rojas, P.A.

    2010-01-01

    This work studies the structural evolution of Cu-xCr (x = 3, 5 and 8 wt.%) alloys processed by mechanical alloying using X-ray diffraction profiles, scanning microscopy and microhardness analysis. X-ray diffraction analysis using the modified Williamson-Hall and Warren-Averbach methods were used to determine structural properties, such as crystallite size, stacking fault probability and energy, dislocation density, lattice parameters and crystallite size distribution of metallic powder as a function of Cr amount and milling time. Lattice defects increase the Gibbs free energy and the Gibbs free energy curves shift upward, therefore the solubility limit change.

  7. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  8. Amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Chen Xiuxiu [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Geng Haoran [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)], E-mail: mse_wangy@ujn.edu.cn; Yang Zhongxi [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)

    2009-04-17

    In the present paper, the effect of Nb and different rotation speeds on the amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the minor addition of Nb can shorten the start time of the amorphization reaction, improve the glass forming ability of Zr-Cu alloys, but cannot promote the formation of a single amorphous phase at a lower rotation speed of 200 rpm. The glass forming ability of the Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys increases with increasing Nb additions. At a higher rotation speed of 350 rpm, a single amorphous phase of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) can be successfully fabricated. Moreover, the Nb addition into Zr-Cu alloys can accelerate the amorphization process and improve the stability of the amorphous phase against the mechanically induced crystallization. Furthermore, the amorphous Zr{sub 66.7}Cu{sub 33.3} phase gradually transforms into a metastable fcc-Zr{sub 2}Cu phase with increasing milling time.

  9. Irradiation assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Mills, W.J.; Lebo, M.R.; Bajaj, R.; Kearns, J.J.; Hoffman, R.C.; Korinko, J.J.

    1994-01-01

    In-reactor testing of bolt-loaded precracked compact tension specimens was performed in 360 degree C water to determine effect of irradiation on the SCC behavior of HTH Alloy X-750 and direct aged Alloy 625. Out-of-flux and autoclave control specimens provided baseline data. Primary test variables were stress intensity factor, fluence, chemistry, processing history, prestrain. Results for the first series of experiments were presented at a previous conference. Data from two more recent experiments are compared with previous results; they confirm that high irradiation levels significantly reduce SCC resistance in HTH Alloy X-750. Heat-to-heat differences in IASCC were related to differences in boron content, with low boron heats showing improved SCC resistance. The in-reactor SCC performance of Alloy 625 was superior to that for Alloy X-750, as no cracking was observed in any Alloy 625 specimens even though they were tested at very high K 1 and fluence levels. A preliminary SCC usage model developed for Alloy X-750 indicates that in-reactor creep processes, which relax stresses but also increase crack tip strain rates, and radiolysis effects accelerate SCC. Hence, in-reactor SCC damage under high flux conditions may be more severe than that associated with postirradiation tests. In addition, preliminary mechanism studies were performed to determine the cause of IASCC In Alloy X-750

  10. Corrosion Characteristics of Ti-xTa Alloys with Ta contents

    International Nuclear Information System (INIS)

    Kim, H. J.; Choe, H. C.

    2013-01-01

    The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at 1000 .deg. C and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at 36.5 ± 1 .deg. C. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy

  11. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  12. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part...

  13. Irradiation-induced microstructural changes in alloy X-750

    International Nuclear Information System (INIS)

    Kenik, E.A.

    1997-01-01

    Alloy X-750 is a nickel base alloy that is often used in nuclear power systems for it's excellent corrosion resistance and mechanical properties. The present study examines the microstructure and composition profiles in a heat of Alloy X-750 before and after neutron irradiation

  14. Hydrogen absorption in Ce{sub x}Gd{sub 1-x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bereznitsky, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Bloch, J. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Yonovich, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Schweke, D. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Mintz, M.H. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Jacob, I., E-mail: izi@bgu.ac.il [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ce{sub x}Gd{sub 1-x} alloys exhibit the most negative heats of hydride formation ever found. Black-Right-Pointing-Pointer Thermodynamics of H absorption in Ce{sub x}Gd{sub 1-x} correlates with the alloys hardness. Black-Right-Pointing-Pointer The entropies of H solution and hydride formation reflect the hydrogen vibrations. Black-Right-Pointing-Pointer Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce{sub x}Gd{sub 1-x} alloys (0 {<=} x {<=} 1) at temperatures between 850 K and 1050 K in the 1-10{sup -4} Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, {Delta}H{sub f}, and the entropies, {Delta}S{sub f}, of the dihydride formation exhibit a pronounced and broad negative minimum starting at x Almost-Equal-To 0.15, yielding the most negative {Delta}H{sub f} values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce{sub x}Gd{sub 1-x} hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  15. Oxidation kinetics of amorphous AlxZr1−x alloys

    International Nuclear Information System (INIS)

    Weller, K.; Wang, Z.M.; Jeurgens, L.P.H.; Mittemeijer, E.J.

    2016-01-01

    The oxidation kinetics of amorphous Al x Zr 1−x alloys (solid solution) has been studied as function of the alloy composition (0.26 ≤ x ≤ 0.68) and the oxidation temperature (350 °C ≤ T ≤ 400 °C; at constant pO 2  = 1 × 10 5  Pa) by a combinatorial approach using spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) depth profiling, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Thermal oxidation of the am-Al x Zr 1−x alloys results in the formation of an amorphous oxide overgrowth with a thermodynamically preferred singular composition, corresponding to a constant Al ox /Zr ox ratio of 0.5. Both the solubility and the diffusivity of oxygen in the am-Al x Zr 1−x alloy substrate increase considerably with increasing Zr content, in particular for Zr contents above 49 at.% Zr. Strikingly, the oxidation kinetics exhibit a transition from parabolic oxide growth kinetics for Al-rich am-Al x Zr 1−x alloys (x ≥ 0.51) to linear oxide growth kinetics for Zr-rich am-Al x Zr 1−x alloys (x < 0.35). The underlying oxidation mechanism is discussed. It is concluded that the oxidation kinetics of the amorphous Al x Zr 1−x alloys for 0.26 ≤ x ≤ 0.68 and 350 °C ≤ T ≤ 400 °C are governed by: (i) the atomic mobilities of O and Al in the alloy substrate at the reacting oxide/alloy interface, (ii) the solubility of O in the substrate and (iii) the compositional constraint due to the thermodynamically preferred formation of an amorphous oxide phase of singular composition.

  16. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution

  17. Raman scattering from Ge{sub 1-x}Sn{sub x} (x ≤ 0.14) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Navarro C, H.; Rodriguez, A. G.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon No. 64, 78000 San Luis Potosi, S. L. P. (Mexico); Perez Ladron de G, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon No. 1144, Col. Paseos de la Montana, 47460 Lagos de Moreno, Jalisco (Mexico)

    2015-07-01

    Ge{sub 1-x}Sn{sub x} alloys with x concentration up to 0.14 were grown on Ge(001) and GaAs(001) substrates in a conventional R. F. Magnetron Sputtering system at low substrate temperatures. The structural characteristics of these alloys were studied for different Sn concentrations between 1 to 14% by high resolution X-ray diffraction, and Raman spectroscopy. Contrasting characteristics of the grown layers are observed if the Sn concentration is larger or smaller than 6% as revealed by X-ray diffraction and Raman spectroscopy. (Author)

  18. Structure, magnetic and thermo-mechanic properties of Ni2.14Mn0.81Fe0.05Ga Heusler alloy

    International Nuclear Information System (INIS)

    Borisenko, I.D.; Koledov, V.V.; Khovajlo, V.V.; Khudaverdyan, T.O.; Shavrov, V.G.; Grechishkin, R.M.; Krasnoperov, E.P.; Li, Ya.; Tszyan, Ch.

    2005-01-01

    The influence of a strong magnetic field, single-axis pressure and intensive ultrasound on the process of structural (martensitic) transition on polycrystals of ferromagnetic alloy Ni 2.14 Mn 0.81 Fe 0.05 Ga with shape memory was studied experimentally. It is shown that magnetic field up to 8 T shifts without essential distortions the temperature hysteresis loop of martensitic transition to the range of higher temperatures, single-axis pressure blurs the martensitic transition, expanding the temperature hysteresis loop, while ultrasonic vibration may result in contraction of the hysteresis loop [ru

  19. The electronic band structures of InNxAs1-x, InNxSb1-x and InAsxSb1-x alloys

    International Nuclear Information System (INIS)

    Mohammad, Rezek; Katircioglu, Senay

    2009-01-01

    The band gap bowings of InN x As 1-x , InN x Sb 1-x , and InAs x Sb 1-x alloys defined by the optimized lattice constants are investigated using empirical tight binding (ETB) method. The present ETB energy parameters which take the nearest neighbor interactions into account with sp 3 d 2 basis are determined to be sufficient to provide a typical feature for the band gap bowings of the alloys. The band gap bowing parameter is found to be relatively large in both InN x As 1-x and InN x Sb 1-x compared to InAs x Sb 1-x alloys. Moreover, the variation of the fundamental band gaps of InN x Sb 1-x alloys is sharper than that of InN x As 1-x alloys for small concentrations of N. Besides, a small amount of nitrogen is determined to be more effective in InN x Sb 1-x than in InN x As 1-x alloys to decrease the corresponding effective masses of the electrons around Γ points

  20. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  1. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  2. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  3. Hydrogen absorption in CexGd1−x alloys

    International Nuclear Information System (INIS)

    Bereznitsky, M.; Bloch, J.; Yonovich, M.; Schweke, D.; Mintz, M.H.; Jacob, I.

    2012-01-01

    Highlights: ► Ce x Gd 1−x alloys exhibit the most negative heats of hydride formation ever found. ► Thermodynamics of H absorption in Ce x Gd 1−x correlates with the alloys hardness. ► The entropies of H solution and hydride formation reflect the hydrogen vibrations. ► Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce x Gd 1−x alloys (0 ≤ x ≤ 1) at temperatures between 850 K and 1050 K in the 1–10 −4 Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, ΔH f , and the entropies, ΔS f , of the dihydride formation exhibit a pronounced and broad negative minimum starting at x ≈ 0.15, yielding the most negative ΔH f values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce x Gd 1−x hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  4. Study of Ni50+xMn25Ga25-x (x = 2-11) as high-temperature shape-memory alloys

    International Nuclear Information System (INIS)

    Ma Yunqing; Jiang Chengbao; Li Yan; Xu Huibin; Wang Cuiping; Liu Xingjun

    2007-01-01

    Ni 50+x Mn 25 Ga 25-x (x = 2-11) alloys were studied as high-temperature shape-memory alloys, with regard to their microstructure, martensitic transformation behavior and high-temperature shape-memory effect. Single phase of martensite with tetragonal structure was present for x p increase monotonically from 39.1 deg. C for x = 2 to 443.8 deg. C for x = 7, then remain almost constant at 440 deg. C for x ≥ 7. The shape-memory strains of the alloys decreased gradually from 6.1% for x = 4 to 2.8% for x = 8 and 0% for x = 11 under the same pre-strain. The variations of the martensitic transformation temperatures and the shape-memory effects with Ni contents correlate with changes in size factor, electron concentration and precipitation of γ phase

  5. Temperature dependence of diffuse satellites in Ti–(50 − x)Pd–xFe (14 ⩽ x ⩽ 20 (at.%)) alloys

    International Nuclear Information System (INIS)

    Todai, Mitsuharu; Fukuda, Takashi; Kakeshita, Tomoyuki

    2014-01-01

    Highlights: • Diffuse satellites of Ti–(50 − x)Pd–xFe alloys have been investigated. • Diffuse satellites appear at g B2 + 〈ζζ ¯ 0〉 * below T min . • The peak position of diffuse satellites at T min agree with the length of the nesting vector. • The present result implies that the nesting effect of Fermi surface originates diffuse satellites in Ti–(50 − x)Pd–xFe alloys. - Abstract: Diffuse satellites appearing in electron diffraction pattern of shape memory Ti–(50 − x)Pd–xFe (14, 16, 18, 19 and 20, in at.%) alloys have been investigated. The satellites appear in each alloy below T min , where its electrical resistivity shows a local minimum. The positions of satellites are g B2 + 〈ζ ζ ¯ 0〉 * , where g B2 is a reciprocal lattice vector of the B2-phase. The value of ζ is smaller than 1/5 at T min for all the alloys; it increases with decreasing temperature and decreases with increasing iron content. The value of ζ at T min agrees with the length of the nesting vector previously calculated by the present authors. This result implies that Fermi surface nesting is the origin of diffuse satellites in Ti–(50 − x)Pd–xFe alloys

  6. Thermally stimulated current analysis of Zn{sub 1-x}Cd{sub x}O alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A. Senol, E-mail: saybek@anadolu.edu.tr [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Baysal, Nihal [Kilicoglu Anadolu High School, Eskisehir 26050 (Turkey); Zor, Muhsin; Turan, Evren; Kul, Metin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey)

    2011-02-03

    Research highlights: > We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. > The trap energy, the capture cross-section, the attempt-to-escape frequency and the concentration of the traps in Zn{sub 1-x}Cd{sub x}O films are reported. > The effect of the Cd incorporation into ZnO material on trapping levels was investigated by the TSC measurements. Two overlapped peaks were registered at levels of 0.033 and 0.197 eV in ZnO sample by the curve fitting technique. The observed trap energy levels for ZnO film is thought to originate from zinc interstitials and oxygen vacancies. However, the incorporation of Cd into Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 have resulted in two trapping centers with activation energies of 0.118 and 0.215 eV. The observed trap levels in Zn{sub 0.41}Cd{sub 0.59}O alloy film are related to oxygen adsorption in the sample. - Abstract: We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. XRD measurement indicated that pure ZnO and CdO samples had single phases with hexagonal wurtzite and cubic structures, respectively. However, Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 and 0.78 exhibited mixtures of a hexagonal wurtzite ZnO phase and a cubic CdO phase. Analysis of thermally stimulated current spectra of Zn{sub 1-x}Cd{sub x}O alloy films revealed the existence of a number of overlapped peaks each characterized by different trap energy levels located in the range of 0.033-0.215 eV below the conduction band. We have used curve fitting method for the evaluation of the trap parameters of the alloy films. The values of attempt-to-escape frequency {nu}, capture cross-section S and concentration of the traps N{sub t} have been determined.

  7. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  8. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6−x)Si–xAl TRIP/TWIP alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, Ilya, E-mail: nikulin.i.a@gmail.com [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Belgorod State University, Pobeda 85, Belgorod 308015 (Russian Federation); Sawaguchi, Takahiro [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Tsuzaki, Kaneaki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2013-12-10

    The change in low-cycle fatigue (LCF) properties and deformation microstructure due to the alteration of aluminum and silicon contents was studied in relation with the tensile properties in Fe–30Mn–(6−x)Si–xAl (x=0, 1, 2, 3, 4, 5, 6 wt%) alloys, which are high-Mn austenitic TRIP/TWIP alloys. Austenite to ε-martensite transformation took place during LCF deformation in the TRIP alloys with x≤2 while mechanical twinning was not observed by electron-backscattering diffraction (EBSD) analysis in the TWIP alloys with x>2 after LCF deformation. The fatigue resistance of the alloys was shown to be correlated with the tensile proof strength and the hardening rate. Superior fatigue life of 8×10{sup 3} cycles at a total strain range Δε=2% was found in the Fe–30Mn–4Si–2Al TRIP alloy with a low fraction of ε-martensite, high tensile proof strength and low hardening rate at both tensile and fatigue deformations. On the other hand, a considerable decrease in the fatigue properties was observed in the alloys with decreasing proof strength and increasing hardening rate. Proof strength provided by the solid solution of Al and Si, represents the hampering of plastic deformation, and the hardening rate reflects the strain reversibility affected by the stacking fault energy (SFE) through the rate of austenite to martensite transformation in the TRIP alloys and the substructure formation in the TWIP alloys.

  9. Moessbauer and X-ray Study of Fe{sub 1-x}Al{sub x}, 0.2{<=}x{<=}0.5, Samples Produced by Mechanical Alloying

    Energy Technology Data Exchange (ETDEWEB)

    Oyola Lozano, D., E-mail: doyola@ut.edu.co; MartInez, Y. Rojas; Bustos, H.; Perez Alcazar, G. A. [Universidad del Tolima, Departamento de Fisica (Colombia)

    2004-12-15

    In this work we report the magnetic and structural properties obtained by Moessbauer spectroscopy and X-ray diffraction, of the Fe{sub 1-x}Al{sub x}, 0.2{<=}x{<=}0.5, alloys produced by mechanical alloying. Alloys with x=0.2, 0.3, 0.4 and 0.5, were for milled 12, 24, 36, and 48 hours. All the obtained alloys are in the bcc phase. The obtained Moessbauer spectra are characteristic of disordered ferromagnetic system. The lattice parameter remains nearly constant ({approx}2.91 A) for all the milling times and compositions. The mean grain sizes in the (110) and (211) direction are nearly constants with the milling time but vary from 15.5 to 11 nm and from 10.5 to 8.5 nm when Al content grow between x=0.2 to x=0.4, respectively. The difference between the mean grain sizes in these two directions shows that the grains are of prolate spheroid form.

  10. Giant magnetoresistive properties of FexAu100-x alloys produced by mechanical alloying

    International Nuclear Information System (INIS)

    Socolovsky, L.M.; Sanchez, F.H.; Shingu, P.H.

    2001-01-01

    The Fe x Au 100- x alloys were produced for the first time by mechanical alloying. Resistance of samples with iron concentrations of x=15, 20, 25, and 30 at% were measured at 77 K under an applied field of 14 kOe. A maximum in magnetoresistive ratio (Δρ/ρ) of 3.5% was obtained for Fe 25 Au 75 . Samples were annealed in order to enhance magnetoresistive properties. These samples exhibit larger ratios, primarily due to the elimination of defects. X-ray diffraction Moessbauer spectroscopy and magnetoresistance measurements were performed, in order to correlate bulk and hyperfine magnetic properties with crystalline structure. X-ray diffractograms show an FCC structure, with no evidence for a BCC one

  11. Structural and magnetic properties of Mn{sub 50}Fe{sub 50−x}Sn{sub x} (x=10, 15 and 20) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanmoy [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India); Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657 (India); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India)

    2016-11-15

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn{sub 50}Fe{sub 50−x}Sn{sub x} alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn{sub 3}Sn-type hexagonal DO{sub 19} phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn{sub 3}Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys. - Highlights: • Mn{sub 50}Fe{sub 50-x}Sn{sub x} alloys were studied over a limited concentration range. • Lower Sn alloys behaved similar to ß-Mn alloys both structurally and magnetically. • Higher Sn alloys showed magnetic transitions similar to Mn{sub 3}Sn and Fe{sub 3}Sn. • Resistivity showed bad metallic behavior with negetive temperature coefficient.

  12. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  13. Research for magnetocaloric effect of Gd{sub 1-x}Dy{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xueling; Shitao, Li; An, Zhang; Hui, Xu; Ni, Jiansen; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 20007 (China)

    2007-12-15

    The magnetocaloric effect (MEC) in Gd{sub 1-x}Dy{sub x} (x=0.13,0.20,0.27,0.34,0.40) alloys is investigated using commercial elements with purity of up to 99.80% for Gd and Dy. These alloys are prepared by arc melting in stoichiometric proportions on a water-cooled copper crucible under high pure argon atmosphere. As a result, when x was changed from 0 to 40at%, the adiabatic temperature change ({delta}T) increases from 1.6 K to 3.1 K, the Curie temperature decreased from 288 K to 245.5 K. Gd{sub 73}Dy{sub 27} exhibits the largest {delta}T{sub max} value of 3.1 K at the T{sub C} value of 260 K among the alloys investigated up to 1.2 T (tesla) applied field, it is almost same as the {delta}T of high pure unitary Gd (99.99%) and is clearly superior to commercial unitary Gd (99.80%). The T{sub C} of Gd{sub 73}Dy{sub 27} alloy is minor to high pure unitary Gd (99.99%) and commercially unitary Gd (99.80%). But this alloy prepared by commercial elements with low cost has better MEC to be a promising candidate for magnetic working substances for room temperature magnetic refrigeration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    Science.gov (United States)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  15. Nanosized Hydroxyapatite Precipitation on the Ti—30Ta—xHf Alloys.

    Science.gov (United States)

    Lee, Kang; Jang, Jae- In; Han-Cheol, Choe

    2017-04-01

    In this study, we prepared hydroxyapatite (HAp) layer on the alkali treated Ti–30Ta–xHf alloys using electrochemical deposition method. Ti–30Ta–xHf alloys was anodized in 5 M NaOH solution at 0.3 A for 10 min. Alkali treated Ti–30Ta–xHf surface formed by anodization step which acted as templates and anchorage for growth of the HAp during subsequent pulsed electrochemical deposition process at 85 °C. The phase and morphologies of deposited HAp layer were affected by the Hf contents of Ti–30Ta–xHf alloys. The nano-scale rod-like HAp layer was formed on untreated Ti–30Ta–xHf alloys with partially low crystallinity. In the case of alkali treated Ti–30Ta–xHf, nano-sized needle-like layers were transferred to nano-flake surface and denser morphology as Hf content increased.

  16. Magnetic properties of Zn(P/sub x/As/sub 1-x/)2 alloys

    International Nuclear Information System (INIS)

    Vitkina, T.Z.; Smolyarenko, E.M.; Trukhan, V.M.

    1987-01-01

    The authors study the magnetic properties of Zn(P/sub x/As/sub 1-x/) 2 alloys. The concentration-dependent magnetic susceptibility of these alloys is shown, as is the temperature dependence of the magnetic susceptibility in solid solutions of the alloys. The diamagnetic susceptibility associated with the valence electrons displays a marked change for a transition to the bound state inasmuch as the valence electrons constitute the chemical bonding in the crystal. The diamagnetic component of the susceptibility of the valence electrons is calculated according to the MO LCAO approximation on the assumption that there is sp 3 -hybridization of the atomic wave function

  17. A study on the shape memory characteristics of Ti-Ni50-x-Pdx alloys

    International Nuclear Information System (INIS)

    Lee, H. W.; Chun, B. S.; Oh, S. J.; Kuk, I.H.

    1991-01-01

    The shape memory characteristics in TiNi alloys are greatly effected by the alloy composition and heat treatment condition. The present work was aimed to investigate the effect of Pd x (x=5,10,15,20) addition on the shape memory chracteristics of TiNi alloys by means of electrical resistance measurement. X-ray diffraction, differential scanning calorimetry and electron dispersive analysis X-ray measurement. The results obtained from this study are as follows; 1. The martensitic transformation start temperature, Ms of Ti-Ni 50-x -Pd x alloys decreased considerably with the increase of Pd content up to 10at%, whereas increased largely with the increase of Pd content in the alloys with Pd content more than 15at%. 2. The Ms temperature of Ti-Ni 50-x -Pd x alloys with cold working was significantly lower than that of the fully annealed alloys because high density dislocation has been introduced by the cold working which suppressed the martensitic transformation. (Author)

  18. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  19. Indium doped Cd{sub 1-x}Zn{sub x}O alloys as wide window transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-31

    We have synthesized Indium doped Cd{sub 1-x}Zn{sub x}O alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 × 10{sup −4} Ω-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd{sub 1-x}Zn{sub x}O in ~ 1% of O{sub 2}. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. - Highlights: • Indium doped Cd1-xZnxO alloys across the full composition range were synthesized. • Alloys change from rocksalt (RS) to wurtzite (WZ) when x is higher than 30%. • RS-Cd1-xZnxO phase can be doped with In as efficiently as CdO, achieving a low resistivity ~ 2.0 × 10{sup −4} Ω-cm. • Wide transparency window from 380 to 1200 nm • In doped CdO transmits more solar photons than commercial fluorine doped tin oxide.

  20. Magnetic and structural properties of mechanically alloyed Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys, with x = 0 and 0.257

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co; Bustos Rodriguez, H.; Oyola Lozano, D. [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A.; Paz, J. C. [University of Valle, Department of Physics (Colombia)

    2007-02-15

    The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Moessbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys with x = 0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the {alpha} and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Moessbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.

  1. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications.

    Science.gov (United States)

    Rosalbino, F; De Negri, S; Saccone, A; Angelini, E; Delfino, S

    2010-04-01

    The successful applications of magnesium-based alloys as biodegradable orthopedic implants are mainly inhibited due to their high degradation rates in physiological environment. This study examines the bio-corrosion behaviour of Mg-2Zn-0.2X (X = Ca, Mn, Si) alloys in Ringer's physiological solution that simulates bodily fluids, and compares it with that of AZ91 magnesium alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed a better corrosion behaviour of AZ91 alloy with respect to Mg-2Zn-0.2Ca and Mg-2Zn-0.2Si alloys. On the contrary, enhanced corrosion resistance was observed for Mg-2Zn-0.2Mn alloy compared to the AZ91 one: Mg-2Zn-0.2Mn alloy exhibited a four-fold increase in the polarization resistance than AZ91 alloy after 168 h exposure to the Ringer's physiological solution. The improved corrosion behaviour of the Mg-2Zn-0.2Mn alloy with respect to the AZ91 one can be ascribed to enhanced protective properties of the Mg(OH)(2) surface layer. The present study suggests the Mg-2Zn-0.2Mn alloy as a promising candidate for its applications in degradable orthopedic implants, and is worthwhile to further investigate the in vivo corrosion behaviour as well as assessed the mechanical properties of this alloy.

  2. Evaluation of creep and relaxation data for hastelloy alloy x sheet

    International Nuclear Information System (INIS)

    Booker, M.K.

    1979-02-01

    Hastelloy alloy X has been a successful high-temperature structural material for more than two decades. Recently, Hastelloy alloy X sheet has been selected as a prime structural material for the proposed Brayton Isotope Power System (BIPS). The material also sees extensive application in the High-Temperature Gas-Cooled Reactor (HTGR). Design of these systems requires a detailed consideration of the high-temperature creep properties of this material. Therefore, available creep, creep-rupture, and relaxation data for Hastelloy alloy X were collected and analyzed to yield mathematical representations of the behavior for design use

  3. Electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys

    International Nuclear Information System (INIS)

    Paja, A.; Stobiecki, T.

    1984-07-01

    The concentration dependence of the electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys has been studied over a broad composition range. The measurements for RF sputtered films made in the liquid helium temperature have been analyzed in the framework of the diffraction model. The calculated results are in good agreement with the experimental data in the range of concentration 0.12< x <0.37 where samples are amorphous and have a metallic character. (author)

  4. Magnetic and structural properties of mechanically alloyed Tb0.257-xNdxFe0.743 alloys, with x = 0 and 0.257

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Bustos Rodriguez, H.; Oyola Lozano, D.; Perez Alcazar, G. A.; Paz, J. C.

    2007-01-01

    The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Moessbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb 0.257-x Nd x Fe 0.743 alloys with x = 0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the α and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Moessbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.

  5. Geometric Effects of La1+xMg2-xNi9 (x=0.0~1.0) Ternary Alloys on Their Hydrogen Storage Capacities

    Institute of Scientific and Technical Information of China (English)

    Zhiqing YUAN; Guanglie LU; Bin LIAO; Yongquan LEI

    2005-01-01

    Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9(x=0.0~1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.

  6. Features of the Percolation Scheme of Vibrational Spectrum Reconstruction in the Ga1 - x Al x P Alloy

    Science.gov (United States)

    Kozyrev, S. P.

    2018-04-01

    Specific features of the properties of Ga-P lattice vibrations have been investigated using the percolation model of a mixed Ga1 - x Al x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga1 - x Al x P a percolation splitting of δ 13 cm-1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm-1 in the Ga1 - x Al x P ( x < 0.4) alloy.

  7. Microemulsion synthesis and magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of Fe{sub x}Ni{sub (1−x)} bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. Fe{sub x}Ni{sub (1−x)} nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl{sub 2}·6H{sub 2}O to FeCl{sub 2}·4H{sub 2}O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties. - Highlights: • Fe{sub x}Ni{sub (1−x)} alloy NPs synthesized by simultaneous metal ions reduction in microemulsion. • Finer NPs synthesized at lower amount of oil and water and higher amount of CTAB. • Chain-like Fe{sub x}Ni{sub (1−x)} NPs are ferromagnetic; higher aspect ratio, more magnetization. • Spherical Fe{sub x}Ni({sub 1−x)} NPs with smaller size (7 nm) are superparamagnetic. • Spherical Fe{sub x}Ni{sub (1−x)} nanoparticles with higher x had increased magnetic properties.

  8. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  9. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  10. X-ray thickness measurement of aluminum alloys

    International Nuclear Information System (INIS)

    Albert, J.J.

    1976-01-01

    The theory of x-ray thickness gauging is extended to reveal the conditions under which a fixed anode voltage is ideal. A mathematical model of an alloy and computations reveal that two voltages can be used to measure the aluminum alloys with an error of roughly 1 percent, determined by the tolerance on manganese content rather than the large errors ordinarily a consequence of the tolerances on copper and zinc content. Implementation is discussed

  11. Topological Weyl semimetals in Bi1 -xSbx alloys

    Science.gov (United States)

    Su, Yu-Hsin; Shi, Wujun; Felser, Claudia; Sun, Yan

    2018-04-01

    We investigated Weyl semimetal (WSM) phases in bismuth antimony (Bi1 -xSbx ) alloys by combination of atomic composition and arrangement. Via first-principles calculations, we found two WSM states with Sb concentrations of x =0.5 and 0.83 with specific inversion-symmetry-broken elemental arrangement. The Weyl points are close to the Fermi level in both of these two WSM states. Therefore, it is likely to obtain Weyl points in Bi-Sb alloy. The WSM phase provides a reasonable explanation for the current transport study of Bi-Sb alloy with the violation of Ohm's law [D. Shin, Y. Lee, M. Sasaki, Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim, K.-S. Kim, and J. Kim, Nat. Mater. 16, 1096 (2017), 10.1038/nmat4965]. This paper shows that the topological phases in Bi-Sb alloys depend on both elemental composition and their specific arrangement.

  12. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  13. Structure and magnetic properties of Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in [Department of Materials Science & Metallurgical Engineering, Ceramic & Powder Metallurgy Laboratory, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Vajpai, Sanjay Kumar, E-mail: vajpaisk@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India)

    2017-07-01

    Highlights: • A series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy by powder metallurgy. • Effect of substitution of Fe for Cr on the microstructure and magnetic properties. • Increasing amounts of B2 type disordered structure with increasing Fe content. • Enhanced Ms, Mr, Hc, and Tc with increasing Fe content. • Relative magnetic anisotropy decreased with increasing Fe content. - Abstract: In the present study, a series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co{sub 2}CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the

  14. Irradiation-assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water. New data confirms previous results that high irradiation levels reduce SCC resistance in Alloy X-750. Low boron heats show improved IASCC (irradiation-assisted stress corrosion cracking). Alloy 625 is resistant to IASCC. Microstructural, microchemical, and deformation studies were carried out. Irradiation of X-750 caused significant strengthening and ductility loss associated with formation of cavities and dislocation loops. High irradiation did not cause segregation in X-750. Irradiation of 625 resulted in formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to loops and precipitates was apparently offset in 625 by partial dissolution of γ precipitates. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in X-750, and the absence of these two effects results in superior IASCC resistance in 625

  15. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  16. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  17. Magnetic behavior of the alloys (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R [Tata Inst. of Fundamental Res., Colaba, Mumbai (India); Sampathkumaran, E V [Tata Inst. of Fundamental Res., Colaba, Mumbai (India)

    1996-11-01

    The results of X-ray diffraction (Cu K{sub {alpha}}), electrical resistivity ({rho}), heat capacity (C) and magnetic susceptibility ({chi}) measurements are reported for a new pseudoternary solid solution, (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3} (x=0.0, 0.2, 0.5, 0.8, 1.0). The X-ray diffraction patterns indicate that single phase alloys can be formed in a derived version of the AlB{sub 2}-type hexagonal structure for x{>=}0.2, while for x=0.0, apparently there is an additional weak phase. In the case of the alloy Ce{sub 2}PdSi{sub 3}, the majority of Ce ions do not exhibit magnetic ordering down to 1.4 K, though magnetic ordering at 7 K from one of the two crystallographically inequivalent sites cannot be ruled out. For other compositions, no magnetic ordering is observed above 1.4 K. The Kondo effect is operative in all these alloys, with the strength of the Kondo effect increasing with the compression of the lattice by the gradual replacement of Ce by Y. The C/T exhibits a low temperature enhancement in all Ce containing alloys. (orig.).

  18. High pressure stability analysis and chemical bonding of Ti{sub 1-x}Zr{sub x}N alloy: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta; Gupta, Dinesh C., E-mail: sosfizix@gmail.com, E-mail: mamta-physics@yahoo.co.in [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011 (India)

    2016-05-23

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti{sub 1-x}Zr{sub x}N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  19. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  20. Perpendicular magnetic anisotropy in Co{sub X}Pd{sub 100−X} alloys for magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.D.; Natarajarathinam, A.; Tadisina, Z.R. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States); Chen, P.J.; Shull, R.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Gupta, S., E-mail: Sgupta@eng.ua.edu [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-08-15

    Highlights: • CoPd alloy perpendicular anisotropy dependent on composition and thickness. • CIPT results show that TMR tracks with PMA of CoPd. • Potential replacement for Co/Pd multilayers. - Abstract: CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ’s) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L1{sub 0} alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular Co{sub x}Pd alloy-pinned Co{sub 20}Fe{sub 60}B{sub 20}/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the Co{sub x}Pd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied Co{sub x}Pd MTJ stacks. The Co{sub x}Pd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO{sub 2}/MgO (13)/Co{sub X}Pd{sub 100−x} (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  1. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    Science.gov (United States)

    Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.

    1993-01-01

    The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.

  2. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  3. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-06-23

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  4. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2016-01-01

    for 168 h in flowing N2(g)+5%O2(g)+15%H2O(g) (vol.%) with samples covered under KCl powder. A KCl-free exposure was also performed for comparison.Corrosion morphology and products were studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD......Laboratory testing on selected alumina and silica-forming alloys was performed to evaluate their performance against high temperature corrosion induced by potassium chloride (KCl). The alloys studied were FeCrAlY, Kanthal APM, Nimonic 80A, 214, 153MA and HR160. Exposure was conducted at 600 °C......-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion mechanism, Nimonic 80A was exposed...

  5. Peculiarity of electron optical orientation in Hg1-xMnxTe and Hg1-xCdxTe alloys

    International Nuclear Information System (INIS)

    Georgitseh, E.I.; Ivanov-Omskij, V.I.; Pogorletskij, V.M.

    1991-01-01

    To clarify the effect of exchange interaction of electrons with manganese ions on electron spin relaxation, a study was made on optical orientation in Hg 1-x Mn x Te alloy and Hg 1-x Cd x Te alloys with similar parameters of energy spectrum at 4.2 K. It is shown that exchange interaction in semimagnetic Hg 1-x Mn x Te solutions, caused by the presence of manganese ions, reduced the time of spin relaxation. However, this reduction is not sufficient make optical orientation of electrons not observable

  6. Application of 2-1/4 Cr-1 Mo as a structural material in saturated steam cycle LMFBR systems. Final report

    International Nuclear Information System (INIS)

    Licina, G.J.; Busboom, H.J.; Ring, P.J.; Roy, P.; Schmidt, C.G.; Spalaris, C.N.

    1982-02-01

    The suitability and incentives were examined for using 2-1/4Cr-1Mo steel as a structural material for the entire primary and secondary sodium systems in a 1000 MWe pool-type Liquid Metal Fast Breeder Reactor. The critical properties, advantages and disadvantages of 2-1/4Cr-1Mo, and data needed for design were described for each major component in the reactor. The relative importance of alloy properties to the successful use of ferritics in LMFBR was identified. Licensing issues, likely to surface if ferritic alloys were to be used for critical reactor components, were discussed

  7. Shape memory effect of Fe-17%Mn-X alloys

    International Nuclear Information System (INIS)

    Lee, S.-H.; Kim, H.-J.; Choi, C.-S.; Baik, S.-H.

    2000-01-01

    SME of Fe-17%Mn-X alloy decreased with increasing Ni and Cr contents. This is because the occurrence of stress-induced martensite transformation of γ to ε is difficult due to the increase in stability of retained austenite with increasing Ni and Cr contents. SME of Fe-17%Mn-X alloy increased with increasing the number of thermal cycles. The reason is that the prior bending deformation for SME is associated with coalescence of the pre-existing ε plates due to their rearrangement, thereby the more the ε content, the greater the SME. (orig.)

  8. Band structure of Mgsub(x)Znsub(1-x)Te alloys

    International Nuclear Information System (INIS)

    Laugier, A.; Montegu, B.; Barbier, D.; Chevallier, J.; Guillaume, J.C.; Somogyi, K.

    1980-01-01

    The band structure of Mgsub(x)Znsub(1-x)Te alloys is studied using a double beam wavelength modulated system in first derivative mode. Modulated reflectivity measurements are made from 82 to 300 K within spectral range 2500 to 5400 A. Structures corresponding to the E 0 , E 0 + Δ 0 , E 1 , E 1 + Δ 1 , e 1 and e 1 + Δ 1 critical points are indexed on the basis of existing band calculations for ZnTe. (author)

  9. On The Utilization of (1-X)Cu-X Pb) Alloys for Gamma-Rays Shielding

    International Nuclear Information System (INIS)

    Abd El-Latif, A.A.; Saeid, Kh.S.; Abd El-Latif, A.A.

    2011-01-01

    The present work deals with the study of the attenuation properties of gamma rays for [(1-X) Cu -X Pb] alloys where, x=10%, 20%, 30%, and 40% Pb waste by weight. Investigation has been performed by measuring the transmitted gamma ray spectra behind cylindrical samples of [(1-X) Cu - X Pb] alloys of different thicknesses. A collimated beam of gamma ray measured by using γ - ray spectrometer NaI(Tl) Scintillation detector with multichannel analyzer (MCA) cassy. Total mass attenuation coefficients (μ/ρ) of γ-ray have been evaluated and calculated using measured results and XCOM code respectively . Comparison between measured and calculated results shows a reasonable divergence at 0.511 MeV ,and 0.662 MeV γ-ray energies, in addition there is a convergence at 1.17 MeV, 1.274 MeV, and 1.3 MeV γ-ray energies

  10. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  11. The effect of microstructure and temperature on the oxidation behavior of two-phase Cr-Cr2X (X=Nb,Ta) alloys

    International Nuclear Information System (INIS)

    Brady, M.P.; Tortorelli, P.F.

    1998-01-01

    The oxidation behavior of Cr(X) solid solution (Cr ss ) and Cr 2 X Laves phases (X = Nb, Ta) was studied individually and in combination at 950--1,100 C in air. The Cr ss phase was significantly more oxidation resistant than the Cr 2 X Laves phase. At 950 C, two-phase alloys of Cr-Cr 2 Nb and Cr-Cr 2 Ta exhibited in-situ internal oxidation, in which remnants of the Cr 2 X Laves phase were incorporated into a growing chromia scale. At 1,100 C, the Cr-Cr 2 Nb alloys continued to exhibit in-situ internal oxidation, which resulted in extensive O/N penetration into the alloy ahead of the alloy-scale interface and catastrophic failure during cyclic oxidation. IN contrast, the Cr-Cr 2 Ta alloys exhibited a transition to selective Cr oxidation and the formation of a continuous chromia scale. The oxidation mechanism is interpreted in terms of multiphase oxidation theory

  12. Electrical resistivity at high temperatures of Heusler alloys of the Cu2MnAl sub(1-x) Sn sub (x)

    International Nuclear Information System (INIS)

    Grandi, T.A.

    1978-01-01

    The structural fase L2 1 of the Heusler alloys Cu 2 MnAl sub (1-x) Sn sub(x), with x varying between 0 and 1, was studied. X-ray diffraction, metallography and diferential termoanalysis techniques were employed. For the alloys with x = 0; 0,05; 0,10 and 0,15 the electrical resistivity measurements were performed in the temperature range 300 K [pt

  13. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  14. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    Science.gov (United States)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  15. Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang; Zhang, Fei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Sun, Baohui [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2016-12-15

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensitic transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.

  16. Structural and elastic properties of Ni2+xMn1-xGa alloys

    International Nuclear Information System (INIS)

    Ghosh, Subhradip; Vitos, Levente; Sanyal, Biplab

    2011-01-01

    The structural parameters and the energetics of the Ni 2+x Mn 1-x Ga alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10 m . The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of T m with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C', qualitatively similar to the relation between T m and C'. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.

  17. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  18. Monitoring alloy formation during mechanical alloying process by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom; Noraizam Md Diah; Mazli Mustapha

    2002-01-01

    Monitoring alloying (MA) is a novel processing technique that use high energy impact ball mill to produce alloys with enhanced properties and microscopically homogeneous materials starting from various powder mixtures. Mechanical alloying process was originally developed to produce oxide dispersion strengthened nickel superalloys. In principal, in high-energy ball milling process, alloy is formed by the result of repeated welding, fracturing and rewelding of powder particles in a high energy ball mill. In this process a powder mixture in a ball mill is subjected to high-energy collisions among balls. MA has been shown to be capable of synthesizing a variety of materials. It is known to be capable to prepare equilibrium and non-equilibrium phases starting from blended elemental or prealloyed powders. The process ability to produce highly metastable materials such as amorphous alloys and nanostructured materials has made this process attractive and it has been considered as a promising material processing technique that could be used to produce many advanced materials at low cost. The present study explores the conditions under which aluminum alloys formation occurs by ball milling of blended aluminum and its alloying elements powders. In this work, attempt was made in producing aluminum 2024 alloys by milling of blended elemental aluminum powder of 2024 composition in a stainless steel container under argon atmosphere for up to 210 minutes. X-ray diffraction together with thermal analysis techniques has been used to monitor phase changes in the milled powder. Results indicate that, using our predetermined milling parameters, alloys were formed after 120 minutes milling. The thermal analysis data was also presented in this report. (Author)

  19. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.

    Science.gov (United States)

    Kubásek, J; Vojtěch, D; Lipov, J; Ruml, T

    2013-05-01

    As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  1. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  2. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  3. Studies of some alloys using x-ray fluorescence

    International Nuclear Information System (INIS)

    Elmahi, Elamin Musaid

    1997-01-01

    In this project an attempt has been made for the study of alloys commonly used using x-ray fluorescence ( XRF ) technique. The alloys selected for the study included gold jewellery, steels, brasses and coins. The XRF method proved to be simple, fast, non-destructive and reliable as compared to chemical methods. The results showed that most of the gold jewellery used in this country have carat value of 18 and 21. Also most coins used in different countries are alloys of Cu and Ni. A simple spark method was used for the determination of C in steels, since C is not possible to analyze by XRF. ( Author )

  4. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  5. Beta decomposition of (Hf/sub x/Zr/sub 1-x/)80Nb20 ternary alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The processes of beta decomposition have been examined in ternary alloys of the form (Hf/sub x/Zr/sub 1-x/) 80 Nb 20 to determine the influence of Hf additions to a basic Zr 80 Nb 20 composition. In the chill cast condition, Hf additions have been found to decrease the temperature coefficient of electrical resistivity from a value of -0.0015%/K for the binary Zr 80 Nb 20 alloy to a value of -0.011%/K for a (Hf 50 Zr 50 ) 80 Nb 20 ternary alloy. This change is explained in terms of the bcc lattice instability typical of Ti, Zr, and Hf alloys. The Hf additions enhance the kinetics of omega-phase precipitation during aging at 648 K. The aging of a (Hf 05 Zr 95 ) 80 Nb 20 alloy for 12 h results in the precipitation of a high volume fraction of cuboidal shaped omega-phase particles. A phase separation which results in the formation of solute lean discs (β/sub l/) occurs together with the precipitation of the omega-phase. These discs formed both randomly within the matrix and heterogeneously along dislocations and at grain boundaries

  6. Oxide impedance characteristics of the Zr-xNb alloys

    International Nuclear Information System (INIS)

    Park, S. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2002-01-01

    To elucidate the correlation between the oxide impedance and corrosion characteristics of the Zr-xNb alloys, the long term corrosion test in high temperature / high pressure aqueous solution and the impedance test in the room temperature sulfate solution were performed. β-quenched plate specimens were heat-treated at 570 .deg. C for 500 hours to get the α+β Nb phase and the at 640 .deg. C for 10 hours to get the α+β Zr phase. The impedance test was conducted in sulfate solution for the initial corrosion test specimen (WG = 30 mg/dm 2 ). To evaluate the impedance date, 4 types of equivalent circuits were constructed by 5 parallel and serial RC elements. By using the equivalent circuits, the thickness of the inner and outer layers were calculated and the electric resistance of each layers were estimated. The corrosion behaviour of Zr-xNb alloys were quite different depending of the annealing condition and Nb-content. The corrosion resistance of the β Nb phase contained high Nb alloys were excellent rather than β Zr phase contained high Nb alloys. The electric resistance of the outer layer of β Zr phase contained high Nb alloy was twice larger than that of β Zr phase contained high Nb alloy, and in the case of outer layer 30% larger. So, the long term corrosion behaviors in high temperature could be estimated well by using the impedance test results

  7. Growth and characterization of ZnO{sub 1−x}S{sub x} highly mismatched alloys over the entire composition

    Energy Technology Data Exchange (ETDEWEB)

    Jaquez, M.; Ting, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Hettick, M.; Javey, A. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Sánchez-Royo, J. F. [ICMUV, Instituto de Ciencia de Materiales, Universitat de València, P.O. Box 22085, 46071 Valencia (Spain); Wełna, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Experimental Physics, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Dubon, O. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Walukiewicz, W., E-mail: w-walukiewicz@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-07

    Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO{sub 1−x}S{sub x} films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO{sub 1−x}S{sub x} alloys can be tuned from 3.7 eV to 2.6 eV. The observed large bowing in the composition dependence of the energy bandgap arises from the anticrossing interactions between (1) the valence-band of ZnO and the localized sulfur level at 0.30 eV above the ZnO valence-band maximum for O-rich alloys and (2) the conduction-band of ZnS and the localized oxygen level at 0.20 eV below the ZnS conduction band minimum for the S-rich alloys. The ability to tune the bandgap and knowledge of the location of the valence and conduction-band can be advantageous in applications, such as heterojunction solar cells, where band alignment is crucial.

  8. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  9. Structural and electronic properties of Si{sub 1–x}Ge{sub x} alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Iori, Federico [Dipartimento di Scienze e Metodi dell' Ingegneria, Centro Interdipartimentale Intermech and En and tech, Università di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42122 Reggio Emilia (Italy); European Theoretical Spectroscopy Facility (ETSF) and Institut de Ciència de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain); Ossicini, Stefano [Dipartimento di Scienze e Metodi dell' Ingegneria, Centro Interdipartimentale Intermech and En and tech, Università di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42122 Reggio Emilia (Italy); “Centro S3”, CNR-Istituto di Nanoscienze, Via Campi 213/A, 41125 Modena (Italy); Rurali, Riccardo, E-mail: rrurali@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2014-10-21

    We present first-principles density-functional calculations of Si{sub 1–x}Ge{sub x} alloy nanowires. We show that given the composition of the alloy, the structural properties of the nanowires can be predicted with great accuracy by means of Vegard's law, linearly interpolating the values of a pure Si and a pure Ge nanowire of the same diameter. The same holds, to some extent, also for electronic properties such as the band-gap. We also assess to what extend the band-gap varies as a function of disorder, i.e., how it changes for different random realization of a given concentration. These results make possible to tailor the desired properties of SiGe alloy nanowires starting directly from the data relative to the pristine wires.

  10. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    Science.gov (United States)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  11. Moessbauer and X-ray Study of Fe1-xAlx, 0.2≤x≤0.5, Samples Produced by Mechanical Alloying

    International Nuclear Information System (INIS)

    Oyola Lozano, D.; MartInez, Y. Rojas; Bustos, H.; Perez Alcazar, G. A.

    2004-01-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectroscopy and X-ray diffraction, of the Fe 1-x Al x , 0.2≤x≤0.5, alloys produced by mechanical alloying. Alloys with x=0.2, 0.3, 0.4 and 0.5, were for milled 12, 24, 36, and 48 hours. All the obtained alloys are in the bcc phase. The obtained Moessbauer spectra are characteristic of disordered ferromagnetic system. The lattice parameter remains nearly constant (∼2.91 A) for all the milling times and compositions. The mean grain sizes in the (110) and (211) direction are nearly constants with the milling time but vary from 15.5 to 11 nm and from 10.5 to 8.5 nm when Al content grow between x=0.2 to x=0.4, respectively. The difference between the mean grain sizes in these two directions shows that the grains are of prolate spheroid form.

  12. Transformation behavior and shape memory characteristics of thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV (at%) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jae-young; Chun, Su-jin [Division of Materials Scince and Engineering and ERI, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongnam 660-701 (Korea, Republic of); Choi, Eunsoo [Department of Civil Engineering, Hongik University, Seoul (Korea, Republic of); Liu, Yinong; Yang, Hong [School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [Division of Materials Scince and Engineering and ERI, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2012-10-15

    Transformation behavior, shape memory characteristics and superelasticity of thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV (at%) (x = 0.5–2.0) alloys were investigated by means of differential scanning calorimetry, transmission electron microscopy, X-ray diffractions, thermal cycling tests under constant load and tensile tests. The B2–B19′ transformation occurred when V content was 0.5 at%, above which the B2–B19–B19′ transformation occurred. The B2–B19 transformation was not separated clearly from the B19–B19′ transformation. Thermo-mechanically treated Ti–(45−x)Ni–5Cu–xV alloys showed perfect shape memory effect and transformation hysteresis(ΔT) of Ti–43.5Ni–5.0Cu–1.5V and Ti–43.0Ni–5.0Cu–2.0V alloys was about 9 K which was much smaller than that of a Ti–44.5Ni–5.0Cu–0.5V alloy(23.3 K). More than 90% of superelastic recovery ratio was observed in all specimens and transformation hysteresis (Δσ) of a Ti–44.5Ni–5.0Cu–0.5V alloy was about 70 MPa, which was much larger than that of a Ti–43.0Ni–5.0Cu–2.0V alloy (35 MPa).

  13. Electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) Heusler alloys: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Guezlane, M. [Department of Physics, Faculty of Science, University of Batna, 05000 Batna (Algeria); Baaziz, H., E-mail: baaziz_hakim@yahoo.fr [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); El Haj Hassan, F., E-mail: hassan.f@ul.edu.lb [Université Libanaise, Faculté des Sciences (I), Laboratoire de Physique et d’Electronique (LPE), Elhadath, Beirut (Lebanon); Charifi, Z. [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Djaballah, Y. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)

    2016-09-15

    Density functional theory (DFT) based on the full-potential linearized augmented plane wave (FP-LAPW) method is used to investigate the structural, electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) full Heusler alloys, with L2{sub 1} structure. The structural properties and spin magnetic moments are investigated by the generalized gradient approximations (GGA) minimizing the total energy. For band structure calculations, GGA, the Engel–Vosko generalized gradient approximation (EVGGA) and modified Becke–Johnson (mBJ) schemes are used. Results of density of states (DOS) and band structures show that these alloys are half-metallic ferromagnets (HMFS). A regular-solution model has been used to investigate the thermodynamic stability of the compounds Co{sub 2}Cr{sub x}Fe{sub 1−x}X that indicates a phase miscibility gap. The thermal effects using the quasi-harmonic Debye model are investigated within the lattice vibrations. The temperature and pressure effects on the heat capacities, Debye temperatures and entropy are determined from the non-equilibrium Gibbs functions. - Highlights: • We present electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) Heusler alloys. • The calculated phase diagram indicates a significant phase miscibility gap. • The computed band structures of ternary compounds using GGA, EVGGA and mBJ schemes indicate an indirect band gap (Γ-X) for the ternary compounds Co{sub 2}FeAl, Co{sub 2}CrAl, Co{sub 2}FeSi and Co{sub 2}CrSi while both alloys have a direct band gap. • The quasi-harmonic Debye model is successfully applied to determine the thermal properties.

  14. The variation of the energy gap with composition in the quaternary alloy system ZnTe/sub 1-2x/S/sub x/Se/sub x/

    International Nuclear Information System (INIS)

    Litvinchuk, A.P.; Vitrikhovskii, N.I.

    1983-01-01

    Studies are presented of photoluminescence spectra of the quaternary ZnTe/sub 1-2x/S/sub x/Se/sub x/ alloy (x = 0.05, 0.10, and 0.20). The determination of the energy gap variation with composition at 85 K is given. The nonlinear variation of the energy gap E/sub g/ with composition for the quaternary ZnTe/sub 1-2x/S/sub x/Se/sub x/ alloy may be interpreted in the framework of the pseudopotential theory based on the nonlinear crystal field properties

  15. Structure and mechanical properties of as-cast (ZrTi){sub 100−x}B{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xia, C.Q.; Jiang, X.J.; Wang, X.Y.; Zhou, Y.K.; Feng, Z.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Tan, C.L. [Beijing Institute of Spacecraft System Engineering, Beijing 100094 (China); Ma, M.Z. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P., E-mail: riping@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-07-15

    Highlights: • Trace boron additions result in significant grain refinement. • Large numbers of stacking faults are observed in ZrB{sub 2} and TiB intermetallics. • The tensile strength is enhanced by increasing the amount of B. • Intermetallics microcracking causes the failure of the alloys. - Abstract: The microstructure, mechanical properties, and fracture characteristics of (Zr{sub 50}Ti{sub 50}){sub 100−x}B{sub x} alloys (x = 0, 0.5, 1, 2 at.%) obtained by casting were investigated. Trace additions of boron (B) to the Zr{sub 50}Ti{sub 50} alloys induced significant microstructural changes. Changes included the promotion of dendritic growth and refinement in prior-β grain and α′-lath size. Large numbers of stacking faults were also observed in ZrB{sub 2} and TiB intermetallics. The location of B atoms and the lattice mismatch energy between intermetallics and matrix were responsible for the stacking faults. (ZrTi)B alloys demonstrated higher tensile strength than matrix material. Both the intermetallics with high strength and modulus and the grain refinement played important roles in improving the mechanical properties of alloys. This result could be explained in terms of a shear-lag model based on the load transfer concept and Hall–Petch mechanism. The elongation-to-failure of (ZrTi)B alloys decreased with increased B concentration. The reduction in elongation-to-failure of (ZrTi)B alloys could be attributed to the presence of ZrB{sub 2} and TiB intermetallics and refinement of α′-laths.

  16. Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys

    Science.gov (United States)

    Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.

    2017-07-01

    It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.

  17. Structure and properties of heat-treated Ti-(40-4X)%Nb-X%Mo alloys with IE (SME)

    International Nuclear Information System (INIS)

    Silva, Marcia Almeida; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Paes Junior, Herval Ramos; Goncharenko, Boris Andreevich

    2010-01-01

    Whereas the inelastic effects (IE) are related with reversible martensitic transformation, in this work, was analyzed the structure and properties of heat treated Ti-(40-4x)%Nb-x%Mo alloys, where the contents of niobium and molybdenum are between 24-40%Nb and 0-4%Mo (% weight). The structural and phase analysis were done through optical microscopy and X-rays diffraction. The properties measured in this study were electrical resistivity and density. The Ti-40%Nb alloy shows a structure consisting of the β phase and αα’’ martensite with a minor participation of the α’ and ω. The alloys with 1 to 4%Mo have similar structures consisting of the β phase and traces of the α’’ phase. Thus, was observed greater capacity of Mo as a β stabilizer. The increase in Mo content in the composition of the alloys causes an increase in electrical resistivity of these. The samples may have undergone change in volume, caused by phase transformation, what possibly caused the difference between the density values calculated (theoretical) and experimental. (author)

  18. Ab initio studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Szwacki, N. Gonzalez, E-mail: gonz@fuw.edu.pl; Majewski, Jacek A., E-mail: jam@fuw.edu.pl

    2016-07-01

    We present results of extensive theoretical studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys, which have been performed in the framework of density functional theory employing the all-electron full-potential linearized augmented plane-wave scheme. It is shown that the Si-rich alloys are more resistive to structural disorder and as a consequence Si stabilizes the L2{sub 1} structure. Si alloying changes position of the Fermi level, pushing it into the gap of the minority spin-band. It is also shown that the hyperfine field on Co nuclei increases with the Si concentration, and this increase originates mostly from the changes in the electronic density of the valence electrons. - Highlights: • GGA+U calculations: μ and E{sub g} dependence on the value of U for Co{sub 2}FeAl and Co{sub 2}FeSi. • Behavior of magnetic hyperfine fields on the Co site of Co{sub 2}FeAl{sub 1−x}Si{sub x} versus x. • DFT proof of suppression of formation of antisites defects with x in Co{sub 2}FeAl{sub 1−x}Si{sub x}.

  19. Valence band structure of InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy semiconductors calculated using valence band anticrossing model.

    Science.gov (United States)

    Samajdar, D P; Dhar, S

    2014-01-01

    The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E - energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  20. Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys

    Science.gov (United States)

    Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu

    2017-01-01

    Ti–5Sn–xMo (x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti–5Sn–xMo alloys are highly affected by their Mo content. The as-cast microstructures of Ti–5Sn–xMo alloys transformed in the sequence of phases α′ → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti–5Sn–7.5Mo (80 GPa) and β-phase Ti–5Sn–10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti–5Sn–xMo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability. PMID:28772820

  1. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  2. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  3. Hydrogen storage performances of LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) alloys prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Haitao [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhai, Tingting; Yang, Tai; Yuan, Zeming; Zhao, Dongliang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-10-05

    Highlights: • Amorphous and nanostructured alloys were prepared by mechanical milling. • The maximum discharge capacity of ball milled alloys reaches to 1053.5 mA h/g. • The addition of Ni significantly increases the discharge capacity. • Increasing milling time reduces the kinetic performances of ball milled alloys. - Abstract: In order to improve the hydrogen storage performances of Mg-based materials, LaMg{sub 11}Ni alloy was prepared by vacuum induction melting. Then the nanocrystalline/amorphous LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) hydrogen storage alloys were synthesized by ball milling technology. The structure characterizations of the alloys were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage characteristics were tested by using programmed control battery testing system. The electrochemical impedance spectra (EIS), potentiodynamic polarization curves and potential-step curves were also plotted by an electrochemical workstation (PARSTAT 2273). The results indicate that the as-milled alloys exhibit a nanocrystalline and amorphous structure, and the amorphization degree of the alloys visibly increases with extending milling time. Prolonging the milling duration markedly enhances the electrochemical discharge capacity and cyclic stability of the alloys. The electrochemical kinetics, including high rate discharge ability (HRD), charge transfer rate, limiting current density (I{sub L}), hydrogen diffusion coefficient (D), monotonously decrease with milling time prolonging.

  4. Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation

    KAUST Repository

    Pulikkotil, J. J.

    2011-08-09

    The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range. The findings are compared to the related Si1−xGex alloys and to experimental results. Interestingly, the deviation from Vegard’s law is quantitatively and qualitatively different between the Sn1−xGex and Si1−xGex alloys. An almost linear dependence of the bulk modulus as a function of composition is found for Si1−xGex, whereas for Sn1−xGex the dependence is strongly nonlinear.

  5. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong

    2014-10-21

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  6. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong; Zhang, Qingyun; Zhao, Yu-Jun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  7. Investigation of multifunctional properties of Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0–6) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K.G., E-mail: suresh@phy.iitb.ac.in

    2015-01-25

    Highlights: • Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} Heusler alloys exhibit multifunctional properties. • Co doping results decrease in martensitic transition temperature and increase in T{sub C}{sup A}. • Ferromagnetic coupling increases with increase in Co concentration. • Large positive ΔS{sub M} of 10.5 J/kg K and large RCP of 125 J/kg was obtained for x = 1. • Large exchange bias field of 833 Oe was observed for Mn{sub 50}Ni{sub 39}Co{sub 1}Sn{sub 10} alloy. - Abstract: A series of Co doped Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0, 1, 2, 2.5, 3, 4 and 6) Heusler alloys has been investigated for their structural, magnetic, magnetocaloric and exchange bias properties. The martensitic transition temperatures are found to decrease with the increase in Co concentration due to the decrease in valence electron concentration (e/a ratio). The Curie temperature of austenite phase increases significantly with increasing Co concentration. A large positive magnetic entropy change (ΔS{sub M}) of 8.6 and 10.5 J/kg K, for a magnetic field change of 50 kOe is observed for x = 0 and 1 alloys, and ΔS{sub M} values decreases for higher Co concentrations. The relative cooling power shows a monotonic increase with the increase in Co concentration. Large exchange bias fields of 920 Oe and 833 Oe have been observed in the alloys with compositions x = 0 and 1, after field cooling in presence of 10 kOe. The unidirectional anisotropy arising at the interface between the frustrated and ferromagnetic phases is responsible for the large exchange bias observed in these alloys. With increase in Co, the magnetically frustrated phase diminishes in strength, giving rise to a decrease in the exchange bias effect for larger Co concentration. The exchange bias fields observed for compositions x = 0 and 1, in the present case are larger than that reported for Co doped Ni–Mn–Z (Z = Sn, Sb, and Ga) alloys. Temperature and cooling field dependence of the exchange bias

  8. Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-sheng; Kuang, Ya-fei; Fang, Da-qing; Chai, Yue-sheng [Taiyuan Univ. of Science and Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Zhang, Yue-zhong [Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Taiyuan Univ. of Science and Technology (China). College of Chemical and Biological Engineering

    2017-04-15

    In petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg{sub 3}Zn{sub 3}Y{sub 2}, and Mg{sub 3}Zn{sub 6}Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg{sub 3}Zn{sub 3}Y{sub 2} phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg{sub 3}Zn{sub 6}Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day{sup -1} in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.

  9. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  10. The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (0{<=}x{<=}0.5): X-ray diffraction, energy dispersive spectrometry and differential thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grima Gallardo, P.; Munoz, M.; Ruiz, J. [Centro de Estudios en Semiconductores (C.E.S.), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Dpto. Quimica, Fac. Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Briceno, J.M. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela)

    2004-07-01

    The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (0<x{<=}0.5) was investigated using X-ray powder diffraction, energy dispersion spectrometry and differential thermal analysis. The solubility of MgSe in CuGaSe{sub 2} was found to be nearly complete for all the compositions studied, although traces of MgSe appear as a secondary phase at x{>=}0.15. All the alloys showed the chalcopyrite structure and the lattice parameters of the unit cell do not follow a linear behavior but showed a soft local maximum at x {proportional_to} 0.15. In the single-phase field, the increasing behavior of the lattice parameters can be reproduced using an extension for quaternary alloys of Jaffe and Zunger's model for chalcopyrites. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  12. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kato, H.; Ohsuna, T.

    2003-01-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy...... of the first exothermic peak decreases by 80%, the corresponding XRD patterns still look similar to that for the as-prepared sample. However, the simulated XRD patterns for the pure Cu51Zr14 phase, which is the crystalline phase formed during the first exothermic reaction, with small grain sizes and defects...... clearly show a broadened amorphous-like feature. This might be the reason that no diffraction peaks from the nanocrystalline component were detected in the XRD patterns recorded for the as-cast or as-spun Cu60Ti10+xZr30-x (x=0 and 10) alloys and for the alloys annealed at lower temperatures, in which...

  13. Interplay between structure and magnetism in HoxPr1-x alloys. 2. Resonant x-ray magnetic scattering

    DEFF Research Database (Denmark)

    Vigliante, A.; Christensen, M.J.; Hill, J.P.

    1998-01-01

    X-ray-scattering techniques have been used to study the crystal and magnetic structures of HoxPr1-x alloys in the form of thin films. Three distinct crystal structures are found as a function of concentration x, each of which has a characteristic magnetic structure. For x greater than or equal to 0.......6 a hexagonal-close-packed phase is found with the magnetic moments ordered in a basal-plane helix, whereas for 0.4 less than or equal to x... hexagonal-close-packed and remain nonmagnetic down to the lowest temperatures studied. Using x-ray magnetic resonance scattering techniques, we demonstrate that a small, static spin-density wave is induced within the alloy 5d band at both the Pr and Ho sites in both of the magnetically ordered phases...

  14. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  15. Spectroscopy of 214Bi and systematics of 210,212,214Pb(0+) long->β-210,212,214Bi(0-)

    International Nuclear Information System (INIS)

    Berant, Z.; Schuhmann, R.B.; Alburger, D.E.; Chou, W.T.; Gill, R.L.; Warburton, E.K.; Wesselborg, C.

    1991-01-01

    Experiments designed to provide more information on the spectroscopy of 214 Bi, and on 214 Pb(β - ) 214 Bi in particular, were undertaken because of interest in first-forbidden β decay in the lead region. The experiments consisted of γ-γ coincidences and angular correlations, conversion electron measurements, level lifetime determinations, and precision γ-ray energy measurements. The 352-keV level of 214 Bi was found to be a strong candidate (and the only candidate) for the 0 1 - state. Recent additions to the 214 Pb decay scheme are confirmed by γ-γ coincidence measurements. A careful evaluation of the 214 Bi level scheme is made with emphasis on separating experimentally based conclusions from speculations based on systematics and other ''weak'' arguments. Shell-model calculations of the spectroscopy of 210,212 Bi and 210,212 Pb(β - ) 210,212 Bi were performed using a modification of the Kuo-Herling realistic interaction. These calculations and a generalized seniority model provide a basis for an examination of the systematics of the A=210, 212, 214 spectroscopy and β decay. The generalized seniority model is found to be a quite good approximation which provides a quantitative understanding of the 214 Pb decay rates

  16. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  17. Pressure-concentration (P-X) diagram for the Ce-Th alloy system

    International Nuclear Information System (INIS)

    Gu, G.; Vohra, Y.K.; Winand, J.M.; Spirlet, J.C.

    1995-01-01

    Pressure is an important variable in the phase stability of rare earth and actinide metals and alloys. This is largely due to the enormous change of the f-electron character induced by high pressure. Under high pressure, the increased f-electron overlap and interactions between the f-electrons and the spd conduction electrons are the main causes of the change of f-electron behavior and the relevant phase transformations. Diamond anvil cell techniques now allow for pressures over 300 GPa and this has given new impetus to the field of structural phase transformations. In this paper, the authors report their high pressure measurements on a series of Ce 1-x Th x alloys performed at ambient temperature in a diamond anvil cell using synchrotron x-ray source. In particular, the authors focus their attention on the γ(fcc) to α(fcc) and α to bct (body centered tetragonal) phase transformations caused by application of high pressure. The data is combined with the earlier measurements to construct a P-X diagram for the Ce-Th Alloy system

  18. X-ray topography of uranium alloys

    International Nuclear Information System (INIS)

    Le Naour, L.

    1984-01-01

    The limitations of x-ray topography methods are due to the variety of structures studied and to the variation of the amplitude of the scattering of incident beams. It is difficult to evaluate the aberrations and the imperfections of the material studied. Interpretation of the x-ray images will often be delicate and that is aggravated by the complexity of the diffraction spectrum of uranium. This negative aspect is compensated for by the advantage that chemical or electrochemical preparations of the alloy surface, along with alterations that can take place and the lack of trueness are avoided. Precise and very reproducible numerical data can be derived from the patterns. The structure of alloys, at a given scale, is revealed and characterized by quantitative parameters such as size of grains or sub-grains, dispersion of their dimensions, mutual disorientations and the continuous or discontinuous nature of the latter. The results of this research, therefore, justify the use of methods inspired by the Berg-Barrett technique. These diffraction procedures constitute a useful means for investigating many elements of microstructure that closely govern the behavior under irradiation of the materials being examined

  19. Effect of the La/Mg ratio on the structure and electrochemical properties of La xMg 3- xNi 9 ( x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries

    Science.gov (United States)

    Liao, B.; Lei, Y. Q.; Chen, L. X.; Lu, G. L.; Pan, H. G.; Wang, Q. D.

    Effect of La/Mg ratio on the structure and electrochemical properties of La xMg 3- xNi 9 ( x=1.6-2.2) ternary alloys was investigated. All alloys are consisted of a main phase with hexagonal PuNi 3-type structure and a few impurity phases (mainly LaNi 5 and MgNi 2). The increase of La/Mg ratio in the alloys leads to an increase in both the cell volume and the hydride stability. The discharge capacity of the alloys at 100 mA/g increases with the increase of La/Mg ratio and passes though a maximum of 397.5 mAh/g at x=2.0. As the La/Mg ratio increases, the high-rate dischargeability of the alloy electrodes at 1200 mA/g HRD 1200 decreases from 66.7% ( x=1.6) to 26.5% ( x=2.2). The slower decrease of HRD 1200 (from 66.7 to 52.7%) of the alloys with x=1.6-2.0 is mainly attributed to the decrease of electrocatalytic activity of the alloys for charge-transfer reaction, the more rapid decrease of HRD 1200 of the alloys with x>2.0 is mainly attributed to the lowering of the hydrogen diffusion rate in the bulk of alloy. The cycling capacity degradation of the alloys is rather fast for practical application due to the corrosion of La and Mg and the large VH in the hydride phase.

  20. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    Science.gov (United States)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  1. Effect of Electric Voltage and Current of X-ray Chamber on the Element inthe Zirconium Alloy Analysis X-ray by X-ray Fluorescence

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Narko-Wibowo, L; Rosika-Krisnawati; Nudia-Barenzani

    2000-01-01

    The using of x-ray fluorescence in the chemical analysis depend heavilyon the parameters of x-ray chamber, for examples : electric voltage andelectric current. That parameter give effect in the result of determine ofSn, Cr, Fe and Ni in the zirconium alloy. 20 kV electric voltages are used onthe Mo x-ray chamber shall product x-ray of zirconium in the sample materialcan give effect in the stability of the analysis result (deviation more than5%). The result of analysis of elements in the zirconium alloy shall givedeviation less than 5% when using of electric voltage of the x-ray chamberless than 19 kV. The sensitivity of analysis can be reached by step upelectric current of x-ray chamber. (author)

  2. Development of an atmospheric 214Bi measuring instrument

    International Nuclear Information System (INIS)

    1975-01-01

    Part of the radiation environment encountered during airborne gamma ray surveys is produced by 214 Bi existing in the atmosphere. The 214 Bi atmospheric concentration changes with time and location, and should be measured to process the acquired data correctly. Three methods of atmospheric 214 Bi measurement are evaluated in this work. These are: (1) an 11 1 / 2 '' dia. x 4'' thick NaI(Tl) crystal shielded from ground radiation, (2) a negatively charged wire to collect radioactive ions, and (3) a high volume air sampler collecting particulate matter on filter paper. The shielded detector and filter paper methods yield good results with the shielded detector producing a factor of about 10 times higher counting rate. The charged wire method gave very low counting rates where the shielded detector counting rates were about a factor of 100 times higher, and the results did not correlate with the 214 Bi atmospheric concentration as determined by the other two methods. The theory necessary to understand the collection and decay of the airborne radioactivity using the charged wire and filter paper methods is developed

  3. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    Science.gov (United States)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  4. Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1-xVxCoGe alloys

    International Nuclear Information System (INIS)

    Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W.

    2012-01-01

    The magnetic and magnetocaloric properties have been investigated in a series of Mn 1-x V x CoGe (x=0.01, 0.02, 0.03, and 0.05) alloys. The substitution of V for Mn reduces the structural transformation temperature of MnCoGe alloy effectively and results in a second-order magnetic transition in Mn 0.95 V 0.05 CoGe alloys. Large room temperature magnetocaloric effect and almost zero magnetic hysteresis losses are simultaneously achieved in the alloys with x=0.01, 0.02, and 0.03. The reasons for the negligible magnetic hysteresis losses and the potential application for the roomtemperature magnetic refrigeration are discussed. - Highlights: → V-substitution for Mn reduces the structural transformation temperature of MnCoGe. → FM-PM transition presents the second-order nature in Mn0.95V0.05CoGe. → The first-order FM-PM transitions are observed for alloys with x=0.01, 0.02, and 0.03. → Large room temperature MCEs are achieved in these alloys. → Negligible magnetic HL is achieved for these alloys simultaneously.

  5. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  6. Absence of intrinsic ferromagnetism in Zn{sub 1-x}Mn{sub x}O alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huawei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shi Erwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen Zhizhan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu Xuechao [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xiao Bing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2006-10-04

    Zn{sub 1-x}Mn{sub x}O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn{sup 2+} ions are homogeneously substituted by Mn{sup 2+} ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn{sub 2}O{sub 4}. (letter to the editor)

  7. Evaluation of ferritic alloy Fe-2-1/4Cr-1Mo after neutron irradiation - microstructure development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    Microstructural examinations are reported for nine specimen conditions of 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Two heats of material were involved, each with a different preirradiation heat treatment, one irradiated to a peak fluence of 5.1 x 10 22 n/cm 2 (E > 0.1 MeV) or 24 dpa and the other to 2.4 x 10 23 n/cm 2 (E > 0.1 MeV) or 116 dpa. Void swelling is found following irradiation at 400 0 C in both conditions and to 480 0 C in the higher fluence conditions. Concurrently dislocation structure and precipitation formed. Peak void swelling, void density, dislocation density and precipitate number density developed at the lowest temperature, approx. 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  8. Spalling fracture of metals and alloys under intense x-radiation

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2001-01-01

    Creation of different power and irradiating installations assisted in studying mechanical properties of structural materials under the effect of high-power radiation fluxes: laser, electron, X-ray, ion beam etc. There are being widely investigated such phenomena as surface and deep hardening of metals and alloys under irradiation, generation of elastic and shock waves, materials failure under thermal shock etc.In the paper there are discussed the results of long researches of spalling fracture of materials and alloys under intense X-radiation. Model assemblies with consequently arranged samples (foils) of metals and alloys under investigation underwent pulse X-radiation. The energy flux of X-radiation was weakened to the needed value by dose filters intensively absorbing soft spectrum of X-radiation. At carrying out the researches the foils of copper, nickel, titanium, brass, bronze, molybdenum, tungsten, tantalum, cadmium, lead, zinc, silver and steels 0.005-1 mm thick were used as objects under investigation. The samples diameter (10-16 mm) was chosen to be quite large as compared to their thickness so that the side load does not affect the central part of the samples and the front (looking the source of X-radiation) and back (shadow) surfaces of the samples are free what makes it possible to consider the processes of spalling fracture in one-dimensional approximation. Within the frames of kinetic approach to the problem of solid states spalling fracture under pulse loading that considers fracture as progressing in time process there were found spalling fracture time dependencies of lead, cadmium, zinc, silver, copper, brass, bronze, nickel, titanium, molybdenum, tungsten, tantalum and steels under thermal shock initiated by X-radiation. It was demonstrated that longevity of metals and alloys under thermal shock exponentially decreases with the growth of rupture stresses amplitude and can be described in terms of kinetic concept of strength.Within the frames of

  9. Study of magnetic hardening in Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ alloy

    International Nuclear Information System (INIS)

    Awan, M.S.; Bhatti, A.S.; Farooque, M.

    2008-01-01

    Magnetic hardening has been examined in the samarium (Sm), cobalt (Co) and copper (Cu) fused permanent magnets by correlating the magnetic properties with annealing temperature and microstructure of the samples. For the Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ system, with various copper contents (x=0, 0.2, 0.3, 0.4 and 0.5) the shape of initial magnetization curve indicated that the magnetic hardening process involved in these types of magnets consists of domain wall pinning type. This is consistent with the microstructure studies which show the existence of nonmagnetic Cu-rich precipitates in the Co-rich matrix. Copper substituted samples were annealed in the temperature range (300 -1000) degree C for 3h under the protective atmosphere of argon (Ar) gas. Both cast and annealed samples prepared by tri-arc melting technique exhibit two-phase microstructure responsible for enhanced magnetic properties. Metallographic and surface studies were carried out using a digital optical microscope (OM). X-ray diffraction (XRD) studies confirmed that the alloys solidefied in the hexagonal crystal structure. The lattice parameters and unit cell volume increase with increasing Cu content. Scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) was used to examine the surface morphology, compositional variations, elemental segregations, formation and effect of annealing on the different phases. Later these parameters were related to the magnetic properties. Copper-rich phase precipitates in the Co- rich matrix may serves as the pinning centers for the domain wall motion. Introduction of these pinning centers improved the magnetic hardening of the alloy. Annealing the Cu-substituted alloy further improved the magnetic properties. During annealing, diffusion of copper played the key role for enhanced magnetic properties. It was found that both Cu substitution and subsequent annealing are the dominating factors determining the magnetic properties of these magnetic

  10. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  11. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  12. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    Science.gov (United States)

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. Effect of the low magnetic field on the electrodeposition of Co{sub x}Ni{sub 100−x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, 07738 México, D.F., México (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Arce Estrada, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, 07738 México, D.F., México (Mexico); Sanchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J.; Vazquez, L. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2015-07-15

    Magnetic, chemical and structural properties of electrosynthesized Co{sub x}Ni{sub 100−x} have been studied. The electrodeposition has been conducted both in the presence and absence of a low magnetic field. The application of a perpendicular magnetic field during the synthesis modified slightly the morphology of the alloys. These changes depend more on the film composition than on the applied field, as demonstrated by AFM images. In the absence of magnetic field, the Co{sub x}Ni{sub 100−x} film grows along the (200) direction. However, when the magnetic field was applied, a preferential orientation along the (111) direction was observed. No important magnetic changes are induced by the presence of the magnetic field during the growth. Based on X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) experiments, the chemical composition of the films was preserved during preparation regardless of whether or not magnetic field is applied. There has been observed an increase in deposition rate in the presence of field even at these low magnetic fields. - Highlights: • CoNi alloys were electrosynthesized in the absence and presence of a low magnetic field. • Application of a magnetic field produced an orientation in the (111) plane of the alloy. • An external field changes the voltammetric curves reducing the energy required for the alloy formation. • The composition and magnetic properties were constant in the absence and presence of magnetic field.

  14. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  15. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  16. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X = Sn, Ga, In) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Vojtěch, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Lipov, J.; Ruml, T. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic)

    2013-05-01

    As-cast Mg–Sn, Mg–Ga and Mg–In alloys containing 1–7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg–Sn and Mg–Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. - Highlights: ► Gallium addition (up to 7 wt.%) improves the strength and toughness of as-cast Mg. ► The effect of indium addition (up to 7 wt.%) on mechanical properties is small. ► Gallium, Tin and Indium addition improves the corrosion resistance of as-cast Mg. ► Gallium shows no toxic effect on osteosarcoma cells. ► Tin and indium show serious toxic effect on osteosarcoma cells.

  17. Determination of the enthalpy of fusion and thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys

    International Nuclear Information System (INIS)

    Zhai, W.; Zhou, K.; Hu, L.; Wei, B.

    2016-01-01

    Highlights: • The increasing Sn content reduces the liquidus temperature. • High Sn content results in lower enthalpy of fusion by polynomial functions. • The thermal diffusivity drops from the solid toward the semi-solid state. • Undercoolability of alloys with primary Cu_2Sb phase is stronger than others. - Abstract: The liquidus and solidus temperatures, enthalpy of fusion, and the temperature dependence of thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys were systematically measured by DSC and laser flash methods. It is found that both the liquidus temperature and the enthalpy of fusion decrease with the rise of Sn content, and their relationships with alloy composition were established by polynomial functions. The thermal diffusivity usually drops from the solid toward the semi-solid state. The undercoolability of those liquid Cu_6_0_−_xSn_xSb_4_0 alloys with primary Cu_2Sb solid phase is stronger than the others with primary β(SnSb) intermetallic compound, and the increase of cooling rate facilitates further undercooling. Microstructural observation indicates that both of the primary Cu_2Sb and β(SnSb) intermetallic compounds in ternary Cu_6_0_−_xSn_xSb_4_0 alloys grow in faceted mode, and develop into coarse flakes and polygonal blocks.

  18. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    Science.gov (United States)

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  19. Magnetic spin configuration in Fe{sub 50}Pt{sub 50-x}Rh{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, J.; Lott, D.; Schreyer, A. [GKSS Research Centre (Germany); Mankey, G.J. [University of Alabama, MINT Center (United States); Schmidt, W.; Schmalzl, K. [Juelich Research Centre (Germany); Tartakowskaya, E. [Institute for Magnetism, National Ukrainian Accademy of Science (Ukraine)

    2010-07-01

    FePt-based alloys are typically the material of choice for magnetic information storage media. The high magnetic moment of Fe gives a large magnetization and the large atomic number of Pt results in a high magnetic anisotropy. This combination enables the written bits to be smaller than ever before. One way to control the magnetic properties in these materials is through the introduction of a third element into the crystal matrix e.g. Rh. When Rh is added to replace Pt in the equiatomic alloy, new magnetic phases emerge. Bulk samples of Fe{sub 50}Pt{sub 50-x}Rh{sub x} studied by magnetization measurements refer to three different phase transitions with increasing temperature: (I) An antiferromagnetic (AF)-paramagnetic (PM) transition for 30<x<14.25, (II), an AF-ferromagnetic (FM) transition for 14.25<x<9.5 and, (III), a FM-PM transition 9.5<x<0. Here we present results on a series of 200 nm Fe{sub 50}Pt{sub 50-x}Rh{sub x} films with different Rh concentrations. These films were examined by neutron diffraction in dependence of temperature and magnetic field. By the use of polarized and unpolarized neutron diffraction we could develop a detailed model of the magnetic spin structure in these thin films.

  20. New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys

    Science.gov (United States)

    Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.

    2017-10-01

    This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.

  1. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  2. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  3. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  4. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2010-01-01

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green

  5. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  6. Corrosion Characteristics of Ti-29Nb-xHf Ternary Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sun Young; Choi, Han Chul [Chosun Univ., Kwangju (Korea, Republic of)

    2015-12-15

    The Cp-Ti and Ti-6Al-4V alloys were widely used for dental materials due to their mechanical properties and good corrosion resistance. However, Cp-Ti was known as bio-inert materials, Ti-6Al-4V alloy has a problem such as high Young modulus, potential loss of the surrounding bone, and to the release of potentially toxic ions from the alloy. To overcome this problem, Ti alloys containing Nb and Hf elements have been used for biomaterials due to low toxicity and high corrosion resistance. Especially, alloying element of Nb was known as β phase stabilizer. The β phase alloy was widely used to replace currently used implant materials. The corrosion resistances of Ti-29Nb-xHf ternary alloys were dependent on Hf content in oral environment solution.

  7. Hot Corrosion of Single-Crystal NiAl-X Alloys

    Science.gov (United States)

    Nesbitt, James A.

    1998-01-01

    Several single-crystal NiAl-X alloys (X=Hf, Ti, Cr, Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at 900 deg. C for 300 1-hr cycles. The surface morphology after testing consisted of either mounds or an inward, uniform-type of attack which preserved surface features. It was observed that the surface morphology was affected by the surface preparation treatments. Microstructurally, the hot corrosion attack initiated as pits but evolved to a rampant attack consisting of the rapid inward growth of Al2O3. Electropolishing and chemical milling produced many pits and grooves on the surface. However, the presence of pits and grooves did not appear to strongly influence the hot corrosion response. Attack on many samples was strongly localized which was attributed to compositional inhomogeneity within the samples. It was found that increasing the Ti content from 1% to 5 % degraded the hot corrosion response of these alloys. In contrast, the addition of 1-2% Cr reduced the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the 4-5% Ti addition.

  8. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  9. Structural and electronic properties of Si1−xGex alloy nanowires

    International Nuclear Information System (INIS)

    Iori, Federico; Ossicini, Stefano; Rurali, Riccardo

    2014-01-01

    We present first-principles density-functional calculations of Si 1−x Ge x alloy nanowires. We show that given the composition of the alloy, the structural properties of the nanowires can be predicted with great accuracy by means of Vegard's law, linearly interpolating the values of a pure Si and a pure Ge nanowire of the same diameter. The same holds, to some extent, also for electronic properties such as the band-gap. We also assess to what extend the band-gap varies as a function of disorder, i.e., how it changes for different random realization of a given concentration. These results make possible to tailor the desired properties of SiGe alloy nanowires starting directly from the data relative to the pristine wires.

  10. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  11. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  12. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    Science.gov (United States)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this

  13. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011(India)

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  14. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  15. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  16. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    Science.gov (United States)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  17. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  18. First-principles study on half-metallic ferromagnetic properties of Zn{sub 1-x}V{sub x}Se ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khatta, Swati; Tripathi, S.K.; Prakash, Satya [Panjab University, Central of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2017-09-15

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn{sub 1-x}V{sub x}Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction. (orig.)

  19. Corrosion behavior of die-cast Mg-4Al-2Sn-xCa alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Chul; Kim, Byeong Ho; Kim, Kyung Ro [Defence Agency for Technology and Quality, Jinju (Korea, Republic of); Cho, Dae Hyun; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In the present work, the effect of Ca additions on microstructure and corrosion characteristics of high pressure die-cast Mg-4Al-2Sn alloy has been investigated. Mg-4Al-2Sn-xCa (x= 0, 0.3 and 0.7wt.%) alloy was prepared by using a high pressure die-casting method. Results indicated that the microstructure of Mg-4Al-2Sn alloy consisted of α-Mg, Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn phase. With increase of Ca additions, CaMgSn phase was newly formed and grain size was sharply decreased. From the test results, the corrosion resistance of die-cast Mg-4Al-2Sn alloy was significantly improved by Ca addition. It is considered that stabilization of Mg(OH){sub 2} layer and refinements of microstructure with increase of Ca additions.

  20. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  1. X-ray diffraction analysis of cold rolled strip from jewelry 585 gold alloy

    Directory of Open Access Journals (Sweden)

    Karastojković Zoran

    2017-01-01

    Full Text Available Here is investigated an golden alloy 585 as one of widely used gold alloy in jewelry production. Insufficient data, even in nowadays, exist about the production schedule of gold alloys, including melting, rolling and heat treatment regimes. The structures of complex alloys, such as used golden alloy, are less known and/or investigated. Principally, the constitutional diagram of Au-Ag-Cu system is known, as a (metastable equilibrium diagram. But, after relatively fast cooling from liquid state during casting will be obtained polycrystalline grains, different from equilibrium conditions. Such polycrystalline material frequently undergoes to rolling for obtaining a desired shape of (semiproduct. Those processes, casting and rolling, will show the influence on the final structure to be obtained, also on properties of such treated alloy. The structural changes and obtained phases in metal working processes of 585 gold alloy still are not well examined, so here is provided an XRD examination after heavy reduction at cold rolling of a strip. The castings were in the flat form in dimension of 4,5x50x50mm, than cold rolled to 1,5mm, intermediate annealed and finally cold rolled to thickness of 0,5mm with height reduction of 66,7%.

  2. Quantitative description of the magnetization curves of amorphous alloys of the series a-Dy xGd 1-xNi

    Science.gov (United States)

    Barbara, B.; Amaral, V. S.; Filippi, J.

    1992-10-01

    The magnetization curves of the series of amorphous alloys Dy xGd 1- xNi measured between 1.5 and 4.2 K and up to 15 T, have been fitted to the zero kelvin analytical model of Chudnovsky [1]. The results of these fits allow a detailed understanding of the magnetization curves of amorphous alloys with ferromagnetic interactions. In particular, the ratio D/ J of the local anisotropy and exchange energies, and the magnetic and atomic correlation lengths, are accurately determined.

  3. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  4. Effect of Fe substitution on the structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.W.; Yan, J.L., E-mail: yjl@gxu.edu.cn; Feng, E.L.; Tang, G.W.; Zhou, K.W.

    2017-01-15

    The structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} compounds were studied. Analysis of X-ray powder diffraction and energy dispersive X-Ray spectroscopy revealed that Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the Mn{sub 5}Si{sub 3}-type structure (space group P6{sub 3}/mcm), maintaining the structure of Mn{sub 5}Ge{sub 3}; and alloys with x=1.5 and 2 consist of the major Mn{sub 5}Si{sub 3}-type phase and the minor Ni{sub 2}In-type phase (space group P6{sub 3}/mmc). The results of Rietveld refinement showed that the cell parameters for the Mn{sub 5}Si{sub 3}-type phase decrease with increasing Fe content. The positive slopes in Arrott plots indicate that a second-order ferromagnetic to paramagnetic transition occurs. The Curie temperature increases with increasing Fe content from 182 K for x=0.6 to 224 K for x=2. The maximum magnetic entropy change of 3.7 J/(kg K) for x=0.8 was found under a magnetic field change of 0–20 kOe. - Highlights: • Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the hexagonal Mn{sub 5}Si{sub 3}-type structure. Alloys with x=1.5 and 2 consist of a major Mn{sub 5}Si{sub 3}-type phase and a secondary Ni{sub 2}In-type phase. • The cell parameters decrease and the Curie temperature increases with increasing x in Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys. • The maximum -∆S{sub M} of 3.7 J/(kg K) and RCP of 211 J/kg for x=0.8 was found under a magnetic field change of 0–20 kOe.

  5. Epitaxial Al{sub x}Ga{sub 1–x}As:Mg alloys with different conductivity types

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Lenshin, A. S. [Voronezh State University (Russian Federation); Arsentiev, I. N., E-mail: arsentyev@mail.ioffe.ru; Zhabotinskii, A. V.; Nikolaev, D. N.; Tarasov, I. S.; Shamakhov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Prutskij, Tatiana, E-mail: prutskiy@yahoo.com [Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias (Mexico); Leiste, Harald; Rinke, Monika [Karlsruhe Nano Micro Facility (Germany)

    2017-01-15

    The structural, optical, and energy properties of epitaxial Al{sub x}Ga{sub 1–x}As:Mg/GaAs(100) heterostructures at different levels of doping with Mg are studied by high-resolution X-ray diffraction analysis and Raman and photoluminescence spectroscopies. It is shown that, by choosing the technological conditions of Al{sub x}Ga{sub 1–x}As:Mg alloy production, it is possible to achieve not only different conductivity types, but also substantially different charge-carrier concentrations in an epitaxial film.

  6. The disordering phase transformation in (Ni/sub 70/Fe/sub 30/)/sub 3/(V/sub 98-x/Al/sub x/Ti/sub 2/) alloys with O ≤ x ≤ 80

    International Nuclear Information System (INIS)

    Das Gupta, A.; Horton, J.A.

    1985-01-01

    The sequence of disordering transformation processes in the A/sub 3/B type alloy series (Ni/sub 70/Fe/sub 30/)/sub 3/(V/sub 98-x/Al/sub x/Ti/sub 2/), currently under development for high-temperature structural applications, was studied by differential scanning calorimetry (DSC), x-ray diffraction, optical microscopy, and transmission electron microscopy (TEM). Results of DSC show that in all alloys there are two endothermic stages of phase transformation from the ordered to the disordered state. With increasing chi, the disordering transition temperature, T/sub c/, reaches a maximum --1000 0 C at chi ≅ 50 and then decreases. Interrupted heating, followed by water quenching, was used to characterize the crystal structure and the microstructure of the intermediate phases. For the x = 20 alloy, TEM observations showed ordered regions of DO/sub 22/ phase in a matrix of disordered fcc (Al) phase at intermediate temperatures. The ordered domains transformed morphologically into cuboid like regions at higher temperatures. From a combined study by all the techniques, the authors conclude that in alloy with x between 0 and 20, the sequence of phase transformations from heating is: DO/sub 2/ → DO/sub 22/ + Al → Al, whereas in alloys with x > 40, the major sequence is Ll/sub 2/ + B/sub 2/ → Ll/sub 2/ + Al → Al

  7. Direct observation of the crystal structure changes in the Mg{sub x}Zn{sub 1−x}O alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Jo; Lee, Ji-Hyun; Kim, Chang-Yeon [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Chang Hoi [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Shin, Jae Won [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Kim, Hong Seung, E-mail: hongseung@hhu.ac.kr [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Kim, Jin-Gyu, E-mail: jjintta@kbsi.re.kr [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2015-08-03

    We directly observed the crystal structure changes of the Mg{sub x}Zn{sub 1−x}O alloy thin film deposited on Si (111) substrates. Through the in situ heating transmission electron microscopy study, it was determined that the crystal structure changes did not occur up to at 400 °C, whereas the disappearance of the hexagonal structure was observed at 500 °C in the layer of nanosized grains. Additionally, the decreased intensity of the Zn L-edge was analyzed in the comparison of the core loss electron energy loss spectroscopy spectra of the Zn L-edge and the Mg K-edge obtained at room temperature and 500 °C. Based on these experimental results, the process of crystal structure changes could be explained by the evaporation of Zn atoms in the Mg{sub x}Zn{sub 1−x}O alloy system. This phenomenon is prominent in the improvement of the microstructure of the Mg{sub x}Zn{sub 1−x}O alloy thin film by controlling the thermal annealing temperature. - Highlights: • Mg{sub x}Zn{sub 1−x}O thin films coexisting with cubic and hexagonal structures were deposited. • Crystal structure changes of the thin films were directly observed at 500 °C. • The process of microstructure changes could be caused by the evaporation of Zn atoms.

  8. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  9. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.

    Science.gov (United States)

    Perişanoğlu, Ufuk; Alım, Bünyamin; Uğurlu, Mine; Demir, Lütfü

    2016-09-01

    The effects of external magnetic field and exciting photon energies on the Kβ/Kα X-ray intensity ratios of various alloy compositions of Ti-Ni transition metal alloys have been investigated in this work using X-ray fluorescence spectroscopy. The spectrum of characteristic K-X-ray photons from pure Ti, pure Ni and TixNi1-x (x=0.30; 0.40; 0.50; 0.60; 0.70) alloys were detected with a high resolution Si (Li) solid-state detector. Firstly, Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni and TixNi1-x alloys were measured following excitation by 59.54keV γ-rays from a 200mCi (241)Am radioactive point source without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the same measurements were repeated under the same experimental conditions for 22.69keV X-rays from a 370 MBq(1)(0)(9)Cd radioactive point source. The results obtained for Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni, Ti and Ni in various Ti-Ni alloys were evaluated in terms of both external magnetic field effect and exciting photon energy effect. When the results obtained for both exciting photon energies are evaluated in terms of changing of Kβ/Kα X-ray intensity ratios depending on the alloy composition, the tendency of these changes are observed to be similar. Also, Kβ/Kα X-ray intensity ratios for all samples examined have changed with increasing external magnetic field. Therefore, the results obtained have shown that Kβ/Kα X-ray intensity ratios of Ti and Ni in TixNi1-x alloys are connected with the external magnetic field. The present study makes it possible to perform reliable interpretation of experimental Kβ/Kα X-ray intensity ratios for Ti, Ni and TixNi1-x alloys and can also provide quantitative information about the changes of the Kβ/Kα X-ray intensity ratios of these metals with alloy composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation

    KAUST Repository

    Pulikkotil, J. J.; Chroneos, A.; Schwingenschlö gl, Udo

    2011-01-01

    The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range

  11. Optical characterization of In xGa 1- xN alloys

    Science.gov (United States)

    Gartner, M.; Kruse, C.; Modreanu, M.; Tausendfreund, A.; Roder, C.; Hommel, D.

    2006-10-01

    InGaN layers were grown by molecular beam epitaxy (MBE) either directly on (0 0 0 1) sapphire substrates or on GaN-template layers deposited by metal-organic vapor-phase epitaxy (MOVPE). We combined spectroscopic ellipsometry (SE), Raman spectroscopy (RS), photoluminescence (PL) and atomic force microscopy (AFM) measurements to investigate optical properties, microstructure, vibrational and mechanical properties of the InGaN/GaN/sapphire layers. The analysis of SE data was done using a parametric dielectric function model, established by in situ and ex situ measurements. A dielectric function database, optical band gap, the microstructure and the alloy composition of the layers were derived. The variation of the InGaN band gap with the In content ( x) in the 0 < x ≤ 0.14 range was found to follow the linear law Eg = 3.44-4.5 x. The purity and the stability of the GaN and InGaN crystalline phase were investigated by RS.

  12. Preparation, crystallography, magnetic and magnetothermal properties of Ce5SixGe4-x alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Rangarajan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    An investigation of the crystal structure and the phase relationships in the Ce5Si4-xGex system has been carried out. The crystal structures of the single phase intermetallics were characterized using X-ray powder diffraction and subsequent refinement employing the Rietveld analysis technique was performed. The intermetallic system was found to crystallize in three distinct crystal structures. The Ce5Si4-based solid solution extends from x = 0 to x = 2.15 and it was found to crystallize in the well-known Zr5Si4-type tetragonal structure. The germanium rich alloys, where 3.1 ≤} x ≤ 4, crystallized in the Sm5Ge4-type orthorhombic structure. The crystal structure of the intermediate phase, when 2.35 ≤ x ≤ 2.8, was found out to be of the Gd5Si2Ge2-type monoclinic structure. Microhardness tests were conducted on the samples in order to probe the trend in mechanical properties in this alloy system as a function of Ge concentration. The magnetic, thermal and magnetocaloric properties of the Ce5Si4-xGex alloy system have been investigated for x = 0, 1.0, 1.8, 2.5, 2.8, 3.5, 3.8 and 4.0. The phases with x = 0, 1.0 and 1.8 crystallize in the tetragonal Zr5Si4 structure and those with x = 2.5, 2.8 form in the Gd5Si2Ge2-type monoclinic structure. The alloys with x = 3.5, 3.8 and 4.0 crystallize in the Sm5Ge4-type orthorhombic structure. The Curie temperature of the tetragonal phases increases with increasing Ge content. The ordering temperatures of the monoclinic and orthorhombic phases remain nearly unaffected by the composition, with the Curie temperatures of the latter slightly higher than those of the former. All the alloys display evidence of antiferromagnetic interactions in the ground state. The orthorhombic and the

  13. Galvannealing of (high-)manganese-alloyed TRIP- and X-IP registered -steel

    Energy Technology Data Exchange (ETDEWEB)

    Blumenau, M. [ThyssenKrupp Steel Europe AG, Bamenohler Strasse 211, D-57402 Finnentrop (Germany); Norden, M. [DOC Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, D-44145 Dortmund (Germany); Friedel, F.; Peters, K. [ThyssenKrupp Steel Europe AG, Kaiser-Wilhelm-Strasse 100, D-47166 Duisburg (Germany)

    2010-12-15

    In this study the influence of Mn on galvannealed coatings of 1.7% Mn-1.5% Al TRIP- and 23% Mn X-IP registered -steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 C for 60 s at a dew point (DP) of -25 C (5% H{sub 2}) hamper the Fe/Zn-reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface-reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X-IP registered -steel which was bright annealed at 1100 C for 60 s at DP -50 C (5% H{sub 2}) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes {delta}-phase at lower temperatures by participating in the Fe-Zn-phase reactions, it was expected that the metallic Mn of the X-IP registered -steel increases the Fe/Zn-reactivity in the same manner. The approximation of the effective diffusion coefficient (D{sub eff}(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn-reaction was found by microscopic investigations. Residual {eta}- and {zeta}-phase fractions prove a hampered Fe/Zn-reaction. As explanation for the observed hampered Fe/Zn-reaction the lower Fe-content of the high-Mn-alloyed X-IP registered -steel was suggested as the dominating factor for galvannealing. (Copyright copyright 2010 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  15. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    Science.gov (United States)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  16. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  17. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  18. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  19. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  20. Magneto x-ray study of a gadolinium-iron amorphous alloy

    International Nuclear Information System (INIS)

    Keller, E.N.

    1985-01-01

    This work reports the measurement of the magnetic x-ray absorption of an amorphous Gd-Fe ferrimagnetic thin film. The Gd to Fe concentration in the sample was 1:4. The magnetic x-ray effect is the x-ray analog of magneto-optic absorption effects. Magneto x-ray effects arise when a solid has different indices of refraction for right and left circularly polarized x-rays. The difference in absorption of left and right circularly polarized x-rays is called the magneto x-ray absorption. This absorption is proportional to the net spin of the final state density of states. At the L3 edge, the main x-ray transition is from initial Gd(2p) core states to final Gd(5d) unoccupied states. Since the 5d states have a net spin polarization in ferromagnetic Gd, this experiment hoped to directly observe how that polarization changes for Gd in the alloy. The magneto x-ray absorption at the Gd L3 edge will be proportional to the sign and amount of the net spin polarization of the 5d electrons. The magnetic x-ray absorption coefficient was found to be at least 0.0005 smaller than the linear absorption coefficient at the Gd white line energy. This was measured for the amorphous alloy at room temperature. Lock-in techniques were used to obtain the small limit to the absorption. A simple model for the size of the magnetic x-ray absorption coefficient in Gd suggests that the Gd(5d) net spin polarization is less than 0.01 Bohr magnetons per atom

  1. Study on glass-forming ability and hydrogen storage properties of amorphous Mg60Ni30La10−xCox (x = 0, 4) alloys

    International Nuclear Information System (INIS)

    Lv, Peng; Wang, Zhong-min; Zhang, Huai-gang; Balogun, Muhammad-Sadeeq; Ji, Zi-jun; Deng, Jian-qiu; Zhou, Huai-ying

    2013-01-01

    Mg 60 Ni 30 La 10−x Co x (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. It can be found that the smaller activation energy (ΔΕ) and frequency factor (υ 0 ), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg 60 Ni 30 La 10−x Co x (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K

  2. Hyperfine-field distribution in Fe3Si/sub 1-x/Al/sub x/ alloys and a theoretical interpretation

    International Nuclear Information System (INIS)

    Burch, T.J.; Raj, K.; Jena, P.; Budnick, J.I.; Niculescu, V.; Muir, W.B.

    1979-01-01

    In Fe 3 Si/sub 1-x/Al/sub x/ alloys with small x the Si and Al nuclear magnetic resonances are 31.5 and 16.1 MHz, respectively. The concentration dependences of the frequencies of these resonances are linear, the Si resonance shifting to lower frequencies, the Al resonance to higher frequencies. Both the magnitudes and concentration dependences of the Si and Al internal fields are in agreement with the predictions of a simple model which Jena and Geldart, following the approach of Daniel and Friedel, have found successful in calculating the fields of sp elements in Heusler alloys. A positive sign is predicted for the Si internal field, and a negative sign for the Al field. Magnetization and lattice-parameter data required for the comparison of experiment and theory are also reported

  3. Absence of intrinsic ferromagnetism in Zn1-xMnxO alloys

    International Nuclear Information System (INIS)

    Zhang Huawei; Shi Erwei; Chen Zhizhan; Liu Xuechao; Xiao Bing

    2006-01-01

    Zn 1-x Mn x O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn 2+ ions are homogeneously substituted by Mn 2+ ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn 2 O 4 . (letter to the editor)

  4. Quaternary (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys and photosensitive structures on their basis

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V. [Belarusian State University of Informatics and Radioelectronics (Belarus); Rud, V. Yu., E-mail: rudvas.spb@gmail.com [St. Petersburg State Polytechnical University (Russian Federation); Rud, Yu. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Lozhkin, D. V. [Belarusian State University of Informatics and Radioelectronics (Belarus)

    2011-07-15

    Using directional crystallization of the melt of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloy, homogeneous crystals of a similar atomic composition are grown over the entire range of compositions 1 {>=} x {>=} 0. It is established that the crystals of the continuous series of quaternary alloys in the range x = 0-1 crystallize in the spinel structure and lattice parameter a linearly depends on x. It is established that it is possible to obtain In(Al)/(FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} photosensitive structures. Room-temperature spectra of relative quantum efficiency of photoconversion of the In(Al)/(FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} structures fabricated for the first time are obtained. From the analysis of these spectra, activation energies of direct and indirect band-to-band transitions for the crystals of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys are determined and the dependence of these parameters on the composition of the position-disordered phases of mentioned alloys is discussed. It is concluded that the crystals of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys can be used in broadband photoconverters of optical radiation.

  5. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  6. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20-xLaxNi10 (x = 0, 2) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huiping; Guo Shihai; Wu Zhongwang; Wang Xinlin

    2009-01-01

    Mg 2 Ni-type hydrogen storage alloys Mg 20-x La x Ni 10 (x = 0, 2) were prepared by casting and rapid quenching. The structures and morphologies of the as-cast and quenched alloys were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). Thermal stability of the as-quenched alloys was researched by differential scanning calorimetry (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus, and their electrochemical properties were measured by a tri-electrode open cell. The results showed that the no amorphous phase formed in the as-quenched La-free alloy, but the as-quenched alloys containing La held a major amorphous phase. The quenching rate induced a light influence on the crystallization temperature of the amorphous phase, and it significantly improved the initial hydrogenation rate and the hydrogen absorption capacity of the alloys. The discharge capacity and the cycle stability of the alloys grew with the increase of the quenching rate. When the quenching rate increased from 0 (as-cast was defined at a quenching rate of 0 m s -1 ) to 30 m s -1 , the hydrogen absorption capacity of the alloys for x = 0 and 2 at 200 deg. C and 1.5 MPa in 10 min changed from 1.21 to 3.10 wt.% and from 1.26 to 2.60 wt.%, the maximum discharge capacity from 30.26 to 135.51 mAh g -1 and from 197.23 to 406.51 mAh g -1 at a current density of 20 mA g -1 , and the capacity retaining rate at 20th cycle from 36.71 to 27.06% and from 37.26 to 78.33%, respectively

  7. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  8. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  9. Martensitic transformation and mechanical properties of Ni{sub 49+x}Mn{sub 36–x}In{sub 15} (x=0, 0.5, 1.0, 1.5 and 2.0) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Le; Mehta, Abhishek [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, 32816 (United States); Giri, Anit [TKC Global, 13873 Park Center Road, Herndon, VA 20171 (United States); Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Cho, Kyu [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, 32816 (United States)

    2015-10-14

    Five polycrystalline Ni{sub 49+x}Mn{sub 36–x}In{sub 15} (x=0, 0.5, 1.0, 1.5 and 2) alloys were prepared by triple arc-melting and examined to understand their martensitic transformation and mechanical properties. Martensitic transformation temperatures were determined by differential scanning calorimetry (DSC) and observed to increase with increasing Ni content. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that Ni{sub 49}Mn{sub 36}In{sub 15} is austenitic at room temperature while modulated 7M martensitic structure was observed in other alloys. Different twinning relationships between martensitic variants were revealed by TEM. Reduced elastic modulus and hardness were measured by nanoindentation. For the martensites, the reduced elastic modulus increased as the e/a increases, while hardness did not vary. The austenitic phase exhibited a lower reduced elastic modulus and hardness. A larger scatter in the reduced elastic modulus and hardness was observed for the martensitic phase in conjunction with variants of different orientation. The martensitic transformation behavior and nanoindentation results were also compared with Ni{sub 53+x}Mn{sub 22–x}Ga{sub 25} (x=0.5, 1.0, 1.8 and 2.5) alloys. For both Ni–Mn–In and Ni–Mn–Ga alloys, the martensitic transformation temperature and reduced elastic modulus increased as the e/a ratio increased.

  10. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  11. The system study of 1:13 phase formation, the magnetic transition adjustment, and magnetocaloric property in La(Fe,Co){sub 13−x}Si{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang, E-mail: gxucx@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Physics and Electronic Informational Engineering, Neijiang Teachers College, Neijiang 641002 (China); Chen, Yungui, E-mail: ygchen60@yahoo.com.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Tang, Yongbo; Xiao, Dingquan [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2014-11-15

    The effects of Co on the formation of NaZn{sub 13}-type phase in as-cast and annealed LaFe{sub 16−x}Co{sub x}Si{sub 1.4} and LaFe{sub 11.6}Si{sub 1.4−x}Co{sub x} alloys have been investigated systematically by XRD, SEM, and EDS, respectively. In LaFe{sub 11.6}Si{sub 1.4−x}Co{sub x} alloys, the introduction of Co will hamper the formation of 1:13 and LaFeSi phases, and help the formation of αof (Co, Si) solid solution, so there is almost only α-Fe(Co, Si) solid solution when x reaches 0.7 in as-cast and annealed LaFe{sub 11.6}Si{sub 1.4−x}Co{sub x} alloys. Although the amounts of 1:13 phase increases when x reaches 0.7 in as-cast LaFe{sub 16−x}Co{sub x}Si{sub 1.4} alloys, there is a small amount of α-Fe in LaFe{sub 11.6−x}Co{sub x}Si{sub 1.4} alloys annealed at 1523 K (5 h), which indicates that the annealing time for obtaining a 1:13 single-phase cannot be shortened in our high-temperature and short-time annealing. The studies on the magnetic properties show that the Curie temperature T{sub C} goes up from 207 K to 285 K with increase of Co content from x=0.1 to 0.8. The introduction of Co element weakens the first order magnetic phase transition, which results in the change of magnetic transition type from first to second order at about x=0.3–0.5. At the same time, it has effects on the phase transition temperature interval and magnetic filed interval, and the changing rate of magnetic entropy change dependence on the Co content in LaFe{sub 16−x}Co{sub x}Si{sub 1.4} alloys. The maximum entropy values of LaFe{sub 11.6−x}Co{sub x}Si{sub 1.4} alloys decrease with the increase of Co content, but the relative cooling power does not decrease, the reason of which is that the phase transition temperature interval increases and the first order phase transition character decreases, and the effective refrigeration temperature range becomes big, which is useful to the application of magnetic refrigeration material. - Highlights: • The introduction of Co

  12. Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

    International Nuclear Information System (INIS)

    McCall, Scott K.; Fluss, Michael J.; Chung, Brandon W.; Haire, Richard G.

    2008-01-01

    Results of radiation damage in Pu and Pu 1-x Am x alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3 at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu 1-x Am x alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35 K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu 1-x Am x alloys. (authors)

  13. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys

    International Nuclear Information System (INIS)

    Chou, H.-P.; Chang, Y.-S.; Chen, S.-K.; Yeh, J.-W.

    2009-01-01

    Al x CoCrFeNi (0 ≤ x ≤2) alloys were prepared by an arc remelter and investigated. With increasing x, the Al x CoCrFeNi alloys change from single FCC phase to single BCC phase with a transition duplex FCC/BCC region. The weak X-ray diffraction intensities indicate severe X-ray scattering effect of lattice in these high-entropy alloys. Electrical conductivity and thermal conductivity much smaller than those of pure component metals is ascribed as due to this lattice effect. The behavior of electrical conductivity and thermal conductivity can be divided into three parts according to microstructure. Both values of electrical conductivity and thermal conductivity decrease with increasing x in single-phase regions. Values of electrical conductivity and thermal conductivity are even higher than those in the duplex phase region because of the additional scattering effect of FCC/BCC phase boundaries in the alloys. Relative contribution of electron and phonon to electrical resistivity and thermal conductivity is evaluated in this study. It is shown that both electron and phonon components are comparable in these high-entropy alloys, and their transport properties are similar to that of semi-metal.

  14. Elastic properties of fcc Fe–Mn–X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations

    International Nuclear Information System (INIS)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Schneider, J M; Ekholm, M; Abrikosov, I A

    2013-01-01

    The elastic properties of fcc Fe–Mn–X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young’s modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe–Mn can be predicted by the DLM model. (paper)

  15. Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory.

    Science.gov (United States)

    Abdalla, L B; Padilha José, E; Schmidt, T M; Miwa, R H; Fazzio, A

    2015-07-01

    We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

  16. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  17. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  18. Surface functionalized Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloyed nanostructure for DNA sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheam, A.S.; Voon, C.H.; Foo, K.L.; Azizah, N. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Al-Douri, Y. [University of Sidi-Bel-Abbes, Physics Department, Faculty of Science, Sidi Bel-Abbes (Algeria); Gopinath, S.C.B. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis (Malaysia); Ameri, M. [Universite Djilali Liabes de Sidi Bel-Abbes, Laboratoire Physico-Chimie des Materiaux Avances (LPCMA), Sidi Bel-Abbes (Algeria); Ibrahim, Sattar S. [University of Anbar, Chemisty Department, College of Science, Al Rumadi (Iraq)

    2017-03-15

    A sensing plate of extended Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV (x = 0) to 1.72 eV (x = 1). The resulting Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage (I-V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications. (orig.)

  19. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  20. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    Science.gov (United States)

    Kim, Won-Gi; Choe, Han-Cheol

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  1. Semiconductor-metal transitions in liquid In100-xSex alloys: A concentration-induced transition

    International Nuclear Information System (INIS)

    Ferlat, G.; San Miguel, A.; Xu, H.; Aouizerat, A.; Blase, X.; Zuniga, J.; Munoz-Sanjose, V.

    2004-01-01

    The electronic and structural properties of In 100-x Se x liquid alloys close to their melting points have been investigated by combining x-ray-absorption experiments with ab initio molecular-dynamics simulations. Extended x-ray-absorption fine-structure data have been acquired at both the In and Se K edges in a large concentration range (x=20% to x=50% of Se content). Ab initio molecular-dynamics simulations have been carried out at the two most extreme concentrations explored experimentally. Liquid InSe is found to retain a semiconducting behavior which results from a low-dimensional structure, reminiscent of that of the ambient solid phase, characterized by strong In-Se interactions within tetrahedral units. On the other side, the In 80 Se 20 liquid alloy shows a metalliclike behavior which is correlated to a more dense-packed structure

  2. Thermoelectric properties of p-type (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} fabricated by mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B Y; Choi, J S; Oh, T S; Hyun, D B

    1997-07-01

    Thermoelectric properties of polycrystalline (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} (0.75 {le} x {le} 0.85), fabricated by mechanical alloying and hot pressing methods, have been investigated. Formation of (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} alloy powder was completed by mechanical alloying for 5 hours at ball-to-material ratio of 5:1, and processing time for (Bi{sub 1{minus}sub x}Sb{sub x}){sub 2}Te{sub 3} formation increased with Sb{sub 2}Te{sub 3} content x. When (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} was hot pressed at temperatures ranging from 300 C to 550 C for 30 minutes, figure-of-merit increased with hot pressing temperature and maximum value of 2.8 x 10{sup {minus}3}/K could be obtained by hot pressing at 550 C. When hot pressed at 550 C, (Bi{sub 0.2}Sb{sub 0.8}){sub 2}Te{sub 3} exhibited figure-of-merit of 2.92 x 10{sup {minus}3}/K, which could be improved to 2.97 x 10{sup {minus}3}/K with addition of 1 wt% Sb as acceptor dopant.

  3. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  4. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  5. Local structure in (MnS)2x(CuInS2)1-x alloys

    International Nuclear Information System (INIS)

    Pietnoczka, A.; Bacewicz, R.; Schorr, S.

    2006-01-01

    Local structure around Mn atoms in (MnS) 2x (CuInS 2 ) 1-x alloys for x≤0.09 has been determined using near-edge and extended X-ray absorption fine structure (XANES and EXAFS) measured at the Mn K-edge. We found that for the Mn concentration up to 9 at% Mn atoms substitute preferentially for indium in the chalcopyrite lattice. The Mn-S bond length is 2.43±0.015 Aa, and is about 2% shorter than the In-S bond length. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. 24 CFR 884.214 - Marketing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Marketing. 884.214 Section 884.214... HOUSING PROJECTS Project Development and Operation § 884.214 Marketing. (a) Compliance with equal opportunity requirements. Marketing of units and selection of Families by the Owner shall be in accordance...

  7. Magnetic exchange coupling in amorphous Fe80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Lassri, H.; Ayadi, M.; Omri, M.; Lassri, M.; Krishnan, R.

    2005-01-01

    Amorphous Fe 80-x Dy x B 20 alloys have been prepared by melt spinning and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. The exchange interactions between Co-Co and Dy-Co atom pairs have been evaluated. High-field magnetization studies on samples with stoichiometry close to that of a compensated ferrimagnet show a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Fe sublattices. The region of the canted moments can be described by a phase diagram in the H-T plane

  8. Pressure effect on thermopower of Y1-xGdxCo2 alloy system

    International Nuclear Information System (INIS)

    Nakama, T.; Takaesu, Y.; Uchima, K.; Yagasaki, K.; Hedo, M.; Uwatoko, Y.; Burkov, A.T.

    2007-01-01

    Thermopower of Y 1-x Gd x Co 2 pseudobinary compounds has been measured at temperatures from 1.5 to 300K under hydrostatic pressure up to 2GPa and in magnetic field 0-15T. In the inhomogeneous and paramagnetic regions of the phase diagram the main contribution to the electronic transport is related to the strong static magnetic fluctuations, which arise due to interplay of structural disorder within Gd-sublattice and Co-3d itinerant electron metamagnetism. This complex magnetic disorder brings about novel transport phenomena, such as anomalous positive magnetoresistance found in ferrimagnetic state of the alloys. The low-temperature thermopower is almost independent of alloy composition in the ferrimagnetic range of the phase diagram (x>0.3) indicating that the alloying does not change electronic structure of the compounds in a close vicinity of Fermi energy. However, the thermopower shows substantial variation with the composition in the inhomogeneous and in the paramagnetic regions of the phase diagram reflecting evolution of the magnetic structure with the composition

  9. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shulumba, Nina [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Functional Materials, Saarland University, D-66123 Saarbrücken (Germany); Hellman, Olle [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Modeling and Development Laboratory, NUST “MISIS,” 119049 Moscow (Russian Federation); LACOMAS Laboratory, Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  10. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  11. Hydrothermal Growth and Photoluminescence of Znl-xMgxO Alloy Crystals

    National Research Council Canada - National Science Library

    Callahan, Michael; Bouthillette, Lionel; Wang, Buguo

    2006-01-01

    Znl-xMgxO alloy formation via band gap engineering is important in the development of blue-UV optoelectronic devices by providing lattice-matched transparent substrates for ZnO and nitride-related devices...

  12. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    Science.gov (United States)

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  13. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    Science.gov (United States)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  14. Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling

    International Nuclear Information System (INIS)

    Zhang, Yanghuan; Jia, Zhichao; Central Iron and Steel Research Institute, Beijing; Yuan, Zeming; Qi, Yan; Zhao, Dongliang; Hou, Zhonghui

    2016-01-01

    LaMg 11 Ni + x wt.% Ni (x = 100, 200) composite hydrogen storage alloys with a nanocrystalline/amorphous structure were synthesized using ball milling technology. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were investigated systematically. The hydrogen desorption properties were assessed using a Sieverts apparatus and differential scanning calorimetry. The thermodynamic parameters for the hydrogen absorption and desorption were calculated using the Van't Hoff equation. The hydrogen desorption activation energies of the hydrogenated alloys were also estimated by Arrhenius and Kissinger methods. Results indicate that the amount of Ni added has no effect on the thermodynamics of the alloys, but it significantly improves their absorption and desorption kinetics. Furthermore, the milling time has a great influence on the hydrogen storage properties. To be specific, the hydrogen absorption capacities reach the maximum values with the variation of milling time, and the hydrogen desorption activation energy obviously decreases with increasing milling time.

  15. 33 CFR 214.11 - Costs.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Costs. 214.11 Section 214.11... SUPPLIES OF DRINKING WATER § 214.11 Costs. Costs incurred by the Corps of Engineers in furnishing emergency... by the community generally will not be required. Costs of necessary measures for the decontamination...

  16. 24 CFR 214.500 - Audit.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Audit. 214.500 Section 214.500... PROGRAM Other Federal Requirements § 214.500 Audit. Housing counseling grant recipients and subrecipients shall be subject to the audit requirements contained in 24 CFR parts 84 and 85. HUD must be provided a...

  17. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  18. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Moon, Byung-Hak; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H 3 PO 4 + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition. • The

  19. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    Science.gov (United States)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  20. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thermal characteristics and corrosion behaviour of Mg–xZn alloys ...

    Indian Academy of Sciences (India)

    The thermal parameters of Mg–xZn cast alloys with 0·5–9 wt% Zn were evaluated by using computer aided cooling curve ... interface has been the main focus recently. Recently ... Elevated concentrations of Al3+ in the brain are related with.

  2. Optical characterization of In xGa1-xN alloys

    International Nuclear Information System (INIS)

    Gartner, M.; Kruse, C.; Modreanu, M.; Tausendfreund, A.; Roder, C.; Hommel, D.

    2006-01-01

    InGaN layers were grown by molecular beam epitaxy (MBE) either directly on (0 0 0 1) sapphire substrates or on GaN-template layers deposited by metal-organic vapor-phase epitaxy (MOVPE). We combined spectroscopic ellipsometry (SE), Raman spectroscopy (RS), photoluminescence (PL) and atomic force microscopy (AFM) measurements to investigate optical properties, microstructure, vibrational and mechanical properties of the InGaN/GaN/sapphire layers. The analysis of SE data was done using a parametric dielectric function model, established by in situ and ex situ measurements. A dielectric function database, optical band gap, the microstructure and the alloy composition of the layers were derived. The variation of the InGaN band gap with the In content (x) in the 0 g = 3.44-4.5x. The purity and the stability of the GaN and InGaN crystalline phase were investigated by RS

  3. Microstructural characteristics of DU-xMo alloys with x = 7-12 wt%

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Hartmann, Thomas; Prabhakaran, Ramprashad; Jue, J.-F.

    2009-01-01

    Microstructural, phase, and impurity analyses of six depleted uranium-molybdenum alloys were obtained using optical metallography, X-ray diffraction, and carbon/nitrogen/oxygen determination. Uranium-molybdenum alloy foils are currently under investigation for the conversion of high-power research reactors using high-enriched uranium fuel to accommodate the use of low-enriched uranium fuel. Understanding basic microstructural behavior of these foils is an important consideration in determining the impact of fabrication processes and in anticipating performance of the foils in a reactor. Average grain diameter decreased with increasing molybdenum content. Lattice parameter decreased with increasing molybdenum content, and no significant degree of phase decomposition or crystallographic ordering was caused by processing and post-processing conditions employed in this study. Impurity concentration, specifically carbon, inhibited the degree of microstructural recrystallization but did not appear to impact other microstructural traits, such as γ-phase retention or lattice parameter.

  4. 25 CFR 214.1 - Definition.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Definition. 214.1 Section 214.1 Indians BUREAU OF INDIAN... MINING, EXCEPT OIL AND GAS § 214.1 Definition. The term “officer in charge” shall refer to the... time, be in charge of the Osage Agency and school, or any person who may be detailed by the Secretary...

  5. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series

    International Nuclear Information System (INIS)

    Niu, Xuejun

    1999-01-01

    Alloys from the Gd 4 (Bi x Sb 1-x ) 3 series were prepared by melting a stoichiometric amounts of pure metals in an induction furnace. The crystal structure is of the anti-Th 3 P 4 type (space group Ibar 43d) for all the compounds tested. The linear increase of the lattice parameters with Bi concentration is attributed to the larger atomic radius of Bi than that of Sb. Magnetic measurements show that the alloys order ferromagnetically from 266K to 330K, with the ordering temperature increasing with decreasing Bi concentration. The alloys are soft ferromagnets below their Curie temperatures, and follow the Curie-Weiss law above their ordering temperatures. The paramagnetic effective magnetic moments are low compared to the theoretical value for a free Gd 3+ , while the ordered magnetic moments are close to the theoretical value for Gd. The alloys exhibit a moderate magnetocaloric effect (MCE) whose maxima are located between 270K and 338K and have relatively wide peaks. The peak MCE temperature decreases with decreasing Bi concentration while the peak height increases with decreasing Bi concentration. The Curie temperatures determined from inflection points of heat capacity are in good agreement with those obtained from the magnetocaloric effect. The MCE results obtained from the two different methods (magnetization and heat capacity) agree quite well with each other for all of the alloys in the series

  6. Oxidation in air of two refractory alloys (Nicral D and Hastelloy X) at 900 and 1100 deg. C

    International Nuclear Information System (INIS)

    Sannier, J.; Dominget, R.; Darras, R.

    1960-01-01

    The oxidation in air of two refractory alloys (Nicral D and Hastelloy X) has been studied at 900 and 1100 deg. C, by means of recording thermo-balances and microscopic cross section examination. At 900 deg. C, the surface oxidation rates of the two alloys are quite similar, but at 1100 deg. C the alloy Nicral D oxidizes faster than the alloy Hastelloy X. On the other hand, after heating at 1100 deg. C for 150 hours, Nicral D shows both intergranular oxidation and a small amount of internal oxidation, whereas Hastelloy X is especially subject to internal oxidation. In addition, two descaling methods were compared: an electrolytic method, in a sodium hydroxide-sodium carbonate bath, and a chemical method using a sodium nitrate-sodium peroxide bath; the latter appears suitable only for Hastelloy X. Reprint of a paper published in Journal of nuclear materials, 3, p. 213-225, 1959 [fr

  7. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2010-08-03

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green\\'s function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1-xSn x) but not in the Mg2(Si1-xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1-xSnx) is distinguished by a strong renormalization of the anion-anion hybridization. © 2010 IOP Publishing Ltd.

  8. Electrochemical hydrogen storage in ZrCrNiPd{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, F.C. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Peretti, H.A. [Centro Atomico Bariloche (CAB), Comision Nacional de Energia Atomica (CNEA), C. P. 8400, S. C. de Bariloche (RN) (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, C. P. 8400, S. C. de Bariloche (RN) (Argentina); Visintin, A. [CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad de Buenos Aires (Argentina); Instituto de Investigaciones Fisicoquimicas, Teoricas y Aplicadas, Universidad Nacional de La Plata, Suc. 4, C.C.: 16/Comision de Investigaciones Cientificas Provincia de Buenos Aires (C.I.C.), CP: 1900, La Plata (Argentina)

    2010-06-15

    The consumption of rechargeable batteries at worldwide level has increased constantly in the last years, mainly due to the use of portable devices such as cellular phones, digital cameras, computers, music and video reproducers, etc. Nickel Metal Hydride (NiMH) is a rechargeable battery system widely used in these devices, also including the most of electrical and hybrid vehicles (EV and HEV). The study of hydride forming alloys is fundamental for its use as negative electrode component in NiMH batteries. In previous works, the electrocatalytic effect of Pd element addition to the electrode, in powder form and by means of electroless technique, has been studied. In this work, AB{sub 2}-type alloys are studied, in which Pd is incorporated to the structure by re-melting inside an arc furnace. The base alloy composition is ZrCrNi, and the composition of the elaborated compounds is ZrCrNiPd{sub x} (x = 0.095 and 0.19). The effect of the composition modification on these materials on properties such as electrochemical discharge capacity, activation and high rate dischargeability (HRD) is analyzed. (author)

  9. Photoluminescence and electrical impedance measurements on alloyed Zn{sub (1-x)}Cd{sub x}S nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. Sakthi Sudar, E-mail: rsakthiss@yahoo.com [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer High yield synthesis of Zn-Cd-S QDs. is achieved by solvothermal-microwave heating. Black-Right-Pointing-Pointer The samples are highly crystalline and the average particle size is {approx}3.5 nm. Black-Right-Pointing-Pointer High luminescent quantum yield and narrow emission spectral widths are obtained. Black-Right-Pointing-Pointer High conduction activation energy is observed in the case of Zn-Cd coexisting QDs. - Abstract: A series of wurtzite Zn{sub (1-x)}Cd{sub x}S (x = 0, 0.25, 0.5, 0.75 and 1) nanocrystals with average crystallite size of 1.98, 1.82, 1.80, 2.04 and 2.51 nm, respectively, have been synthesized by simple solvothermal microwave heating method. The photoluminescence yield is found to be higher in the case of alloyed nanocrystals (x = 0.25, 0.5, 0.75) as compared to ZnS (x = 0) and CdS (x = 1). The optical emission is tuned from blue (440 nm) to orange (575 nm) with the increase of Cd composition in Zn{sub (1-x)}Cd{sub x}S nanocrystal. The impedance analysis for Zn{sub (1-x)}Cd{sub x}S nanocrystals has been measured as a function of frequency and temperature. The real and imaginary part of complex impedance plots exhibit semicircle behavior in the complex plane. The AC activation energies of ZnS, Zn{sub 0.75}Cd{sub 0.25}S, Zn{sub 0.5}Cd{sub 0.5}S, Zn{sub 0.25}Cd{sub 0.75}S and CdS nanocrystals were calculated from electrical conductivity analysis and are found to be 0.188, 0.378, 0.456, 0.284 and 0.255 eV, respectively. The conductivity of the alloyed nanocrystals was higher than that of ZnS and CdS.

  10. Microstructure and mechanical properties of AC AlSi9CuX alloys

    OpenAIRE

    L.A. Dobrzański; R. Maniara; M. Krupiński; J.H. Sokołowski

    2007-01-01

    Purpose: In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure and mechanical properties. In this research, the effect of Cu content on the microstructure and mechanical properties of AC AlSi9CuX series alloys has been investigated.Design/methodology/approach: The experimental alloy ...

  11. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  12. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    Science.gov (United States)

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  13. Epitaxial alloys of Al{sub x}Ga{sub 1−x}As:Mg with different types of conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P.V., E-mail: paul@phys.vsu.ru [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Lenshin, A.S. [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Arsentyev, I.N., E-mail: arsentyev@mail.ioffe.ru [Ioffe Physical and Technical Institute, Polytekhnicheskaya, 26, 194021 St-Petersburg (Russian Federation); Tarasov, I.S. [Ioffe Physical and Technical Institute, Polytekhnicheskaya, 26, 194021 St-Petersburg (Russian Federation); Prutskij, Tatiana, E-mail: prutskij@yahoo.com [Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Hueyotlipan, 72050 Puebla, Pue. (Mexico); Leiste, Harald; Rinke, Monika [Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-10-01

    This project employed high-resolution X-ray diffraction, Raman spectroscopy and photoluminescence spectroscopy to investigate the structural, optical and band energy properties of the MOCVD epitaxial heterostructures, Al{sub x}Ga{sub 1−x}As:Mg/GaAs(100), with different levels of magnesium doping. It was shown that the choice of technological conditions used in the preparation of the Al{sub x}Ga{sub 1−x}As:Mg alloy allowed different types of conductivity and it was also possible to achieve significantly different concentrations of the charge carriers in the epitaxial film.

  14. Dicty_cDB: SLH214 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLH214 (Link to dictyBase) - - - Contig-U16455-1 SLH214E (Link... to Original site) - - - - - - SLH214E 308 Show SLH214 Library SL (Link to library) Clone ID SLH214 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLH2-A/SLH214Q.Seq.d/ Representative seq. ID SLH21...4E (Link to Original site) Representative DNA sequence >SLH214 (SLH214Q) /CSM/SL/SLH2-A/SLH214Q.Seq.d/ GTTGA...a: 0.00 m3b: 0.00 m_ : 1.00 48.0 %: nuclear 28.0 %: mitochondrial 20.0 %: cytoplasmic 4.0 %: peroxisomal >> prediction for SLH2

  15. Forming a structure of the CoNiFe alloys by X-ray irradiation

    Science.gov (United States)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  16. TEM microstructural characterization of melt-spun aged Al-6Si-3Cu-xMg alloys

    International Nuclear Information System (INIS)

    Lopez, Ismeli Alfonso; Zepeda, Cuauhtemoc Maldonado; Gonzalez Reyes, Jose Gonzalo; Flores, Ariosto Medina; Rodriguez, Juan Serrato; Gomez, Luis Bejar

    2007-01-01

    Three Al-6Si-3Cu-xMg alloys (x = 0.59, 3.80 and 6.78 wt.%) were produced using melt-spinning. As-melt-spun ribbons were aged at 150, 180 and 210 deg. C for times between 0.05 and 100 h. Microstructural changes were examined using transmission electron microscopy (TEM) and microhardness was measured. TEM analysis of the as-melt-spun alloys revealed 5 nm nanoparticles and larger particles (50 nm) composed of Al 2 Cu (θ) for the 0.59% Mg alloy and Al 5 Cu 2 Mg 8 Si 6 (Q) for 3.80% and 6.78% Mg alloys. Silicon solid solubility was extended to 9.0 at.% and Mg in solid solution reached 6.7 at.%. After aging treatments the 6.78% Mg alloy exhibited the most significant increase in microhardness, reaching 260 kg/mm 2 . TEM analysis of aged specimens also showed θ and Q phase (5-20 nm nanoparticles and 35-40 nm particles). The combination of the volume fraction and size of the particles plays an important role in microhardness variation

  17. Microstructure and protection characteristics of the naturally formed oxide films on Mg–xZn alloys

    International Nuclear Information System (INIS)

    Song, Yingwei; Han, En-Hou; Dong, Kaihui; Shan, Dayong; Yim, Chang Dong; You, Bong Sun

    2013-01-01

    Highlights: •The oxide films on Mg–xZn alloys consist of similar chemical composition. •The higher Zn content results in the thicker but higher defect of the oxide films. •The oxide films exhibit different protection performance under various potentials. -- Abstract: The naturally formed oxide films on Mg–2Zn and Mg–5Zn alloys were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The oxide films on the both alloys present a similar chemical composition, consisting of surface layer of basic magnesium carbonate and MgO following with MgO and ZnO, but the oxide film on Mg–5Zn is thicker and contains more defects. The protection performance of the oxide film on Mg–5Zn is worse under open circuit potential but better in a suitable anodic potential scope compared with that on Mg–2Zn alloy

  18. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    Science.gov (United States)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  19. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  20. The effect of thermal treatment on the fracture properties of alloy X-750 in aqueous environments

    International Nuclear Information System (INIS)

    Ballinger, R.; Elliott, C.S.; Hwang, I.S.; Prybylowski, J.

    1993-05-01

    Alloy X-750 is a high strength, age hardenable nickel-base alloy used in light water nuclear reactors. The excellent corrosion resistance and high temperature strength of alloy X-750 make it suitable for use in a variety of structure components in both pressurized water reactors and boiling water reactors. These applications involve exposure of highly stressed material to aqueous media. Operational stresses are subject to low frequency thermally induced fluctuations and high frequency flow induced fluctuations. In general, alloy X-750 has performed well in light water reactors. However, an economically significant number of components have failed unexpectedly due to localized forms of attack such as corrosion fatigue and stress corrosion cracking. Thermal processing history is known to play a significant role in the fracture properties of alloy X-750 in aqueous environments. While thermal treatments have been developed recently to improve performance, in many cases the reason for improved performance remains unclear. Therefore, identification of the mechanisms responsible for the degradation of fracture properties in aqueous environments is necessary. As a corollary it is necessary to achieve an understanding of how thermal treatment influences microstructure and, in turn, how microstructure influences fracture properties in aqueous environments. This report discusses five thermal treatments which were studied: (1) SA-1 hr at 1093 degree C, (2) AH - 24 hr at 885 degree C + 20 hr at 704 degree C, (3) HTH - 1 hr at 1093 degree C + 20 hr at 704 degree C, (4) AHTH - 1 hr at 1093 degree C + 24 hr at 885 degree C + 20 hr at 704 degree C, and (5) HOA - 1 hr at 1093 degree C + 100 hrs at 760 degree C. Microstructural characterization of these materials was accomplished through the use of optical microscopy, transmission electron microscopy,scanning transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry

  1. Electronic structure calculations for BaSxSe1-x alloys

    International Nuclear Information System (INIS)

    Feng Zhenbao; Hu Haiquan; Cui Shouxin; Wang Wenjun

    2009-01-01

    A series of first principles calculations have been carried out to study structural, electronic properties of BaS x Se 1-x alloys. We have used the local density as well as the generalized gradient approximations for the exchange-correlation potential. The structural properties of these materials, in particular the composition dependence to the lattice constant and bulk modulus, are found to be linear. It is also found linear relationship between theoretical band gaps and 1/a 2 (where a is lattice constant).

  2. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Yeom, Jong-taek [Light Metal Division, Korea Institute of Materials Science (KIMS), Changwon 642-831 (Korea, Republic of); Kim, Jae-il [Materials Science and Engineering, University of Dong-A, Hadan-dong, Saha-gu, Busan 604-714 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys.

  3. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    International Nuclear Information System (INIS)

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-01-01

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (< Hv 200) of the alloys displaying the B2-B19′ transformation. Solid solution hardening was an important factor for inducing the B2-R transformation in Ti–Ni–X (X = non-transition elements) alloys

  4. Alloying and the micromechanics of Co–Al–W–X quaternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hui-Yu; Coakley, James; Vorontsov, Vassili A. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, Nicholas G.; Stone, Howard J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Dye, David, E-mail: ddye@ic.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2014-09-08

    The lattice misfit and diffraction elastic constants in hot rolled polycrystalline Co–7Al–5W–2Ta and Co–6Al–6W–2Ti (at.%) are measured using neutron and synchrotron X-ray diffraction. The misfit in the two alloys was found to be +0.67 and +0.59%, using neutron diffraction at HRPD. The misfit was found to increase with temperature, as in Ni superalloys. This implies that the amount of coherency strengthening increases with temperature. The diffraction elastic constants measured show that the γ′ phase is less stiff than the γ matrix in all orientations, which means that load shedding will occur to the γ phase.

  5. Alloying and the micromechanics of Co–Al–W–X quaternary alloys

    International Nuclear Information System (INIS)

    Yan, Hui-Yu; Coakley, James; Vorontsov, Vassili A.; Jones, Nicholas G.; Stone, Howard J.; Dye, David

    2014-01-01

    The lattice misfit and diffraction elastic constants in hot rolled polycrystalline Co–7Al–5W–2Ta and Co–6Al–6W–2Ti (at.%) are measured using neutron and synchrotron X-ray diffraction. The misfit in the two alloys was found to be +0.67 and +0.59%, using neutron diffraction at HRPD. The misfit was found to increase with temperature, as in Ni superalloys. This implies that the amount of coherency strengthening increases with temperature. The diffraction elastic constants measured show that the γ′ phase is less stiff than the γ matrix in all orientations, which means that load shedding will occur to the γ phase

  6. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  7. Stability of Cd_1_–_xZn_xO_yS_1_–_y Quaternary Alloys Assessed with First-Principles Calculations

    International Nuclear Information System (INIS)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; Lordi, Vincenzo

    2017-01-01

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se_2 and Cu_2ZnSn(S,Se)_4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd_1_–_xZn_xO_yS_1_–_y) alloys within a regular solution model. Our results identify that full miscibility of most Cd_1_–_xZn_xO_yS_1_–_y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phases such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.

  8. Microhardness of the YbxY1-xInCu4 alloy system: the of electronic structure on hardness

    International Nuclear Information System (INIS)

    Ocko, M; Sarrao, J L; Stubicar, N; Aviani, I; Simek, Z; Stubicar, M

    2003-01-01

    We show that the Vickers microhardness, measured on flux grown single crystals of the Yb x Y 1-x InCu 4 alloy system, although sample dependent, exhibits clear concentration dependence; it increases with decreasing x. Such a dependence is not expected because the cubic lattice parameter increases with decreasing x and one expects then a decrease of hardness with decreasing x. Also, such a concentration dependence is in accordance with neither the Mott-Nabarro theory nor other known experimental results. We ascribe the observed dependence to the change of the electronic structure of the Yb x Y 1-x InCu 4 alloy system with x

  9. Electrolytic hydriding of LaFe{sub 13-x}Si{sub x} alloys for energy efficient magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London (United Kingdom)

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe{sub 13-x}Si{sub x}-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Anomalous magnetic ordering in DyxPr1-x alloys

    DEFF Research Database (Denmark)

    Clegg, P.S.; Cowley, R.A.; Goff, J.P.

    2000-01-01

    Epitaxial thin-films of DyxPr1-x alloys have been studied using neutron diffraction and magnetization measurements. The crystal structure changes from HCP to Sm type to DHCP as x decreases; each crystal phase has different magnetic behaviour. Surprisingly, long-range order is suppressed in the DH...... allays, a possible explanation is outlined. (C) 2000 Elsevier Science B.V. All rights reserved....

  11. 49 CFR 214.4 - Preemptive effect.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Preemptive effect. 214.4 Section 214.4 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY General § 214.4 Preemptive effect. Under 49 U.S.C...

  12. Growth of In x Ga1-x Sb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments.

    Science.gov (United States)

    Inatomi, Y; Sakata, K; Arivanandhan, M; Rajesh, G; Nirmal Kumar, V; Koyama, T; Momose, Y; Ozawa, T; Okano, Y; Hayakawa, Y

    2015-01-01

    In x Ga 1- x Sb is an important material that has tunable properties in the infrared (IR) region and is suitable for IR-device applications. Since the quality of crystals relies on growth conditions, the growth process of alloy semiconductors can be examined better under microgravity (μG) conditions where convection is suppressed. To investigate the dissolution and growth process of In x Ga 1- x Sb alloy semiconductors via a sandwiched structure of GaSb(seed)/InSb/GaSb(feed) under normal and μG conditions. In x Ga 1- x Sb crystals were grown at the International Space Station (ISS) under μG conditions, and a similar experiment was conducted under terrestrial conditions (1G) using the vertical gradient freezing (VGF) method. The grown crystals were cut along the growth direction and its growth properties were studied. The indium composition and growth rate of grown crystals were calculated. The shape of the growth interface was nearly flat under μG, whereas under 1G, it was highly concave with the initial seed interface being nearly flat and having facets at the peripheries. The quality of the μG crystals was better than that of the 1G samples, as the etch pit density was low in the μG sample. The growth rate was higher under μG compared with 1G. Moreover, the growth started at the peripheries under 1G, whereas it started throughout the seed interface under μG. Kinetics played a dominant role under 1G. The suppressed convection under μG affected the dissolution and growth process of the In x Ga 1- x Sb alloy semiconductor.

  13. X-ray photoelectron spectroscopy characterization of the ω phase in water quenched Ti-5553 alloy

    International Nuclear Information System (INIS)

    Qin, Dongyang; Lu, Yafeng; Zhang, Kong; Liu, Qian; Zhou, Lian

    2012-01-01

    X-ray photoelectron spectroscopy was used to investigate the ω phase in water quenched Ti-5553 alloy with a nominal composition of Ti–5Al–5V–5Mo–3Cr (wt.%), and the ω and the β phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale ω phase in β alloys. - Highlights: ► We characterize the ω phase in Ti-5553 alloy by XPS. ► Binding energy of Al2p, V2p and Cr2p electron are different in the ω and β phase. ► Structural difference leads to the binding energy gap.

  14. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te) x -(Bi0.5Sb1.5Te3)1-x (x=0-1.0) alloys prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Cui, J.L.; Xue, H.F.; Xiu, W.J.; Jiang, L.; Ying, P.Z.

    2006-01-01

    In this paper, pseudo-binary (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10 4 to 15.6x10 4 Ω -1 m -1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi 0.5 Sb 1.5 Te 3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi 0.5 Sb 1.5 Te 3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag 0.365 Sb 0.558 Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag 0.365 Sb 0.558 Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys prepared by spark plasma sintering

  15. On the position of local levels of defects in proton-irradiated Pb1-xSnxTe alloys

    International Nuclear Information System (INIS)

    Brandt, N.B.; Gas'kov, A.M.; Ladygin, E.A.; Skipetrov, E.P.; Khorosh, A.G.

    1989-01-01

    Effect of fast proton irradiation (T≅300 K, E=200 keV, F≤2x10 14 cm -2 ) on electrophysical properties of thin layers p-Pb 1-x Sn x Te (0.17 ≤x≤ 0.26) is investigated. Saturation of radiation flux dependences of hole density due to occurrence of a resonance level under irradiation, which is near the ceiling of the valence band of alloys, and due to stabilization of the Fermi level with the resonance level is detected. Possibility of coordination of novadays data on the position of the levels of radiation defects in alloys Pb 1-x Sn x Te is discussed

  16. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Science.gov (United States)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  17. Collective effects of interface roughness and alloy disorder in InxGa1-xN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Zeng, K.C.; Smith, M.; Lin, J.Y.; Jiang, H.X.

    1998-01-01

    The collective effects of alloy disorder and interface roughness on optical properties of In x Ga 1-x N/GaN multiple quantum wells (MQWs) have been studied. The results are compared with those of GaN/AlGaN MQWs and InGaN epilayers. In x Ga 1-x N/GaN MQWs emit a broad and asymmetrical photoluminescence (PL) band, while GaN/AlGaN MQWs and InGaN epilayers emit narrower and Gaussian-shaped PL bands. Furthermore, the decay of excitons at low temperatures in In x Ga 1-x N/GaN MQWs follows a nonexponential function even at the lower-energy side of the PL spectral peak, while those in GaN/AlGaN MQWs and in InGaN epilayers follow a single exponential function. Both alloy disorder and interface roughness have to be included in order to interpret the PL emission spectrum and the decay dynamics in In x Ga 1-x N/GaN MQWs. Important parameters of the In x Ga 1-x N/GaN MQWs, σ x ,σ L , and dτ/dL, denoting the alloy disorder, the interface roughness, and the rate of changing of the exciton decay lifetime with well width, respectively, have been deduced. The method developed here can be used to determine σ x ,σ L , and dτ/dL in any MQW systems with wells being alloy materials. copyright 1998 American Institute of Physics

  18. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    Science.gov (United States)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  19. 46 CFR 10.214 - Security Check.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Security Check. 10.214 Section 10.214 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MERCHANT MARINER CREDENTIAL General Requirements for All Merchant Mariner Credentials § 10.214 Security Check. Until April 15, 2009...

  20. 49 CFR 214.323 - Foul time.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the following...

  1. 49 CFR 214.325 - Train coordination.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.325 Train coordination. Working limits established by a roadway worker through the use of train coordination shall comply with the... 49 Transportation 4 2010-10-01 2010-10-01 false Train coordination. 214.325 Section 214.325...

  2. Phase structure and electrochemical properties of La0.67Mg0.33Ni3.0-xCox (x=0.0, 0.25, 0.5, 0.75) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Wang Dahui; Luo Yongchun; Yan Ruxu; Zhang Faliang; Kang Long

    2006-01-01

    La 0.67 Mg 0.33 Ni 3.0-x Co x (x=0.0, 0.25, 0.50, 0.75) hydrogen storage alloys were prepared by induction melting. Influences of partial substitution of Co for Ni on phase structure and electrochemical properties of La 0.67 Mg 0.33 Ni 3.0 were investigated by means of X-ray diffraction (XRD), electron probe X-ray microanalysis (EPMA) and electrochemical measurements. XRD patterns and back scattered electron images show that the alloys were composed of the (La,Mg)Ni 3 phase with the PuNi 3 -type structure and the (La,Mg) 2 Ni 7 phase with the Ce 2 Ni 7 -type structure. The lattice parameters a, c and the unit-cell volumes v vary with the increase of Co content x. The electrochemical measurements show that partial Co substitution for Ni had no influence on the initial activation rate of the alloys. The maximum electrochemical discharge capacity increases firstly then decreases, the high-rate dischargeabilities (HRDs) of La 0.67 Mg 0.33 Ni 3.0-x Co x alloy electrodes increase with the increase of Co content. Moreover, the cycle stabilities of La 0.67 Mg 0.33 Ni 3.0-x Co x is not improved by small quantity replacement Ni by Co except for x=0.75

  3. Superconductivity, magnetic susceptibility, and electronic properties of amorphous (Mo/sub 1-x/Ru/sub x/)80P20 alloys obtained by liquid quenching

    International Nuclear Information System (INIS)

    Johnson, W.L.; Poon, S.J.; Duwez, P.

    1977-11-01

    Results of x-ray diffraction, transmission electron diffraction, and crystallization studies on amorphous (Mo/sub 1-x/Ru/sub x/) 80 P 20 alloys obtained by liquid quenching are presented and discussed. The alloys are all found to be superconducting with transition temperatures ranging from approximately 3 0 K to approximately 9 0 K. The variation of T/sub c/ with alloy composition is compared to that obtained by Collver and Hammond for vapor quenched transition metal films. Results of magnetic susceptibility measurements are used to estimate the variation of the electronic density of states at the Fermi level, N(0), from the Pauli paramagnetic contribution. The relationship between the variation of T/sub c/ and N(0) is discussed in terms of the microscope theory of superconductivity. Finally, results of measurements of the upper critical field H/sub c2/, and the normal state electronic transport properties are presented and compared with recent theoretical models for amorphous superconductors

  4. Physical properties of Zr50Cu40-xAl10Pdx bulk glassy alloys

    International Nuclear Information System (INIS)

    Wencka, M.; Jagodic, M.; Gradisek, A.; Kocjan, A.; Jaglicic, Z.; McGuiness, P.J.; Apih, T.; Yokoyama, Y.; Dolinsek, J.

    2010-01-01

    It was shown recently (Yokoyama et al. ) that the addition of a small amount of Pd to the Zr 50 Cu 40 Al 10 bulk glassy alloy (BGA) has a beneficial effect on fatigue-strength enhancement, where the composition Zr 50 Cu 37 Al 10 Pd 3 behaved in a resonant-like way by showing the highest fatigue limit of 1050 MPa and the minimum Vickers hardness. We performed a study of the magnetic properties, the specific heat, the electrical resistivity and the hydrogen-diffusion constant for a series of compositions Zr 50 Cu 40-x Al 10 Pd x (x = 0-7 at.%), in order to determine their physical properties and to check for the influence of the Pd content on these properties. The Zr 50 Cu 40-x Al 10 Pd x BGAs are nonmagnetic, conducting alloys, where the Pauli spin susceptibility of the conduction electrons is the only source of paramagnetism. The low-temperature specific heat indicates an enhancement of the conduction-electron effective mass m* below 5 K, suggesting that the Zr 50 Cu 40-x Al 10 Pd x BGAs are not free-electron-like compounds. The electrical resistivities of the Zr 50 Cu 40-x Al 10 Pd x BGAs amount to about 200 μΩ cm and show a small, negative temperature coefficient (NTC) with an increase from 300 to 2 K of 4%. The hydrogen self-diffusion constant D in hydrogen-loaded samples shows classical over-barrier-hopping temperature dependence and is of comparable magnitude to the related icosahedral and amorphous Zr 69.5 Cu 12 Ni 11 Al 7.5 hydrogen-storage alloys. No correlation between the investigated physical parameters and the Pd content of the samples could be observed.

  5. In-situ X-ray residual stress measurement on a peened alloy 600 weld metal at elevated temperature under tensile load

    International Nuclear Information System (INIS)

    Yunomura, Tomoaki; Maeguchi, Takaharu; Kurimura, Takayuki

    2014-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) on surface of alloy 600 weld metal (alloy 132) was investigated by in-situ X-ray residual stress measurement under thermal aging and stress condition considered for actual plant operation. Surface residual stress change was observed at the early stage of thermal aging at 360°C, but no significant further stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. For the X-ray residual stress measurement, X-ray stress constant at room temperature for alloy 600 was determined experimentally with several surface treatment and existence of applied strain. The X-ray stress constant at elevated temperatures were extrapolated theoretically based on the X-ray stress constant at room temperature for alloy 600. (author)

  6. Lattice vibrations study of Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olvera-Herandez, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Olvera-Cervantes, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Rojas-Lopez, M [Centro de Investigacion en BiotecnologIa Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72160 (Mexico); Navarro-Contreras, H [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Vidal, M A [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Anda, F de [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico)

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} alloys with low (In, As) contents (0.03 <x< 0.12 and 0.03 X-Ray Diffraction results showed profiles associated with a quaternary layer lattice matched to the GaSb substrate as obtained from the (004) reflection. The experimental diffractograms were simulated to estimate alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys.

  7. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shulin [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Xiang-Xi, E-mail: yexiangxi@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Jiang, Li [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, Chuanyong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhijun, E-mail: lizhijun@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Hefei; Leng, Bin [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Xingtai, E-mail: zhouxingtai@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-02-08

    Ni–xW–6Cr alloys have been considered as one of the potential structural materials for molten salt techniques, whereas their microstructure and mechanical performance have not been sufficiently studied. In this study, the microstructure and tensile deformation behavior of Ni–(10–35 wt%)W–6Cr alloys have been systematically investigated. The phase diagram calculations indicated that the solubility limit of W is 34 wt% in Ni–xW–6Cr alloy. α-W phase is formed in the matrix while the W content exceeds such limit. The fracture of the Ni–(10–35 wt%)W–6Cr alloys at room temperature is in the transgranular ductile fracture mode. The tensile properties of alloys, except for the elongation of Ni–35 wt%W–6Cr alloy, are improved with the increase of W content, which can be explained by the larger lattice distortion, the lower stack fault energy and the higher length fraction of twin boundaries (Σ3 and Σ9 type) in the Ni–(10–35 wt%)W–6Cr alloys caused by the addition of more W. The reduced elongation of the Ni–35 wt%W–6Cr alloy is ascribed to the particles in α-W phase which act as the main nucleation sites for cracking.

  8. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.

  9. 49 CFR 195.214 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler and...

  10. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    Science.gov (United States)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  11. The influence of x-rays radiation on the kinetic electrocrystallization of nickel and cobalt alloys

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Val'ko, N.G.; Moroz, N.I.; Vorontsov, A.S.; Vojna, V.V.

    2009-01-01

    In the work research kinetic electrocrystallization of nickel and cobalt coatings of coverings from sulfate electrolyte under the influence of x-ray radiation. It has been revealed that under the influence of radiation the thickness coatings alloy and the alloy exit on a current increases in comparison with control samples. It is caused by increase in streams diffusion ions of restored metal to cathodes and formation intermediate Co xN i 1-1 in irradiated electrolytes. Thus, on the above stated processes essential influence is rendered by length of a wave of operating radiation. (authors)

  12. A new type of soft ferromagnetic alloys: RFe12-xGex

    International Nuclear Information System (INIS)

    Lachevre, V.; Barbara, B.; Fruchart, D.; Pontonnier, L.

    1998-01-01

    Ternary iron-rich rare earth germanides RFe 12-x Ge x with R=Y, La, Ce, Nd, Sm, Gd, Dy, Ho and Er reveal soft ferromagnetic properties. The structure, the microstructure and the soft magnetic properties of these materials have been studied versus the germanium content and the nature of the rare earth element. In the as-cast materials, at least three crystallized phases have been identified: α-Fe(Ge), RFe 2 Ge 2 and traces of Fe 3 Ge. The typical grain size is of some tens of micrometer. The Curie temperature of these alloys is rather high (i.e. >770 K). The transition temperature as well as the saturation magnetization are found to strongly depend on the nature of the R element. The rapidly quenched alloys appear fully homogenized compared with the as-cast materials and the grain size decreases to about one micrometer. Although X-ray diffraction patterns have shown that the two major phases remain present, the magnetic characteristics are fairly dependent on the earth rare element. For all the investigated materials, measurements of the hysterical behaviour reveal a very low coercivity level, i.e. H c <10 Oe. (orig.)

  13. Thermoelectric properties of n-type Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} fabricated by mechanical alloying and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H J; Choi, J S; Oh, T S; Hyun, D B

    1997-07-01

    Thermoelectric properties of polycrystalline Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} (0.05 {le} x {le} 0.25), fabricated by mechanical alloying and hot pressing, have been investigated. Formation of n-type Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}){sub 3} alloy powders was completed by mechanical alloying for 3 hours at ball-to-material ratio of 5:1, and processing time for Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} formation increased with Bi{sub 2}Se{sub 3} content x. Figure-of-merit of Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}) was markedly increased by hot pressing at temperatures above 450 C, and maximum value of 1.9 x 10{sup {minus}3}/K was obtained by hot pressing at 550 C. With addition of 0.015 wt% Bi as acceptor dopant, figure-of-merit of Bi{sub 2}(Te{sub 0.9}Se{sub 0.1}){sub 3} was hot pressed at 550 C, could be improved to 2.1 x 10{sup {minus}3}/K. When Bi{sub 2}(Te{sub 1{minus}x}Se{sub x}){sub 3} was hot pressed at 550 C, figure-of-merit increased from 1.14 x 10{sup {minus}3}/K to 1.92 x 10{sup {minus}3}/K with increasing Bi{sub 2}Se{sub 3} content x from 0.05 to 0.15, and then decreased to 1.30 x 10{sup {minus}3}/K for x = 0.25 composition.

  14. Competing order parameters in quenched random alloys: Fe/sub 1-x/Co/sub x/Cl2

    International Nuclear Information System (INIS)

    Wong, P.; Horn, P.M.; Birgeneau, R.J.; Safinya, C.R.; Shirane, G.

    1980-01-01

    A study is reported of the magnetic properties of the random alloy Fe/sub 1-x/Co/sub x/Cl 2 , which represents an archetypal example of a system with competing orthogonal spin anisotropies. Behavior similar to previous experiments and theoretical predictions is found, but with important qualitative and quantitative differences; in particular the phase transition in one variable is drastically altered by the existence of long-range order in the other variable. It is hypothesized that this is due to microscopic random-field effects

  15. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti 1-x Zr x C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti 1-x Zr x C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  16. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys

    Science.gov (United States)

    Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin

    2018-03-01

    In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.

  17. Neutron and X-ray small angle scattering (S.A.S.) study of the amorphous alloy Tbsub(.25)Cusub(.75)

    International Nuclear Information System (INIS)

    Boucher, B.

    1980-07-01

    The magnetic properties of amorphous alloys REsub(x) Msub(x-1) (R.E.=heavy rare earths, M=Cu, Ag, Au) have been widely studied. They are of the speromagnetic type for x>=0.33 and are mictomagnetic for x -12 cm). Also the atomic volume of Terbium (approximately 33 A 3 ) is almost three times that of Copper (11.8 A 3 ) and Cu is less absorbant than Ag or Au. Tb alloys exhibit high magnetic ordering temperatures and important moments in contrast to the majority of other alloys of the same family. One inconvenience with Terbium, however, is the large (X-ray) fluorescence (lambda Cu). In order to confirm some interpretations of S.A.S., we were obliged to determine some physical parameters such as the density and porosity and to examine the sample with microscope. These results are also given here

  18. {\\rm{ZnO}}_{1-{{x}}}{\\rm{Te}}_{{{x}}} and {\\rm{ZnO}}_{1-{{x}}}\\rm{S}_{{{x}}} semiconductor alloys as competent materials for opto-electronic and solar cell applications: a comparative analysis

    Science.gov (United States)

    Das, Utsa; Pal, Partha P.

    2017-08-01

    ZnO1-x Te x ternary alloys have great potential to work as a photovoltaic (PV) absorber in solar cells. ZnO1-x S x is also a ZnO based alloy that have uses in solar cells. In this paper we report the comparative study of various parameters of ZnO1-x Te x and ZnO1-x S x for selecting it to be a competent material for solar cell applications. The parameters are mainly being calculated using the well-known VCA (virtual crystal approximation) and VBAC (Valence Band Anti-Crossing) model. It was certainly being analysed that the incorporation of Te atoms produces a high band gap lower than S atoms in the host ZnO material. The spin-orbit splitting energy value of ZnO1-x Te x was found to be higher than that of ZnO1-x S x . Beside this, the strain effects are also higher in ZnO1-x Te x than ZnO1-x S x . The remarkable notifying result which the paper is reporting is that at a higher percentage of Te atoms in ZnO1-x Te x , the spin-orbit splitting energy value rises above the band gap value, which signifies a very less internal carrier recombination that decreases the leakage current and increases the efficiency of the solar cell. Moreover, it also covers a wide wavelength range compared to ZnO1-x S x .

  19. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting; Polavarapu, Lakshminarayana; Xu, Qing Hua; Ji, Wei; Zeng, Hua Chun

    2011-01-01

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse Aux

  20. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  1. Mn and Fe Impurities in Si$_{1-x}$ Ge$_{x}$ alloys

    CERN Multimedia

    2002-01-01

    Following our investigations of Mn and Fe impurities in elemental semiconductors and in silicon in particular by means of on-line $^{57}$Fe Mössbauer spectroscopy, utilizing radioactive $^{57}$Mn$^{+}$ ion beams at ISOLDE, we propose to extend these studies to bulk and epitaxially-grown Si$_{1-x}$Ge$_{x}$ alloys. In these materials, although already successfully employed in electronic devices, little is known about point defects and important harmful 3d impurities. The experiments aim to determine a variety of fundamental properties: The lattice location of ion-implanted Mn/Fe, the electronic and vibrational properties of dilute Fe impurities in different lattice sites, the charge-state and composition dependence of the diffusivity of interstitial Fe on an atomic scale, the reactions and formation of complexes with lattice defects created by the $^{57}$Mn implantation or by the recoil effect in the nuclear decay to the Mössbauer state of $^{57m}$Fe. Feasibility studies in 2003 indicate that these aims can b...

  2. Local Conduction in Mo xW1- xSe2: The Role of Stacking Faults, Defects, and Alloying.

    Science.gov (United States)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W

    2018-04-18

    Here, we report on the surface conductivity of WSe 2 and Mo x W 1- x Se 2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe 2 , in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo x W 1- x Se 2 , its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

  3. Preparation and electrochemical properties of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 (x = 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Tian, Xiao; Wei, Wei; Duan, Ruxia; Zheng, Xinyao; Zhang, Huaiwei; Tegus, O.; Li, Xingguo

    2016-01-01

    The as-cast alloy with the composition of La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 was prepared by vacuum arc melting. La–Mg–Ni-based La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 hydrogen storage alloy has been synthesized by high-energy vibratory milling blending of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 as-cast alloy and elemental Mg, followed by an isothermal annealing. The microstructures and electrochemical properties of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 and La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys were investigated by XRD, SEM and electrochemical measurements. The XRD analysis and Rietveld refinement showed that the as-cast La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 alloy consists of single LaNi_5 phase, whereas the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys contain the LaNi_5 and (La, Mg)_2Ni_7. The electrochemical measurements indicated that the maximum discharge capacity and discharge potential characteristic of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys increases first and then decreases with increasing x. The maximum discharge capacity and discharge potential characteristic of alloy reaches the optimum when x is 0.36. The cyclic stability of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy with a smaller quantity of Mg is better than that of the alloy with a larger quantity of Mg. - Highlights: • La–Mg–Ni-based alloy was synthesized by melting, milling and subsequent annealing. • Mg atoms exist in the La_2Ni_7 phase prior to LaNi_5 phase. • The La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys consist of the LaNi_5 and (La, Mg)_2Ni_7. • The more Mg element the alloys contain, the easier aggregation Mg atom is. • The C_m_a_x of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy first increases and then decreases with rising x.

  4. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X...

  5. Comparison of X-ray and neutron small-angle scattering from an Al-Zn alloy

    International Nuclear Information System (INIS)

    Gerold, V.; Epperson, J.E.; Gerstenberg, K.W.

    1978-01-01

    The normalized integrated small-angle scattered intensity for Al-Zn alloys should be independent of whether the measurements are made with X-rays or neutrons. In order to check this, and thus the correction and standardization processes, the small-angle scattering from an Al-5.05 at.% Zn alloy containing GP zones was measured with these two types of radiation. The data were corrected and converted to absolute units with reference to the commonly accepted secondary standards: vanadium for the neutron data and polyethylene (Lupolen) for the X-ray data. The results are shown to differ by, at best, 6% if reasonable values for the change in atomic volume with alloy composition are taken into account. These findings are compared with those available from the literature, and the consistency is found to be somewhat lacking. Additional careful work is clearly needed to determine if the difficulty is traceable to the data correction or to the conversion to absolute units. (Auth.)

  6. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    Science.gov (United States)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  7. Study of the magnetic properties of the Ce{sub x} La{sub 1−x} Pt alloy system: Which interaction establishes ferromagnetism in Kondo systems?

    Energy Technology Data Exchange (ETDEWEB)

    Očko, M., E-mail: ocko@ifs.hr [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička c. 54, Zagreb (Croatia); Zadro, K. [Department of Physics, University of Zagreb, Bijenička c. 32, 10000 Zagreb (Croatia); Drobac, Đ.; Aviani, I.; Salamon, K. [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Mixson, D.; Bauer, E.D.; Sarrao, J.L. [Los Alamos National Laboratory, Mail Stop K 764, Los Alamos, NM 87545 (United States)

    2016-11-01

    In order to study Kondo ferromagnetism, particularly of the CePt compound, we investigate the magnetic properties of the Ce{sub x}La{sub 1−x}Pt alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie–Weiss law at higher temperatures down to about 100 K, but also at the low temperatures above the phase transition. At higher temperatures, the extracted Curie–Weiss constant, θ{sub p}, is negative in contrast to the low temperatures, where θ{sub C} is positive. The extracted effective magnetic moment from the higher temperatures is the same for all the alloys and is close to the theoretical value of the isolated Ce{sup 3+} ion, μ=2.54 μ{sub B}, indicating the hybridization is weak and, and consequently, Kondo interaction is weak. These observations confirm the main important conclusions inferred from an earlier transport properties investigation of this alloy system. The Curie temperature extracted by various approaches was compared to the extraction from the ac-susceptibility measurements. We show that its concentration dependence is not consistent with Doniach's diagram. Hence, RKKY interaction is not responsible for the ferromagnetism in this alloy system. - Highlights: • We have found that for Ce{sub x}La{sub 1−x}Pt the temperature of the ferromagnetic transition linearly depends on x. • The Kondo temperature is independent of x. • Hence, RKKY interaction is not responsible for the ferromagnetism. • The lattice parameters show that direct exchange interaction is possible. • We expect that the investigations of Ce{sub x}Y{sub 1−x} will confirm our conclusions.

  8. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  9. XPS study on Mg0.9-xTi0.1PdxNi (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge-discharge cycles

    International Nuclear Information System (INIS)

    Tian Qifeng; Zhang Yao; Wu Yuanxin

    2009-01-01

    The passive film composition of Mg 0.9-x Ti 0.1 Pd x Ni (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage alloys after 40 charge-discharge cycles has been investigated by means of X-ray photoelectron spectroscopy (XPS) in combination with Ar + sputtering technology. With the XPSPEAK software, high resolution spectra of alloy elements and oxygen were deconvolved into individual peaks. Composites formed by metal elements and their relative contents were also deduced. It was found that the composites originated from Mg and Ni were mainly in the form of their oxides and hydroxides, which existed at the top surface of alloys. With the increase of sputtering depth, the hydroxides of Mg and Ni gradually disappeared while corresponding oxides dominated their passive products. According to the analysis results of oxygen spectra, the elemental segregation of Mg and Ni was influenced by the substitution of Pd because the addition of Pd slightly enhanced the surface energy of the alloys and suppressed the formation of Mg hydroxide and oxide. Ti and Pd presented multiple-oxides from the surface to the inner alloys and metallic Pd appeared in the sub-layers of the alloys' surface. The possible mechanisms of the formation of passive products were suggested on the basis of the discussion in the paper.

  10. Energy investigations on the mechanical properties of magnesium alloyed by X = C, B, N, O and vacancy

    KAUST Repository

    Wu, Xiaozhi; Liu, Lili; Wang, Rui; Gan, Liyong; Liu, Qing

    2013-01-01

    The generalized stacking fault (GSF) energies and surface energies of magnesium and its alloys with alloying atoms X = C, B, N, O and vacancy have been investigated using the first-principles methods. It is found that the predominant reducing

  11. A first principle study of phase stability, electronic structure and magnetic properties for Co{sub 2−x}Cr{sub x}MnAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Abidri, B.; Rabah, M.; Benkhettou, N. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-04-01

    The structural stabilities, electronic and magnetic properties of Co{sub 2−x}Cr{sub x}MnAl alloys with (x=0,1 and 2) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange correlation functional. The ground state properties including lattice parameter, bulk modulus for the two considered crystal structures Hg{sub 2}CuTi-Type (X-Type) and Cu{sub 2}MnAl-Type (L2{sub 1}-Type) are calculated. The half-metallicity within ferromagnetic ground state starts to appear in CoCrMnAl and Cr2MnAl. In the objective for the proposition of the new HM-FM in the Full-Heusler alloys, our results classified CoCrMnAl as new HM-FM material with high spin polarization. - Highlights: • Based on DFT calculations, Co2-xCrxMnAl Heusler alloys have been investigated. • The magnetic phase stability was determined from the total energy calculations. • The LMTO calculations have classified CoCrMnAl as new HM-FM material with high spin polarization.

  12. Determination of initial stages of recrystallization in aluminium alloys by X-ray diffraction

    International Nuclear Information System (INIS)

    Loew, Marjorie

    2000-01-01

    Aluminium is a metal with a wide variety of application, such as beer cans, pans, door and window borders, and others more advanced, such as airplane structure, car engines, nuclear reactors components, rocket propulsion components and so on. Most of aluminium application is in alloy form. Such alloys must present suitable mechanical and chemical properties that are obtained, not entirely, by microstructure development. In this work, the beginning of recrystallization processes of AA1050 and AA3003 aluminium alloys were studied using X-ray diffraction techniques, transmission electron microscopy and hardness test. For such a sample, an initial heat treatment was done in order to homogenize the samples microstructure, followed by cold rolling and submitted again to a heat treatment in different temperatures in a hot furnace. After that samples were analyzed to verify the beginning of the recrystallization. Vickers hardness test revealed that the beginning of recrystallization is between 150 and 300 deg C for 1050 aluminium alloy and 200 and 300 deg C for 3003 aluminium alloy. X-ray diffraction using transmission chamber showed that the beginning of recrystallization is 240 and 260 deg C for AA1050 and AA3003, respectively. These temperatures were determined as the diffraction patterns recorded in the photographic plates changes when the recrystallization takes place. In this way, the deformed sample shows continuous concentric lines and the beginning of recrystallization is characterized by the occurrence of defined spots in this pattern. The Pole Figures goniometric method revealed that the beginning of recrystallization takes place between 250 and 300 deg C for both alloys. In the same way, orientation distribution functions showed the same temperature range for the recrystallization. However, the analysis by α and β fiber figures, the recrystallization temperatures are 240 and 260 deg C for AA1050 and AA3003, respectively. Finally, after the analysis of all

  13. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  14. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr.

    Science.gov (United States)

    Chen, Lianxi; Bin, Yuanhong; Zou, Wenqi; Wang, Xiaojian; Li, Wei

    2017-02-01

    In the present work, new magnesium (Mg) alloys (Mg-4Zn-0.6Zr-xSr, x=0, 0.4, 0.8, 1.2, 1.6wt%; ZK40xSr) were prepared and studied as potential biodegradable materials. The influence of strontium (Sr) addition on the properties of the new Mg alloys was investigated, which included microstructure, corrosion degradation, and the stress corrosion cracking (SCC) susceptibility. The average grain size of the ZK40Sr was approximately 100µm, which was significantly smaller than that of ZK40 alloy without Sr (402.3±40.2µm). The size of grain boundaries precipitates in the ZK40xSr alloys gradually increased with the increase of Sr content. The grain boundaries finally showed a continuously distribution and net-like shape. The degradation test showed that the average degradation rate of the ZK40xSr alloys increased with the increase of Sr addition. In the case of Mg-4Zn-0.6Zr, the degradation rate was 2.2mgcm -2 day -1 , which was lower than that of Mg-4Zn-0.6Zr-1.6Sr (4.93mgcm -2 day -1 ). When the ZK40xSr alloys were immersed in m-SBF, the rod-like Sr-contained hydroxyapatite (HA) substance was detected, which was known to enhance cell growth around bone implants. The fracture surfaces of the as-cast Mg-4Zn-0.6Zr-1.6Sr were shown intergranular stress corrosion cracking (IGSCC) patterns. The increase of SCC susceptibility of the higher Sr ZK40xSr alloys was attributed to the increase of micro-galvanic corrosion between the α-Mg and the grain boundaries precipitates. The SCC susceptibility values were ≈0.13 and ≈0.41 for the Mg-4Zn-0.6Zr-0.4Sr and the Mg-4Zn-0.6Zr-1.6Sr, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural evolution of Cu{sub (1−X)}Y{sub X} alloys prepared by mechanical alloying: Their thermal stability and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: smulafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Setman, Daria [Physics of Nanostructured Materials, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Youssef, Khaled [Department of Materials Science and Technology, Qatar University, P.O. Box 2713, Doha (Qatar); Scattergood, R.O.; Koch, Carl C [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2015-04-05

    Highlights: • Metastable solid solutions were prepared from Cu–Y nonequilibrium compositions by mechanical alloying. • Gibbs free energy change as per Miedema’s model confirms the formation of metastable alloys. • High Y content alloys showed high thermal stability during extensive annealing at high temperatures. • Stabilized alloys showed very high hardness and improved yield strength. • Mechanisms of high thermal stability and improved mechanical properties were discussed. - Abstract: In the present study, an attempt has been made to synthesize copper based disordered solid solutions by mechanical alloying (MA) of non-equilibrium compositions. The blended compositions of Cu–1% Y, Cu–3% Y, Cu–5% Y and Cu–7.5% Y (at.%) (all the compositions will be addressed as % only hereafter until unless it is mentioned) were ball-milled for 8 h, and then annealed at different temperatures (200–800 °C) for different length of duration (1–5 h) under high purity argon + 2 vol.% H{sub 2} atmosphere. X-ray diffraction (XRD) analysis and Gibbs free energy change calculation confirm the formation of disordered solid solution (up to 7.5%) of Y in Cu after milling at a room temperature for 8 h. The XRD grain size was calculated to be as low as 7 nm for 7.5% Y and 22 nm for 1% Y alloy. The grain size was retained within 35 nm even after annealing for 1 h at 800 °C. Transmission electron microscopy (TEM) analysis substantiates the formation of ultra-fine grained nanostructures after milling. Microhardness value of the as-milled samples was quite high (3.0–4.75 GPa) compared to that of pure Cu. The hardness value increased with increasing annealing temperatures up to 400 °C for the alloys containing 3–7.5% Y, and thereafter it showed a decreasing trend. The increase in the hardness after annealing is attributed to the formation of uniformly distributed ultrafine intermetallic phases in the nanocrystalline grains. The stabilization effect is achieved due to

  17. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  18. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  19. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  20. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  1. Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2010-01-01

    Full Text Available Abstract CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production.

  2. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Katarivas Levy, Galit [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Ventura, Yvonne [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Goldman, Jeremy [Biomedical Engineering Department, Michigan Technological University, Houghton, MI 49931 (United States); Vago, Razi [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Aghion, Eli [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-01

    Porous Mg scaffolds are considered as potential bone growth promoting materials. Unfortunately, the high rate of biocorrosion inherent to Mg alloys may cause a premature loss of mechanical strength, excessive evolution of hydrogen gas, and a rapidly shifting surface topography, all of which may hinder the ability of native cells to attach and grow on the implant surface. Here we investigated the cell cytotoxicity effects during corrosion of a novel magnesium alloy, EW10X04 (Mg–1.2%Nd–0.5%Y–0.5%Zr–0.4%Ca), following diffusion coating (DC) and heat treatment to reduce the corrosion rate. Cells were exposed either to corrosion products or to the corroding scaffold surface, in vitro. The microstructure characterization of the scaffold surface was carried out by scanning electron microscopy (SEM) equipped with a Noran energy dispersive spectrometer (EDS). Phase analyses were obtained by X-ray diffraction (XRD). We found that cell viability, growth, and adhesion were all improved when cultured on the EW10X04 + DC surface or under corrosion product extracts due to lower corrosion rates relative to the EW10X04 control samples. It is therefore believed that the tested alloy after Nd coating and heat treatment may introduce a good balance between its biodegradation characteristics and cytotoxic effects towards cells. - Highlights: • The effects of a diffusion coating (DC) with Nd on cell cytotoxicity is shown. • A novel EW10X04 (Mg–1.2%Nd–0.5%Y–0.5%Zr–0.4%Ca) magnesium alloy with DC was tested. • Cell viability, growth, and adhesion were reduced on the control vs. DC surface. • The DC alloy may introduce a good balance between biodegradation and cytotoxicity.

  3. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment

    International Nuclear Information System (INIS)

    Katarivas Levy, Galit; Ventura, Yvonne; Goldman, Jeremy; Vago, Razi; Aghion, Eli

    2016-01-01

    Porous Mg scaffolds are considered as potential bone growth promoting materials. Unfortunately, the high rate of biocorrosion inherent to Mg alloys may cause a premature loss of mechanical strength, excessive evolution of hydrogen gas, and a rapidly shifting surface topography, all of which may hinder the ability of native cells to attach and grow on the implant surface. Here we investigated the cell cytotoxicity effects during corrosion of a novel magnesium alloy, EW10X04 (Mg–1.2%Nd–0.5%Y–0.5%Zr–0.4%Ca), following diffusion coating (DC) and heat treatment to reduce the corrosion rate. Cells were exposed either to corrosion products or to the corroding scaffold surface, in vitro. The microstructure characterization of the scaffold surface was carried out by scanning electron microscopy (SEM) equipped with a Noran energy dispersive spectrometer (EDS). Phase analyses were obtained by X-ray diffraction (XRD). We found that cell viability, growth, and adhesion were all improved when cultured on the EW10X04 + DC surface or under corrosion product extracts due to lower corrosion rates relative to the EW10X04 control samples. It is therefore believed that the tested alloy after Nd coating and heat treatment may introduce a good balance between its biodegradation characteristics and cytotoxic effects towards cells. - Highlights: • The effects of a diffusion coating (DC) with Nd on cell cytotoxicity is shown. • A novel EW10X04 (Mg–1.2%Nd–0.5%Y–0.5%Zr–0.4%Ca) magnesium alloy with DC was tested. • Cell viability, growth, and adhesion were reduced on the control vs. DC surface. • The DC alloy may introduce a good balance between biodegradation and cytotoxicity.

  4. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E., E-mail: helmut.fritzsche@nrc.gc.ca [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River, ON (Canada); Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D. [Univ. of Alberta, and National Research Council Canada, Chemical and Materials Engineering, Edmonton, AB (Canada)

    2010-10-15

    In this article, we show how neutron reflectometry (NR) can provide deep insight into the absorption and desorption properties of commercially promising hydrogen storage materials. NR benefits from the large negative scattering length of hydrogen atoms, which changes the reflectivity curve substantially, so that NR can determine not only the total amount of stored hydrogen but also the hydrogen distribution along the film normal, with nanometer resolution. To use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. We performed a systematic study on thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a Pd catalyst layer. Our NR experiments showed that Mg{sub 0.7}Al{sub 0.3} is the optimum alloy composition with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expand by about 20% because of hydrogen absorption, and the hydrogen is stored only in the MgAl layer with no hydrogen content in the Pd layer. (author)

  5. 48 CFR 12.214 - Cost Accounting Standards.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cost Accounting Standards. 12.214 Section 12.214 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Items 12.214 Cost Accounting Standards. Cost Accounting Standards (CAS) do not apply to contracts and...

  6. 48 CFR 214.202-5 - Descriptive literature.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Descriptive literature. 214.202-5 Section 214.202-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... 214.202-5 Descriptive literature. (c) Requirements of invitation for bids. When brand name or equal...

  7. 49 CFR 384.214 - Reciprocity.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Reciprocity. 384.214 Section 384.214 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... Reciprocity. The State shall allow any person to operate a CMV in the State who is not disqualified from...

  8. Effect of heat treatment on the precipitation in Al-1 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2009-05-27

    The fine-scale precipitates, that occurs during aging, the supersaturated Al-1.0 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys have been investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The strength of the alloys increases as a high density of very fine {beta}'' coherent and {beta}' semicoherent precipitates nucleate. The precipitates compositions have been determined by analyzing the X-ray diffraction (XRD) charts, by using Scherrer equation. The obtained results showed that the {beta}'' and {beta}' precipitates size lies in the nanometer range (from {approx}5 nm to {approx}32 nm). In addition, increasing Si concentration has exhibited an increase in the density of the precipitates, which fortifies the physical properties.

  9. Influence of nitrogen on the synthesis and nucleation ability of TiC{sub x} in Al–Ti–C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping; Nie, Jinfeng; Gao, Tong; Wang, Tao; Liu, Xiangfa, E-mail: xfliu@sdu.edu.cn

    2014-07-15

    Highlights: • A group of Al–Ti–C master alloy has been prepared in different concentration of N{sub 2}. • It is found that N atoms can dope into TiC{sub x} at a certain concentration of N{sub 2}. • The effect of N element on the nucleation ability of TiC{sub x} on α-Al is investigated. • The excellent refining performance of the doped TiC{sub x} does not fade within 60 min. - Abstract: In this study, a group of Al–Ti–C master alloy has been prepared in an atmosphere with different concentration of N{sub 2}. The master alloys are analyzed by field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). It is discovered that N atoms can be doped into TiC{sub x} at a certain concentration of N{sub 2} while it will form AlN if the concentration is higher. Adding Al–Ti–C master alloy with N doped TiC{sub x} particles in molten aluminum, the average grain size of α-Al can be reduced from 3320 μm to 189 μm and the efficiency does not fade within 60 min. It is supposed that the grain refinement efficiency and stability of TiC{sub x} is improved obviously after N doping. This master alloy exhibits potential to promote the application of grain refiner in industries.

  10. X-ray topography of uranium alloys; Topographie aux rayons X d'alliages d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A description of the structure of uranium alloys has been made using the data obtained by X-ray diffraction techniques derived from the Berg-Barrette method. In the first.stage the use of a monochromatic beam of X-rays having a very low divergence makes it possible to obtain very reproducible and exact numerical data concerning the grain and sub-grain sizes, and also the distribution of the sizes. It is thereby possible to detect any disorientation greater than 30 seconds of arc.The results obtained have been completed using a variable incidence device which- gives simultaneously an overall picture of a grain and an idea of the importance of internal disorientations; a more rigorous measurement of this latter parameter is then deduced from the Debye-Scherrer diagrams obtained using a fine-focus equipment. Observations are carried out on various one-phase or two phase uranium alloys which are compared successively to technical and to high-purity uranium. It is shown that the use of X-ray topographies, although limited in certain respects, allows a quantitative characterization of the structure. (author) [French] Une description des structures d'alliages d'uranium a ete faite a partir des donnees fournies par des techniques de diffraction de rayons X derivees de la methode de BERG--BARRETT. Dans une premiere etape, l'utilisation d'un faisceau de rayons X monochromatique et de tres faible divergence permet d'obtenir des donnees numeriques precises et tres reproductibles, relatives aux dimensions des grains, des sous-grains et a la distribution de ces grandeurs. Toute desorientation superieure a 30 secondes d'arc peut ainsi etre decelee. Les resultats obtenus ont ete completes en utilisant un montage a incidence variable, qui fournit simultanement l'image globale d'un grain et l'ordre de grandeur des desorientations internes; une mesure plus rigoureuse de ce dernier parametre se deduit ensuite de diagrammes DEBYE SHERRER realises avec un montage a foyer fin. Des

  11. Magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys

    Science.gov (United States)

    Krishnan, R.; Driouch, L.; Lassri, H.; Dumond, Y.; Ajan, Antony; Shringi, S. N.; Prasad, Shiva

    1996-11-01

    We have carried out magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x = 16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions JFe-Fe, JFe-Ho, etc. The Mössbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment.

  12. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  13. 24 CFR 214.311 - Funding.

    Science.gov (United States)

    2010-04-01

    ... Internet or other electronic media. (b) Local funding sources. HUD recommends that approved agencies seek and secure funding from funding sources that may include local and state governments, private... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Funding. 214.311 Section 214.311...

  14. 29 CFR 553.214 - Trainees.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Trainees. 553.214 Section 553.214 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS APPLICATION OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  15. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    Science.gov (United States)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.

  16. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    Several techniques such as X-ray diffraction [9], VSM. [10], Mössbauer spectroscopy [11], four-point probe [12] etc. are used to investigate the crystallographic, magnetic and magnetotransport properties of NiFe systems. In this study our aim is to prepare NiFe alloy films relatively thicker (in µm scale) than those reported in ...

  17. Structural and electronic properties of Ga{sub 1-x}In{sub x} As{sub 1-y}N{sub y} quaternary semiconductor alloy on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Metin, E-mail: maslan@sakarya.edu.tr [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey); Yalc Latin-Small-Letter-Dotless-I n, Battal G.; Uestuendag, Mehmet [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer In this study we used DFT in the frame of LDA approach to determine electronic and structural properties of GaInAsN alloy. Black-Right-Pointing-Pointer We calculated lattice parameter and band gap energy of binary (GaAs, InAs, and GaN), ternary (GaInAs, GaAsN) and quaternary (GaInAsN) semiconductor alloys. Black-Right-Pointing-Pointer We formulated lattice parameter of GaInAsN respect to In and N composition. Black-Right-Pointing-Pointer We investigated different In and N composition of GaInAsN/GaAs heterostructure for various device applications. - Abstract: We have presented structural and electronic properties of binary (GaAs, GaN and InAs), ternary (Ga{sub 1-x}In{sub x}As and GaAs{sub 1-y}N{sub y}) and quaternary (Ga{sub 1-x}In{sub x}As{sub 1-y}N{sub y}) semiconductor alloys by using a first-principles pseudopotential technique. The structural and electronic properties of Zinc-Blende phase of these materials have been calculated by using the local density approximation (LDA) of the density-functional theory (DFT). To obtain the lattice parameter and band gap energy of the (GaInAsN) quaternary semiconductor alloy we separately calculated the lattice constant and band gap energies of ternary semiconductor alloys, namely GaAsN and GaInAs. The calculated lattice constant, bulk modulus and the direct band gaps for studied semiconductors showed great parallelism with the previous available theoretical and experimental studies.

  18. Study of the mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (x = 0 or 3) bulk amorphous and crystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabialek, Marcin G. [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Szota, Michal [Institute of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Dospial, Marcin J.

    2010-05-15

    The microstructure, thermal stability, mechanical and magnetic properties of Fe{sub 61}Co{sub 10}Zr{sub 5-x}Hf{sub x}W{sub 2}Y{sub 2}B{sub 20} (where x = 0 or 3) bulk metallic glasses (BMG) and their crystalline equivalents were investigated. The crystalline materials were smelted on a copper mould using an electric arc; their amorphous equivalents were prepared using the induction suction casting method (ISC). All samples investigated were in the form of plates with dimensions of 10x10x0.5mm. From X-ray diffraction and Moessbauer spectroscopy, it was found that both investigated alloys prepared using this method have an amorphous structure. From magnetic measurements obtained by a vibrating sample magnetometer (VSM), it was shown that all measured samples displayed soft magnetic properties with relatively high saturation of the magnetization. The thermal stability and glass-forming ability (GFA) for investigated alloys were derived from differential scanning calorimetry (DSC) curves. The measurements of mechanical properties for amorphous alloys were found to be better than those for crystalline alloys with the same atomic composition. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Composition controlled spin polarization in Co{sub 1-x}Fe{sub x}S{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, C [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Manno, M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Cady, A [Advanced Photon Source, Argonne National Laboratory (United States); Freeland, J W [Advanced Photon Source, Argonne National Laboratory (United States); Wang, L [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Umemoto, K [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Wentzcovitch, R M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Chen, T Y [Department of Physics and Astronomy, Johns Hopkins University (United States); Chien, C L [Department of Physics and Astronomy, Johns Hopkins University (United States); Kuhns, P L [National High Magnetic Field Laboratory, Florida State University (United States); Hoch, M J R [National High Magnetic Field Laboratory, Florida State University (United States); Reyes, A P [National High Magnetic Field Laboratory, Florida State University (United States); Moulton, W G [National High Magnetic Field Laboratory, Florida State University (United States); Dahlberg, E D [School of Physics and Astronomy, University of Minnesota (United States); Checkelsky, J [Physics Department, Harvey Mudd College (United States); Eckert, J [Physics Department, Harvey Mudd College (United States)

    2007-08-08

    The transition metal (TM) chalcogenides of the form TMX{sub 2} (X = S or Se) have been studied for decades due to their interesting electronic and magnetic properties such as metamagnetism and metal-insulator transitions. In particular, the Co{sub 1-x}Fe{sub x}S{sub 2} alloys were the subject of investigation in the 1970s due to general interest in itinerant ferromagnetism. In recent years (2000-present) it has been shown, both by electronic structure calculations and detailed experimental investigations, that Co{sub 1-x}Fe{sub x}S{sub 2} is a model system for the investigation of highly spin polarized ferromagnetism. The radically different electronic properties of the two endpoint compounds (CoS{sub 2} is a narrow bandwidth ferromagnetic metal, while FeS{sub 2} is a diamagnetic semiconductor), in a system forming a substitutional solid solution allows for composition control of the Fermi level relative to the spin split bands, and therefore composition-controlled conduction electron spin polarization. In essence, the recent work has shown that the concept of 'band engineering' can be applied to half-metallic ferromagnets and that high spin polarization can be deliberately engineered. Experiments reveal tunability in both sign and magnitude of the spin polarization at the Fermi level, with maximum values obtained to date of 85% at low temperatures. In this paper we review the properties of Co{sub 1-x}Fe{sub x}S{sub 2} alloys, with an emphasis on properties of relevance to half-metallicity. Crystal structure, electronic structure, synthesis, magnetic properties, transport properties, direct probes of the spin polarization, and measurements of the total density of states at the Fermi level are all discussed. We conclude with a discussion of the factors that influence, or even limit, the spin polarization, along with a discussion of opportunities and problems for future investigation, particularly with regard to fundamental studies of spintronic devices.

  20. 36 CFR 2.14 - Sanitation and refuse.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Sanitation and refuse. 2.14 Section 2.14 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are...

  1. Probing the random distribution of half-metallic Co2Mn1-xFexSi Heusler alloys

    NARCIS (Netherlands)

    Wurmehl, S.; Kohlhepp, J.T.; Swagten, H.J.M.; Koopmans, B.; Wójcik, M.; Balke, B.; Blum, C.G.F.; Ksenofontov, V.; Fecher, G.H.; Felser, C.

    2007-01-01

    Co2Mn1-xFexSi Heusler alloys crystallize in the L21 structure. This structure type requires random distribution of Mn and Fe in case of the mixed alloys. The spin echo nuclear magnetic resonance (NMR) technique probes the direct local environments of the active atoms and is thus able to resolve next

  2. Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys

    International Nuclear Information System (INIS)

    Zhu, Jianing; Luo, Haiwen; Yang, Zhigang; Zhang, Chi; Van der Zwaag, Sybrand; Chen, Hao

    2017-01-01

    Kinetics of the austenite (γ) to ferrite (α) transformation and the reverse ferrite (α) to austenite (γ) transformation in a series of Fe-X (X = Ni, Mn and Co) binary alloys has been experimentally and theoretically investigated. A transition from partitioning to partitionless transformation has been predicted to occur during both the γ→α and α→γ transformations by a so called Gibbs Energy Balance (GEB) model, in which the chemical driving force is assumed to be equal to the energy dissipation due to interface friction and diffusion of X inside the migrating interfaces. The transition temperature is found to depend on the kind of X and its concentration, which is in good agreement with experimental results. The intrinsic mobility of the α/γ interface has been derived from the kinetic curves of both the γ→α and α→γ transformations in the investigated alloys, and its value seems to be marginally affected by the transformation direction and alloying elements.

  3. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  4. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  5. 49 CFR 214.523 - Hi-rail vehicles.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hi-rail vehicles. 214.523 Section 214.523..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.523 Hi-rail vehicles. (a) The hi-rail gear of all hi-rail vehicles shall be inspected for...

  6. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  7. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  8. Magnetic characterization of nanocrystalline Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) alloys during milling and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-15

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu

  9. 30 CFR 77.214 - Refuse piles; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; general. 77.214 Section 77.214... Installations § 77.214 Refuse piles; general. (a) Refuse piles constructed on or after July 1, 1971, shall be..., tipples, or other surface installations and such piles shall not be located over abandoned openings or...

  10. 22 CFR 214.42 - Uniform pay guidelines.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Uniform pay guidelines. 214.42 Section 214.42... Advisory Committees § 214.42 Uniform pay guidelines. (a) A.I.D. follows OMB/CSC guidelines in section 11 of... experts, their compensation shall be fixed in accordance with CSC guidelines and regulations, and the...

  11. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  12. 47 CFR 214.1 - Purpose.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Purpose. 214.1 Section 214.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL PROCEDURES FOR THE USE AND... provide guidance for the use of the radio spectrum in a period of war, or a threat of war, or a state of...

  13. 12 CFR 21.4 - Report.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Report. 21.4 Section 21.4 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MINIMUM SECURITY DEVICES AND PROCEDURES, REPORTS OF... Report. The security officer for a national bank shall report at least annually to the bank's board of...

  14. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  15. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2017-01-01

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address

  16. Magnetic Properties of Nanocrystalline FexCu1-x Alloys Prepared by Ball Milling

    International Nuclear Information System (INIS)

    Yousif, A.; Bouziane, K.; Elzain, M. E.; Ren, X.; Berry, F. J.; Widatallah, H. M.; Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A.

    2004-01-01

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe x Cu 1-x alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x≥0.8 and x≤0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x≥0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  17. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  18. Local electronic environment of protons in VHsub(x) alloys

    International Nuclear Information System (INIS)

    Kazama, Shigeo; Fukai, Yuh

    1977-01-01

    The Knight shift (Ksub(H)) and the spin-lattice relaxation time T 1 of protons have been measured in vanadium-hydrogen alloys (VHsub(x)) with hydrogen concentration x=0.042 -- 0.736, at temperatures between 100 0 and 200 0 C. The resolution of +-1 ppm in the shift was attained by using a high-resolution spectrometer, and the effect of demagnetizing field was isolated by using a single sheet of foil as a specimen. This allowed the simultaneous determination of Ksub(H) and the bulk magnetic susceptibility. Ksub(H) measured relative to bare protons was found to be negative and change little with hydrogen concentration. No temperature dependence of the shift was observed, even across the phase transition. These results are interpreted in terms of a contact interaction with the uniform spin-polarization in the interstitial region and some additional contributions from H-induced states. An evidence for the electron-electron interaction in VHsub(x) is derived from comparison of Ksub(H) and T 1 . (auth.)

  19. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry and Primary Care, College of Dentistry, Ohio State University, Columbus, OH (United States)

    2011-05-31

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H{sub 3}PO{sub 4} solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  20. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2011-01-01

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H 3 PO 4 solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  1. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed; Ikram, Nazma; Ali, Sana Zulfiqar; Nazir, Safdar; Alay-E-Abbas, Syed Muhammad; Shaukat, Ali

    2010-01-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS

  2. First-principles calculations of the structural, electronic and optical properties of cubic B{sub x}Ga{sub 1-x}As alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guemou, M., E-mail: guemoumhamed7@gmail.com [Engineering Physics Laboratory, University Ibn Khaldoun of Tiaret, BP 78-Zaaroura, Tiaret 14000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Abdiche, A. [Applied Materials Laboratory, Research Center, University of Sidi Bel Abbes, 22000 Sidi Bel Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Al Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-04-15

    Density functional calculations are performed to study the structural, electronic and optical properties of technologically important B{sub x}Ga{sub 1-x}As ternary alloys. The calculations are based on the total-energy calculations within the full-potential augmented plane-wave (FP-LAPW) method. For exchange-correlation potential, local density approximation (LDA) and the generalized gradient approximation (GGA) have been used. The structural properties, including lattice constants, bulk modulus and their pressure derivatives, are in very good agreement with the available experimental and theoretical data. The electronic band structure, density of states for the binary compounds and their ternary alloys are given. The dielectric function and the refractive index are also calculated using different models. The obtained results compare very well with previous calculations and experimental measurements.

  3. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  4. Field-induced non-collinear magnetic structures in amorphous Co80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Roky, K.; Lassri, H.; Elmoussaoui, A.; Driouch, L.; Ayadi, M.; Omri, M.; Krishnan, R.

    2005-01-01

    Amorphous Co 80-x Dy x B 20 alloys have been prepared by melt spinning technique and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. High-field magnetization studies performed at 4.2 K in magnetic fields up to 38 T have revealed, for samples with stoichiometry close to that of a compensated ferrimagnet, a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Co sublattices. From the non-collinear regime the exchange interactions between the Co and Dy magnetic sublattices and the magnetic anisotropy constants have been evaluated

  5. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems

    International Nuclear Information System (INIS)

    Farahany, Saeed; Bakhsheshi-Rad, Hamid Reza; Idris, Mohd Hasbullah; Abdul Kadir, Mohammed Rafiq; Lotfabadi, Amir Fereidouni; Ourdjini, Ali

    2012-01-01

    Highlights: ► The effect of Ca and Zn addition on Mg–Ca and Mg–Ca–Zn were investigated. ► Ca and Zn addition decreased solid fraction at coherency point. ► T N –T DCP increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn, respectively. ► Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg–Ca–Zn. ► A new peak Mg 51 Zn 20 was identified in Mg–0.5Ca–9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg–xCa and Mg–0.5%Ca–xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg 2 Ca intermetallic phase at around 520 °C in addition to α-Mg phase. First derivative curves of alloys after the addition of Zn to Mg–0.5Ca alloy reveals three peaks related to α-Mg, Mg 2 Ca and Ca 2 Mg 6 Zn 3 for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg 2 Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 °C for Mg–0.5Ca–9Zn which was identified as Mg 51 Zn 20 . Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T N –T DCP ) increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn systems.

  6. 49 CFR 214.113 - Head protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Head protection. 214.113 Section 214.113 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... conform to the national consensus standards for industrial head protection (American National Standards...

  7. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    Science.gov (United States)

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  8. Preparation of nanocrystalline Ce1-xSmx(Fe,Co)11Ti by melt spinning and mechanical alloying

    Science.gov (United States)

    Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B.

    2017-04-01

    Permanent magnetic materials based on Ce(Fe, Co)12-xTix with the ThMn12 structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd2Fe14B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce1-xSmxFe11-yCoyTi (x=0-1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 Hc,J values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm.

  9. Quantitative description of the magnetization curves of amorphous alloys of the series a-DyxGd1-xNi

    International Nuclear Information System (INIS)

    Barbara, B.; Filippi, J.; Amaral, V.S.

    1992-01-01

    The magnetization curves of the series of amorphous alloys Dy x Gd 1-x Ni measured between 1.5 and 4.2 K and up to 15 T, have been fitted to the zero kelvin analytical model of Chudnovsky. The results of these fits allow a detailed understanding of the magnetization curves of amorphous alloys with ferromagnetic interactions. In particular, the ratio D/J of the local anisotropy and exchange energies, and the magnetic and atomic correlation lengths, are accurately determined. (orig.)

  10. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    Science.gov (United States)

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  11. Magnetoconductance of amorphous Yx-Si1-x alloys near the metal-insulator transition

    International Nuclear Information System (INIS)

    Sanquer, M.; Tourbot, R.; Boucher, B.

    1989-01-01

    We have performed magnetoresistance experiments across the Metal-Insulator transition in amorphous Y x -Si 1-x alloys using very high fields (H = 40T) and very low temperatures (T = 0.05K). Different and unusual behaviours are observed and can be explained assuming that the electron-electron interaction contribution dominates at low fields and localization corrections appears at very high fields. This is the opposite situation compared to usual weak localization regime

  12. 48 CFR 5433.214. - Alternative Dispute Resolution (ADR).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Alternative Dispute Resolution (ADR). 5433.214. Section 5433.214. Federal Acquisition Regulations System DEFENSE LOGISTICS AGENCY, DEPARTMENT OF DEFENSE PROTESTS, DISPUTES AND APPEALS 5433.214. Alternative Dispute Resolution (ADR). The...

  13. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    Science.gov (United States)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  14. Thermal plasma synthesis of Fe1−xNix alloy nanoparticles

    International Nuclear Information System (INIS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-01-01

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe 1−x Ni x ; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  15. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, Gilad M. [The Unit of Energy Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dadon, David [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Gelbstein, Yaniv [The Unit of Energy Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.

  16. Effect of Al doping on structural and magnetic properties of Ni{sub 50}Mn{sub 37}Al{sub x}Sb{sub 13−x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K.; Bagani, K. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Singh, R.K.; Majumdar, B. [Defense Metrological Research Laboratory, Hyderabad 500058 (India); Banerjee, S., E-mail: sangam.banerjee@saha.ac.in [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-09-01

    The Ni{sub 50}Mn{sub 37}Al{sub x}Sb{sub 13−x} (x=0, 1, 3 and 5) alloys were prepared by tri-arc melting technique. The replacement of Sb by Al increases the martensitic transformation temperature (T{sub M}) as well as ferromagnetic to paramagnetic transformation temperature (T{sub C}{sup A}) within the austenite phase. The increase in T{sub M} is found to due to the enhancement of hybridization between 3d states of Ni and Mn atoms. We also observed a large exchange bias field (H{sub EB}) of 470 Oe for x=0 and it decreases with the Al concentration for field cooled (FC) magnetic hysteresis loop. A large magnetic entropy change (ΔS{sub M}) of 10 J/kg-K is found for x=1 alloy under a field change (ΔH) of 50 kOe and it decreased for further higher concentration of Al doping. The possible reasons for observed behaviors are discussed.

  17. Characterization of nitride formation in NbTi-50% weight alloy by x-ray diffraction

    International Nuclear Information System (INIS)

    Teixeira, S.R.

    1990-01-01

    Titanium and niobium are so main metals for technology as structural materials, refractories and resistance alloys for corrosion. This interest is based in application of this metals and alloys in aerospacial industry, nuclear reactors, construction of superconductor magnets and in the production of superconductors wires. The NbTi (50% wt. Ti) alloy nitretation under nitrogen atmosphere (p + 760 mm) at 800 - 1000 C was studied by x-ray diffractometry. TEM and optical metallography. During the reaction the two phases (Ti sub(2) N - ε and TiN - δ) growed continuously, the (Ti sub(2) N, N sub(2)) reaction front growed faster than the (TiN,N sub(2)). A method for study the scale growing was proposed using x-ray diffractometry data. By using this method, the growth of TiN scale was analysed and the activation energy of 19 Kcal/mole was determinated using a linear timming law indicating a mechanism not controlled by diffusion through TiN layer. The present results suggest that the diffusion through the tight tunnels, rich in Nb, allow a fast transport of nitrogen through the TiN layer. (author)

  18. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    Science.gov (United States)

    Kaira, Chandrashekara Shashank

    Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy's solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven't rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established. The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To

  19. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Wang, Jingfeng; Li, Yang; Huang, Song; Zhou, Xiaoen

    2014-01-01

    Highlights: • Corrosion of four cast Mg–xSn alloys in 3.5 wt.% NaCl solution was investigated. • Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn. • Compact Mg(OH) 2 /MgSnO 3 film suppressed the cathodic effect of the impurity inclusions. • Mg–xSn (x = 0.5, 1.0, 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film. - Abstract: The corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn (x = 0.5, 1.0, 1.5, and 2.0 wt.%) alloys in 3.5 wt.% NaCl solution were investigated by immersion tests, electrochemical measurements, corrosion morphology observations, and X-ray diffraction analysis. Immersion tests and electrochemical measurements illustrated that the best corrosion resistance was reported for the Mg–1.5Sn alloy. Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn alloy surface. Mg(OH) 2 /MgSnO 3 clusters were compact and suppressed the cathodic effect of the impurity inclusions greatly. The Mg–xSn (x = 0.5, 1.0, and 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film during the corrosion process

  20. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Ning Congqin; Zhai Wanyin; Chen Lei; Ding Dongyan; Dai Kerong

    2010-01-01

    β-type low elastic modulus alloys of the Ti-Nb-Zr system have recently attracted much attention for both orthopedic and dental applications. In the present study, meta-stable β alloys of Ti-35Nb-xZr with different Zr contents were developed. The effect of Zr content on the microstructure, mechanical properties and cell attachment was investigated. It was found that the addition of Zr improved the tensile strength and elongation of Ti-35Nb-xZr alloys, and simultaneously reduced the elastic modulus. Moreover, the Zr element helped to stabilize the β phase. Cell culture work indicated that the addition of Zr enhanced the attachment and spreading of bone marrow stem cells. Cell attachment and spreading on the surface of titanium alloys were dominated not only by the wettability but also by the inherent biocompatibility of alloying elements. The peak-aged alloy with 5 wt% Zr had a highest tensile strength of 874 MPa, while its elastic modulus was only 65 GPa, presenting a much higher strength/modulus ratio than Ti-6Al-4V. The Ti-35Nb-5Zr alloy exhibited a great potential for orthopedic and dental applications.

  1. X-ray diffraction studies of NiTi shape memory alloys

    OpenAIRE

    E. Łągiewka; Z. Lekston

    2007-01-01

    Purpose: The purpose of this paper is to present the results of the investigations of phase transitions of TiNiCo and Ni-rich NiTi shape memory alloys designed for medical applications.Design/methodology/approach: Temperature X-ray diffraction (TXRD), differential scanning calorimetry (DSC), electrical resistivity (ER) and the temperature shape recovery measurements in three-point bending ASTM 2082-01 tests were used.Findings: It has been found in this work that ageing after solution treatme...

  2. X-ray diffraction study of delta-stabilized plutonium alloys under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Ph, E-mail: philippe.faure@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Genestier, C. [CEA, Valduc, F-21120 Is-sur-Tille (France)

    2010-02-15

    Previous extensive studies of the delta -> alpha'-phase transformation induced by temperature and/or by pressure in delta-stabilized plutonium alloys indicate strong dependence on parameters such as solute type, solute distribution, chemical impurities, kinetics, thermodynamic path.... The present paper reports results obtained on two Pu-2.3at.%Ga binary alloys differing by solute homogenization treatment and studied under pressure by in situ by X-ray diffraction in diamond anvil cells. The gamma'-phase appears as an intermediate phase during the delta -> alpha'-phase transformation. In cored samples, unexpanded alpha'-phase is formed at the beginning of the transformation, from domains with low solute content, and expanded alpha'-phase subsequently forms (from domains with higher solute content) as the transformation progresses with the pressure increase.

  3. The microstructure and coefficient transmission of think films Bi2Te3-xSex, alloyed by terbium

    International Nuclear Information System (INIS)

    Abdullaev, N.M.; Mekhtieva, S.I.; Jalilov, N.Z.; Memmedov, N.R.; Zeynalov, V.Z.

    2007-01-01

    The defects of films microstructures of the thermoelectric materials n- and p-type Bi 2 Te 3 -xSe x , alloyed by Tb and Cl, with think, obtained by thermic evaporation in vacuum have been investigated by microscopic methods

  4. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  5. Lattice vibrations study of Ga1-xInxAsySb1-y quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Olvera-Herandez, J; Olvera-Cervantes, J; Rojas-Lopez, M; Navarro-Contreras, H; Vidal, M A; Anda, F de

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga 1-x In x As y Sb 1-y alloys with low (In, As) contents (0.03 0 C. High Resolution X-Ray Diffraction results showed profiles associated with a quaternary layer lattice matched to the GaSb substrate as obtained from the (004) reflection. The experimental diffractograms were simulated to estimate alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys

  6. Energy gaps, effective masses and ionicity of AlxGa1-xSb ternary semiconductor alloys

    Science.gov (United States)

    Bouarissa, N.; Boucenna, M.; Saib, S.; Siddiqui, S. A.

    2017-12-01

    A pseudopotential calculation of the electronic structure of AlxGa1-xSb ternary alloys in the zinc-blende structure has been performed. The compositional dependence of energy gaps, electron and heavy hole effective masses and ionicity of the material system of interest have been examined and discussed. Special attention has been given to the effect of the alloy disorder on the direct (Γ-Γ) bandgap energy. It is found that all features of interest vary monotonically with increasing the Al concentration x. Besides, bandgap bowing parameters and extent of the direct-to-indirect bandgap transition have been determined. Our findings agree generally well with the data reported in the literature. Trends in ionicity are found to be consistent with the Phillips ionicity scale.

  7. The electronic structure of Cu(In1-xGax)Se2 alloyed with silver

    International Nuclear Information System (INIS)

    Erslev, Peter T.; Lee, JinWoo; Hanket, Gregory M.; Shafarman, William N.; Cohen, J. David

    2011-01-01

    We have examined the electronic properties of (Ag 1-x Cu x )(In 1-y Ga y )Se 2 (ACIGS) alloys over a wide range of compositions to assess whether such alloys might allow one to achieve larger values of V OC at larger band gaps compared to the Cu(In 1-y Ga y )Se 2 (CIGS) alloys. Our studies employed junction capacitance techniques such as drive level capacitance profiling (DLCP) and transient photocapacitance (TPC) spectroscopy, as well as temperature dependent J-V measurements. The TPC spectra revealed not only that the band gap did indeed increase as the Ag-fraction was increased, but also that the bandtailing (or Urbach energies) in all ACIGS samples were substantially smaller than for CIGS samples of corresponding band gaps. This indicates that the Ag alloying somehow reduces the degree of disorder present. The DLCP measurements indicated very low free carrier densities, on the order of 10 14 cm -3 , as well as evidence of defects located at the CdS/ACIGS junction. Temperature-dependent I-V measurements revealed a distinct 'kink' in the V OC vs T characteristics, suggesting a transition from an interface-trap limited regime to a bulk-limited regime. At temperatures below 250 K, the V OC increased by up to 0.1 V as the sample was light soaked. This suggests that the interface traps limiting the V OC can be passivated by exposure to light.

  8. Elemental characterization of alloy composition by wavelength dispersive X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Khan, F.A.; Pandey, A.; Das, D.K.; Behere, P.G; Mohd Afzal

    2015-01-01

    Wave length Dispersive X-ray Fluorescence (WD-XRF) is a non-destructive well-established analytical technique widely used in industrial and research applications for materials characterization. In nuclear industry various types of alloys have been used as per their application and importance. Few of them like SS-304, SS-316 and SS-316L are being regularly used for manufacturing of glove boxes at AFFF SS-304 alloy has been used in glove boxes of production line of MOX fuel due to its corrosive resistance and SS-316L is being used in chemical quality control lab and microwave applicator due to its acidic resistivity. In view of this an endeavor has been taken up to characterize these alloy steel. The experiments were carried out using a Rigaku make 'supermini', WD-XRF spectrometer having 200W Pd X-ray tube, 12 sample holder position, scintillation and proportional counters as a detector. All the parameters such as kV, mA, collimator, crystal and detectors were selected and operated via computer as per the given programme except for the sample preparation. EZscan (Energy Atomic Number Scan) technique is applied for the analysis of the above samples and the results obtained were in close agreement with the standard values. The present paper describes the characterization of SS-304L and SS-316L which have got better corrosion resistance properties against acids due to its compositions and suited for glove box manufacturing. (author)

  9. 49 CFR 214.115 - Foot protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foot protection. 214.115 Section 214.115... protection. (a) The railroad or railroad contractor shall require railroad bridge workers to wear foot protection equipment when potential foot injury may result from impact, falling or flying objects, electrical...

  10. First-principles investigation of electronic and structural properties and bowing parameters in SrFCl{sub x}Br{sub 1-x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A [Simulation Laboratory, Department of Physics, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2007-10-31

    The first ab initio calculations have been performed to study the structural and electronic properties of technologically important SrFCl{sub x}Br{sub 1-x} quaternary alloys (for x equal to 0.0, 0.25, 0.5, 0.75 and 1.0) using the full-potential linearized augmented-plane-wave method within density-functional theory. The Perdew et al generalized-gradient approximation (GGA96), which is based on exchange-correlation energy optimization, is utilized to optimize the internal parameters by relaxing the atomic positions in the force directions and to calculate the total energy. Both the Engel-Vosko's generalized-gradient approximation (EV-GGA), which optimizes the exchange-correlation potential, and GGA96 are used for band structure calculations. The effect of composition on the equilibrium volume, cohesive energy, band gap and mean values of the bond length, shows nonlinear dependence, but on the bulk modulus it exhibits nearly linear concentration dependence (LCD). The results obtained show that the quaternary alloy of interest could be an appropriate material for using in an optical apparatus.

  11. Electronic band structure calculations for GaxIn1−xASyP1−y alloys lattice matched to InP

    International Nuclear Information System (INIS)

    Bechiri, A; Benmakhlouf, F; Allouache, H; Bacha, S; Bouarissa, N

    2012-01-01

    A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic Ga x In 1−x As y P 1−y quarternary alloys lattice matched to InP. The effects of compositional variations are properly included in the calculations. Very good agreement is obtained between the calculated values and the available experimental data for the lattice–matched alloy to InP. The absorption at the fundamental optical gaps is found to be direct within a whole range of the y composition whatever the lattice-matching to the substrate of interest. The alloy system Ga x In 1−x As y P 1−y lattice matched to InP is suggested to be suitable for an efficient light emitting device (ELED) material.

  12. Hydrogen storage and microstructure investigations of La{sub 0.7-x}Mg{sub 0.3}Pr{sub x}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H., E-mail: agsgaldino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  13. Electroluminescence and phototrigger effect in single crystals of GaSxSe1-x alloys

    International Nuclear Information System (INIS)

    Kyazym-Zade, A. G.; Salmanov, V. M.; Mokhtari, A. G.; Dadashova, V. V.; Agaeva, A. A.

    2008-01-01

    The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS x Se 1-x alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported

  14. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    Science.gov (United States)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  15. Effects of alloying elements on the Snoek-type relaxation in Ti–Nb–X–O alloys (X = Al, Sn, Cr, and Mn)

    International Nuclear Information System (INIS)

    Lu, H.; Li, C.X.; Yin, F.X.; Fang, Q.F.; Umezawa, O.

    2012-01-01

    Highlights: ► The O Snoek-type relaxation in the Ti–Nb–X–O alloys was investigated. ► The dipole shape factor (δλ) and critical temperature T c were deduced from the peak. ► The δλ and T c were analyzed in terms of the d-orbital energy level (Md). ► With decreasing Md, the δλ increases and saturates at last while the T c decreases. ► The Md can be taken as a key parameter in designing high damping β-Ti alloys. - Abstract: The effect of alloying elements on the oxygen Snoek-type relaxation in the Ti–24Nb–X–1.7O alloys (X = 1Al, 2Al, 1Sn, 2Sn, 2Cr, 2Mn) was investigated in order to develop high damping materials based on point defect relaxation process. The relaxation strength of the Ti–Nb–Al–O and Ti–Nb–Sn–O alloys is the highest while that of the Ti–Nb–Mn–O and Ti–Nb–Cr–O alloys is the lowest. The dipole shape factor (δλ) and critical temperature T c , which are intrinsic to the Snoek-type relaxation, were figured out and analyzed in terms of the d-orbital energy level (Md) for each alloy based on the measured damping peak. With the decreasing Md, the δλ increases and saturates at last when the Md decreases to a certain value (about 2.435 eV), while the critical temperature T c decreases linearly. The parameter Md can be taken as a key parameter in designing high damping β-Ti alloys, that is, to design an intermediate value of Md at which the values of both δλ and T c are as high as possible.

  16. Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys

    Directory of Open Access Journals (Sweden)

    Nitesh Shukla

    2016-06-01

    Full Text Available Chalcogenide glassy alloys of Se90Cd10−xInx (x = 2, 4, 6, 8 are synthesized by melt quench technique. The prepared glassy alloys have been characterized by techniques such as differential scanning calorimetry (DSC, scanning electron microscopy (SEM and energy dispersive X-ray (EDAX. Dielectric properties of Se90Cd10−xInx (x = 2, 4, 6, 8 chalcogenide glassy system have been studied using impedance spectroscopic technique in the frequency range 42 Hz to 5 MHz at room temperature. It is found that the dielectric constants ɛ′, dielectric loss factor ɛ″ and loss angle Tan δ depend on frequency. ɛ′, ɛ″ and loss angle Tan δ are found to be decreasing with the In content in Se90Cd10−xInx glassy system. AC conductivity of the prepared sample has also been studied. It is found that AC conductivity increases with frequency where as it has decreasing trend with increasing In content in Se–Cd matrix. The semicircles observed in the Cole–Cole plots indicate a single relaxation process.

  17. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1−xN (0 ≤ x ≤ 1) Ternary Alloy

    International Nuclear Information System (INIS)

    Ng, S. S.; Hassan, Z.; Hassan, H. Abu

    2008-01-01

    We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-In x Ga 1-x N ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-In x Ga 1-x N semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of −28.9 cm −1 is theoretically obtained

  18. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  19. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+x Mn50Sn11-x (x ⩽ 2) alloys.

    Science.gov (United States)

    Prasanna, A A; Ram, Shanker

    2013-02-01

    Ni 39+ x Mn 50 Sn 11- x ( x = 0.5, 1.0, 1.5 and 2) alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ∼15 mm diameter and 8 mm width. A single martensite phase with a L 1 0 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% ( x = 2), whereas an austenite cubic L 2 1 phase turns up at smaller x ⩽ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips ( x ≽ 1.5) with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite-austenite (or reverse) phase transition. A net residual enthalpy change Δ H M↔A = -0.12 J g -1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (-)26% at 10 T is observed together with a large entropy change of 11.8 mJ g -1 K -1 , nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The Δ H M↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.

  20. 49 CFR 214.117 - Eye and face protection.

    Science.gov (United States)

    2010-10-01

    ... corrective lenses, when required by this section to wear eye protection, shall be protected by goggles or... 49 Transportation 4 2010-10-01 2010-10-01 false Eye and face protection. 214.117 Section 214.117..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.117 Eye and face...

  1. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  2. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  3. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Science.gov (United States)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  4. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  5. Study on magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, G.S.; Xu, H., E-mail: huixu8888@shu.edu.cn; Yu, L.Y.; Tan, X.H.; Zhang, Q.; Gu, Y.; Hou, X.L.

    2017-09-01

    Highlights: • (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B alloys are prepared by melt-spinning method with simultaneously decreasing of Nd, Ce concentration. • The magnetic properties B{sub r}, (BH){sub max} and squareness are all improved with an appropriate reduction of Nd, Ce concentration. • Magnetic field heat treatment offers a significant improvement in B{sub r}, (BH){sub max} and squareness. - Abstract: In the present work, (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 0–0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH){sub max}) and remanence (B{sub r}) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: H{sub ci} = 4.9 kOe, B{sub r} = 10.1 kG, (BH){sub max} = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B (x = 0.4) annealed ribbons. The magnetic properties B{sub r}, (BH){sub max} and squareness are all enhanced after the magnetic field heat treatment. The (BH){sub max} shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B alloy.

  6. Nature of the fundamental band gap in GaNxP1-x alloys

    International Nuclear Information System (INIS)

    Shan, W.; Walukiewicz, W.; Yu, K. M.; Wu, J.; Ager, J. W. III; Haller, E. E.; Xin, H. P.; Tu, C. W.

    2000-01-01

    The optical properties of GaN x P 1-x alloys (0.007≤x≤0.031) grown by gas-source molecular-beam epitaxy have been studied. An absorption edge appears in GaN x P 1-x at energy below the indirect Γ V -X C transition in GaP, and the absorption edge shifts to lower energy with increasing N concentration. Strong photomodulation signals associated with the absorption edges in GaN x P 1-x indicate that a direct fundamental optical transition is taking place, revealing that the fundamental band gap has changed from indirect to direct. This N-induced transformation from indirect to direct band gap is explained in terms of an interaction between the highly localized nitrogen states and the extended states at the Γ conduction-band minimum. (c) 2000 American Institute of Physics

  7. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Science.gov (United States)

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  8. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala

    2017-09-18

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address the effects of doping. While many half-Heuser alloys show excellent thermoelectric performance, the materials under study are special by supporting both n- and p-doping. We identify the reasons for this balanced thermoelectric transport and explain why experimentally p-doping is superior to n-doping. We also determine the spectrum of phonon mean free paths to guide grain refinement methods to enhance the thermoelectric figure of merit.

  9. Local moments and electronic correlations in Fe-based Heusler alloys: Kα x-ray emission spectra measurements

    International Nuclear Information System (INIS)

    Svyazhin, Artem; Kurmaev, Ernst; Shreder, Elena; Shamin, Sergey; Sahle, Christoph J.

    2016-01-01

    Heusler alloys are a property-rich class of materials, intensively investigated today from both theoretical and real-world application points of view. In this paper, we attempt to shed light on the role of electronic correlations in the Fe_2MeAl group (where Me represents all 3d elements from Ti to Ni) of Heusler alloys. For this purpose, we have investigated the local moments of iron by means of the x-ray emission spectroscopy technique. To obtain numerical values of local moments, the Kα-FWHM method has been employed for the first time. In every compound of the group, the presence of a local moment on the Fe atom was detected. As has been revealed, the values of these moments are temperature-independent, pointing to an insufficiency of a pure itinerant approach to magnetism in these alloys. We also comprehensively compare the usage of Kβ main lines and Kα spectra as tools for the probing of local moments and point out the significant advantages of the latter. - Highlights: • Local spin moments of iron in Fe_2MeAl (Me = Ti … Ni) Heusler alloys were investigated by means of x-ray emission spectroscopy. • Independence of the local moments from temperature confirms their localized nature. • A local moment value of iron in Fe_2MeAl raises with the atomic number of element Me. • The applicability of the Kα x-ray emission line for extracting local moment values of 3d elements was established.

  10. Development of nanotopography during SIMS characterization of thin films of Ge{sub 1−x}Sn{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, M., E-mail: secchi@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Colaux, J.L. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Giubertoni, D.; Dell’Anna, R.; Iacob, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Gwilliam, R.M.; Jeynes, C. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy)

    2015-11-30

    Highlights: • SIMS protocol to measure high Sn concentration in GeSn alloy is proposed. • Cs{sup +} as incidence beam, collecting positive ions MCs{sup +} was the chosen configuration. • Applied sputtering conditions induced an early formation of surface topography. • Unusual dot and ripple evolution at oblique incidence angle on Ge were studied. • Two different mechanisms seem to be involved: ripple formation and nanovoids in Ge. - Abstract: This work presents a study of application of secondary ion mass spectrometry (SIMS) to measure tin concentration in Ge{sub 1−x}Sn{sub x} alloy with x higher than solid solubility ∼1%, i.e. well above the diluted regime where SIMS measurements usually provide the most reliable quantitative results. SIMS analysis was performed on Sn{sup +} ion implanted Ge films, epitaxially deposited on Si, and on chemical vapor deposition deposited Ge{sub 0.93}Sn{sub 0.07} alloy. Three SIMS conditions were investigated, varying primary beam ion species and secondary ion polarity keeping 1 keV impact energy. Best depth profile accuracy, best agreement with the fluences measured by Rutherford backscattering spectrometry, good detection limit (∼1 × 10{sup 17} at/cm{sup 3}) and depth resolution (∼2 nm/decade) are achieved in Cs{sup +}/SnCs{sup +} configuration. However, applied sputtering conditions (Cs{sup +} 1 keV, 64° incidence vs. normal) induced an early formation of surface topography on the crater bottom resulting in significant variation of sputtering yield. Atomic force microscopy shows a peculiar topography developed on Ge: for oblique incidence, a topography consisting in a sequence of dots and ripples was observed on the crater bottom. This behavior is unusual for grazing incidence and has been observed to increase with the Cs{sup +} fluence. Rotating sample during sputtering prevents this ripple formation and consequently improves the depth accuracy.

  11. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  12. Ab initio studies on electronic and magnetic properties of X2PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    International Nuclear Information System (INIS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-01-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X 2 PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn 2 PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr 2 PtGa and Mn 2 PtGa possess ferrimagnetic configuration whereas Fe 2 PtGa and Co 2 PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X 2 PtGa (X=Cr, Mn, Fe, Co). • Co 2 PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co 2 PtGa.

  13. Corrosion studies and recommendation of alloys for an incinerator of glove-boxes wastes

    International Nuclear Information System (INIS)

    Devisme, F.; Garnier, M.H.

    1992-01-01

    In the framework of the development of an incineration process for high chlorinated wastes, commercial alloys have been investigated by means of parametric laboratory tests in HCl containing gas mixtures and also in field tests. Recommendations may be formulated for the three main components i.e. pyrolyser, calciner and cooler. In very low oxygen-potential atmospheres, the alloys Hastelloy C276 and Inconel 625 present the best behaviours. For the calciner, alloy Inconel 601 is more satisfactory than AISI 310 steel. As for the cooler, only the alloy Haynes 214 appears acceptable at 1100 deg C. Because of the very low stress level affecting the components, thermomechanical properties do not modify these recommendations based on corrosion behaviour

  14. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  15. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  16. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  17. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  18. In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Bakhsheshi-Rad, Hamid Reza, E-mail: Rezabakhsheshi@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Idris, Mohd Hasbullah [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implants Technology Group, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Department of Biomechanics and Biomedical Materials, Faculty of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Lotfabadi, Amir Fereidouni [Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Ourdjini, Ali [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer The effect of Ca and Zn addition on Mg-Ca and Mg-Ca-Zn were investigated. Black-Right-Pointing-Pointer Ca and Zn addition decreased solid fraction at coherency point. Black-Right-Pointing-Pointer T{sub N}-T{sub DCP} increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn, respectively. Black-Right-Pointing-Pointer Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg-Ca-Zn. Black-Right-Pointing-Pointer A new peak Mg{sub 51}Zn{sub 20} was identified in Mg-0.5Ca-9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg-xCa and Mg-0.5%Ca-xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg{sub 2}Ca intermetallic phase at around 520 Degree-Sign C in addition to {alpha}-Mg phase. First derivative curves of alloys after the addition of Zn to Mg-0.5Ca alloy reveals three peaks related to {alpha}-Mg, Mg{sub 2}Ca and Ca{sub 2}Mg{sub 6}Zn{sub 3} for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg{sub 2}Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 Degree-Sign C for Mg-0.5Ca-9Zn which was identified as Mg{sub 51}Zn{sub 20}. Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T{sub N}-T{sub DCP}) increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn systems.

  19. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  20. Secondary phases in Al_xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    International Nuclear Information System (INIS)

    Rao, J. C.

    2017-01-01

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al_xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al_0_._3 and Al_0_._5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinning formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.

  1. Preparation of nanocrystalline Ce{sub 1−x}Sm{sub x}(Fe,Co){sub 11}Ti by melt spinning and mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Huber, A.M., E-mail: arne.huber@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Goll, D., E-mail: dagmar.goll@htw-aalen.de [Aalen University, Materials Research Institute, Beethovenstr. 1, 73430 Aalen (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2017-04-15

    Permanent magnetic materials based on Ce(Fe, Co){sub 12−x}Ti{sub x} with the ThMn{sub 12} structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd{sub 2}Fe{sub 14}B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce{sub 1−x}Sm{sub x}Fe{sub 11−y}Co{sub y}Ti (x=0−1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 H{sub c,J} values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm. - Highlights: • CeFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 77 kA/m. • SmFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 392 kA/m. • Dependence of H{sub c,J} on x in Ce{sub 1−x}Sm{sub x(}Fe, Co){sub 11}Ti obeys non-linear dependence. • Optimum annealing shifts to from 800 °C for CeFe{sub 11}Ti to 900 °C for SmFe{sub 11}Ti.

  2. Band structure and magnetic properties of DO3-type Fe3-xVxAl alloys. Super-cell approach

    International Nuclear Information System (INIS)

    Deniszczyk, J.; Borgiel, W.

    2000-01-01

    The electronic structure of Fe 3-x V x Al alloys can be calculated using the super-cell methodology of alloy modeling. The concentration range of x 0.0-1.0 was investigated. For a concentration of x = 0.0625 the energy based analysis reveals that vanadium prefers to replace the Fe atom at sites with the octahedral coordination. It was found that the iron atoms coordinated by the eight nearest-neighbour Fe atoms preserve their high magnetic moment up to a concentration of x = 0.9375 even through the average total magnetic moment goes to zero. The relatively high (∼ -1.0 μ B ) negative magnetic moment of V remains constant up to x ∼ 0.5. In the concentration range of x = 0.75-0.9375 the gap at ε F of the minority density of states is observed while the majority density of states displays a sharp peak structure at the Fermi energy. This feature suggests the heavy-fermion behaviour of the Fe 2 VAl compound. (author)

  3. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x=0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries

    Science.gov (United States)

    Li, Rongfeng; Xu, Peizhen; Zhao, Yamin; Wan, Jing; Liu, Xiaofang; Yu, Ronghai

    2014-12-01

    La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x = 0-0.5) hydrogen storage alloys were prepared by induction melting followed by annealing treatment at 1173 K for 8 h. The effects of substitution Al for Co on the microstructures and electrochemical performances were studied systematically. The structure analyses show that all alloys consist of multiphase structures such as (La, Mg)2Ni7 phase, (La, Mg) Ni3 phase and LaNi5 phase. The abundance of (La, Mg)2Ni7 phase decreases while the abundance of LaNi5 phase and (La, Mg)Ni3 phase increases directly as the Al content increasing. The electrochemical tests show that the maximum discharge capacity of alloy electrodes are almost unchanged when x ≤ 0.2 while the cyclic stability of the alloy electrode are improved significantly after proper amount of Al substitution for Co. The alloy electrode with x = 0.1 exhibits the better balance between discharge capacity and cycling life than any others. Moreover, at the discharge current density of 900 mA g-1, the high rate dischargeability (HRD) of the alloy electrodes decreases with increasing Al substitution and the relative analyses reveal that the charge transfer on alloy surface is more important than the hydrogen diffusion in alloy bulk for the kinetic properties of the alloy electrodes.

  4. Tuning of the optical properties of In-rich In{sub x}Ga{sub 1−x}N (x=0.82−0.49) alloys by light-ion irradiation at low energy

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario [Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Pettinari, Giorgio [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Ciatto, Gianluca; Fonda, Emiliano [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif sur Yvette Cedex (France); Amidani, Lucia; Boscherini, Federico [Department of Physics and CNISM, University of Bologna, V. le C. Berti Pichat 6/2, 40127 Bologna (Italy); Filippone, Francesco; Bonapasta, Aldo Amore [CNR-Istituto di Struttura della Materia (ISM), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione (Italy); Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany); Giubertoni, Damiano; Bersani, Massimo [CMM - Fondazione Bruno Kessler, Trieste, via Sommarive 18, 38100, Povo Trento (Italy)

    2013-12-04

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In{sub x}Ga{sub 1−x}N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects.

  5. On the quantitative X-ray phase analysis of R-Co alloys

    International Nuclear Information System (INIS)

    Lyubushkin, V.A.; Lyubushkina, L.M.; Vetoshkin, I.D.

    1982-01-01

    Using the method of quantitative X-ray phase analysis two-phase (RCo 5 -R 2 Co 17 ) alloys Sm-Co and Pr-Co have been studied. The investigations are made using the DRON-2.0 dif,ractometer in filtrated FeKα-radiation. Calibration diagrams for model binary mixtures are built, their use is recommended for express-evaluation of the amount of the phase determined. Test of the technique suggested is carried out

  6. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  7. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed

    2010-10-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS are estimated in the range 0 ≤ x ≤ 1 using both the standard local density approximation (LDA) as well as the generalized gradient approximations (GGA) of Wu-Cohen (WC) for the exchange-correlation potential. It is observed that the direct band gap EgΓ-Γ of CdxZn1-xS decreases nonlinearly with the compositional parameter x, as observed experimentally. It is also found that Cd s and d, S p and Zn d states play a major role in determining the electronic properties of this alloy system. Furthermore, results for complex dielectric constant ε(ω), refractive index n(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are also described in a wide range of the incident photon energy and compared with the existing experimental data. © 2010 Elsevier B.V. All rights reserved.

  8. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  9. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  10. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11−x(x ⩽ 2) alloys

    Science.gov (United States)

    Prasanna, A A; Ram, Shanker

    2013-01-01

    Ni39+xMn50Sn11−x (x = 0.5, 1.0, 1.5 and 2) alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ∼15 mm diameter and 8 mm width. A single martensite phase with a L10 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% (x = 2), whereas an austenite cubic L21 phase turns up at smaller x ⩽ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips (x ≽ 1.5) with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse) phase transition. A net residual enthalpy change ΔHM↔A = −0.12 J g−1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (–)26% at 10 T is observed together with a large entropy change of 11.8 mJ g−1 K−1, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The ΔHM↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features. PMID:27877562

  11. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11−x(x ≤ 2 alloys

    Directory of Open Access Journals (Sweden)

    A A Prasanna and Shanker Ram

    2013-01-01

    Full Text Available Ni39+xMn50Sn11−x (x = 0.5, 1.0, 1.5 and 2 alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ~15 mm diameter and 8 mm width. A single martensite phase with a L10 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% (x = 2, whereas an austenite cubic L21 phase turns up at smaller x ≤ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips (x ≥ 1.5 with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse phase transition. A net residual enthalpy change ΔHM↔A = −0.12 J g−1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (–26% at 10 T is observed together with a large entropy change of 11.8 mJ g−1 K−1, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The ΔHM↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.

  12. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... for the influence of the Mg-Al content on the glass forming ability by studying a range of compositions, (Mg0.98Al0.02)(x)(Cu0.75Y0.25)(100-x) for x = 60 - 80 at.%. As previously, the alloys were prepared by a relatively simple technique, i.e. rapid cooling of the melt in a wedge-shaped copper mould. This method...... provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular...

  13. Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-x Alx powders elaborated by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Akkouche K.

    2012-06-01

    Full Text Available Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at % were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ray diffraction, scanning electron microscopy (SEM, energy dispersive X-ray and Mössbauer spectroscopy. For all Fe100-xAlx samples, the complete formation of bcc phase was observed after 35 h of milling. As Al content increases, the lattice parameter increases, whereas the grain size decreases from 106 to 12 nm. The powder particle morphology for different compositions was observed by SEM. The Mössbauer spectra were adjusted with a singlet line and a sextet containing two components. The singlet was attributed to the formation of paramagnetic A2 disordered structure rich with Al. About the sextet, the first component indicated the formation of Fe clusters/ Fe-rich phases; however, the second component is characteristic of disordered ferromagnetic phase.

  14. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlO{sub x}/TaO{sub x}/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Maikap, S., E-mail: sidhu@mail.cgu.edu.tw [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Sreekanth, G.; Dutta, M.; Jana, D. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Y.Y.; Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Cu:AlO{sub x} alloy is used for the first time to have defective TaO{sub x} film. • A relation in between formation voltage and RESET current has been developed. • A switching mechanism based on a thinner with dense Cu filament is demonstrated. • Good uniformity with yield of >90% and long cycles using 1 ms pulse are obtained. - Abstract: Improved resistive switching phenomena such as device-to-device uniformity, lower formation voltage (2.8 V) and RESET current, >500 program/erase cycles, longer read endurance of >10{sup 6} cycles with a program/erase pulse width of 1 μs, and data retention of >225 h under a low current compliance of 300 μA have been discussed by using Cu-Al alloy in Cu:AlO{sub x}/TaO{sub x}/TiN conductive bridging resistive random access memory (CBRAM) device for the first time. The switching mechanism is based on a thinner with dense Cu filament formation/dissolution through the defects in the Cu:AlO{sub x}/TaO{sub x}/TiN structure owing to enhance memory characteristics. These characteristics have been confirmed by measuring randomly picked 100 devices having via-hole size of 0.4 × 0.4 μm{sup 2}. The Cu-Al alloy becomes Cu:AlO{sub x} buffer layer and Ta{sub 2}O{sub 5} becomes TaO{sub x} switching layer owing to Gibbs free energy dependency. All layers and elements are observed by high-resolution transmission electron microscope (HRTEM) image and energy dispersive X-ray spectroscopy (EDX). By developing a numerical equation in between RESET current and formation voltage, it is found that a higher rate of Cu migration is observed owing to both the defective switching layer and larger size, which results a lower formation voltage and RESET current of the Cu:AlO{sub x}/TaO{sub x}/TiN structure, as compared to Cu/Ta{sub 2}O{sub 5}/TiN under external positive bias on the Cu electrode. This simple Cu:AlO{sub x}/TaO{sub x}/TiN CBRAM device is useful for future nanoscale non-volatile memory application.

  15. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    International Nuclear Information System (INIS)

    Russew, K; Stojanova, L; Yankova, S; Fazakas, E; Varga, L K

    2009-01-01

    Six Cu 100-x Zr x amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min -1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu 64 Zr 36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  16. Alleviation of Fermi level pinning at metal/n-Ge interface with lattice-matched Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer on Ge

    Science.gov (United States)

    Suzuki, Akihiro; Nakatsuka, Osamu; Sakashita, Mitsuo; Zaima, Shigeaki

    2018-06-01

    The impact of a silicon germanium tin (Si x Ge1‑ x ‑ y Sn y ) ternary alloy interlayer on the Schottky barrier height (SBH) of metal/Ge contacts with various metal work functions has been investigated. Lattice matching at the Si x Ge1‑ x ‑ y Sn y /Ge heterointerface is a key factor for controlling Fermi level pinning (FLP) at the metal/Ge interface. The Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer having a small lattice mismatch with the Ge substrate can alleviate FLP at the metal/Ge interface significantly. A Si0.11Ge0.86Sn0.03 interlayer increases the slope parameter for the work function dependence of the SBH to 0.4. An ohmic behavior with an SBH below 0.15 eV can be obtained with Zr and Al/Si0.11Ge0.86Sn0.03/n-Ge contacts at room temperature.

  17. Quantification of the 214 Pb and 214 Bi decay products before and after to reach the secular equilibria with the 226 Ra

    International Nuclear Information System (INIS)

    Quintero P, E.; Rojas M, V.P.; Cervantes N, M.L.; Gaso P, M.I.

    2002-01-01

    In this work a comparison between the 226 Ra concentration and its decay products ( 214 Pb and 214 Bi) in soil samples is presented before and after that the decay mentioned products reach the equilibria with the radium. Moreover, the obtained daughter/father ratio is presented; and the correction factor for the calculus of the 214 Pb and 214 Bi quantification without being necessary to wait until that the secular equilibria has been established. For the quantification of the concentration of the three radionuclides the gamma spectrometry technique was used. (Author)

  18. On the structural and magnetic properties of amorphous Fe84-xWxB16 alloys in dependence of W content

    International Nuclear Information System (INIS)

    Novakova, A.A.; Sidorova, G.V.; Katsnelson, A.A.; Szasz, A.; Kojnok, J.

    1990-01-01

    A series of rapidly solidificated amorphous Fe 84-x W x B 16 (x=0-5) alloys have been studied. A strictly linear decrease of H eff versus concentration of W has been observed by Moessbauer spectroscopy. (orig.)

  19. Valence Band Structure of InAs1−xBix and InSb1−xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Science.gov (United States)

    Samajdar, D. P.; Dhar, S.

    2014-01-01

    The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1−xBix and InSb1−xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E − energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data. PMID:24592181

  20. 22 CFR 214.37 - Public access to committee records.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Public access to committee records. 214.37 Section 214.37 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADVISORY COMMITTEE MANAGEMENT Operation of Advisory Committees § 214.37 Public access to committee records. Records maintained in...

  1. Influence of Ge content on the optical properties of X and W centers in dilute Si-Ge alloys

    DEFF Research Database (Denmark)

    Leitão, J.P.; Carvalho, A.; Marques Pereira, Rui Nuno

    2011-01-01

    Photoluminescence (PL) measurements, performed in Si and Si1−xGex alloys (x= 0.0069 and 0.0125) irradiated with protons and annealed between 100 and 650 ∘C, are combined with first-principles calculations to assess the assignment of the W and X lines to the trigonal and tetragonal forms of the tr...

  2. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  3. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  4. Molecular field analysis for melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys (18<=60)

    CERN Document Server

    Yano, K

    2000-01-01

    The magnetic properties for the melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys were analyzed using the molecular field theory (MFT). A concentration dependence of three exchange interaction constants was derived over a wide concentration range (18=T sub c sub o sub m sub p. Curvature of the Arrott plot in Gd-rich region was qualitatively simulated.

  5. The structure, magnetism, and electrical-transport properties of the Heusler alloys Co2Cr1-xFexAl (x=0.2-0.6)

    International Nuclear Information System (INIS)

    Zhang Ming; Wolf, Anne L.; Zhang, L.; Tegus, O.; Brueck, Ekkes; Wu Guangheng; Boer, Frank R. de

    2005-01-01

    We synthesize the polycrystalline Heusler compounds Co 2 Cr 1-x Fe x Al (x=0.2-0.6). The x-ray diffraction patterns show A2 structure rather than L2 1 structure. The magnetic moment and the Curie temperature increase with increasing x. The electrical resistivity characterizes the Co 2 Cr 1-x Fe x Al compounds to be not typical metals and the temperature dependence of the resistivity changes from metallic to semiconductinglike behavior with increasing Cr concentrations. We attribute the fact, which we observe for most of the compounds smaller magnetic moments than the theoretical values and the low magnetoresistance in these alloys, to the considerably high level of Co-(Cr, Fe)-type disorder

  6. Crystallographic parameters of magnetic Pr{sub 2}Fe{sub 14−x}Co{sub x}B-type alloys determined using anomalous x-ray diffraction with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Galego, E., E-mail: egalego@ipen.br; Serna, M.M.; Ramanathan, L.V.; Faria, R.N.

    2017-02-15

    Anomalous x-ray synchrotron diffraction was used to determine the crystallographic parameters of PrFeCoB-based magnetic alloys. The effect of cobalt concentration on the crystallographic parameters of the magnetically hard Pr{sub 2}Fe{sub 14−x}Co{sub x}B phase was studied. The results indicate that addition of cobalt has a marked effect on crystal structure. Variation of the c parameter decreased twice as much as the a parameter with increase in Co content. The positions of inequivalent atoms of the magnetically hard matrix phase ϕ in the Pr-based alloys were determined using Rietveld refinement. This permitted determination of the relative distance of each inequivalent atom from its nearest neighbors. Cobalt occupied the 16k{sub 2} site and Fe had a tendency to occupy the 8j{sub 2} sites located between the Kagomé layers. - Highlights: • Good magnetics properties can be achieved with addition of 4% and 8% Co. • Rietveld refinement is proposed for crystallographic parameters studies. • Co has preference to substitute Fe in 16k{sub 2} site and avoid the 8j{sub 2} site.

  7. Ab initio studies on electronic and magnetic properties of X{sub 2}PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: aparnachakrabarti@gmail.com [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Chakrabarti, Aparna [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2017-02-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X{sub 2}PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn{sub 2}PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr{sub 2}PtGa and Mn{sub 2}PtGa possess ferrimagnetic configuration whereas Fe{sub 2}PtGa and Co{sub 2}PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X{sub 2}PtGa (X=Cr, Mn, Fe, Co). • Co{sub 2}PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co{sub 2}PtGa.

  8. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  9. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling

    Science.gov (United States)

    Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.

    2015-06-01

    Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.

  10. Microstructure and hardness of Mg–9Li–6Al–xLa (x=0, 2, 5) alloys during solid solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Pengfei [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Qu, Zhikun [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Harbin Normal University, Harbin 150025 (China); Wu, Ruizhi, E-mail: rzwu@hrbeu.edu.cn [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)

    2015-02-11

    The microstructure evolution of Mg–9Li–6Al–xLa (x=0, 2, 5) alloy under different solid solution parameters was investigated. The results show that, during solution treatment at 350 °C, the lamellar AlLi is precipitated from α-Mg in Mg–9Li–6Al, while the MgLi{sub 2}Al is dissolved into the matrix. However, during solution treatment at 450 °C, the AlLi phase is wholly dissolved into matrix, while the MgLi{sub 2}Al is precipitated from β-Li. The addition of La can reduce the size of α-Mg, restrain the formation of AlLi, and make the precipitated MgLi{sub 2}Al from β-Li at 450 °C be finer than that in Mg–9Li–6Al. With the addition of La, the decrease of the amount of AlLi and MgLi{sub 2}Al leads to a descent of hardness, while the refinement, Al–La phase precipitation, and the solution of Al atoms can improve the hardness of the alloys.

  11. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, M., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar [INIFTA-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cabrera, A. F., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Stewart, S. J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí No. 6200, Florencio Varela (Argentina)

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  12. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    International Nuclear Information System (INIS)

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  13. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  14. Relationship between carburization and zero-applied-stress creep dilation in Alloy 800H and Hastelloy X

    International Nuclear Information System (INIS)

    Inouye, H.; Rittenhouse, P.L.

    1981-01-01

    Typical HTGR candidate alloys can carburize when exposed to simulated service environments. The carbon concentration gradients so formed give rise to internal stresses which could cause dilation. Studies performed with Hastelloy X and Alloy 800H showed that dilations of up to almost 1% can occur at 1000 0 C when carbon pickup is high. Dilation was normally observed only when the carbon increase was >1000 μg/cm 2 and ceased when diffusing carbon reached the center of the specimen. (Auth.)

  15. New view on In{sub x}Ga{sub 1-x}N{sub y}As{sub 1-y}alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elyukhin, Vyacheslav A. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Avenida Instituto Politecnico Nacional 2508, 07360, Mexico (Mexico)

    2015-12-15

    Semiconductors with isoelectronic centers are actively studied to fabricate arrays of identical single photon emitters. Self-assembling of 4N10In and 1N4In clusters in GaAs-rich In{sub x}Ga{sub 1-x}N{sub y}As{sub 1-y} is represented. All or almost all In atoms are in 4N10In clusters from 0 to 800 C in In{sub x}Ga{sub 1-x}N{sub y}As{sub 1-y} with x = 1 x 10{sup -4}, y = 1 x 10{sup -4} and x = 1 x 10{sup -5}, y = 1 x 10{sup -5}. All or almost all nitrogen atoms are in 1N4In clusters if x = 0.01, y = 1 x 10{sup -4} and x = 1 x 10{sup -3}, y = 1 x 10{sup -6}. There are both types of clusters in alloys with x = 5 x 10{sup -5}, y = 5 x 10{sup -7}; x = 2 x 10{sup -4}, y = 2 x 10{sup -6}; x = 1 x 10{sup -4}, y = 1 x 10{sup -5} and x = 2 x 10{sup -3}, y = 2 x 10{sup -4} and portions of nitrogen atoms in clusters depend on the composition and temperature. Thus, In{sub x}Ga{sub 1-x}N{sub y}As{sub 1-y} are promising semiconductors to obtain arrays of identical isoelectronic clusters with the desirable density. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. 24 CFR 214.313 - Housing counseling fees.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Housing counseling fees. 214.313... HOUSING COUNSELING PROGRAM Program Administration § 214.313 Housing counseling fees. (a) Participating agencies may charge reasonable and customary fees for housing education and counseling services, as long as...

  17. Pre-Columbian alloys from the royal tombs of Sipan; energy dispersive X-ray fluorescence analysis with a portable equipment

    International Nuclear Information System (INIS)

    Cesareo, R.; Calza, C.; Dos Anjos, M.; Lopes, R.T.; Bustamante, A.; Fabian S, J.; Alva, W.; Chero Z, L.

    2010-01-01

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the 'Tumbas Reales de Sipan'. About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the 'Tumbas Reales de Sipan' are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  18. Energy investigations on the mechanical properties of magnesium alloyed by X = C, B, N, O and vacancy

    KAUST Repository

    Wu, Xiaozhi

    2013-10-25

    The generalized stacking fault (GSF) energies and surface energies of magnesium and its alloys with alloying atoms X = C, B, N, O and vacancy have been investigated using the first-principles methods. It is found that the predominant reducing effects of the alloying atoms and vacancy on the stacking fault energy are resulted from the position of them in the 1st layer near the slip plane. The stacking fault energies are nearly the same as the pure magnesium while the alloying atoms and vacancy are placed in the 2nd, 3rd, 4th, 5th and 6th layers. It has been shown that O strongly reduces the GSF energy of Mg. The alloying atoms C, B and N increase the surface energy, but O and vacancy reduce the surface energy of Mg. The ductilities of Mg and Mg alloys have been discussed based on the Rice criterion by using the ratio between surface energy and unstable stacking fault energy. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg.

  19. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction

    International Nuclear Information System (INIS)

    Srirangam, P.; Kramer, M.J.; Shankar, S.

    2011-01-01

    High-energy X-ray diffraction experiments were performed using a synchrotron beam source to investigate the effect of strontium on the liquid atomic structure of Al-Si hypoeutectic alloys. The high-temperature liquid diffraction experiments were carried out on Al alloys with 3, 7, 10 and 12.5 (eutectic) wt.% Si, respectively, with 0 and 0.04 wt.% addition of Sr to each of the alloys. Further, the diffraction data for all the alloys were obtained at various melt temperatures (5-220 K) above the respective liquidus temperature. It was observed that the addition of 0.04 wt.% Sr results in significant change in the liquid structure parameters, such as structure factor, pair distribution function, radial distribution function, coordination number and packing density, at any given melt temperature of the alloy. Salient observations were that, for any specific alloy and temperature, addition of Sr significantly decreases coordination number and packing density. Further, with the addition of Sr in the liquid alloy, the atomic coordination number and packing density increases with decreasing temperature and decreasing Si content of the alloy. The results coupled with prior knowledge have enabled an in-depth understanding of the nucleation environment of the solidifying phases, specifically the role of Sr in delaying the clustering tendencies (nucleation) of the eutectic Si phase.

  20. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  1. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  2. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  3. 49 CFR 214.311 - Responsibility of employers.

    Science.gov (United States)

    2010-10-01

    ... Responsibility of employers. (a) Each employer is responsible for the understanding and compliance by its employees with its rules and the requirements of this part. (b) Each employer shall guarantee each employee... 49 Transportation 4 2010-10-01 2010-10-01 false Responsibility of employers. 214.311 Section 214...

  4. 49 CFR 214.341 - Roadway maintenance machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway maintenance machines. 214.341 Section 214... Roadway maintenance machines. (a) Each employer shall include in its on-track safety program specific provisions for the safety of roadway workers who operate or work near roadway maintenance machines. Those...

  5. 40 CFR 86.214-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.214-94 Section 86.214-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  6. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  7. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    Science.gov (United States)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  8. Magnetic characterization of nanocrystalline Fe80−xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-01-01

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe 80−x Cr x Co 20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively.

  9. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    Science.gov (United States)

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  11. Quantification of the {sup 214} Pb and {sup 214} Bi decay products before and after to reach the secular equilibria with the {sup 226} Ra; Cuantificacion de los productos de decaimiento {sup 214} Pb y {sup 214} Bi antes y despues de alcanzar el equilibrio secular con el {sup 226} Ra

    Energy Technology Data Exchange (ETDEWEB)

    Quintero P, E.; Rojas M, V.P.; Cervantes N, M.L.; Gaso P, M.I. [Gerencia de Seguridad Radiologica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a comparison between the {sup 226} Ra concentration and its decay products ({sup 214} Pb and {sup 214} Bi) in soil samples is presented before and after that the decay mentioned products reach the equilibria with the radium. Moreover, the obtained daughter/father ratio is presented; and the correction factor for the calculus of the {sup 214} Pb and {sup 214} Bi quantification without being necessary to wait until that the secular equilibria has been established. For the quantification of the concentration of the three radionuclides the gamma spectrometry technique was used. (Author)

  12. 49 CFR 214.331 - Definite train location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Definite train location. 214.331 Section 214.331... location. A roadway worker may establish on-track safety by using definite train location only where... may only use definite train location to establish on-track safety at points where such procedures were...

  13. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  14. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  15. Thermoelectric power of Bi and Bi{sub 1{minus}x}Sb{sub x} alloy thin films and superlattices grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; DiVenere, A; Wong, G K; Ketterson, J B; Meyer, J R; Hoffman, C A

    1997-07-01

    The authors have measured the thermoelectric power (TEP) of MBE-grown epitaxial Bi and Bi{sub 1{minus}x} alloy thin films and superlattices as a function of temperature in the range 20--300 K. They have observed that the TEP of a Bi thin film of 1 {micro}m thickness is in good agreement with the bulk single crystal value and that the TEPs for superlattices with 400 {angstrom} and 800 {angstrom} Bi well thicknesses are enhanced over the bulk values. For x = 0.072 and 0.088 in Bi{sub 1{minus}x}Sb{sub x} thin films showing semiconducting behavior, TEP enhancement was observed by a factor of two. However as Bi or Bi{sub 1{minus}x}Sb{sub x} well thickness decreases in superlattice geometry, the TEP decreases, which may be due to unintentional p-type doping.

  16. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    International Nuclear Information System (INIS)

    Jackson, J.H.; Teysseyre, S.P.

    2012-01-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials of interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.

  17. Calculation of self-consistent potentials for substitutionally disordered systems with application to the Ag/sub x/-Pd/sub 1-x/ alloy series

    International Nuclear Information System (INIS)

    Winter, H.; Stocks, G.M.

    1983-01-01

    Previous Korringa-Kohn-Rostoker coherent-potential-approximation electronic-structure calculations for substitutionally random alloys have been based on ad hoc potentials. The lack of procedures suitable to provide self-consistent, parameter-free potentials prevented computations for systems consisting of dissimilar atoms and is also the reason why quantities like, for example, cohesive energies or lattice constants, have not so far been evaluated for systems of similar constituents. We present in full detail a generally applicable scheme devised for calculating the self-consistent electronic structures of substitutionally disordered systems. Its feasibility is demonstrated by presenting the results obtained for the Ag/sub x/Pd/sub 1-x/ alloy series. They are compared with those of former non-self-consistent calculations which use Mattheiss prescription potentials and the α = 1 Slater exchange, whereas the von Barth--Hedin expression is employed in our work. The differences are perceptible and have to be understood as combined self-consistency and exchange-correlation effects. .ID BW2039 .PG 905 909

  18. Crystallisation kinetics of amorphous Fe72.5-xCu1Nb4.5Si10+x+yB12-y alloy

    International Nuclear Information System (INIS)

    Miglierini, M.; Lipka, J.; Sitek, J.

    1994-01-01

    Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 and Fe 72.5-x Cu 1 Nb 4.5 Si 10+x+y B 12-y alloys are compared from the point of view of crystallisation behaviour and changes in the short-range order in the amorphous reminder. The increase in Nb to 4.5 at.% in the latter system slows down the formation of nanocrystals to approximately 40% even after 16 hours of anneal at 550 C for x = 0.5, y = 3. Segregation-induced changes in the short-range order are manifested via hyperfine field distributions corresponding to the amorphous reminder. (orig.)

  19. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys

    International Nuclear Information System (INIS)

    Öz, Turan; Karaköse, Ercan; Keskin, Mustafa

    2013-01-01

    Highlights: • Thermal and mechanical properties of Al–Mn–Be alloys were investigated. • IQC Al–Mn–Be alloys were synthesized by the CS and MS techniques. • The volume fraction of IQC increases continuously with Be content. • The melting points of the QC i-phase were determined between 652 °C and 675 °C. • The maximum H V and σ values were found to be 124 kg/mm 2 and 458 MPa with the addition of 5% Be. - Abstract: The influence of beryllium (Be) addition on the quasicrystal-forming ability, thermal and mechanical properties of Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys was investigated in this study. Quasicrystalline Al–Mn–Be alloys were synthesized by the conventionally casting and melt spinning techniques. The microstructures of the samples were characterized by scanning electron microscopy (SEM) and the phase composition was identified by X-ray diffractometry (XRD). The phase transition during the solidification process was studied by differential scanning calorimetry (DSC) and differential thermal analysis (DTA) under an Ar atmosphere. The mechanical properties of the conventionally solidified (CS) and melt-spun (MS) samples were measured by a Vickers micro-hardness indenter and tensile-strength tests. The Al–4.5 wt.%Mn alloy has a hexagonal structure and minor dendritic icosahedral quasicrystalline phase (IQC) precipitates surrounded by an α-Al matrix. Addition of Be into the Al–4.5 wt.%Mn alloy generates intermetallic Be 4 AlMn and IQC phases with the extinction of the hexagonal phase, and the fraction of IQC increases continuously with the increase in Be content. A considerable improvement in microhardness and tensile strength values was observed due to the addition of Be in different percentages into the composition

  20. Origin of the strain glass transition in Ti_5_0(Ni_5_0_−_x D_x) alloys

    International Nuclear Information System (INIS)

    Wang, Xu; Shang, Jia-Xiang; Wang, Fu-He; Chen, Yue

    2016-01-01

    Direct evidence was recently discovered for the unique strain glass (STG) transition, which breaks the local symmetries (PRL 112, 025701 (2014)). To understand the origin of the STG transition, the effects of doping point defects on Ti_5_0(Ni_5_0_−_x D_x) are investigated using first-principle calculations. The experimental observation that STG only exists in a limited range of chemical composition x is successfully rationalized. The mechanisms that correspond to the division of a system into domains with distinctly different compositions are found to be directly related to a dip in the defect formation energy. - Highlights: • The strain glass transition phenomenon in Ti−Ni-based alloys is rationalized. • The electronic-structure origins of the strain glass transition are uncovered. • The separation of domains with different compositions is explained.

  1. Structural and electronic properties of zinc blende B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloys via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abdiche, A., E-mail: abdiche_a@yahoo.fr [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Baghdad, R. [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Department of Physics and Astronomy, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Riane, R. [Computational Materials Science Laboratory, University Research of Sidi-Bel-Abbes, 22000 Algeria (Algeria); Al-Douri, Y. [Institute of Nono Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Guemou, M. [Engineering Physics Laboratory, Tiaret University, 14000 Tiaret (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-02-01

    The structural and electronic properties of cubic zinc blende BN, BP, AlN and AlP compounds and their B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloys, have been calculated using the non relativistic full-potential linearized-augmented plane wave FP-LAPW method. The exchange-correlation potential is treated with the local density approximation of Perdew and Wang (LDA-PW) as well as the generalized gradient approximation (GGA) of Perdew-Burke and Ernzerhof (GGA-PBE). The calculated structural properties of BN, BP, AlN and AlP compounds are in good agreement with the available experimental and theoretical data. A nonlinear variation of compositions x and y with the lattice constants, bulk modulus, direct and indirect band gaps is found. The calculated bowing of the fundamental band gaps is in good agreement with the available experimental and theoretical value. To our knowledge this is the first quantitative theoretical investigation on B{sub x}Al{sub 1-x}N{sub y}P{sub 1-y} quaternary alloy and still awaits experimental confirmations.

  2. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr [Zirve University Faculty of Education, 27260, Gaziantep (Turkey)

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  3. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  4. Iron titanium manganase alloy hydrogen storage

    Science.gov (United States)

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  5. 40 CFR 211.214 - Removal of label.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Removal of label. 211.214 Section 211... PRODUCT NOISE LABELING Hearing Protective Devices § 211.214 Removal of label. Section 10(a)(4) of the Act prohibits any person from removing, prior to sale, any label required by this subpart, by either physical...

  6. Effect of Cu concentration on the formation of Cu{sub 1−x} Zn{sub x} shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, İsmail Hakkı [Department of Physics, Mustafa Kemal University, Hatay 31000 (Turkey); Özdemir, Rasim, E-mail: ihkarahan@gmail.com [Department of Physics, Mustafa Kemal University, Hatay 31000 (Turkey); Kilis Vocational High School, Kilis 7 Aralık University, 79000 Kilis (Turkey)

    2014-11-01

    Highlights: • 3 different composition of Cu–Zn deposits successfully deposited from the non-cyanide sulphate electrolyte. • The homogeneous metal films and Cu–Zn alloys were electrodeposited on Al substrate. • The effect of Cu content was strongly effected structural and the electrical resistivity of Cu–Zn alloys. • The average crystallite size of the samples varied from 66 to 100 nm and decreased when Cu content in the electrolyte. • Microstrain has been decreased with increasing crystallite size. • Cyclic voltammetry of the electrolyte explained the characters of the baths. - Abstract: The Cu{sub x}Zn1−x (x = 0.06, 0.08, 0.1) deposits were fabricated by a electrodeposition method. The structural and electrical properties of the films were investigated by cyclic voltammetry (CV), X-ray diffraction (XRD), Scanning electron micrograph (SEM), and DC resistivity measurements. Phase identification of the samples was studied by the XRD patterns. XRD patterns shows the characteristics XRD peaks corresponding to the, β, and γ phases. The grain sizes of the samples were decreased whereas microstrain increased with the increase in Cu{sup 2+} substitution. The SEM study reveals the fine particle nature of the samples with increasing Cu content. DC resistivity indicates the metallic nature of the prepared samples. It has been found that the Cu ions have a critical influence on the resultant structure and resistivity properties of the Cu–Zn samples.

  7. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    International Nuclear Information System (INIS)

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water

  8. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    Science.gov (United States)

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  9. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca 2+ , PO 4 3− and SiO 3 2− ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO 4 4− groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO 4 4− groups in the Si-HA coating

  10. Electronic tuning of the transport properties of off-stoichiometric PbxSn1−xTe thermoelectric alloys by Bi2Te3 doping

    International Nuclear Information System (INIS)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-01-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb x Sn 1−x Te alloys by tuning of Bi 2 Te 3 doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb 0.5 Sn 0.5 Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected

  11. A crystallization study of amorphous Tex(Bi2Se3)1-x alloys with variation of the Se content

    International Nuclear Information System (INIS)

    Saxena, Manish

    2005-01-01

    Alloys of the Te x (Bi 2 Se 3 ) 1-x glass system, obtained using rapid quenching technique, have been characterized by calorimetric measurements and differential thermal analysis for different heating rates in this work. A systematic investigation of crystallization kinetics is carried out for the composition range in which amorphous alloys exhibit a large glass-forming ability in Se-based systems, thermal stability including in the temperature range between the glass transition temperature, T g , and crystallization temperature, T c , and the effect of ΔT c (=T c - T g ) at different heating rates for the formation of an amorphous single phase is evaluated from thermal analytical data. The thermal stability of these glasses is found to provide good control for forming these glasses with ease. This analysis helps to find the suitability of an alloy for use in phase transition optical memories/switches

  12. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications: a comparative analysis

    Institute of Scientific and Technical Information of China (English)

    Utsa Das; Partha P.Pal

    2017-01-01

    ZnO1-xTex ternary alloys have great potential to work as a photovoltaic (PV) absorber in solar cells.ZnO1-xSx is also a ZnO based alloy that have uses in solar cells.In this paper we report the comparative study of various parameters of ZnO1-xTex and ZnO1-xSx for selecting it to be a competent material for solar cell applications.The parameters are mainly being calculated using the well-known VCA (virtual crystal approximation) and VBAC (Valence Band Anti-Crossing) model.It was certainly being analysed that the incorporation of Te atoms produces a high band gap lower than S atoms in the host ZnO material.The spin-orbit splitting energy value of ZnO1-xTex was found to be higher than that of ZnO1-xSx.Beside this,the strain effects are also higher in ZnO1-xTex than ZnO1-xSx.The remarkable notifying result which the paper is reporting is that at a higher percentage of Te atoms in ZnO1-xTex,the spin-orbit splitting energy value rises above the band gap value,which signifies a very less internal carrier recombination that decreases the leakage current and increases the efficiency of the solar ceil.Moreover,it also covers a wide wavelength range compared to ZnO1-xSx.

  13. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  14. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    Science.gov (United States)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  15. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  16. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    Science.gov (United States)

    Russew, K.; Stojanova, L.; Yankova, S.; Fazakas, E.; Varga, L. K.

    2009-01-01

    Six Cu100-xZrx amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min-1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu64Zr36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  17. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    Science.gov (United States)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  18. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  19. Pre-Columbian alloys from the royal tombs of Sipan; energy dispersive X-ray fluorescence analysis with a portable equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R. [Dip. di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100, Sassari (Italy)], E-mail: cesareo@uniss.it; Calza, C.; Dos Anjos, M.; Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE, Universidade Federal do Rio de Janeiro (Brazil); Bustamante, A.; Fabian S, J. [Universidad Nacional Mayor de San Marcos, Lima (Peru); Alva, W.; Chero Z, L. [Museo ' Tumbas Reales de Sipan' , Lambayeque (Peru)

    2010-04-15

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the 'Tumbas Reales de Sipan'. About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the 'Tumbas Reales de Sipan' are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  20. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fab